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In highly and fully automated vehicles (AV), drivers could divert their attention to non-driving-related 
activities. Drivers may also take over AVs if they do not trust the way AVs drive in specific driving scenarios. 
Existing models have been developed to predict drivers’ takeover performance in responding to takeover 
requests initiated by AVs in semi-AVs. However, few models predicted driver-initiated takeover behavior in 
highly and fully AVs. The present study develops an attention-based multiple-input Convolutional Neural 
Network (CNN) to predict drivers’ takeover intention in fully AVs. The results indicated that the developed 
model successfully predicted takeover intentions of drivers with a precision of 0.982 and an F1-Score of .989, 
which were found to be substantially higher than other machine learning algorithms. The developed CNN 
model could be applied in improving the driving algorithms of the AV by considering drivers’ driving styles 
to reduce drivers’ unnecessary takeover behaviors. 
 

INTRODUCTION 
 

With the advances in the automated vehicle technologies, 
researchers have contributed much effort to investigate ways to 
establish a framework that provides a reliable and comfortable 
experience of driving with automated vehicles. The Society of 
Automotive Engineers (SAE) defines the six levels of 
automated vehicles (SAE, 2018). Based on the definition, 
drivers do not need to perform driving tasks in fully automated 
vehicles. However, previous surveys indicated that most US 
drivers are afraid of riding with fully AVs (Khosla et al, 2020). 
Therefore, it is important to design trustworthy AVs to improve 
drivers’ trust in AVs before its deployment on the market.  

Previous empirical studies have found the impact of driver’s 
driving styles and AV’s driving styles on drivers’ trust and 
behavior in AVs. For example, Ma and Zhang (2021) suggested 
that drivers showed higher trust in AVs when the AV’s driving 
style is aligned with drivers’ driving style, whereas they showed 
lower trust in AVs and increased takeover behavior frequency 
when AV’s driving style is against the drivers’ driving style. 
Price et al. (2016) studied the drivers’ trust in different 
automated driving algorithms. They found that drivers’ trust in 
the driving algorithms was influenced by drivers’ driving styles. 
Lee et al. (2021) examined the drivers’ trust in fully AV in 
intersection crossing scenarios with the driving styles of AV 
being manipulated (i.e., aggressive, moderate, and 
conservative). They found that conservative style increased the 
frequency and magnitude of accelerator pedal inputs; 
conversely, the aggressive style increased the frequency and 
magnitude of brake pedal inputs, which provides an indicator 
of driver’s trust in automated driving styles. Although the 
behavioral studies brought insights into the development of 
guidelines for the design of AV’s driving styles, driver models 
that predict drivers AV interaction performance are still lacking 
to optimize AV’s driving styles in different scenarios so that 
adjustments could be made in a dynamic manner to enhance 
driver trust and reduce unnecessary takeover behaviors. 

To date, models have been developed to predict drivers’ 
takeover performance in response to the takeover requests 
initiated by AVs using deep learning (DL) algorithms such as 

Convolutional Neural Network (CNN). Braunagel et al. (2017) 
and Du et al. (2020) applied machine learning (ML) algorithms 
(e.g., Linear Discriminant, K-Nearest Neighbors, Support 
Vector Machine, Naïve Bayes, Random Forest) to classify 
drivers’ takeover quality after receiving takeover requests from 
AVs when performing the non-driving related tasks (NDRTs). 
Deo et al. (2018) developed a Long Short-Term Memory 
(LSTM) model to predict drivers’ readiness to take over the 
vehicle based on observable cues from in-vehicle vision 
sensors. Most of the reviewed models focused on the prediction 
of takeover reaction time in responding to takeover requests 
from AVs. Lotz et al. (2019) adopted support vector machine 
algorithms to forecast the takeover time from four defined 
classes of takeover durations. Grese et al. (2021) predicted how 
long the drivers will take over the AV after the takeover request 
is initiated with a neural network model. 

Fewer models have predicted drivers’ takeover intention 
and decision-making in AVs. One of the exceptions was the DL 
network developed by Pakdamanian et al. (2020) to predict 
driver’s takeover intention along with takeover reaction time 
and takeover performance quality. They developed a neural 
network model using multimodal data including pre-driving 
questionnaires, driver’s physiological measurements, and 
vehicle data. Their model shows good prediction accuracy on 
the takeover intention, takeover time and takeover quality after 
the driver receives the takeover request (TOR) from the 
computer program in the driving simulator.  

