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ABSTRACT 

Largely due to superior properties compared to traditional materials, the use of 
polymer matrix composites (PMC) has been expanding in several industries such as 
aerospace, transportation, defense, and marine. However, the anisotropy and non-
homogeneity of these structures contribute to the difficulty in evaluating structural 
integrity; damage sites can occur at multiple locations and length scales and are hard to 
track over time. This can lead to unpredictable and expensive failure of a safety-critical 
structure, thus creating a need for non-destructive evaluation (NDE) techniques which 
can detect and quantify small-scale damage sites and track their progression. Our 
research group has improved upon classical microwave techniques to address these 
needs; utilizing a custom device to move a sample within a resonant cavity and create a 
spatial map of relative permittivity. We capitalize on the inevitable presence of moisture 
within the polymer network to detect damage. The differing migration inclinations of 
absorbed water molecules in a pristine versus a damaged composite alters the respective 
concentrations of the two chemical states of moisture. The greater concentration of free 
water molecules residing in the damage sites exhibit highly different relative 
permittivity when compared to the higher ratio of polymer-bound water molecules in 
the undamaged areas. Currently, the technique has shown the ability to detect impact 
damage across a range of damage levels and gravimetric moisture contents but is not 
able to specifically quantify damage extent with regards to impact energy level.  

The applicability of machine learning (ML) to composite materials is 
substantial, with uses in areas like manufacturing and design, prediction of structural 
properties, and damage detection. Using traditional NDE techniques in conjunction with 
supervised or unsupervised ML has been shown to improve the accuracy, reliability, or 
efficiency of the existing methods. In this work, we explore the use of a combined 
unsupervised/supervised ML approach to determine a damage boundary and 
quantification of single-impact specimens. Dry composite specimens were damaged via 
drop tower to induce one central impact site of 0, 2, or 3 Joules. After moisture exposure, 
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each specimen underwent dielectric mapping, and spatial permittivity maps were 
created at a variety of gravimetric moisture contents. An unsupervised K-means 
clustering algorithm was applied to the dielectric data to segment the levels of damage 
and define a damage boundary. Subsequently, supervised learning was used to quantify 
damage using features including but not limited to thickness, moisture content, 
permittivity values of each cluster, and average distance between points in each cluster. 
A regression model was trained on several samples with impact energy as the predicted 
variable. Evaluation was then performed based on prediction accuracy for samples in 
which the impact energies are not known to the model. 
 

 
INTRODUCTION 
 
 The global composites market was estimated at 89 billion USD in 2019 and 
continues to grow rapidly with a projected market size of 164 billion USD by 2027 [1]. 
This is primarily driven by the demand for lightweight materials in a variety of 
industries, such as aerospace, defense, marine and oil, renewable energy, and 
automotive [2]–[4]. Polymer matrix composites (PMC) specifically offer a multitude of 
advantages over traditional materials, like metals. This includes a high strength-to-
weight ratio, excellent dielectric properties, improved corrosion resistance, and the 
ability to tailor laminate design to fit desired mechanical properties. However, this 
varying degree of anisotropy can lead to complex damage mechanisms when structures 
are subjected to stressors such as mechanical loading or environmental events [2], [5]. 
These occurrences cause the formation of nano-scale damage sites throughout the 
structure, involving rupture mechanisms like matrix cracking and interfacial debonding 
as the damage grows. The accumulation of these sites can ultimately end in catastrophic 
failure of a part, especially due to the non-visible nature of damage [5], [6].  
 Due to this, reliable non-destructive evaluation (NDE) techniques are critical in 
failure prevention, particularly as the use of PMCs becomes more widespread. Popular 
methods used in industry currently include tap testing, ultrasound, micro-CT, and 
thermography, among others [7], [8]. These techniques can detect damage, but generally 
have difficulty with detection of early-stage or non-visible damage. In pursuit of a 
technique which can detect and quantify hidden, early-stage damage, our lab has 
developed a microwave technique that capitalizes on atomistic interactions between 
water molecules and the matrix in a PMC [9]–[12]. Within a polymer matrix, water 
exists in two states: ‘bound’ to the network or ‘free’ of external interactions. Under an 
applied electromagnetic field, bound water cannot rotate, while free water rotates 
unimpeded, leading to highly different dielectric properties [13]. Bound water has a 
relative permittivity of about 3, while free water records a relative permittivity closer to 
80. The preferential migration of free water to microcracks and voids within the matrix 
allows the use of moisture as an “imaging agent” to map the damage within a structure. 
The free water locally elevates the permittivity signature at the damage sites, meaning 
that a contour plot of permittivity values can be used to identify damage location. We 
have demonstrated that our NDE technique is highly sensitive to small-scale damage at 
low levels of moisture [14]–[16]. The technique can reliably detect and locate damage 
due to impact but has not yet shown the ability to quantify the extent of damage. This is 
critical to the evaluation process; the information can be used to determine whether a 
part repair or replacement may be required.   



