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Abstract

Prediction, where observed data is used to quantify uncertainty about a future
observation, is a fundamental problem in statistics. Prediction sets with coverage
probability guarantees are a common solution, but these do not provide probabilis-
tic uncertainty quantification in the sense of assigning beliefs to relevant assertions
about the future observable. Alternatively, we recommend the use of a probabilis-
tic predictor, a data-dependent (imprecise) probability distribution for the to-be-
predicted observation given the observed data. It is essential that the probabilistic
predictor be reliable or valid, and here we o↵er a notion of validity and explore its
behavioral and statistical implications. In particular, we show that valid probabilis-
tic predictors must be imprecise, that they avoid sure loss, and that they lead to
prediction procedures with desirable frequentist error rate control properties. We
provide a general construction of a provably valid probabilistic predictor, which has
close connections to the powerful conformal prediction machinery, and we illustrate
this construction in regression and classification applications.

Keywords and phrases: classification; conformal prediction; plausibility contour;
random sets; regression

1 Introduction

Data-driven prediction of future observations is a fundamental problem. Here our focus is
on applications where the data Z = (X, Y ) consists of explanatory variables X 2 X ✓ Rd,
for some d � 1, and a response variable Y 2 Y. That is, we observe a collection
Z

n = {Zi = (Xi, Yi) : i = 1, . . . , n} of n pairs from an exchangeable process. The two
most common examples are regression and classification, where Y is an open subset and
finite subset of R, respectively. We consider both cases in what follows. The prediction
problem corresponds to a case where we are given a value xn+1 of the next explanatory
variable Xn+1, and the goal is to predict the corresponding future response Yn+1 2 Y.

By “prediction” we mean quantifying uncertainty about Yn+1 in a data-dependent
way, i.e., depending on the observed data Z

n and the given value xn+1 of Xn+1. One
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perspective on prediction uncertainty quantification is the construction of a suitable fam-
ily of prediction sets representing collections of su�ciently plausible values for Yn+1; see,
e.g., Vovk et al. (2005), Campi et al. (2009), Kuleshov et al. (2018), and Equation (19)
below. While prediction sets are practically useful, there are prediction-related tasks
that they cannot perform, in particular, it cannot assign degrees of belief (or betting
odds, etc.) to all relevant assertions or hypotheses “Yn+1 2 A,” for A ✓ Y. An alter-
native approach is to develop what we refer to here as a probabilistic predictor, i.e., a
probability-like structure (precise or imprecise probability) defined on Y, depending on
Z

n and xn+1, designed to quantify uncertainty about Yn+1 by directly assigning degrees
of belief to relevant assertions. The most common approach to probabilistic prediction is
Bayesian, where a prior distribution for the model is specified and uncertainty is quanti-
fied by the posterior predictive distribution of Yn+1, given Z

n and Xn+1 = xn+1. Other
non-Bayesian approaches leading to predictive distributions include Lawless and Fredette
(2005), Coolen (2006), Wang et al. (2012), and Vovk et al. (2018).

Before moving forward, it is important to distinguish between uncertainty quantifi-
cation with prediction sets and with probabilistic predictors. One does not need a full
(precise or imprecise) probability distribution to construct prediction sets and, moreover,
sets derived from a probabilistic predictor are not guaranteed to satisfy the frequen-
tist coverage probability property that warrants calling them genuine “prediction sets.”
Therefore, the motivation for going through the trouble of constructing probabilistic pre-
dictor, Bayesian or otherwise, must be that there are important prediction-related tasks
that prediction sets cannot satisfactorily handle. In other words, the belief assignments
provided by a (precise or imprecise) probability must be a high priority. Strangely, how-
ever, the reliability of probabilistic predictors is only ever assessed in terms of (asymp-
totic) coverage probability properties of their corresponding prediction sets. Our unique
perspective is that, since belief assignments are a priority, there ought to be a way to
directly assess the reliability of a probabilistic predictor’s belief assignments.

For prediction problems where only the (response) variables Y1, . . . , Yn are observed,
Cella and Martin (2022) introduced a notion of validity for probabilistic predictors.
Roughly, their validity condition requires that the subsets A ✓ Y to which the prob-
abilistic predictor tends to assign large numerical degrees belief are the same as those
that tend to contain Yn+1. The point being that such a constraint ensures that the belief
assignments made by the probabilistic predictor are not systematically misleading. Here
we extend their notion of validity to the case where explanatory variables are present,
and the precise definitions are given below in Definitions 1–2. It turns out these notions
of validity have some important consequences, imposing certain constraints on the math-
ematical structure of the probabilistic predictor. Indeed, we argue in Section 3 (see, also,
Corollary 1 in Section 4) that validity can only be achieved by probabilistic predictors
that take the form of an imprecise probability distribution. Section 2 provides a preview
of the formal definition of validity and o↵ers empirical support for the claim that precise
probabilistic predictors cannot be valid.

After formally introducing these notions of validity in Section 3, we explore their
behavioral and statistical consequences. First, we show that even the weaker valid-
ity property in Definition 1 implies that the probabilistic predictor avoids (a property
stronger than) the familiar sure loss property in the imprecise probability literature,
hence is not internally irrational from a behavioral point of view. We go on to show that
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prediction-related procedures, e.g., tests and prediction regions, derived from (uniformly)
valid probabilistic predictors control frequentist error probability. The take-away message
is that a (uniformly) valid probabilistic predictor provides the “best of both worlds”—it
simultaneously achieves desirable behavioral and statistical properties.

Given the desirable properties of a valid probabilistic predictor, the natural question
is how to construct one? The probabilistic predictor we construct here is largely based on
the general theory of valid inferential models (IMs) as described in Martin and Liu (2013,
2015b). Martin and Liu’s construction usually assumes a parametric model but, here, we
aim to avoid such strong assumptions. For this, we use a particular extension of the so-
called generalized IM approach developed in Martin (2015, 2018). The basic idea is that
a link/association between observable data, quantities of interest, and an unobservable
auxiliary variable with known distribution can be made without fully specifying the data-
generating process. In Section 5, we develop a valid IM construction that assumes only
exchangeability of the observed data process, no parametric model assumptions required.
There, in Theorem 1, we establish that this general IM-based probabilistic predictor con-
struction achieves the (uniform) validity property. The specifics of this construction are
presented in Section 6, in the context of regression. Section 7 considers the classification
problem, and we show that the discreteness of Y in classification problems may cause
the IM random set output, from which the probabilistic predictor is derived, to be empty
with positive probability. Two possible adjustments are provided, with the one based on
suitably “stretching” the random set being most e�cient.

An important observation is that parallels can be drawn between our proposed IM
construction and the conformal prediction approach put forward in Vovk et al. (2005)
and elsewhere. This is interesting for at least two reasons.

• It demonstrates that one does not necessarily need “new methods” to construct
probabilistic predictors to achieve the desired (uniform) validity property, just an
appropriate re-interpretation of the output returned by certain existing methods.
In particular, our proposed IM construction returns a possibility measure whose
contour function is the transducer derived from an appropriate conformal prediction
algorithm. Consequently, all we need is the corresponding conformal prediction
algorithm to achieve our goals.

• However, there would be a variety of di↵erent ways the conformal prediction algo-
rithm could be re-interpreted as a probabilistic predictor, e.g., as a precise prob-
ability distribution or one of several di↵erent imprecise probability distributions.
Our developments here reveal that the appropriate re-interpretation, the one that
leads to (uniform) validity, is by treating the conformal transducer as the contour
function that defines a possibility measure.

These points, along with some other concluding remarks, are given in Section 8.

2 Prediction validity: a preview

To help clarify the di↵erence between the traditional notions of uncertainty quantification
in (probabilistic) prediction and the notions we have in mind here, we consider a relatively
simple example for illustration, one in which there are no covariates. That is, suppose
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we have a sequence of real-valued observables Y1, Y2, . . . and, based on the observations
Y

n = y
n, the goal is to predict Yn+1 in a probabilistic way. One standard way to approach

this is to construct a Bayesian predictive distribution. This requires specification of a prior
distribution over the space of models, an updating step whereby the prior distribution is
updated to posterior distribution via Bayes’s theorem in light of the observation Y

n = y
n,

and then that the posterior is converted into a predictive distribution for Yn+1, which we
will denote by ⇧n; keep in mind that ⇧n is a function data Y

n.
Of course, there are a number of di↵erent summaries one can extract from the predic-

tive distribution ⇧n. Very often, the only summary considered is a prediction interval,
e.g., the smallest set A such that ⇧n(A) is no less than 1 � ↵, for some specified level
↵ 2 (0, 1). Let this prediction interval be denoted by C↵(yn). By construction, C↵(yn)
has posterior predictive probability at least 1� ↵, but one typically wants to give this a
frequentist interpretation, to conclude that C↵(Y n) has prediction coverage probability
at least the nominal level 1 � ↵; see Equation (2) below. In many cases, the Bayesian
prediction interval will satisfy this frequentist coverage probability property, at least ap-
proximately. But one might ask: if the goal is to get a prediction interval that attains
certain frequentist coverage properties, then why go to the trouble of constructing a full
posterior predictive distribution for Yn+1? There are certain advantages to quantifying
uncertainty with a full predictive distribution, so these deserve exploration.