In summary, the existing research efforts have been made to 
predict the drivers' takeover performance in AVs based on the 
quality, readiness index, time, and intentions of takeover and on 
the intentions of changing the lanes or braking and the intensity 
of braking. All these outputs were predicted using inputs 
ranging from the parameters such as eyes-on-the-road and 
traffic situation to driver’s physiological data, vehicle 
parameters (velocity, acceleration, positional information), 
time to collision, and driver’s facial images. However, fewer 
research efforts have been devoted to predicting drivers’ 
takeover intentions. The model that was able to predict takeover 
intention focused on the passive takeover intention upon the 
takeover requests issued from automated vehicles. However, 
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the active takeover behavior in the human-AV interaction 
initiated by human drivers has not been analyzed. The model 
discussed in Pakdamanian et al. (2020) predicted driver’s 
takeover intention with the movement data of the vehicle 
without considering the data of the surrounding vehicles and 
pedestrians near the AVs, which may affect driver's takeover 
intention in AVs. Moreover, since driver’s driving styles have 
been found to influence drivers’ takeover frequency in the fully 
AVs, this factor should be quantified to predict driver-initiated 
takeover behavior in AVs. 

The main objective of the present study is to develop a deep 
learning model employing attention-based Convolutional 

Neural Network algorithm to predict drivers’ takeover intention 
in fully AVs with data from a driving simulator experiment. 
Specifically, the developed model will be applied to predict 
active driver-initiated takeover behavior rather than passive 
driver takeover responses towards AV’s takeover requests. The 
developed model can be modified and applied in embedded 
systems of AVs (Kato et al, 2018) to predict drivers’ takeover 
intention in advance so that the AV system can adjust its driving 
algorithm accordingly to reduce unnecessary takeovers and 
improve the overall driving experience thus justifying the 
importance of this study. 

 
Table 1. Features of the CNN Model 

 

 

 
Figure 1. Model with Encoder and Dense Layer Structure 

 
 

METHOD 
Data Collection  

The primary research dataset was obtained and reported in 
Ma and Zhang (2021). Forty-seven people participated in this 
study. Participants were native English speakers and have held 
a driver’s license for at least 2 years. Their ages ranged from 18 
to 39 years with an average age of 23.43 years (SD= 4.56) and  

an average annual driving mileage of 7547 miles (SD= 5215). 
A pre-screening procedure was used to classify drivers’ driving 
styles via the Aggressive Driving Scale (ADS) (Krahe and 
Fenske, 2002). Participants were classified into twenty-two 
aggressive drivers and twenty-five defensive drivers. Each 
participant completed 12 scenarios in a level-5 automated 
vehicle simulated with the STISIM Drive® M300WS-Console 
System. The 12 scenarios consisted of 8 normal driving 

Encoder

 Feature Description 

Input 
(Independent) 

Distance Matrix 
(For vehicle and pedestrian) 

This is a matrix of 8 values as shown in Figure 1. Each of the values will represent the relative position of the 
closest surrounding vehicles/hazards in the corresponding direction. 

Velocity Matrix 
(For vehicle and pedestrian) 

This is a matrix of 8 values as shown in Figure 1. Each of the values will represent the relative velocity of the 
closest surrounding vehicle/hazards in the corresponding direction. 

Right of way This will be a binary variable that indicates if the participant has the right of way at any given point of a scenario. 
For instance, if the participant wants to make a left turn at a solid green, the right of way value will be 0. 

Signal Light 0 – Signal not visible; 1 – green; 2 – Amber; 3 – Red 
Driving Style The numeric answers to the Aggressive Driving Scale (ADS) questionnaire for each participant. 
Longitudinal Velocity (ft/s) Velocity of the subject vehicle along the road 
Lateral Velocity (ft/s) Velocity of the subject vehicle across the road 
Longitudinal Acceleration (ft/s2) Acceleration of the subject vehicle along the road 
Lateral Acceleration (ft/s2) Acceleration of the subject vehicle across the road 
Time to Collision Time remaining for collision with the hazard, computed by the simulator 

Output 
(Dependent) Autonomous Mode Binary variable indicating whether the vehicle is in AV mode or manual mode 
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scenarios, including turning corners on a green light to crossing 
intersections and stopping at stop signs; and 4 hazard scenarios, 
where a slow lead vehicle breaks down or a pedestrian runs into 
the road or a vehicle on the adjacent lane cuts in or a traffic jam 
occurs (Ma and Zhang, 2021). These scenarios were divided 
into 4 blocks with the sequence of being balanced with a Latin  
Square design across four experimental conditions. It was 
observed that more takeovers occurred during the hazard 
scenarios as compared to the normal ones, but they occurred at 
random times during the duration of the scenario and hence 
warranted the need for a ML algorithm. 
 
