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In highly and fully automated vehicles (AV), drivers could divert their attention to non-driving-related
activities. Drivers may also take over AVs if they do not trust the way AVs drive in specific driving scenarios.
Existing models have been developed to predict drivers’ takeover performance in responding to takeover
requests initiated by AVs in semi-AVs. However, few models predicted driver-initiated takeover behavior in
highly and fully AVs. The present study develops an attention-based multiple-input Convolutional Neural
Network (CNN) to predict drivers’ takeover intention in fully AVs. The results indicated that the developed
model successfully predicted takeover intentions of drivers with a precision of 0.982 and an F1-Score of .989,
which were found to be substantially higher than other machine learning algorithms. The developed CNN
model could be applied in improving the driving algorithms of the AV by considering drivers’ driving styles

to reduce drivers’ unnecessary takeover behaviors.

INTRODUCTION

With the advances in the automated vehicle technologies,
researchers have contributed much effort to investigate ways to
establish a framework that provides a reliable and comfortable
experience of driving with automated vehicles. The Society of
Automotive Engineers (SAE) defines the six levels of
automated vehicles (SAE, 2018). Based on the definition,
drivers do not need to perform driving tasks in fully automated
vehicles. However, previous surveys indicated that most US
drivers are afraid of riding with fully AVs (Khosla et al, 2020).
Therefore, it is important to design trustworthy AVs to improve
drivers’ trust in AVs before its deployment on the market.

Previous empirical studies have found the impact of driver’s
driving styles and AV’s driving styles on drivers’ trust and
behavior in AVs. For example, Ma and Zhang (2021) suggested
that drivers showed higher trust in AVs when the AV’s driving
style is aligned with drivers’ driving style, whereas they showed
lower trust in AVs and increased takeover behavior frequency
when AV’s driving style is against the drivers’ driving style.
Price et al. (2016) studied the drivers’ trust in different
automated driving algorithms. They found that drivers’ trust in
the driving algorithms was influenced by drivers’ driving styles.
Lee et al. (2021) examined the drivers’ trust in fully AV in
intersection crossing scenarios with the driving styles of AV
being manipulated (i.e., aggressive, moderate, and
conservative). They found that conservative style increased the
frequency and magnitude of accelerator pedal inputs;
conversely, the aggressive style increased the frequency and
magnitude of brake pedal inputs, which provides an indicator
of driver’s trust in automated driving styles. Although the
behavioral studies brought insights into the development of
guidelines for the design of AV’s driving styles, driver models
that predict drivers AV interaction performance are still lacking
to optimize AV’s driving styles in different scenarios so that
adjustments could be made in a dynamic manner to enhance
driver trust and reduce unnecessary takeover behaviors.

To date, models have been developed to predict drivers’
takeover performance in response to the takeover requests
initiated by AVs using deep learning (DL) algorithms such as

Convolutional Neural Network (CNN). Braunagel et al. (2017)
and Du et al. (2020) applied machine learning (ML) algorithms
(e.g., Linear Discriminant, K-Nearest Neighbors, Support
Vector Machine, Naive Bayes, Random Forest) to classify
drivers’ takeover quality after receiving takeover requests from
AVs when performing the non-driving related tasks (NDRTs).
Deo et al. (2018) developed a Long Short-Term Memory
(LSTM) model to predict drivers’ readiness to take over the
vehicle based on observable cues from in-vehicle vision
sensors. Most of the reviewed models focused on the prediction
of takeover reaction time in responding to takeover requests
from AVs. Lotz et al. (2019) adopted support vector machine
algorithms to forecast the takeover time from four defined
classes of takeover durations. Grese et al. (2021) predicted how
long the drivers will take over the AV after the takeover request
is initiated with a neural network model.

Fewer models have predicted drivers’ takeover intention
and decision-making in AVs. One of the exceptions was the DL
network developed by Pakdamanian et al. (2020) to predict
driver’s takeover intention along with takeover reaction time
and takeover performance quality. They developed a neural
network model using multimodal data including pre-driving
questionnaires, driver’s physiological measurements, and
vehicle data. Their model shows good prediction accuracy on
the takeover intention, takeover time and takeover quality after
the driver receives the takeover request (TOR) from the
computer program in the driving simulator.