At a fundamental level, it is the predictive probabilities, i.e., ⇧n(A) for various A,
that should be meaningful to the data analyst who opted to construct ⇧n. That is,
values of ⇧n(A) that are large (resp. small) should suggest that the data show strong
(resp. weak) support for the claim “Yn+1 2 A.” Therefore, based on the observed data and
his predictive distribution construction, the data analyst would be inclined to conclude
that the aforementioned claims will hold for A with large ⇧n(A) and will not hold for those
with small ⇧n(A). But if the data analyst is thinking about the predictive distribution as
a method for prediction, rather than summarizing his personal beliefs about Yn+1, then
he should care about the reliability of this method. This begs the following question: as
a function of Y n+1, do the two events {⇧n(A) is small} and {Yn+1 62 A} tend to happen
simultaneously for all the relevant A’s? If not, then the predictive distribution, treated
as a method for predictive inference, lacks reliability in the sense that there is risk of
erroneous predictions. Put di↵erently, suppose the data analyst is a gambler who uses
his ⇧n(A) values to set prices for $1 bets on the uncertain outcomes “Yn+1 2 A.” Then a
lack of reliability in the sense described above implies existence of some A for which the
gambler tends to assign a low price to “Yn+1 2 A” and have to pay out $1. Of course, a
tendency to lose $1 on low-priced bets can easily lead to ruin. The details in the above
discussion will all be formalized in Section 3.

Do the common Bayesian predictive distributions achieve this sort of reliability? One
way to assess this would be to consider the function

f(↵) = P{⇧n(A)  ↵, Yn+1 2 A}, ↵ 2 (0, 1), (1)

where P denotes the joint distribution of Y n+1. This function depends implicitly on A,
on the chosen construction y

n 7! ⇧n of the predictive distribution, and on the underlying
distribution P. It will be argued below that reliability or, rather, validity of a probabilistic
predictor corresponds to

f(↵)  ↵ for all (↵, n, A,P).

4



0.00 0.05 0.10 0.15 0.20

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

α

f(
α

)

Figure 1: Plot of the function f in (1) corresponding to the two Bayesian predictive
distributions (and other settings) as described in the text.

Figure 1 plots the function f for n = 5, A = [3, 5], and P corresponding to iid Unif(�5, 5)
random variables. This is done for two Bayesian predictive distributions:

• a parametric version based on a simple iid normal model with a conjugate normal–
inverse gamma prior, leading to a suitable Student-t predictive distribution;

• and a nonparametric version based on the predictive distribution from a Dirichlet
process mixture of normals model (e.g., Ghosh and Ramamoorthi 2003, Ch. 5); in
fact, this is based on the (non-asymptotic) approximation in Hahn et al. (2018).

In both cases, we clearly see that there is an interval of ↵ values at which the condition
“f(↵)  ↵” fails, hence the Bayesian predictive distribution is not valid in the sense
described vaguely above, and more precisely in Section 3. That this is not specific to this
example and these choices of predictive distribution is established in Corollary 1 below.
That precise predictive distribution can fail to be reliable in the sense above motivates
our investigation into other probabilistic predictor constructions that are reliable, which
necessarily must take the form of imprecise probabilities.

Of course, Bayesian predictive distributions are not advertised to be reliable in this
sense, so various excuses can be given, e.g., that the condition is too strong, that a
di↵erent choice of prior distribution would perform better, etc. To us, however, the fact
that a Bayesian probabilistic predictor (or any other construction based on a precise
probability distribution for that matter) is sure to put the data analyst and gambler at
risk of systematically misleading conclusions and ruin, respectively, is a serious concern.
If precise probability were our only option, then of course we would just have to live with
the aforementioned risk. Here we show, however, that suitably incorporating imprecision
into the construction can nullify these risks without sacrificing on the other desirable
properties that probabilistic prediction a↵ords.
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3 Prediction validity

3.1 Setup

The goal here is to formalize the ideas discussed in Section 2 above. Recall that the present
paper is concerned with prediction in supervised learning problems, so we assume there
is an exchangeable process Z1 = (Z1, Z2, . . .) with distribution P, where each Zi is a pair
(Xi, Yi) 2 Z = X⇥Y. As is customary, “P(Zn 2 B)” is understood to mean the marginal
probability for the event “Zn 2 B” derived from the joint distribution of Z1 under P.
The distribution P is completely unknown, except that it belongs to the user-defined
model P consisting of exchangeable distributions. As is typical in statistical learning
applications, we want to avoid strong model assumptions, which amounts to assuming
P is large, i.e., is not indexed by a finite-dimensional parameter. Given the observed
data Z

n and a value xn+1 of Xn+1, the goal is to reliably predict the corresponding Yn+1.
As discussed in Sections 1–2, a common strategy is to construct a prediction set aimed
to achieve the nominal frequentist coverage probability. That is, a collection of functions
Cn,↵, from Zn ⇥ X to subsets of Y, indexed by ↵ 2 [0, 1] and n � 1, defines a family of
100(1� ↵)% prediction sets for Yn+1 if

inf
P2P

P{Cn,↵(Z
n
, Xn+1) 3 Yn+1} � 1� ↵, for all (↵, n). (2)

However, as discussed in Section 2, a more “complete” uncertainty quantification about
Yn+1 may be desired, beyond prediction sets. To formalize this, we follow Cella and
Martin (2022) and define a probabilistic predictor as a map (zn, x) 7! (⇧n

x,⇧
n
x), where

(⇧n
x,⇧

n
x) is a pair of lower and upper predictive probabilities for the corresponding Yn+1;

for notational simplicity, the probabilistic predictor’s dependence on the observed data
z
n is encoded in the superscript “n” only. Then uncertainty quantification about Yn+1,
given z

n and Xn+1 = x, is provided by the function A 7! (⇧n
x(A),⇧

n
x(A)).

We are defining the probabilistic predictor for all n, but it could be that some minimum
sample size is needed in order to properly define it. For example, if some standardization
procedure is being employed, then it would be necessary to have n large enough to
estimate standard errors. As a rule in what follows, if n is smaller than the necessary
sample size, then we will silently take the probabilistic predictor to be vacuous, i.e., assign
lower and upper probabilities 0 and 1, respectively, to every assertion.

What kind of mathematical form should the function A 7! (⇧n
x(A),⇧

n
x(A)) take? Let

A denote a �-algebra of subsets of Y that are measurable with respect to the (common)
marginal of the Yi’s under P. We will assume that A is rich enough to contain the
singletons, e.g., like the Borel �-algebra. Then the lower and upper probabilities are
capacities defined on A, i.e., monotone set functions, taking value 1 at Y and value 0 at
?. However, being “lower” and “upper” suggests a link between the two. We formalize
by requiring that, for each z

n and new value x of the feature Xn+1, the upper probability
⇧

n
x for Yn+1 is sub-additive; in particular, for any disjoint A and A

0, the upper probability
satisfies ⇧

n
x(A [ A

0)  ⇧
n
x(A) + ⇧

n
x(A

0). Then the lower probability ⇧n
x is defined as the

dual or conjugate to the upper probability,

⇧n
x(A) = 1� ⇧n

x(A
c), A 2 A, (3)
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and from sub-additivity is follows that

⇧n
x(A)  ⇧

n
x(A), A 2 A,

hence the name “lower” and “upper” probabilities. Ordinary or precise probabilities are
(sub)additive so they satisfy these condition with ⇧n

x ⌘ ⇧
n
x. Moreover, all of the stan-

dard imprecise probability models—belief functions, possibility measures, lower/upper
previsions—satisfy these conditions, so our assumptions corresponding to no loss of gen-
erality. Since we will be interested in the statistical properties of the probabilistic pre-
dictor as functions of the data, we will assume that (Zn

, Xn+1) 7! (⇧n
Xn+1

(A),⇧
n
Xn+1

(A))
is measurable for each n � 1 and for each A 2 A.