Feature Engineering  

The movement of the subject vehicle (SV) were 
automatically collected via the driving simulator. The metadata 
contained within the driving simulation was employed to 
capture the data of the surrounding traffic including other 
vehicles, pedestrians, road environment, and traffic signs and 
signals. The additional information collected provided useful 
raw features for training the CNN algorithms. As shown in 
Table 1, a set of features were defined to mimic the variables 
important in the process of maneuvering a vehicle. 

The first feature was the surrounding vehicle distance 
matrix which represents the distance (in feet) of the SV to the 
closest vehicles in each of the 8 cardinal directions, represented 
by the left matrix in Figure 2. The right matrix in Figure 2 is 
the surrounding vehicle velocity matrix which stores the 
corresponding relative velocities of the vehicles represented in 
the former matrix. Similar matrices were also generated to 
capture the movement of the surrounding pedestrians and were 
called the pedestrian distance matrix (Left matrix Figure 3) and 
pedestrian velocity matrix (Right matrix Figure 3), 
respectively. 

 
80 10.1 30  80 60 40 
15 SV 3  0 SV 10 
27 70 999  0 30 10 

Figure 2. Surrounding vehicle’s distance and velocity matrix 
 

80 16.5 60  5 0 8 
20 SV 10  0 SV 3 
25 80 90  2 0 0 

Figure 3. Surrounding pedestrian’s distance and velocity matrix 
 

Another feature developed was the right of way. This 
concept is widely used while driving in the USA whereby a 
driver has the right of way in certain driving scenarios over the 
surrounding vehicles. This feature becomes important in the 
context of the current problem, as when driving the AV, the 
participants might have different levels of trust when the right 
of way is in their favor than when it is not. The last feature 
defined was the color of the signal light, defined using the 
metadata captured from the STISIM. This has four values 
which represent the different possibilities; no signal present or 
the light is either green, amber or red. This feature along with 
the previously defined features completely define the different 

scenarios during driving and combined with the SV movement 
data provide comprehensive information to train the model. 
 
Data Preparation 

All the ML algorithms were trained with two dimensional 
matrices whereas the data was engineered into groups of similar 
nature, each group having a specific dimensional matrix to train 
the DL algorithms. The SV movement data, right of way, and 
the signal light were grouped together and stored in a tabular 
form where each column represented a feature. The four 
matrices engineered (Two each for surrounding vehicles and 
pedestrians) were recorded at the same instances as the subject 
vehicle movement data. Therefore, those were stacks of 
matrices, where each matrix in a stack represents the 
position/velocity of the surrounding vehicle/pedestrian at a 
given time instant. Finally, the driver’s driving style data 
obtained from the questionnaire was represented as a vector for 
each given participant and was constant for all scenarios 
involving them. 

As the experiments were conducted with different people, 
they lasted different durations. However, the data was always 
collected in fixed time periods which resulted in the number of 
rows for each experiment to be different. To standardize the 
number of rows the data was picked from a window spanning a 
pre-decided time interval. For instance, if an experiment was 10 
seconds long with each time step being 0.1 seconds, this would 
result in the experiment containing 100 observations (rows). A 
window size of 1 second (10 rows per window) running over 
this experiment would generate 99 datapoints each 1 second 
long (10 rows). Therefore, this allowed an increase in the total 
number of data points which could be used to train the model. 
The subsequent output for the data point would be a binary 
variable indicating whether the driver took over the automated 
vehicle within that time window. 

The window size was an important parameter as it controls 
the number of data points generated. A larger window size 
ended up generating a lower number of datapoints. The length 
of the window also controlled the amount of information 
available to the algorithm to make its prediction. Finally, the 
data generated when the driver takes over the AVs can only be 
a small portion of the window corresponding to the time when 
the vehicle is being driven in the manual mode. These data 
points were recorded as takeover events and for longer 
windows, influencing the learning of DL algorithms. Therefore, 
cross validation was employed to optimize the window size. 
 