In summary, the existing research efforts have been made to
predict the drivers' takeover performance in AVs based on the
quality, readiness index, time, and intentions of takeover and on
the intentions of changing the lanes or braking and the intensity
of braking. All these outputs were predicted using inputs
ranging from the parameters such as eyes-on-the-road and
traffic situation to driver’s physiological data, vehicle
parameters (velocity, acceleration, positional information),
time to collision, and driver’s facial images. However, fewer
research efforts have been devoted to predicting drivers’
takeover intentions. The model that was able to predict takeover
intention focused on the passive takeover intention upon the
takeover requests issued from automated vehicles. However,
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the active takeover behavior in the human-AV interaction
initiated by human drivers has not been analyzed. The model
discussed in Pakdamanian et al. (2020) predicted driver’s
takeover intention with the movement data of the vehicle
without considering the data of the surrounding vehicles and
pedestrians near the AVs, which may affect driver's takeover
intention in AVs. Moreover, since driver’s driving styles have
been found to influence drivers’ takeover frequency in the fully
AVs, this factor should be quantified to predict driver-initiated
takeover behavior in AVs.

The main objective of the present study is to develop a deep
learning model employing attention-based Convolutional

Table 1. Features of the CNN Model

Neural Network algorithm to predict drivers’ takeover intention
in fully AVs with data from a driving simulator experiment.
Specifically, the developed model will be applied to predict
active driver-initiated takeover behavior rather than passive
driver takeover responses towards AV’s takeover requests. The
developed model can be modified and applied in embedded
systems of AVs (Kato et al, 2018) to predict drivers’ takeover
intention in advance so that the AV system can adjust its driving
algorithm accordingly to reduce unnecessary takeovers and
improve the overall driving experience thus justifying the
importance of this study.

Feature Description

Distance Matrix This is a matrix of 8 values as shown in Figure 1. Each of the values will represent the relative position of the
(For vehicle and pedestrian) closest surrounding vehicles/hazards in the corresponding direction.

Velocity Matrix This is a matrix of 8 values as shown in Figure 1. Each of the values will represent the relative velocity of the
(For vehicle and pedestrian) closest surrounding vehicle/hazards in the corresponding direction.

Right of way This will be a binary variable that indicates if the participant has the right of way at any given point of a scenario.

For instance, if the participant wants to make a left turn at a solid green, the right of way value will be 0.

Input Signal Light 0 — Signal not visible; 1 — green; 2 — Amber; 3 — Red
(Independent)  Driving Style The numeric answers to the Aggressive Driving Scale (ADS) questionnaire for each participant.
Longitudinal Velocity (ft/s) Velocity of the subject vehicle along the road
Lateral Velocity (ft/s) Velocity of the subject vehicle across the road
Longitudinal Acceleration (ft/s*)  Acceleration of the subject vehicle along the road
Lateral Acceleration (ft/s?) Acceleration of the subject vehicle across the road
Time to Collision Time remaining for collision with the hazard, computed by the simulator
Output . . T L
P Autonomous Mode Binary variable indicating whether the vehicle is in AV mode or manual mode
(Dependent)
Subject Vehide Input Surr, Vehicle Dist. Mat. Surr, Vehicke vel, Mat. ‘Surt. Pedestrian Dist. Mat. ‘Surr. Pedestrian Vel, Mat,
Shape = window size X7 Shape = window sizeX313 ‘Shape = window sizex3X3 ‘Shape = window sizeX3x3 ‘Shape = window sireX3X3
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Kernel = 347 Filters = 64 Kernel = 2011 Fiters = 64 Kemel = 2611 Filters = 64 Kemel = 2XIX1 Filters = 64 Kernel = 2XIX1 Filters = 64
2DCNN 30 CNN 3DCNN 3DCNN 3DCNN
Kemel = 3] Filters = 32 Kernal = 2X11 Filters =32 Kemel = 2X1x1 Filters = 32 Kemel = 2X1X1 Flters = 32 Kermed = 2X1X1 Filters = 32
Batch Normalization Batch Normalization Batch Normalization
Maxfool 20 MaxPool 30 MaxPool 30 MaxPool 30 MaxPool 3D
Kernel = 2X1 Kernel = 01X1 Kemel = 26161 Kernel = 2X1x1 Kermel = 0X1 m
o DO DA IDCNN 0N g
Kernel = 3x1 Filters = 16 Kemel = 2X1X1 Filters = 16 Kemel = 2X1X1 Filters = 16 Kemel = 2KIX1 Filters = 16 Kerned = 2X1X1 Filters = 16 o
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Figure 1. Model with Encoder and Dense Layer Structure
an average annual driving mileage of 7547 miles (SD= 5215).
METHOD A pre-screening procedure was used to classify drivers’ driving
Data Collection styles via the Aggressive Driving Scale (ADS) (Krahe and