The interpretation of the probabilistic predictor’s output is subjective and goes as
follows. For given data z

n and a new value x of the feature Xn+1, the lower and upper
probabilities represent

⇧n
x(A) = maximum buying price for the gamble $1(Yn+1 2 A)

⇧
n
x(A) = minimum selling price for the gamble $1(Yn+1 2 A),

where 1(B) denotes the indicator of the event B. Therefore, based on data z
n and

new feature x, if the investigator’s ⇧n
x(A) is large, then she would be inclined to buy

the gamble $1(Yn+1 2 A), whereas, if her ⇧
n
x(A) is small, then she would be inclined

to sell the gamble $1(Yn+1 2 A); otherwise, she might choose to neither buy nor sell
the gamble. For this reason, ⇧n

x(A) measures the subjective degree of belief and ⇧
n
x(A)

the plausibility of the event “Yn+1 2 A.” Below we introduce an element of objectivity
through a requirement that its predictions be reliable in a statistical sense.

3.2 Definition

So far, we have imposed minimal mathematical constraints on the probabilistic predictor,
plus its interpretation is subjective, so virtually no construction can be ruled out at this
point. However, the probabilistic predictor’s practical utility requires that the uncertainty
quantification derived from it be reliable in a certain sense. The particular sense we have
in mind is statistical. That is, we require that inferences drawn based on the probabilistic
predictor not be systematically misleading. Based on the interpretations of the lower and
upper probabilities described above, events of the general form

{(zn, xn+1, yn+1) : ⇧
n
xn+1

(A) is large and yn+1 62 A}

and
{(zn, xn+1, yn+1) : ⇧

n
xn+1

(A) is small and yn+1 2 A},

should they occur, put the investigator at risk of making erroneous predictions and incur-
ring losses, monetary or otherwise. To protect the investigator from this risk, we impose
the following condition on probabilistic predictors, ensuring that the aforementioned un-
desirable, risk-creating events are controllably rare.
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Definition 1. The probabilistic predictor (Zn
, x) 7! (⇧n

x,⇧
n
x) is valid if one and, hence,

both of the following equivalent conditions hold:

sup
P2P

P{⇧n
Xn+1

(A) � 1� ↵ , Yn+1 /2 A}  ↵, for all (↵, n, A) (4)

sup
P2P

P{⇧n
Xn+1

(A)  ↵ , Yn+1 2 A}  ↵, for all (↵, n, A). (5)

Here “for all (↵, n, A)” is short for “for all ↵ 2 [0, 1], all n � 1 and all A 2 A.” The two
conditions are equivalent by the duality in (3) and the “for all A” clause.

The key point, again, is that validity ensures the probabilistic predictor will not tend
to assign small upper probability to assertions about Yn+1 that happen to be true, or
large lower probability to assertions about Yn+1 that happen to be false. Practically,
this ensures that the data analyst is not making systematically misleading predictions.
Such assurances are also fundamentally important to the logic of statistical reasoning.
Following Fisher (1973, p. 42), what makes an observation leading to, say, a small value
of ⇧

n
xn+1

(A) informative about the claim “Yn+1 2 A” is that a logical disjunction is
created: either the claim does not hold or a small-probability event has occurred. Since
small-probability events rarely occur, if we observe a small value of ⇧

n
xn+1

(A), then we
are inclined to conclude that Yn+1 62 A. Validity also has a number of interesting and
practically relevant consequences, which we explore in Section 4.

Before moving on, we should mention some connections with certain notions of “fre-
quency calibration” in the imprecise probability literature. In particular, using our
terminology and notation, Denœux (2006) defines a probabilistic predictor to have a
“100(1� ↵)% confidence property,” for a fixed ↵ 2 [0, 1], if

P
�
⇧

n
Xn+1

(A) � P(Yn+1 2 A | Zn
, Xn+1) for all A

 
� 1� ↵.

This and other variations are discussed more recently in Denœux and Li (2018). Obvi-
ously, since the event on the left-hand side does not explicitly depend on ↵, it must be
that the probabilistic predictor depends implicitly on the specified ↵ value, and various
approaches to incorporate this ↵-dependence so that the above property can be achieved
are given in the aforementioned references. The key observation is that calibration re-
quires some relation between the probabilistic predictor for Yn+1 and the true conditional
distribution of Yn+1. In particular, the prediction upper probability ought to dominate
the true conditional probability in some sense. A similar dominance appears in our def-
inition of validity, but a slight reformulation is needed. Using iterated expectation, by
conditioning on (Zn

, Xn+1), it is easy to see that (5) is equivalent to

sup
P2P

E
⇥
1{⇧n

Xn+1
(A)  ↵}P(Yn+1 2 A | Zn

, Xn+1)
⇤
 ↵, (6)

where the expectation is with respect the same P over which the supremum is taken.
That is, our notion of validity implies that, when restricted to data sets (Zn

, Xn+1) for
which ⇧

n
Xn+1

(A) is small, the true conditional probability P(Yn+1 2 A | Zn
, Xn+1) cannot

be any bigger on average. Incidentally, there are other notions of calibration/validity in
the literature that concern matching up posited predictive distributions with the true
probabilities in an average sense, not so unlike what (6) achieves. See, for example,
the calibration property of Venn–Abers predictors in Vovk and Petej (2014) and the
calibration safety property in Grünwald (2018).
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3.3 A stronger notion

That the calibration property imposed in (5) is required to hold for all A ✓ Y might seem
overly strong, but it turns out that there is an even stronger property that is particularly
useful and can be readily attained. To state this new property, however, we need some
additional notation. Define the probabilistic predictor’s plausibility contour as

⇡
n
x(y) = ⇧

n
x({y}), x 2 X, y 2 Y. (7)

This is just the upper probability—or plausibility—assigned to singleton assertions about
Yn+1 of the form A = {y}, for generic y 2 Y. In general, the plausibility contour is just
one of the probabilistic predictor’s many features. But in the important special case where
the probabilistic predictor has the mathematical property of consonance, the plausibility
contour actually determines the entire probabilistic predictor. We will discuss this latter
point further below.

Definition 2. The probabilistic predictor (Zn
, x) 7! (⇧n

x,⇧
n
x) is uniformly valid if

sup
P2P

P{⇡n
Xn+1

(Yn+1)  ↵}  ↵, for all (↵, n), (8)

The condition (8) is familiar, at least when connections are drawn to other contexts.
In particular, (8) closely resembles the properties satisfied by p-values from hypothesis
testing in classical statistics. It is also e↵ectively the same as the so-called fundamental

frequentist principle, or FFP, in Walley (2002). But there are still some unanswered
questions: in what sense is this definition stronger than that in Definition 1, and why do
we call this “uniform” validity? The following lemma helps us to answer both.

Lemma. Uniform validity in the sense of Definition 2 is equivalent to the probabilistic

predictor satisfying the following two properties:

sup
P2P

P{⇧n
Xn+1

(A) � 1� ↵ and Yn+1 62 A for some A}  ↵, for all (↵, n) (9)

sup
P2P

P{⇧n
Xn+1

(A)  ↵ and Yn+1 2 A for some A}  ↵, for all (↵, n). (10)

Proof. That both probabilities on the left-hand sides of (9) and (10) are equal to the
left-hand side of (8) follows from the probabilistic predictor’s monotonicity property.

That uniform validity in the sense of Definition 2 is stronger than validity in the sense
of Definition 1 can now be readily seen. Indeed, the “for some A” inside the probability
statement in (10) is e↵ectively a union of A-dependent events like those in (5) over all A.
So if the union over A of these A-dependent events has probability bounded by ↵, then so
would any individual event in that union. This also explains our choice to describe this
as “uniform validity.” That is, instead of a “ ↵” bound that holds for each individual
assertion A, it now must hold simultaneously or uniformly over all such A.

This generalization is important for several reasons. One of those reasons is technical;
see Proposition 2 below. Another concerns the point that when the “for all A” clause
on the outside of the probability statement in (5) is moved to the inside, the choice of A
can be data-dependent. To see why this data-dependence might be relevant, consider a
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gambling scenario in which the agent’s opponents have access to the data (zn, x) at the
time of prediction. This allows the opponent to use the data to make strategic choices
about which assertions A to negotiate with the agent. Of course, if the agent’s opponents
can make these more sophisticated data-dependent plays while he is only able to control
errors for assertions specified in advance, then that puts him at risk. Uniform validity,
however, protects the agent from this more subtle type of risk.