Model Development 

The SV movement data combined with the right of way and 
signal light features represents a matrix where each column is a 
feature, and each row is the record of all these features at time 
intervals of 0.1 seconds. To train the algorithm over this data, a 
2D Convolution Network was deployed whereas to train over 
the surrounding vehicle/pedestrian distance/velocity matrices, a 
3D Convolution Network was deployed because of its ability to 
handle video data for each of the four types of data. Therefore, 
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there are five distinct CNN blocks in the model. These blocks 
simplify their respective multidimensional input into a single 
dimensional output which then combined with the one-
dimensional driving style data was further processed with feed 
forward neural network.  

To support window sizes of varying lengths it was decided 
to use four convolutional layers and two max-pool layers for 
each block of CNN. The convolution and max-pool layers 
transform the output into smaller matrices of predefined sizes. 
A batch normalization layer was added to the model as it was 
observed that it improved the performance. An attention layer 
was also appended to the model and once the model is trained, 
each node of the attention layer gets a score, and these scores 
can provide information about the importance of each input in 
predicting the output. Attention here are the nodes between 
input and output layers which add weights to the input. Figure 
1 displays the five CNN blocks and the driving style vector in a 
network to train the model. 

Four baseline machine learning models (Table 3) were also 
developed to compare and justify the development of CNN 
algorithm. They were trained on the dataset without considering 
the window size and using the same features as the CNN model. 
They use the 2D form of data where each point of the time-
series was treated as a row of data and used to train these 
models. Each algorithm was trained to optimization by cross 
validating the different parameters associated with each of 
them. It was observed that logistic regression optimizes at 220 
iterations and support vector machine gives the highest 
classification accuracy using rbf as the kernel function. A 
comparison of these models with the CNN model is discussed 
in the next section. 
 
Model Training and Testing 

The window size for cross validation was varied between 1 
and 10 seconds with increments of 1 second each. Therefore, 
for the data obtained from each of the ten windows, separate 
instances of the model were trained using 5-fold cross 
validation. Each instance was trained for 100 epochs with each 
training batch containing 50 data points. To efficiently train the 
algorithm two loss functions were used, one was sparse 
categorical cross entropy loss function, and the other was 
contrastive loss function (Jianhao et al, 2019). Using the second 
function required breaking up the data into two parts as 
explained in Khosla et al. (2020). To update the weights of the 
model, Adam optimizer was used with a learning rate which 
was varied between 0.000001 and 0.00001 and was determined 
to be optimum at 0.00008. Hence, we trained 20 CNN models 
from T10 to T100 for both the loss functions (Table 2). 
 

RESULTS 
 
Model Performance Comparison 

The performance of all the trained models were measured 
using the four metrics of a classification algorithm based on the 
confusion matrix of the test data. Specificity evaluates the 

model’s ability to predict true negatives while sensitivity 
evaluates model’s ability to predict the true positives. Precision 
is the ratio of true positives to the total predicted positives and 
F1-Score is the harmonic mean of precision and sensitivity. 
Since we used two loss functions, two models for each were 
trained and Table 2 summarizes the performance of each 
model. 
Table 2. Comparison of model performances 

Model Specificity Sensitivity Precision F1 Score 
T10-C 0.989 0.988 0.969 0.978 
T10-NC 0.994 0.944 0.925 0.934 
T20-C 0.992 0.987 0.977 0.982 
T20-NC 0.970 0.962 0.914 0.937 
T30-C 0.992 0.995 0.976 0.986 
T30-NC 0.981 0.817 0.882 0.848 
T40-C 0.994 0.996 0.982 0.989 
T40-NC 0.982 0.973 0.946 0.959 
T50-C 0.862 1.000 0.707 0.828 
T50-NC 0.858 1.000 0.701 0.824 
T60-C 0.882 1.000 0.738 0.849 
T60-NC 0.878 1.000 0.732 0.845 
T70-C 0.890 1.000 0.753 0.859 
T70-NC 0.900 1.000 0.769 0.869 
T80-C 0.996 0.990 0.988 0.989 
T80-NC 0.993 1.000 0.980 0.990 
T90-C 0.921 0.960 0.960 0.960 
T90-NC 0.904 0.896 0.895 0.895 
T100-C 0.930 0.998 0.827 0.905 
T100-NC 0.918 0.998 0.802 0.889 

Note. C denotes training with contrastive loss function; NC denotes 
training with other loss function; T10 denotes model with a time 
window of 1 seconds with the time step of 0.1 second. 
 