 

 Machine learning algorithms have accelerated the composite NDE and 
structural health monitoring (SHM) fields by enabling damage detection, localization, 
classification, quantification, and prediction of remaining part life based on damage 
features. Two basic approaches of ML include supervised learning and unsupervised 
learning. The supervised learning technique introduces a labeled dataset to an algorithm 
for training, and the algorithm internally adjusts parameters to fit the training dataset. It 
can then be used to classify data into categories (classification) or predict a numerical 
outcome (regression) [17]. Unsupervised learning uses algorithms to analyze an 
unlabeled dataset; these models are typically used for clustering, pattern recognition, or 
dimensionality reduction [18]. In most cases of ML for NDE applications, supervised 
learning has been used due to the necessity to identify the characteristics at a damaged 
or undamaged point within a sample [17]. However, we have found that for detection 
and localization of impact damage in a polymer composite, an unsupervised K-means 
clustering algorithm used on the raw data collected from our developed dielectric 
method has performed well. While a promising improvement to the dielectric NDE 
method, this algorithm alone cannot provide information about the extent of damage. 
To address this, we propose utilizing a supervised algorithm on the clustered data to 
predict the energy level of a single impact event.  
 The use of supervised learning algorithms for damage classification or 
prediction has been prevalent in literature. Amali and Hughes [19] detail work in which 
they use a computer program to detect changes in acoustic response during tap testing. 
A 3-layer feed-forward neural network was to classify the state of a sample as damaged 
or undamaged; the algorithm correctly identified damage state for seven of eight inputs. 
Farooq et. al used support vector machines (SVM) and artificial neural networks (ANN) 
to detect and identify damage in smart structures [20]. Strain data collected via finite 
element analysis for damaged and healthy laminates was used to train the algorithms as 
classifiers; both algorithms showed were highly accurate in binary classification. 
Dabetwar et. al used lamb wave signals collected by NASA and the features acquired 
from the signals were used to train and test four supervised machine learning algorithms 
[21]. Performance indicators showed that for damage classification, SVM had difficulty 
classifying into three classes, while k-nearest neighbors (KNN), decision tree, and 
random forest performed better. To quantify damage rather than solely classify a 
location as damaged or undamaged, regression models show promise. Datta et. al used 
least square support vector regression (LS-SVR) to localize impact damage and estimate 
severity in carbon fiber reinforced polymer (CFRP) structures [22]. Three models were 
trained based on features from data collected via Fiber Bragg grating sensors; the 
respective models were used to predict (i) impact energy, (ii) x-coordinates of the impact 
location, and (iii) y-coordinates of the impact location. The proposed LS-SVR algorithm 
performed better than four differing algorithms in literature, one of which was another 
LS-SVR proposed by Xu also for damage localization and quantitative assessment [23].  
 The use of machine learning to improve NDE techniques for damage detection, 
localization, and assessment in composites is well documented. In this work, we have 
applied a support vector regression (SVR) algorithm to dielectric data that has first been 
processed using an unsupervised k-means clustering algorithm.  
 