Although we currently lack a formal proof, our experience suggests that only con-

sonant (Shafer 1976, Ch. 10) probabilistic predictors can achieve uniform validity. The
reason being that, if the plausibility contour, ⇡n

x , in (7), is restricted in the sense that
it cannot attain values arbitrarily close to 1, then the stochastically-no-smaller-than-
uniform condition in (8) likely cannot hold. And it is precisely this arbitrarily-close-to-1
property that determines consonance; that is, a probabilistic predictor is consonant if
and only if its plausibility contour satisfies

sup
y

⇡
n
x(y) = 1, for all (zn, x). (11)

In this case, the probabilistic predictor takes the mathematical form of a possibility
measure (Dubois and Prade 1988), and is determined by its contour function through the
relationship

⇧
n
x(A) = sup

y2A
⇡
n
x(y), A 2 A. (12)

Since the lower and upper probabilities being determined by a single point-function, as
opposed to genuine set-functions, consonance amounts to a substantial simplification of
the probabilistic predictor. For our purposes here, and for statistical inference in general
(Martin 2021), this simplification comes with no loss of generality or flexibility.

4 Implications of prediction validity

4.1 Behavioral

Despite our focus on frequentist-style properties, validity has some important behavioral
consequences, à la de Finetti, Walley, and others. Towards this, define

�
n
(A) = inf

(zn,x)2Zn⇥X
⇧n

x(A) and �n(A) = sup
(zn,x)2Zn⇥X

⇧
n
x(A),

the lower/upper probabilistic predictor evaluated at A, optimized over all of its data
inputs; recall that ⇧n

x and ⇧
n
x depend implicitly on an argument zn. An especially poor

specification of prediction probabilities is a situation in which, for some A ✓ Y,

�
n
(A) > inf

P2P
P(Yn+1 2 A) or �n(A) < sup

P2P
P(Yn+1 2 A). (13)

We will refer to this as (one-sided) contraction. Ideally, the probabilistic predictor would
mimic the true conditional probability at least in the sense that its average over data in-
puts would not be far from the true marginal probability. So a situation like in (13), where
the probabilistic predictor might be uniformly bounded away from the true marginal
probability, is a sign of potential trouble. For example, if your ⇧

n
x(A) is smaller than the
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upper bound on the marginal probability of A, uniformly in (zn, x), i.e., no matter what

data is observed, then arguably you should have had a tighter bound on your marginal
probability to start. Inconsistencies like this factor in to the behavioral properties of the
probabilistic predictor, and (imprecise) probabilities more generally. For example, the
sure loss property—see Condition (C7) in Walley (1991, Sec. 6.5.2) or Definition 3.3 in
Gong and Meng (2021)—corresponds to an extreme version of contraction where

�
n
(A) > sup

P2P
P(Yn+1 2 A) or �n(A) < inf

P2P
P(Yn+1 2 A).

In a gambling context, an inconsistency as severe as in the above display can be leveraged
by your opponent to make you a sure loser. We show below, in Proposition 1, that validity
and one-sided contraction are incompatible; in particular, validity implies no sure loss.

Although (13) is still a rather strong condition, corresponding to a poor prediction
probability specification, there are practically relevant cases where (13) holds and creates
a genuine risk. We discuss this below following the proof.

Proposition 1. Suppose that the probabilistic predictor, (zn, x) 7! (⇧n
x,⇧

n
x), su↵ers from

one-sided contraction in the sense that (13) holds for some A ✓ Y. Then validity in the

sense of Definition 1 fails.

Proof. We present the argument here for the case where �n(A) < supP2P P(Yn+1 2 A);
the argument for the �

n
(A) bound is very similar. For the assertion A in (13), define

⇠n(A,↵) = sup
P2P

P{⇧n
Xn+1

(A)  ↵ , Yn+1 2 A},

so that (5) is equivalent to

⇠n(A,↵)  ↵ for all (A,↵, n). (14)

By (6), we have

⇠n(A,↵) = sup
P2P

E
⇥
1{⇧n

Xn+1
(A)  ↵}P(Yn+1 2 A | Zn

, Xn+1)
⇤
.

Since ⇧
n
Xn+1

(A)  �n(A) by definition, we get

1{⇧n
Xn+1

(A)  ↵} � 1{�n(A)  ↵}.

From the alternative representation of ⇠n(A,↵), since the lower bound in the above display
is constant, it follows that

⇠n(A,↵) � 1{�n(A)  ↵} sup
P2P

P(Yn+1 2 A). (15)

According to (13), there exists an A ✓ Y and a threshold ↵ 2 [0, 1] such that

�n(A) < ↵ < sup
P2P

P(Yn+1 2 A).

Then from (15), with this choice of (A,↵),

⇠n(A,↵) � sup
P2P

P(Yn+1 2 A) > ↵.

Then (14) and, hence, (5) fails, so the claim follows.

11



Our one-sided contraction (13) also resembles the (C8) portion of the coherence prop-
erty in Walley (1991, Sec. 6.5.2), but it is missing the (C9) portion. Therefore, it appears
that validity is not enough to imply coherence as advocated for by Walley and others.

As discussed above, a very common strategy is one in which the probabilistic pre-
dictor is an ordinary probability, i.e., (zn, x) 7! ⇧n

x, where ⇧
n
x is a (precise) probability

distribution on Y. The illustration presented in Section 2 suggests that validity might
fail when the probabilistic predictor is a (precise) probability distribution. Of course, if
the true distribution is known, i.e., if P is a singleton, then setting ⇧x

n equal to the true
conditional distribution would be valid; see (6). However, when P is big, as assumed
here, we cannot expect that a probability distribution can accommodate both the inher-
ent variability in the response and the uncertainty about the underlying distribution. So
we should anticipate that imprecision is needed in order for predictions to be valid in the
sense of Definition 1. The discussion below formalizes this claim.

A precise probabilistic predictor cannot accommodate uncertainty about the model
by assigning a range of probabilities for a given assertion. As such, the probabilities
⇧x

n(A) will tend to be strictly between 0 and 1. But if the model P is large, we fully
expect the infimum and supremum of P(Yn+1 2 A) over P to be 0 and 1, respectively.
Therefore, if there exists an assertion A such that

inf
(zn,x)2Zn⇥x

⇧n
x(A) > 0 or sup

(zn,x)2Zn⇥x
⇧n

x(A) < 1, (16)

with inequalities strict, then (13) holds and, by Proposition 1, validity fails. One situation
in which the inequalities are strict for some A is when

{⇧n
x : (zn, x) 2 Zn ⇥ X} is a tight collection of distributions. (17)

Roughly speaking, tightness prevents the collection of distributions from “drifting o↵ to
infinity,” keep at least some amount of probability mass to the interior of Y. Tightness
always holds for compact Y, at least in all practical cases; for non-compact Y, it would
need to be verified case-by-case, using specific features of the map (zn, x) 7! ⇧n

x. In
any case, tightness leads to strict contraction (16) for some A, which implies one-sided
contraction, which implies validity fails.

Corollary 1. If the probabilistic predictor, (zn, x) 7! ⇧n
x, is a precise probability distri-

bution that satisfies (17), then it is not valid.

Proof. A direct consequence of Proposition 1.

The above result establishes a version of the false confidence theorem (Balch et al.
2019; Martin 2019) in the context of prediction. It says roughly the following: only
probabilistic predictors that take the form of an imprecise probability can be valid in the
sense of Definition 1. We do not expect the tightness condition (17) is essential to the
conclusion of Corollary 1, but we currently are not aware of a direct proof.

4.2 Statistical

Here we consider some more classical frequentist-style prediction tasks. First, consider
testing certain “hypotheses” about Yn+1. For example, an investor may want to sell a
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certain asset when its price exceeds some fixed level, say y
?. So he would like to assess

the plausibility of an assertion or hypothesis of the form “Yn+1 2 A,” for A = [0, y?]
and, in particular, decide if the new price being below the y

? threshold is too plausible
to warrant taking quick action to sell. We show below that the test

reject “Yn+1 2 A” if and only if ⇧
n
x(A)  ↵, (18)

derived from a valid probabilistic predictor controls the error probability at level ↵.
A more common prediction-related task is the construction of a prediction set, i.e.,

a set of su�ciently plausible values for Yn+1 given the observed data. A natural way to
construct a prediction set from a probabilistic predictor is

Cn,↵(z
n
, x) = {y : ⇡n

x(y) > ↵}, (19)

where ⇡
n
x is the plausibility contour (7) based on (zn, x). Compare this to a Bayesian

highest predictive density region. The following proposition shows that uniform validity
implies that this is a genuine 100(1� ↵)% prediction set in the sense that its frequentist
coverage probability is at least the advertise/nominal level 1� ↵.