The primary research dataset was obtained and reported in
Ma and Zhang (2021). Forty-seven people participated in this
study. Participants were native English speakers and have held
adriver’s license for at least 2 years. Their ages ranged from 18
to 39 years with an average age of 23.43 years (SD= 4.56) and

Fenske, 2002). Participants were classified into twenty-two
aggressive drivers and twenty-five defensive drivers. Each
participant completed 12 scenarios in a level-5 automated
vehicle simulated with the STISIM Drive® M300WS-Console
System. The 12 scenarios consisted of 8 normal driving
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scenarios, including turning corners on a green light to crossing
intersections and stopping at stop signs; and 4 hazard scenarios,
where a slow lead vehicle breaks down or a pedestrian runs into
the road or a vehicle on the adjacent lane cuts in or a traffic jam
occurs (Ma and Zhang, 2021). These scenarios were divided
into 4 blocks with the sequence of being balanced with a Latin
Square design across four experimental conditions. It was
observed that more takeovers occurred during the hazard
scenarios as compared to the normal ones, but they occurred at
random times during the duration of the scenario and hence
warranted the need for a ML algorithm.

Feature Engineering

The movement of the subject vehicle (SV) were
automatically collected via the driving simulator. The metadata
contained within the driving simulation was employed to
capture the data of the surrounding traffic including other
vehicles, pedestrians, road environment, and traffic signs and
signals. The additional information collected provided useful
raw features for training the CNN algorithms. As shown in
Table 1, a set of features were defined to mimic the variables
important in the process of maneuvering a vehicle.

The first feature was the surrounding vehicle distance
matrix which represents the distance (in feet) of the SV to the
closest vehicles in each of the 8 cardinal directions, represented
by the left matrix in Figure 2. The right matrix in Figure 2 is
the surrounding vehicle velocity matrix which stores the
corresponding relative velocities of the vehicles represented in
the former matrix. Similar matrices were also generated to
capture the movement of the surrounding pedestrians and were
called the pedestrian distance matrix (Left matrix Figure 3) and
pedestrian velocity matrix (Right matrix Figure 3),
respectively.

0 | sv | 10
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Figure 2. Surrounding vehicle’s distance and velocity matrix
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Figure 3. Surrounding pedestrian’s distance and velocity matrix

Another feature developed was the right of way. This
concept is widely used while driving in the USA whereby a
driver has the right of way in certain driving scenarios over the
surrounding vehicles. This feature becomes important in the
context of the current problem, as when driving the AV, the
participants might have different levels of trust when the right
of way is in their favor than when it is not. The last feature
defined was the color of the signal light, defined using the
metadata captured from the STISIM. This has four values
which represent the different possibilities; no signal present or
the light is either green, amber or red. This feature along with
the previously defined features completely define the different
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scenarios during driving and combined with the SV movement
data provide comprehensive information to train the model.

Data Preparation

All the ML algorithms were trained with two dimensional
matrices whereas the data was engineered into groups of similar
nature, each group having a specific dimensional matrix to train
the DL algorithms. The SV movement data, right of way, and
the signal light were grouped together and stored in a tabular
form where each column represented a feature. The four
matrices engineered (Two each for surrounding vehicles and
pedestrians) were recorded at the same instances as the subject
vehicle movement data. Therefore, those were stacks of
matrices, where each matrix in a stack represents the
position/velocity of the surrounding vehicle/pedestrian at a
given time instant. Finally, the driver’s driving style data
obtained from the questionnaire was represented as a vector for
each given participant and was constant for all scenarios
involving them.

As the experiments were conducted with different people,
they lasted different durations. However, the data was always
collected in fixed time periods which resulted in the number of
rows for each experiment to be different. To standardize the
number of rows the data was picked from a window spanning a
pre-decided time interval. For instance, if an experiment was 10
seconds long with each time step being 0.1 seconds, this would
result in the experiment containing 100 observations (rows). A
window size of 1 second (10 rows per window) running over
this experiment would generate 99 datapoints each 1 second
long (10 rows). Therefore, this allowed an increase in the total
number of data points which could be used to train the model.
The subsequent output for the data point would be a binary
variable indicating whether the driver took over the automated
vehicle within that time window.