 
 
 
 



 

EXPERIMENTAL DATA COLLECTION 
 
Specimen Preparation 
 
 Test samples were created using a prepreg consisting of a Hexcel F161 epoxy 
resin and a crowfoot weave glass fabric, Style 120. Twenty-two plies of prepreg with 
dimensions of 305 x 178 mm were laid up and cured in a hot press at 772 kPa. The plies 
were heated under pressure at a steady rate of 10°C/minute until they reached 180°C 
and maintained for two hours under these conditions. Afterwards, it was cooled to room 
temperature at an approximate rate of 2°C/minute. Test specimens were cut from the 
larger laminate using a diamond saw to size 100 x 55 mm. Laminate properties were 
obtained via resin burn-off in accordance with ASTM D3171 [24]. Smaller specimens 
were placed in a high-temperature furnace maintained at 800°C until the entirety of the 
matrix was removed. Estimated fiber, matrix, and void contents obtained via weights 
pre and post burn-off are given in Table 1.   
 

TABLE I. EPOXY/GLASS LAMINATE PROPERTIES. 

Property Mean (%) Standard Deviation (%) 
Fiber Volume Fraction 51.36 0.72 

Matrix Volume Fraction 43.32 0.63 
Void Volume Fraction 5.32 0.58 

 
 The test specimens were dried in a vacuum oven at 65°C until a dry stable 
weight was achieved in accordance with ASTM D5229 [25]. Once dry, each specimen 
was subjected to a low-velocity, out-of-plane impact event via drop tower. A 
hemispherical striker tip of 9 mm radius was attached to a crosshead and dropped at the 
appropriate height to induce barely visible damage at the approximate center of each 
sample. Four specimens were impacted at an energy of 2 Joules and another four at 3 
Joules, while three specimens remained unimpacted as the representative control group 
of 0 Joule damage. The amount of induced damage was controlled by adjusting the drop 
height of the crosshead.  
 
Moisture Contamination 
  
 After specimen drying and impact, weight data was recorded prior to beginning 
moisture uptake. The samples were then immersed in a deionized water bath to 

Figure 1. Images of front (top) and back (bottom) of 
samples at 0, 2, and 3J damage. 



 

accelerate moisture absorption. The bath was maintained at 25°C. Specimen weights 
were recorded periodically using a Mettler-Toledo high-precision analytical balance, 
and moisture content is obtained by referencing the previously recorded dry weight.  
 
Dielectric Data Acquisition 
 
 Dielectric data for each sample was collected at several moisture levels between 
0.05 and 0.6% gravimetric moisture content. These are acquired using a split-post 
dielectric resonator (SPDR) connected to a vector network analyzer (VNA). This 
enables the measurement of bulk relative permittivity and tracking of small changes on 
the order of 10-3 with a high accuracy of 0.3% uncertainty [26]. Before taking 
measurements, the system was calibrated via adjustment of the scattering parameters 
S11, S22, and S21, which represent the magnitude of the reflected signal at port 1, port 
2, and the transmitted signal from port 1 to port 2, respectively. Prior to specimen 
insertion into the cavity, the resonant frequency of the empty resonator is recorded. The 
shift in frequency is then recorded upon sample insertion. These values along with 
sample thickness, are used to calculate the real part of relative permittivity. This formula 
is shown below in Eq. 1 [26].  
 

𝜀′௥ = 1 +  
𝑓଴ −  𝑓௦

ℎ 𝑓଴ 𝐾ఌ(𝜀ᇱ
௥ , ℎ)

 (1) 

where 
   𝑓଴ is resonant frequency of empty SPDR 

𝑓௦ is resonant frequency with the dielectric specimen inserted 
ℎ is sample thickness 

𝐾ఌ is a function of 𝜀′௥ and ℎ, documented in a table unique to each SPDR and 
provided by the manufacturer  
 

 
Spatial relative permittivity maps are created using a novel mapping device developed 
by our lab. The device primarily consists of NEMA-17 stepper motors, linear screw 
actuators, and A4988 motor drivers controlled by an Arduino MEGA 2560 board 
coupled with a MATLAB script. The specimen is held within the cavity using a 3D-
printed holder coupled with a spring. Based on inputs of x and y step sizes, the motors 
move a specified distance, subsequently moving the specimen within the cavity. The 
VNA is then triggered, and data is stored in an excel sheet. This process is repeated until 
dielectric measurements have been completed to make a spatial map of resolution based 
on given step size. An image of the device with a specimen inserted is shown in Figure 
2.  