Proposition 2. (a) If the probabilistic predictor is valid in the sense of Definition 1,

then the test described in (18) controls error rates at level ↵ in the sense that

sup
P2P

P{test based on (Zn
, Xn+1) rejects and Yn+1 2 A}  ↵.

(b) If the probabilistic predictor is uniformly valid in the sense of Definition 2, then (19)
defines a genuine 100(1� ↵)% prediction set in the sense that

sup
P2P

P{Cn,↵(Z
n
, Xn+1) 63 Yn+1}  ↵, for all (↵, n).

Proof. Part (a) is an immediate consequence of the definition of validity, in particular,
(5). Part (b) follows directly from (8).

Recall our conjecture that uniform validity is satisfied only for probabilistic predictors
that are consonant, i.e., fully determined by their plausibility contour via (12). For con-
sonant probabilistic predictors, the level sets of the plausibility contour, which are nested
by definition, play an important role. In particular, this underlying nested structure
allows us to re-express the prediction set in (19) in terms of the lower probability:

Cn,↵(z
n
, x) =

T
{A : ⇧n

x(A) � 1� ↵}.

That is, Cn,↵(zn, x) can also be interpreted as the smallest assertion A about Yn+1 to
which the probabilistic predictor assigns lower probability at least 1� ↵.

5 Inferential models

A relevant question is how to construct a probabilistic predictor that achieves the (uni-
form) validity condition. One strategy would be through a generalized Bayes approach
as advocated for in, e.g., Walley (1991, Sec. 6.4). That is, if P is the set of candidate
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joint distributions for the observables, the generalized Bayes rule would define an upper
prediction probability as

⇧
n
x(A) = sup

P2P
P(Yn+1 2 A | Zn

, Xn+1 = x), A 2 A, (20)

and corresponding lower probability by replacing sup by inf. That this satisfies validity
in the sense of Definition 1 follows from the alternative formulation in (6). While this
solution might have some appeal, there are also some reasons to be concerned. First,
this would tend to be quite conservative, i.e., a large model space P implies a wide gap
between lower and upper probabilities. Second, since generalized Bayes would not be
consonant, it is doubtful that the desirable uniform validity in Definition 2 holds. So it
is worth considering alternative constructions that might be more e�cient.

An inferential model (IM) is a data-dependent probabilistic structure designed to
quantify uncertainty about unknowns, like the probabilistic predictor described above.
The di↵erence is that, as the name suggests, IMs have traditionally focused on the statis-
tical inference problem, where the unknowns are fixed quantities. IMs have connections
to various other approaches to statistical inference, some that quantify uncertainties with
ordinary probabilities, e.g., Bayesian inference, fiducial inference (Fisher 1935), and gen-
eralized fiducial inference (Hannig et al. 2016), and others with imprecise probabilities,
e.g., Dempster–Shafer theory (Dempster 1967, 1968, 2008, 2014; Shafer 1976) and other
belief function frameworks (Denœux 2014; Denœux and Li 2018). While there are some
technical di↵erences resulting from the unknown being fixed in the inference case and
random in the prediction case, the common goal of providing valid uncertainty quan-
tification is more or less the same. Therefore, we expect that the key ideas behind the
construction of a valid IM for inference ought to be applicable to the prediction problem
as well, modulo a few adjustments. Below we describe a construction of a probabilistic
predictor that is valid in the sense described in Section 3.

The general IM construction is composed of three steps. The A-step associates the
observable data and unknown quantity of interest with an unobservable auxiliary variable
whose distribution is fully known. In the early work on IMs, this association was usually
a complete description of the data-generating process. For example, suppose we have,
say, n independent and identically distributed (iid) observations Z1, . . . , Zn, collected into
the vector Zn, from a statistical model with unknown parameter ✓. Then an association
would e↵ectively be a description of how to generate data Z

n from that model, i.e.,

Z
n = a(✓, Un),

where U
n would typically be a vector of iid latent/auxiliary variables with a known

distribution, e.g., Unif(0, 1). While such an association can always be written down,
there are a few obstacles one might face when trying to complete the IM construction:

• When the dimension of Un is greater than that of ✓, as is typical, a dimension
reduction step is recommended (Martin and Liu 2015a), but this can be nontrivial.

• The association itself requires (more than) a fully specified statistical model for
data, which may not be available in the application at hand.

14



However, Martin (2015, 2018) showed that the A-step’s requirements can be relaxed. All
that is needed is an association that relates a function of both the data and the unknowns
to an unobservable auxiliary variable. This idea has proved to be useful in a variety of
classical (Cahoon and Martin 2020, 2021) and modern (Cella and Martin 2021a) inference
problems, and here we develop a version suitable for prediction.

Once a generalized association has been set, the remaining steps of the (generalized)
IM construction proceed exactly as described in, say, Martin and Liu (2013). Roughly,
the P-step introduces a random set that aims to predict or guess the unobserved value
of the auxiliary variable. Easy to arrange properties of this user-specified random set
ensure that the guessing of the auxiliary variable is done in a reliable way, which turns
out to be fundamental for validity. Next, the C-step combines the results of the A- and
P-steps, yielding a new, data-dependent random set on the space where the quantity
of interest resides. Finally, this random set’s distribution determines lower and upper
probabilities that can be used to assign degrees of belief and plausibility to any relevant
assertion about the unknown quantities of interest. Below we describe the generalize IM
construction in more detail for the prediction problem at hand.

For prediction, the unknown is Yn+1, not a model parameter as in the formulations
described above. So the kind of association needed is one that identifies a function of
(Zn

, Zn+1) that has a known distribution. Once found, the three-step (generalized) IM
construction proceeds as follows.

A–step. Suppose there exists a function �n : Zn ⇥Z ! R such that the distribution, say,
Qn, of the random variable �n(Zn

, Zn+1) is known, i.e., does not depend on the unknown
P. Then associate the observable data Z

n and the yet-to-be-observed Zn+1 with the
unobservable auxiliary variable U as follows:

�n(Z
n
, Zn+1) = U, U ⇠ Qn. (21)

For our case where Zn+1 = (Xn+1, Yn+1) and interest is in Yn+1 for a given Xn+1 = x, the
association defines a set-valued mapping

(Zn
, x, u) 7! Yn

x(u) := {y 2 Y : �n(Z
n
, (x, y)) = u}.

P–step. Define a nested random set U (see below) on the space U of the auxiliary variable
U , designed to reliably contain realizations of U ⇠ Qn in the sense of (24) below. The
distribution of the random set U will be denoted by Rn.

C–step. Combine the results of the A- and P-steps to get the data-dependent random set

Yn
x(U) =

[

u2U

Yn
x(u) = {y 2 Y : �n(Z

n
, (x, y)) 2 U}.

Then the distribution of this new random set, derived from the distribution of U , deter-
mines the probabilistic predictor for Yn+1, i.e.,

⇧n
x(A) = Rn{Yn

x(U) ✓ A}
⇧

n
x(A) = Rn{Yn

x(U) \ A 6= ?}.
(22)

Remark 1. If Yn
x(U) is empty with positive Rn-probability, then some adjustment to

the probabilistic predictor in (22) is needed. This will be relevant for the classification
problem in Section 7.
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The above construction is abstract for the purpose of generality. The challenge is in
identifying the function �n, and examples will be given in Sections 6–7 below. Other
examples were explored previously in Martin and Lingham (2016) where P was assumed
to belong to a parametric family. Here, however, P is not indexed by a finite-dimensional
parameter, so di↵erent techniques are required. The remainder of this section investigates
the properties of the abstract probabilistic predictor construction above.

The random set U is assumed to be nested in the sense that, for any two sets in
its support, one is a subset of the other. As a consequence, the derived probabilistic
predictor is consonant; that is, its contour function, which is given by

⇡
n
x(y) = Rn{Yn

x(U) 3 y}, y 2 Y, (23)

satisfies (11) and, hence, determines the entire probabilistic predictor through the re-
lationship (12), i.e., ⇧

n
x(A) = supy2A ⇡

n
x(y). As discussed in Section 3.3, consonance is

important—perhaps necessary—for uniform validity.
It remains to establish that the probabilistic predictor resulting from the above con-

struction is (uniformly) valid. This requires stating the conditions on U more precisely.
Since the cases in the following sections involve an auxiliary variable U that is discrete,
we will focus on the discrete case. First, define the random set’s contour function

f(u) = Rn(U 3 u), u 2 U.