The window size was an important parameter as it controls
the number of data points generated. A larger window size
ended up generating a lower number of datapoints. The length
of the window also controlled the amount of information
available to the algorithm to make its prediction. Finally, the
data generated when the driver takes over the AVs can only be
a small portion of the window corresponding to the time when
the vehicle is being driven in the manual mode. These data
points were recorded as takeover events and for longer
windows, influencing the learning of DL algorithms. Therefore,
cross validation was employed to optimize the window size.

Model Development

The SV movement data combined with the right of way and
signal light features represents a matrix where each column is a
feature, and each row is the record of all these features at time
intervals of 0.1 seconds. To train the algorithm over this data, a
2D Convolution Network was deployed whereas to train over
the surrounding vehicle/pedestrian distance/velocity matrices, a
3D Convolution Network was deployed because of its ability to
handle video data for each of the four types of data. Therefore,
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there are five distinct CNN blocks in the model. These blocks
simplify their respective multidimensional input into a single
dimensional output which then combined with the one-
dimensional driving style data was further processed with feed
forward neural network.

To support window sizes of varying lengths it was decided
to use four convolutional layers and two max-pool layers for
each block of CNN. The convolution and max-pool layers
transform the output into smaller matrices of predefined sizes.
A batch normalization layer was added to the model as it was
observed that it improved the performance. An attention layer
was also appended to the model and once the model is trained,
each node of the attention layer gets a score, and these scores
can provide information about the importance of each input in
predicting the output. Attention here are the nodes between
input and output layers which add weights to the input. Figure
1 displays the five CNN blocks and the driving style vector in a
network to train the model.

Four baseline machine learning models (Table 3) were also
developed to compare and justify the development of CNN
algorithm. They were trained on the dataset without considering
the window size and using the same features as the CNN model.
They use the 2D form of data where each point of the time-
series was treated as a row of data and used to train these
models. Each algorithm was trained to optimization by cross
validating the different parameters associated with each of
them. It was observed that logistic regression optimizes at 220
iterations and support vector machine gives the highest
classification accuracy using rbf as the kernel function. A
comparison of these models with the CNN model is discussed
in the next section.

Model Training and Testing

The window size for cross validation was varied between 1
and 10 seconds with increments of 1 second each. Therefore,
for the data obtained from each of the ten windows, separate
instances of the model were trained using 5-fold cross
validation. Each instance was trained for 100 epochs with each
training batch containing 50 data points. To efficiently train the
algorithm two loss functions were used, one was sparse
categorical cross entropy loss function, and the other was
contrastive loss function (Jianhao et al, 2019). Using the second
function required breaking up the data into two parts as
explained in Khosla et al. (2020). To update the weights of the
model, Adam optimizer was used with a learning rate which
was varied between 0.000001 and 0.00001 and was determined
to be optimum at 0.00008. Hence, we trained 20 CNN models
from T10 to T100 for both the loss functions (Table 2).

RESULTS

Model Performance Comparison

The performance of all the trained models were measured
using the four metrics of a classification algorithm based on the
confusion matrix of the test data. Specificity evaluates the
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model’s ability to predict true negatives while sensitivity
evaluates model’s ability to predict the true positives. Precision
is the ratio of true positives to the total predicted positives and
F1-Score is the harmonic mean of precision and sensitivity.
Since we used two loss functions, two models for each were
trained and Table 2 summarizes the performance of each
model.

Table 2. Comparison of model performances

Model Specificity Sensitivity Precision F1 Score
T10-C 0.989 0.988 0.969 0.978
T10-NC 0.994 0.944 0.925 0.934
T20-C 0.992 0.987 0.977 0.982
T20-NC 0.970 0.962 0.914 0.937
T30-C 0.992 0.995 0.976 0.986
T30-NC 0.981 0.817 0.882 0.848
T40-C 0.994 0.996 0.982 0.989
T40-NC 0.982 0.973 0.946 0.959
T50-C 0.862 1.000 0.707 0.828
T50-NC 0.858 1.000 0.701 0.824
T60-C 0.882 1.000 0.738 0.849
T60-NC 0.878 1.000 0.732 0.845
T70-C 0.890 1.000 0.753 0.859
T70-NC 0.900 1.000 0.769 0.869
T80-C 0.996 0.990 0.988 0.989
T80-NC 0.993 1.000 0.980 0.990
T90-C 0.921 0.960 0.960 0.960
T90-NC 0.904 0.896 0.895 0.895
T100-C 0.930 0.998 0.827 0.905
T100-NC 0.918 0.998 0.802 0.889

Note. C denotes training with contrastive loss function; NC denotes
training with other loss function; T10 denotes model with a time
window of 1 seconds with the time step of 0.1 second.