 

 
 
MACHINE LEARNING ALGORITHMS  
 
Unsupervised K-means Clustering Algorithm for Damage Location 
 
 To detect damage and determine location within the sample, an unsupervised k-
means clustering algorithm was applied to the raw data collected from the dielectric 
scans at each moisture content. The k-means algorithm is capable of detecting patterns 
in unlabeled data and grouping them into heterogeneous sets, called clusters. K-means 
clustering is an exclusive clustering algorithm, meaning that data points can only belong 
to one cluster. To determine which data points should belong to which cluster, the 
algorithm runs as follows: an original center is defined for each cluster “k” decided a-
priori. Each point is assigned to the nearest cluster center. These centers are then 
recalculated iteratively until the center points are unchanged with continuing iterations. 
Simultaneously, the algorithm aims to minimize an error function defined as the 
distance between data points and their assigned cluster centers [27], [28]. A challenge 
in this approach is the requirement to define the number of clusters “k” prior to 
performing clustering. There are two primary methods to determine the optimal number 
of clusters to segment the data: the elbow method and the silhouette method. In this 
case, we have used the elbow method. This plots the cluster inertia against the number 
of clusters used to group the data. Inertia is the sum of squared distance from each data 
point to its assigned cluster center. At a higher number of clusters, inertia will decrease 
because points are inherently closer to a cluster center but increasing the number of 
clusters can lead to overfitting the data. Thus, the number of clusters at the “elbow” of 
the curve, or inflection point, is considered to be the optimal number of clusters [29].  
 During collection, the dielectric data is stored as an array of three values: relative 
permittivity, loss tangent, and bandwidth. For each scan, a dry baseline scan of the 
equivalent sample was subtracted from the data to eliminate variation due to thickness 
effects. The data was scaled in Python using a ‘MinMaxScaler’ available in the 
sklearn.preprocessing module to standardize the vectors to values between 0 and 1.  
 
 

Figure 2. Image of damage mapping device with specimen inserted. 



 

For each sample, the elbow method was applied to determine optimal number of 
clusters, and the k-means algorithm was applied. Once the clusters were obtained, the 
data could be replotted respective to their location on the sample. Examples of the 
resulting damage before and after clustering is applied is shown in Figure 3. The z-
values for the raw data map are subtracted relative permittivity values, while the z-
values for the clustered map are a scaled ‘damage indicator’.   
 
Supervised Regression Algorithm for Damage Quantification 
 
 Support vector machines (SVM) is a highly utilized supervised machine 
learning algorithm originally developed for binary classification problems. The main 
idea of SVM is that it creates a classifier to best separate linear or non-linear training 
data into classes based on their features. SVM is particularly useful because it can handle 
data of higher dimensions. With data of one, two, or three dimensions, the classifier is 
a point, line, or plane, respectively. When the data is in four or more dimensions, the 
support vector classifier is a hyperplane. SVM constructs one or more hyperplanes in a 
high dimensional space; for classification, the planes are determined such that they have 
the largest distance between training data points of any class. The larger the margin 
between classes, the lower the model error [30].  
 Support vector regression (SVR) was developed as an extension of SVM and is 
useful to analyze the relationship between a dependent variable and one or more 
predictor variables, otherwise known as features. Rather than outputting a classification 
label, this algorithm can provide a quantitative function estimation based on the derived 
relationship between variables. For regression, the determination of optimal 
hyperplanes differs slightly from classification. Rather than determine hyperplanes 
which separate training samples, an ε-insensitive loss function is used to determine a 
hyperplane where the predicted values of all training data will deviate at most ε from 
their actual values [31].  
 Kernel functions enable the support vector regression and classification 
algorithms to systematically find hyperplanes in higher dimensions. These functions 
transform the input data into a higher-dimensional space known as a “kernel space” 
[31]. Polynomial and radial basis function (RBF) kernels are common to perform SVR 
on non-linear data. The RBF kernel is highly effective when the relationships between 
features and response variables are not well known. This kernel functions similarly to 
the supervised classification algorithm k-nearest neighbors, which classifies test data 
based on its distance from specified training samples [32]. Based on user-inputted 
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Figure 3. Spatial relative permittivity plot before clustering (left) and after clustering (right). 