Then the required link between Qn and Rn is that

if U ⇠ Qn, then f(U) ⇠ Unif((n+ 1)�1In+1), (24)

where In+1 = {1, . . . , n, n + 1}, so that this uniform distribution is discrete. With this
link between the auxiliary variable’s distribution Qn and the random set’s distribution
Rn, we are ready to state and prove the main result.

Theorem 1. If the random set U satisfies (24), and if Yn
Xn+1

(U) is non-empty with Rn-

probability 1 for P-almost all (Zn
, Xn+1), then the probabilistic predictor defined in (22),

or equivalently (12), is uniformly valid in the sense of Definition 2.

Proof. First, for Zn and Zn+1 = (Xn+1, Yn+1), set U = �n(Zn
, Zn+1). Then

Yn
Xn+1

(U) 3 Yn+1 () U 3 U.

The Rn-probability of the left- and right-hand side events are ⇡
n
Xn+1

(Yn+1) and f(U),
respectively, so these two random variables—the first as a function of (Zn

, Zn+1) ⇠ P and
the second as a function of U ⇠ Qn—have the same distribution. Equation (24) states
that f(U) is uniform and, therefore, so is ⇡n

Xn+1
(Yn+1).

The non-emptiness condition is not necessary for validity, but some adjustment is
needed to the definition in (22), as mentioned in Remark 1, to address this. We will discuss
this below in the specific application to classification in Section 7. The requirement in (24)
that f(U) ⇠ Unif((n+1)�1In+1) can be relaxed in a certain sense without compromising
validity. That is, validity also holds for any random set such that f(U) is stochastically
no smaller than Unif((n + 1)�1In+1). However, Cella and Martin (2022) show that the
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choice of U whose corresponding f(U) is exactly uniformly distributed is most e�cient.
Fortunately, this is easy to arrange; see (28) below.

The following is an immediate consequence of the uniform validity conclusion above
and the general results in Propositions 1–2 in the previous section.

Corollary 2. Under the conditions of Theorem 1, the probabilistic predictor defined in

(22) avoids sure loss in the sense of (13) and admits a prediction set Cn,↵ as in (19) that
achieves the nominal frequentist prediction coverage probability.

Consequently, the proposed probabilistic predictor construction achieves the desired
subjective/behaviorist and objective/frequentist properties simultaneously. Two specific
and practically relevant applications of this construction in the context of regression and
classification will be presented in Section 6 and 7, respectively.

It is important to point out that the kind of validity being considered here is marginal,
which is easiest to understand in the context of calibrated prediction sets as in (2). That
is, the conditional coverage probability of the prediction set is

xn+1 7! P{Cn
↵(xn+1) 3 Yn+1 | Xn+1 = xn+1},

a function of xn+1. Then the validity property implies that the expected value of this
function, with respect to the marginal distribution of Xn+1 under P, is at least 1 � ↵.
This marginal coverage guarantee, of course, says nothing about the conditional coverage
at any particular xn+1 values. Conditional validity is both challenging and practically
relevant, and we discuss this briefly in Section 8.

6 Probabilistic prediction in regression

Recall that the A-step requires the specification of a real-valued function �n, such that
the distribution of �n(Zn

, Zn+1) is known. Towards this, given Z
n+1 = (Zn

, Zn+1) con-
sisting of the observable (Zn

, Xn+1) and the yet-to-be-observed Yn+1, consider first a
transformation Z

n+1 ! T
n+1, defined by

Ti =  (Z
n+1
�i , Zi), i 2 In+1, (25)

where Z
n+1
�i = Z

n+1 \ {(Yi, Xi)}, and  is a suitable real-valued function that compares
Yi to a prediction derived from Z

n+1
�i at Xi, being small if they agree and large if they

disagree. For example, to each Z
n+1
�i , one could fit a regression model to get an estimated

mean response µ̂
n+1
�i (Xi) and take Ti as the corresponding absolute residual

Ti =
��Yi � µ̂

n+1
�i (Xi)

��, i 2 In+1. (26)

The critical property of  is that it be symmetric in the elements of its first vector
argument. This symmetry guarantees that the assumed exchangeability in Z1, Z2, . . . is
preserved when Z

n+1 get mapped to T n+1. As Ti depends on the entire data Zn+1, we will
write Ti(Zn+1) where necessary to highlight that dependence. In regression, where the
Yi’s are continuous and  is non-constant on sets of Y n+1 with positive P-probability, like
the one in (26), so that there are no ties, a well-known consequence of exchangeability of
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T1, . . . , Tn+1 is that their ranks are marginally distributed according to Unif(In+1), the
discrete uniform law on In+1.

Having identified a function of (Zn
, Zn+1) whose distribution is known, we can com-

plete the A-step of the IM construction by writing a version of (21) as follows:

r(Tn+1) = U, U ⇠ Unif(In+1), (27)

where r(·) is the ascending ranking operator. The choice of Tn+1 instead of any of the
other Ti’s in (27) is simply because Tn+1 is the one that holds the to-be-predicted value,
Yn+1, in special status. Note that, while it appears this expression only depends on Tn+1,
it does implicitly depend on all the Ti’s and, hence, all of Zn+1, through the ranking
procedure. In summary, to complete the A-step, the only task for the data analyst is
the specification of  . It is worth to mention that, while validity of the probabilistic
predictor is guaranteed for any suitable  , choices of  that fail to capture the structure
of the problem at hand can lead to ine�ciency.

For the P-step, the specification of a nested random set targeting the unobserved
realization of the auxiliary variable U , introduced above, is needed. Consider

U = {1, 2, . . . , U 0}, U
0 ⇠ Unif(In+1). (28)

It is straightforward to show that this random set satisfies the critical calibration property
(24). Moreover, this choice also makes intuitive sense, as U always includes the value 1.
This is desirable given the ascending ranking operator in (27) because it implies values
of Yn+1 that make the residual Tn+1 small will be assigned high plausibility.

Finally, in the C-step, U is combined with the u-indexed collection of sets

Yn
xn+1

(u) =
�
yn+1 : r

�
Tn+1(z

n+1)
�
= u

 

that arise from the association (27). Here and below, note that z
n+1 consists of the

observed z
n values with zn+1 = (xn+1, yn+1) appended to it. The particular combination,

as described in the previous section, It is easy to see that Yn
xn+1

(U)’s corresponding
contour function for Yn+1 is given by

⇡
n
xn+1

(yn+1) = Rn{Yn
xn+1

(U) 3 yn+1}
= prob{Unif(In+1) � r(Tn+1(z

n+1))}

=
1

n+ 1

n+1X

i=1

1{Ti(z
n+1) � Tn+1(z

n+1)}. (29)

As Yn
xn+1

(U) is both nested and non-empty, its contour function above is all that is
needed to define a probabilistic predictor and, consequently, quantify uncertainty about
any assertion A ⇢ Y of interest. Uniform validity of this probabilistic predictor follows
directly from the general result in Theorem 1.

For illustration, consider the following example. Let X1, . . . , Xn be iid Unif(0, 1),
with n = 200, and let Y1, . . . , Yn be independent, where Yi = µ(Xi) + 0.1"i, where
µ(x) = sin3(2⇡x3), and "1, . . . , "n are iid from a Student-t distribution with df = 5.
Figure 2 displays the data, the true regression function µ(x) and the fitted regression
curve µ̂(x) based on a B-spline with 12 degrees of freedom. A 95% prediction band is
also displayed, derived by (19) and xn+1 taking values along the observed x

n.
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Figure 2: Panel (a): Data and the plausibility contours at selected values of x. Panel (b):
Data, the true mean curve (heavy line), the fitted B-spline regression curve (thin line),
and the 95% pointwise prediction band.