While the sparse categorical loss function tries to find a
hyperplane to separate the two classes, the contrastive loss
function tries to increase the contrast in the classes by
increasing the distance between them. The benefits of the latter
are more pronounced for models with smaller time windows.
The results manifest that the three models (i.e., T80-NC, T80-
C and T40-C) performed better since their performance is
consistent across all four metrics. The T40-C model was
identified as the optimal model among the three best models,
with its training time being the lowest followed by T80-NC and
T80-C. Therefore, only T40-C was used for further analysis.

A comparative analysis of the T40-C CNN model with
other baseline machine learning algorithms (without
incorporating the window size feature) identifies the T40-C
model as an efficient predictor of the takeover intention of the
driver and justifies developing a deep learning algorithm. Table
3 compares the classification metrics of these models.

Table 3. Comparison of CNN model to Baseline ML models

Model Specificity ~ Sensitivity  Precision  F1

Score
CNN (T40-C) 0.994 0.996 0.982 0.989
Logistic Regression 0.853 0.821 0.841 0.831
Random Forest 0.960 0.998 0.959 0.978
SVM 0.951 0.595 0.920 0.723
Decision Tree 0.974 0.980 0.973 0.977

DISCUSSION

This literature talks about the process of developing a robust
framework with a multiple-input Convolutional Neural
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Network (CNN) model to predict a driver’s takeover intention
in fully AVs with drivers’ driving style, the movement data of
AVs, and four matrices of movement data of surrounding
vehicles and pedestrians. It is one of the first DL models that
could predict active takeover intention initiated by human
drivers in AVs. The developed CNN model was able to learn
the features of time series data to predict the takeover action in
different time windows. Since the larger time windows can
anticipate a longer future in the time series scenario, multiple
window sizes were used to ensure the appropriate configuration
of the CNN model. Several other baseline models were also
trained to justify the need to build a highly complex CNN
model. The T40-C model built using a contrastive loss function
with a window size of 4 seconds was identified as the best CNN
model with a prediction accuracy of 98.2%, a F1-Score of
0.989, and a specificity of 0.994 all of which are the highest in
comparison to the performance of baseline models. Such high
accuracy can be attributed to the fact that most takeovers occur
in hazard scenarios where the features are significantly different
from the other scenarios.

The built CNN model finds its application in improving the
driving algorithms of the AVs in real time by matching them
with the driving style of drivers. It can use the information
captured in the event of an active takeover by the driver and
adjust the driving algorithm of the AV to reduce the probability
of takeover by the driver if similar circumstances arise again.
This combination manifests a self-learning algorithm which
will overtime improve the trust of drivers in AVs.

Effect of Window Size

The window size controlled the size of each data point
which in turn affected how much information was given to the
model to make an individual prediction. Moreover, processing
data from a longer window would also require additional time
thereby limiting the usefulness of the prediction. Therefore, the
most effective window size would be a balance between model
performance and the time required to make the prediction.
However, in the current study, models obtained from window
sizes of 4 and 8§ seconds had very similar performance despite
the later containing almost twice the amount of data. This
suggests that the loss of trust in the AV is not dependent on the
information far out in the past. Moreover, the drop in F1 score
is not gradual. It has two peaks, at windows of lengths 4 and 8
seconds. It is not clear why this behavior is exhibited and would
require further analysis.

Limitation and Future Work

Although the current work highlights the importance of
understanding the driving style of the drivers to instill trust in
AVs, there are certain limitations that need to be addressed. The
data being used for the study is derived from a driving simulator
study. The model needs to be validated in the future with
naturalistic driver data in AV. Secondly, the prediction of
whether a takeover will take place or not is of limited use in the
real world. A more actionable prediction would be the
probability with which a takeover will happen in each time
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window. This would allow researchers to focus on instances
where there is a higher probability of loss of trust.

In conclusion, an attention-based CNN model was built to
study the take-over behavior of drivers in a simulated
automated vehicle. Data on the vehicle movement, driving style
behavior and surrounding environment was used along with
some feature engineering to develop a convolution neural
network model. The task of this model was to predict whether
a takeover by the driver happened within a time frame. The time
window was varied to obtain the optimal window for which the
prediction performance was maximum. Four machine learning
models were also trained to compare the performance with the
attention-based CNN model as baselines. It was observed that
the CNN model showed a better performance in predicting
driver takeover intentions than all baseline models.
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