 



 

parameters, the RBF kernel behaves as a weighted nearest neighbor model; closer 
observations have more influence over how new observations are predicted. Because of 
the success in using unsupervised k-means clustering to qualitatively analyze the data, 
we decided to use the RBF kernel (Eq. 2) for the SVR algorithm. The function is used 
to determine how much influence each observation in the training dataset has on 

predicting new observations [33]. RBF kernel parameter is 𝜎, and ห|𝑥 − 𝑥௜|ห
ଶ
 is the 

Euclidean distance between two observations. 
 

 𝐾(𝑥, 𝑥௜) = 𝑒𝑥𝑝 (−
ଵ

ఙ
∗ ห|𝑥 − 𝑥௜|ห

ଶ
) (2) 

  
 Relevant model parameters for implementation of SVR with the RBF kernel in 
Python are regularization parameter C, the error sensitivity parameter ε, and an RBF 
parameter γ, which is inversely proportional to the RBF parameter in Eq. 2.  
 
FEATURE SELECTION 
  
 For a supervised machine learning algorithm to be effective, the selection of 
features is highly important. Based on previous experiments, we have observed that 
thickness of the sample and moisture content can affect the dielectric properties. Thus, 
those were the first two features chosen. To best capture the qualitative features of the 
clustered map, quantitative features were also calculated from the clustered data. For 
each cluster, features consisted of relative permittivity, maximum distance between two 
points, average distance between points, and total number of data points in the cluster. 
The loss tangent and bandwidth values for the clusters with most and least damage were 
also included. Thus, a sample consisting of seven clusters had 34 unique features. 
Because of the highly differing feature values, the ‘MinMaxScaler’ function (as 
described in the k-means algorithm section) was used to scale the features between 0 
and 1 prior to applying the regression model.  
 
 
RESULTS AND DISCUSSION 
 
 The SVR-RBF algorithm was implemented using various scikit learn modules 
in Python. Feature vectors for 160 unique sample observations were split into training 
and testing sets of 60/40 percent of the overall data respectively. Relevant model 
parameters C, ε, and γ were chosen via the GridSearchCV function available in the 
sklearn.model_selection module. This completed an exhaustive search over specified 
parameter values and evaluated the model efficiency for every combination. The chosen 
parameter values are found in Table 2. The optimal RBF parameter was determined to 
be the default function value, which is 1 divided by the number of features per sample.  
  

TABLE II: MODEL PARAMETER VALUES. 

Parameter Value 
C 100 
ε 0.05 
γ 0.029 

 



 

 Monte Carlo cross validation was used to ensure reasonable model repeatability; 
10 iterations of random sampling were completed. The model was evaluated using 
metrics R2 score and mean squared error (MSE). The R2 score is representative of the 
proportion of dependent variable variance that is influenced by the sample features. The 
best possible score is 1.0, so a value close to that indicates a good model fit. It also 
indicates how well new observations would be predicted using the model. Mean square 
error is a measure of the error between the actual and predicted values of the dependent 
variable; a value of 0 would be perfect. The table below shows the metrics for each 
iteration and the average score for each metric.  
 

TABLE III. MODEL METRICS FOR EACH ALGORITHM ITERATION. 

Iteration R2 score MSE 
1 0.8906 0.1043 
2 0.8509 0.1604 
3 0.8515 0.1604 
4 0.9381 0.0641 
5 0.8381 0.1655 
6 0.8645 0.1144 
7 0.8410 0.1478 
8 0.8660 0.1621 
9 0.8964 0.1262 
10 0.9124 0.0889 

AVERAGE 0.8750 0.1294 
 
 The model efficacy can be visualized by plotting several of the predicted impact 
energy values as well as the actual values. Fig 4. depicts a few of the test data 
observations from iteration one. At each value on the x-axis, there is an orange point for 
the predicted impact energy of the sample and a blue point for the actual impact energy. 
It is noted that for sample 8, the actual energy and the predicted energy are so close in 
value that the actual energy point is covered by the predicted energy point. 
 