We end this section pointing out an important connection between the prediction IM
developed here and the powerful conformal prediction presented in Vovk et al. (2005).
The reader may have recognized the  function in the A-step of our construction as
the so-called non-conformity measure, an essential component in the conformal predic-
tion framework. Moreover, the basic output from the IM construction presented below
is the plausibility contour in (29), which is precisely conformal prediction’s p-value or
transducer. The theory in Vovk et al. (2005) takes this conformal transducer, which is
uniformly distributed as stated in Theorem 1, and constructs a prediction set as in (19)
with the prediction coverage probability property as in (2). It was recently recognized
(Cella and Martin 2022) that the conformal prediction output could be converted into
a uniformly valid probabilistic predictor in the sense of Definition 2, one that can make
valid belief assignments, by treating the transducer as the contour of a consonant plau-
sibility function via (12). We refer to this general probabilistic predictor construction
as “conformal + consonance,” and all it requires is that the conformal transducer ⇡n

x be
a plausibility contour function in the sense that it satisfy supy ⇡

n
x(y) = 1 for all (zn, x).

This is easy to verify in cases where Y is a continuous random variable. Indeed, for the
 function in (26), the supremum is attained at y = µ̂

n+1
�(n+1)(x). In other cases, like in

classification where Y is discrete, the “conformal + consonance” construction is not so
straightforward. We discuss these considerations next in Section 7.

7 Probabilistic prediction in classification

In Section 6, we found that the A-step boils down to the specification of a suitable
real-valued, exchangeability-preserving function  , which Vovk et al. (2005) refer as a
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non-conformity measure. In binary classification problems, a  function like in (26) can
also be used here by encoding the binary labels as distinct real numbers. However, if there
are more than two labels, and not in an ordinal scale where the assignment of di↵erent
numbers to them is justified, there is no natural way to measure the distance between
labels. Consequently, we cannot measure how wrong a prediction is—it is simply right
or wrong (Shafer and Vovk 2007). To circumvent this, Vovk et al. (2005) suggest the
following non-conformity measure based on nearest-neighbor classification:

 (Zn+1
�i , Zi) =

minj2In+1\{i}:Yj=Yi d(Xj, Xi)

minj2In+1\{i}:Yj 6=Yi d(Xj, Xi)
, (30)

where d is the Euclidean distance. In words,  (Zn+1
�i , Zi) is large if Xi is close to an

element in X
n+1
�i with a label di↵erent from Yi and far from any element in X

n+1
�i with

label equal to Yi. If both the numerator and the denominator in (30) are 0, Shafer and
Vovk (2007) recommend taking the ratio also to be 0. Other non-conformity measures
for classification problems can be found in Vovk et al. (2005).

Two factors were fundamental to the specification of the association (27) in Section 6,
namely the identification of  , so that Z

n+1 can be mapped to T
n+1 preserving ex-

changeability, and the continuity of the Ti’s. In classification, however, the Yi’s are not
continuous, so there could be ties in the Ti’s. Consequently, their ranks would be no
longer uniform distributed on In+1. Luckily, when ties are possible, r(Tn+1) is stochasti-
cally no larger than the discrete uniform distribution it would take if there were no ties.
This leads to an “association” of the form

r(Tn+1) = U, U st Unif(In+1).

But for situations like this where the association involves a stochastic inequality, the
general arguments in Martin and Liu (2015c, Sec. 5) imply that the inequality can be
ignored and the association (27)—with stochastic equality—can still be used.

Having identified the appropriate association, the IM construction proceeds analo-
gously to that in the previous section: the A-step is completed by writing (27), the
random set (28) is chosen in the P-step to target the unobserved realization of the aux-
iliary variable U , and, in the C-step, the ingredients in the A- and P-steps are combined
to get Yn

xn+1
(U), a data-dependent random subset of Y. However, due to the discreteness

of Y, it is possible that Yn
xn+1

(U) is empty with positive Rn-probability. As discussed
in Section 5, in these cases, some adjustment to the probabilistic predictor in (22) is
necessary to avoid the counter-intuitive “conflict” cases where realizations of the random
set Yn

xn+1
(U) happens to be empty. There is a sense in which empty prediction sets could

be meaningful, but we defer this discussion to Section 8.
There are two available adjustments to account for the potentially empty realizations

of the random set Yn
xn+1

(S). The first, and probably most intuitive, is conditioning on the
event that the random set is non-empty, which happens to be equivalent to Dempster’s
rule of combination (e.g., Shafer 1976, Chap. 3). For example, the post-conditioning
plausibility contour is given by

yn+1 7! Rn{Yn
xn+1

(U) 3 yn+1 | Yn
xn+1

(U) 6= ?}.

It is easy to see that conditioning simply rescales the original plausibility contour, making
it larger at each yn+1 2 Y. Clearly, if the unadjusted probabilistic predictor is valid, then
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this conditioning adjustment—which only inflates its plausibility contour values—cannot
fail to be valid. This inflation does, however, suggest a potential loss of e�ciency, e.g.,
larger prediction sets in (19).

The second adjustment strategy, designed to preserve validity without sacrificing e�-
ciency, is based on a suitable stretching of the original random set; see, e.g., Ermini Leaf
and Liu (2012). Roughly, those U such that Yn

xn+1
(U) = ? correspond to “conflict cases,”

and Dempster’s conditioning rule simply removes these conflict cases and renormalizes
the U -probabilities. As an alternative, Ermini Leaf and Liu (2012) suggested to stretch
those conflict U cases just enough so that Yn

xn+1
(U) is non-empty. Their formulation was

in the context of inference under non-trivial parameter constraints, but here we apply
this to classification.

Start by defining the set

Un
xn+1

=
[

yn+12Y

�
r
�
Tn+1(z

n
, zn+1)

� 
✓ In+1. (31)

There are only finitely many yn+1 values, and the set Un
xn+1

defined above is just the
collection of ranks that are possible for the given Z

n and xn+1. Note that Yn
xn+1

(U)
is empty if and only if U has empty intersection with Un

xn+1
. Therefore, the conflict

cases mentioned above can be alternatively defined as realizations of U that have empty
intersection with Un

xn+1
. This conflicting situation can be avoided if, instead of throwing

out the conflict U , we stretch it to a suitable Ue, with e � 0 a stretching parameter that
controls how far U is stretched toward Un

xn+1
. In particular, we take

Ue = {1, 2, . . . , U 0 + e}, U
0 ⇠ Unif(In+1).

Following Ermini Leaf and Liu (2012), the parameter e is chosen as the smallest value at
which the intersection of Ue and Un

xn+1
is non-empty, i.e.,

ê = min{e : Ue \ Un
xn+1

6= ?} =

(
minUn

xn+1
� U

0 if U 0
< minUn

xn+1

0 otherwise.

Consequently, Uê would be

Uê =

(
{1, 2, . . . ,minUn

xn+1
} if U 0

< minUn
xn+1

{1, 2, . . . , U 0} otherwise.

In summary, in the stretching IM, the IM’s original random set output Yn
xn+1

(U) is re-
placed with Yn

xn+1
(Uê), and its guaranteed non-emptiness makes the probabilistic predic-

tor derived from it valid. It is also more e�cient than conditioning since it avoids globally
inflating the plausibility contour via renormalization, as the following example highlights.

For illustration, consider the data in Table 1, taken from Agresti (2003, p. 304),
describing the primary food choices and lengths of n = 39 male alligators caught in Lake
George, Florida. Assume the 40th caught alligator is two meters long, i.e., Xn+1 = 2.
The goal is to predict Yn+1, its primary food choice. Note that

Yn
xn+1

(U) =

8
>>><

>>>:

{I} with probability 0.1

{I, F} with probability 0.2

{I, F,O} with probability 0.3

? with probability 0.4.

(32)
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Length (m) Choice Length (m) Choice Length (m) Choice
1.30 I 1.65 I 2.03 F
1.32 F 1.65 F 2.31 F
1.32 F 1.68 F 2.36 F
1.40 F 1.70 I 2.46 F
1.42 I 1.73 O 3.25 O
1.42 F 1.78 F 3.28 O
1.47 I 1.78 O 3.33 F
1.47 F 1.80 F 3.56 F
1.50 I 1.85 F 3.58 F
1.52 I 1.93 I 3.66 F
1.63 I 1.93 F 3.68 O
1.65 O 1.98 I 3.71 F
1.65 O 2.03 F 3.89 F

Table 1: Primary food choice (I, invertebrates; F, fish; O, other) and lengths (in meters)
for n = 39 male alligators (Agresti 2003, p. 304).

The corresponding plausibility contour, as given in (23), is represented by the solid lines
in Figure 3(a). By thresholding it at any ↵ > 0.6 we obtain 100(1� ↵)% prediction sets
that are empty, which is undesirable.