While the sparse categorical loss function tries to find a 
hyperplane to separate the two classes, the contrastive loss 
function tries to increase the contrast in the classes by 
increasing the distance between them. The benefits of the latter 
are more pronounced for models with smaller time windows. 
The results manifest that the three models (i.e., T80-NC, T80-
C and T40-C) performed better since their performance is 
consistent across all four metrics. The T40-C model was 
identified as the optimal model among the three best models, 
with its training time being the lowest followed by T80-NC and 
T80-C. Therefore, only T40-C was used for further analysis. 

A comparative analysis of the T40-C CNN model with 
other baseline machine learning algorithms (without 
incorporating the window size feature) identifies the T40-C 
model as an efficient predictor of the takeover intention of the 
driver and justifies developing a deep learning algorithm. Table 
3 compares the classification metrics of these models. 
 
Table 3. Comparison of CNN model to Baseline ML models 

Model Specificity Sensitivity Precision F1 
Score 

CNN (T40-C) 0.994 0.996 0.982 0.989 
Logistic Regression 0.853 0.821 0.841 0.831 
Random Forest 0.960 0.998 0.959 0.978 
SVM 0.951 0.595 0.920 0.723 
Decision Tree 0.974 0.980 0.973 0.977 

 
DISCUSSION 

This literature talks about the process of developing a robust 
framework with a multiple-input Convolutional Neural 
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Network (CNN) model to predict a driver’s takeover intention 
in fully AVs with drivers’ driving style, the movement data of 
AVs, and four matrices of movement data of surrounding 
vehicles and pedestrians. It is one of the first DL models that 
could predict active takeover intention initiated by human 
drivers in AVs. The developed CNN model was able to learn 
the features of time series data to predict the takeover action in 
different time windows. Since the larger time windows can 
anticipate a longer future in the time series scenario, multiple 
window sizes were used to ensure the appropriate configuration 
of the CNN model. Several other baseline models were also 
trained to justify the need to build a highly complex CNN 
model. The T40-C model built using a contrastive loss function 
with a window size of 4 seconds was identified as the best CNN 
model with a prediction accuracy of 98.2%, a F1-Score of 
0.989, and a specificity of 0.994 all of which are the highest in 
comparison to the performance of baseline models. Such high 
accuracy can be attributed to the fact that most takeovers occur 
in hazard scenarios where the features are significantly different 
from the other scenarios. 

The built CNN model finds its application in improving the 
driving algorithms of the AVs in real time by matching them 
with the driving style of drivers. It can use the information 
captured in the event of an active takeover by the driver and 
adjust the driving algorithm of the AV to reduce the probability 
of takeover by the driver if similar circumstances arise again. 
This combination manifests a self-learning algorithm which 
will overtime improve the trust of drivers in AVs. 
 
Effect of Window Size 

The window size controlled the size of each data point 
which in turn affected how much information was given to the 
model to make an individual prediction. Moreover, processing 
data from a longer window would also require additional time 
thereby limiting the usefulness of the prediction. Therefore, the 
most effective window size would be a balance between model 
performance and the time required to make the prediction. 
However, in the current study, models obtained from window 
sizes of 4 and 8 seconds had very similar performance despite 
the later containing almost twice the amount of data. This 
suggests that the loss of trust in the AV is not dependent on the 
information far out in the past. Moreover, the drop in F1 score 
is not gradual. It has two peaks, at windows of lengths 4 and 8 
seconds. It is not clear why this behavior is exhibited and would 
require further analysis. 
 
Limitation and Future Work 

Although the current work highlights the importance of 
understanding the driving style of the drivers to instill trust in 
AVs, there are certain limitations that need to be addressed. The 
data being used for the study is derived from a driving simulator 
study. The model needs to be validated in the future with 
naturalistic driver data in AV. Secondly, the prediction of 
whether a takeover will take place or not is of limited use in the 
real world. A more actionable prediction would be the 
probability with which a takeover will happen in each time 

window. This would allow researchers to focus on instances 
where there is a higher probability of loss of trust. 

In conclusion, an attention-based CNN model was built to 
study the take-over behavior of drivers in a simulated 
automated vehicle. Data on the vehicle movement, driving style 
behavior and surrounding environment was used along with 
some feature engineering to develop a convolution neural 
network model. The task of this model was to predict whether 
a takeover by the driver happened within a time frame. The time 
window was varied to obtain the optimal window for which the 
prediction performance was maximum. Four machine learning 
models were also trained to compare the performance with the 
attention-based CNN model as baselines. It was observed that 
the CNN model showed a better performance in predicting 
driver takeover intentions than all baseline models. 
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