 It is clear from both the visual representation of the model predictions and the 
regression metrics that the SVR-RBF does a reasonably good job of impact energy 

Figure 4. Scatterplot of test observations with model predicted value and actual response value. 



 

prediction, with some room for improvement. The average R2 value is 0.875, which 
indicates a fairly good model fit. This is promising for the use of regression to 
supplement the dielectric technique and enable damage assessment and prediction of a 
structure with non-visible damage. However, it is prudent to consider potential 
limitations of the predictions. Firstly, both metrics are highly dependent on the dataset. 
Considering the dataset only included data from one experiment, the model may be 
affected greatly when data from other experiments, even of the same material system, 
is introduced. Another consideration is that the number of tested values of impact energy 
are low. Introducing observations with impact energies of 4, 5, 6 J (etc.) would provide 
more insight into how well the model can differentiate between marginally differing 
damage profiles. From the knowledge we have gained through previous experiments, 
we know the 0 J (undamaged) scans are significantly different from any damaged scans. 
Thus, this model is likely improved by the inclusion of the 0 J observations. To test this 
theory, the model was trained and tested on the dataset without any of the 0 J 
observations. The R2 score decreased to about 0.7, supporting this idea. To gain a better 
understanding of the efficacy of the SVR algorithm for damage prediction, sample 
observations of more variation will need to be added to the dataset.  
 Another shortcoming of the model is found in the required features. The data 
used for k-means clustering has been normalized using “dry subtraction”, meaning that 
a dry baseline scan of the equivalent sample was subtracted prior to ML. In previous 
experiments, we have found this to be a requirement to obtain meaningful results. In 
practice, obtaining a dry scan of a structure would be extremely difficult, if not 
impossible. Hence, in future iterations of this model, both the dry subtracted data and 
the raw data will be tested to try and eliminate this necessity. Additionally, the inclusion 
of moisture content as a feature is not ideal, as it is a difficult attribute to obtain for an 
in-service structure. Moving forward, models will be trained and tested without 
gravimetric moisture content as a feature to improve the practicality of the technique.  
 
 
CONCLUSION 
 
 A combined supervised/unsupervised machine learning approach was used to 
estimate the energy associated with impact of single-impact composite specimens. 
Woven fiberglass samples were impacted and subjected to moisture contamination via 
immersion in a water bath. Dielectric data was collected at varying intervals of moisture 
increase using a custom damage mapping device. The data from each scan was clustered 
using an unsupervised k-means clustering algorithm. Relevant features were extracted 
from the clustered data, including but not limited to permittivity of each cluster, average 
distance of points within each cluster, and total number of points in each cluster. These, 
along with other sample features, were associated with individual observations and 
these observations were used to train a supervised support vector regression model using 
a radial basis function kernel to predict impact energy associated with each sample. The 
model was evaluated using metrics of R2 score and mean squared error, which had 
average values of 0.875 and 0.1294, respectively. These values indicated good model 
fit and response variable prediction.  
 Potential model pitfalls were discussed. To address these, future work will test 
the model performance (i) using clustered data without prior dry subtraction, (ii) 
removing moisture content as a feature, and (iii) adding observations with more 



 

variation in the response variable. To understand the effect of clustering on the model, 
SVR will also be used directly on the raw data rather than computing features based on 
clustering. Proceeding with the understanding that the model metrics are affected by 
dataset size, we are cautiously optimistic. Supplementing the dielectric technique with 
the ability to estimate damage extent of an unknown scan is exceedingly valuable, 
especially for use on safety-critical structures. Ultimately, the aim is to create a model 
trained on several composite material systems at many more damage levels, thus 
creating a comprehensive model for use on any relevant composite structure.  
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