The plausibility contour conditioned on (32) 6= ? is easy to evaluate, and is repre-
sented by the dashed lines in Figure 3(a). To calculate the plausibility contour under
the stretching approach, we obtain, after some calculations, Un

xn+1
= {17, 21, 29}. As

minUn
xn+1

= 17,

Uê =

(
{1, 2, . . . , 17} if U 0

< 17

{1, 2, . . . , U 0} otherwise.

where U
0 ⇠ Unif(1, 2, . . . , 40). Therefore,

Yn
xn+1

(Uê) =

8
><

>:

{I} with probability 0.5

{I, F} with probability 0.2

{I, F,O} with probability 0.3,

and the dotted lines in Figure 3(a) illustrate its corresponding plausibility contour. Note,
first, that empty prediction sets are eliminated with both the conditioning and the stretch-
ing adjustments. Second, for any ↵, the 100(1 � ↵)% prediction sets derived from the
stretching adjustment are no larger than the corresponding ones derived from the con-
ditioning adjustment, which indicates that the former is no less e�cient than the latter.
Another way to see this is through the di↵erence between the upper and lower probabil-
ities derived by the respective probabilistic predictors. Dempster (2008) referred to this
gap as the “don’t know” probability. Of course, between two valid probabilistic predic-
tors, the one with less “don’t know” is preferred because it is more e�cient. Figure 3(b)
shows the upper and lower probabilities for the singleton assertions {I}, {O} and {F},
for both strategies. Clearly, stretching leads to a more e�cient probabilistic predictor.
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Figure 3: Panel (a): Plausibility contours in Equation (23), derived from an IM con-
struction with no adjustment (solid lines), conditioning adjustment (dashed lines) and
stretching adjustment (dotted lines). Panel (b): Upper and lower probabilities for the
singleton assertions {I}, {F} and {O} derived from an IM construction with the con-
ditioning adjustment (solid lines) and the stretching adjustment (dashed lines). These
predictions are based on a new alligator of length xn+1 = 2 meters.

To further see this gain in e�ciency we consider the Glass Identification data set from
the USA Forensic Science Service, available in the UCI Machine Learning Repository (Dua
and Gra↵ 2017).1 It has 10 attributes associated with 214 glasses. The type of glass, a
categorical variable—with six categories, including “containers” and “headlamps”—is the
response variable. The nine remaining variables, which describe the oxide content, i.e.,
Na, Fe, K, etc., are the explanatory variables. Classification of types of glass is relevant
in criminology applications, where glass fragments left at the scene of the crime may
be important evidence if correctly identified. To evaluate the performance in classifying
glass fragments, we randomly split the data in half and train both the conditioning and
stretching strategies in the first half, with  function as in (30). For further comparison,
we also train a Bayesian multinomial regression model with default, non-informative
priors on the parameters.2 Figure 4 plots the distribution functions of the corresponding
plausibility contours for the responses in the second half of the data. As expected, uniform
validity in (8) fails for the Bayesian solution and holds for both IM solutions, with the
one based on stretching being more e�cient. Of course, not being uniformly valid does
not imply that the Bayesian prediction set will not achieve the nominal coverage, but
we can check this directly. Table 2 shows the empirical coverage probabilities and the
average sizes (cardinality) of 95% prediction sets for the responses in the second half of

1https://archive.ics.uci.edu/ml/datasets/glass+identification
2The bamlss R package (Umlauf et al. 2021) was used to run the Bayesian analysis.
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Figure 4: Distribution function for plausibility contours derived from an IM construction,
with conditioning (black), stretching (green) and no adjustment (red), and a Bayesian
multinomial regression model (blue).

Strategy Coverage Size
Conditioning 0.96 3.07
Stretching 0.96 2.73
Bayes 0.80 1.71

Table 2: Coverage probabilities and average size of 95% prediction sets in (19) derived
from an IM construction, with conditioning and stretching adjustment, and a Bayesian
multinomial regression model.

the data. Clearly, the Bayes approach does not provide valid prediction sets.
Recall from Section 6 that the probabilistic predictor derived from the “conformal

+ consonance” construction is uniformly valid according to Definition 2, given that the
conformal transducer ⇡

n
x satisfies (11). In regression problems, this condition follows

naturally from the continuity of Y , and the derived probabilistic predictor is equivalent
to the one that would be obtained from an IM construction (assuming both use the same 
function). In classification problems, however, (11) may not hold because Y is discrete.
This implies the “conformal + consonance” cannot be applied directly without some
adjustment. This is not surprising given that similar adjustments were needed in the IM
construction discussed above too. To better see this, note that the distribution function
for the conformal transducer is also shown in Figure 4. The need of an adjustment is
evident, as uniform validity fails and, consequently, the derived conformal prediction
intervals obtained through (19) would not be calibrated for certain choices of ↵.

A natural adjustment is to force the conformal transducer to attain the value 1.
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Consider the following two adjusted conformal transducers:

⇡̇
n
x(y) =

⇡
n
x(y)

maxy ⇡n
x(y)

,

and

⇡̈
n
x(y) =

(
1 if y = ŷ,

⇡
n
x(y) otherwise,

where ŷ = argmaxy ⇡n
x(y) and y 2 Y. In words, ⇡̇n

x(y) takes the conformal transducers
for the di↵erent y 2 Y and divide them by their maximum, and ⇡̈

n
x(y) maintains all the

conformal transducer values except for its maximum, which is assigned the value 1. That
both adjusted transducers reach the value 1 makes the probabilistic predictors derived
by them, through (12), uniformly valid in the sense of Definition 2. It is also easy to
see that these probabilistic predictors obtained from ⇡̇

n
x(y) and ⇡̈

n
x(y) are equivalent to

the ones derived from the IM construction with, respectively, the conditioning and the
stretching adjustments. This shows that forcing consonance of the conformal transducer
is not an ad hoc strategy; it is justified by the corresponding operations on random sets.
Moreover, in light of this connection to the IM’s random set adjustments, we find that
the second adjustment to the conformal predictor, i.e., setting the maximum value equal
to 1, is the more e�cient adjustment.

8 Conclusion

Here we focused on the important problem of prediction in supervised learning appli-
cations with no model assumptions (except exchangeability). We presented a notion of
prediction validity, one that goes beyond the usual coverage probability guarantees of
prediction sets. This condition assures the reliability of the degrees of belief, obtained
from a imprecise probability distribution, assigned to all relevant assertions about the
yet-to-be-observed quantity of interest. We also showed that, by following a new vari-
ation on the (generalized) IM construction first presented in Martin (2015, 2018), this
validity property can be easily achieved. We also noted the connection between this new
IM construction and the conformal prediction strategy in, e.g., Vovk et al. (2005), and
presented illustrations in both regression and classification settings. This connection is
of paramount importance, as it implies that no new methodology is needed to achieve
the (uniform) validity properties presented here. All that is needed is a possibilistic
interpretation of the conformal prediction output.

Exchangeability was crucial to our IM construction, that is, without exchangeability,
we cannot establish the distribution of the auxiliary variables. While exchangeability
is a relatively weak assumption compared to iid from a parametric family, there are, of
course, situations where exchangeability is inappropriate, such as time series or spatial
applications. Work to develop conformal prediction methods in not-exactly-exchangeable
settings is an active area of current research (e.g., Mao et al. 2020), and it would be
interesting to see what the IM perspective has to o↵er here.

In Section 5 we noted that the IM construction there leads naturally to a notion of
marginal validity, which is di↵erent (and weaker) than the so-called conditional validity
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property. While this is usually framed in the context of prediction sets, the corresponding
definition in the context of probabilistic predictors is

P{⇧n
x(A)  ↵, Yn+1 2 A | Xn+1 = x}  ↵ 8 x,

and, of course, for all (↵, n, A,P) as before. Given the impossibility results in, e.g., Lei
and Wasserman (2014), it seems unlikely that conditional validity can be achieved by any
non-trivial probabilistic predictor. Asymptotic conditional validity is possible, and some
promising ideas are given in, e.g., Chernozhukov et al. (2019).

We mentioned in Section 7 that, surprisingly, empty random sets may have some prac-
tical value. This concerns the so-called open- versus closed-world view of the prediction
problem. If the world is closed in the sense that all the possible labels are known, then it
makes sense to remove the empty set cases and, hence, force consonance. However, if the
world is open in the sense that other labels are possible, then the empty set realization
is an indication that the new object being classified may be of previously-unknown type,
which itself is valuable information. How this open-world view can be captured by the
IM framework developed here remains an open question.
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