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This paper presents a framework based on either iterative simulation or iterative experimentation for constructing an
optimal, open-loop maneuver to regulate the aerodynamic force on a wing in the presence of a known flow disturbance.
The authors refer to the method as iterative maneuver optimization and apply it in this paper to regulate lift on a pitching
wing during a transverse gust encounter. A candidate maneuver is created by performing an optimal control calculation
on a surrogate model of the wing—gust interaction. Execution of the proposed maneuver in a high-fidelity simulation or
experiment provides an error signal based on the difference between the force predicted by the surrogate model and the
measured force. The error signal provides an update to the reference signal used by the surrogate model for tracking. A
new candidate maneuver is calculated such that the surrogate model tracks the reference force signal, and the process
repeats until the maneuver adequately regulates the force. The framework for iterative maneuver optimization is tested
on a discrete vortex model as well as in experiments in a water towing tank. Experimental results show that the proposed
framework generates a maneuver that reduces the magnitude of lift overshoot by 92 % for a trapezoidal gust with peak
velocity equal to approximately 0.7 times the freestream flow speed.

Nomenclature

= pitch-axis location in semichords

semichord length, c/2

i = fitting parameter in the modified Goman—

Khrabrov model

lift coefficient

lift coefficient predicted by the modified

Goman-Khrabrov model

= reference value for lift coefficient

lift coefficient measured in experiment or

high-fidelity simulation

= chord length

= dynamics function in optimal-control algo-

rithm

= gustratio, V. /V

= Hamiltonian in optimal-control theory

= plunge rate

integral terms in optimal control algorithm

= performance measure for optimal control

= performance measure augmented with termi-
nal constraints

= modified performance measure in the itera-

tive maneuver optimization method

= proportional feedback control gain

= Lagrangian function in optimal-control theory
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critical value of leading-edge suction param-
eter

functions defining bounding curves in Cp
versus angle-of-attack plane

number of specified states at terminal time of
optimal-control problem

internal variable in the Goman—Khrabrov lift
model

empirical function in the Goman—Khrabrov
lift model

q value corresponding to C; f

matrix of influence costates for terminal con-
straint sensitivity in optimal-control algo-
rithm

surge rate

convective time, Ut/c

start time and terminal time of optimal-
control problem

control input signal

initial guess of control input signal in
optimal-control algorithm

components of flow-relative velocity
external flow components in the inertial
reference frame

constant, characteristic flow speed
maximum velocity of gust

speed of freestream flow

gust width

state vector

reference state vector

coordinates of pitch axis in body frame of wing
output of state-space model

angle of attack, angle-of-attack rate
effective angle of attack, effective angle-of-
attack rate

angle-of-attack offset of fully separated lin-
ear fit

geometric angle of attack, pitch rate, pitch
acceleration

reference values for geometric angle of
attack and pitch rate
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& = angular coordinate of evaluation location on
mean camber line

A = costate vector

v = Lagrange multiplier vector

= = positive-definite weight matrix in optimal
control algorithm

Ty, 7T = time constants in Goman—Khrabrov lift
model

178 = terminal constraint function

I. Introduction

IND gusts and other unsteady flowfields can create significant

aerodynamic disturbances for small aircraft such as micro-air
vehicles, which are vulnerable to large-amplitude gusts due to their
relatively small size and slow speed [1]. Modeling large-amplitude
gust encounters is challenging, because massive flow separation and
shed vorticity create nonlinear effects in the force response of the
vehicle [2]. Gust interactions become even more complex with the
inclusion of wing motion during the encounter. To better understand
this threat to small aircraft, aerodynamic modeling [2—7] and control
[8-11]in unsteady flowfields at low Reynolds numbers have become
very active areas of research.

Researchers have taken various approaches to model large-
amplitude gust encounters. Some works [2,3,7,12,13] have examined
classical thin-airfoil models based on an attached-flow assumption to
determine the extent of their applicability. Quasi-steady thin-airfoil
theory can model slowly varying airfoil behaviors in pitch, plunge,
and surge [14], and a gust flowfield can be included in the quasi-
steady theory through the use of effective angle of attack [4,15].
Unsteady thin-airfoil theory developed by Wagner, Theodorsen,
Kiissner, and von Kdrman [16-19] can provide linear models of the
wing’s response to the gust that also include acceleration terms and
wake effects. These quasi-steady and unsteady models provide some
predictive power as noted in the findings of high-fidelity numerical
simulations [12,13,20] and experimental studies [2,3]. However,
these findings are limited to the strengths, widths, and shapes of
the gusts examined in these works. Kiissner’s theory deviates signifi-
cantly from experimental and numerical results for large-amplitude
gusts and sharp-edge (e.g., top-hat) gusts [12]. Moushegian et al. [12]
showed in delayed detached eddy simulation (DDES) that the lift
response deviates appreciably from Kiissner’s theory if the gust ratio,
which is the ratio of the maximum gust velocity to the freestream
velocity, exceeds 0.5.

Deviation of the force response from linear theory can be attributed
to the breakdown of the attached-flow assumption and the role of
shed vorticity in the flowfield. Perrotta and Jones [21] and Grubb
etal. [13] showed that linear, thin-airfoil theories fail to closely model
the lift response when flow separation occurs before the wing enters
the gust region. Previous works [2,3,13,20] determined that the
leading-edge vortex (LEV) plays an important role in the force
response of the wing during the gust encounter. LEV formation
and separation also affect the time at which the maximum force
occurs [22]. To capture the role of shed vorticity in the lift response,
discrete vortex models (DVMs) have been used extensively to pro-
duce flowfields that closely agree with higher-fidelity numerical
simulations and experiments for problems such as LEV formation,
dynamic stall, and kinematic motion at high angles of attack [23-25].
Recent research works [7,26-28] have employed DVM methods to
model gust disturbances for the purposes of flow sensing, estimation,
and flow interaction. The current paper uses a DVM to evaluate the
performance of lift-regulating maneuvers.

Mitigation of transient forces in a gust encounter through maneu-
vering is currently being studied from both open-loop (i.e., predeter-
mined) and closed-loop (i.e., calculated based on real-time sensor
measurements) perspectives. To examine how control actuation
influences lift during a gust encounter, Sedky et al. [4] used a
model-based feedback controller with an observer to reduce the
transient lift response for a pitching wing. Closed-loop simulations
were performed to design maneuvers that were executed in open-loop
experiments. The study in [7] deconstructed the force contributions to

lift that occurred using a (model-free) proportional feedback control
in closed-loop DVM simulation of a gust encounter. In open-loop
maneuvers, Andreu-Angulo and Babinsky [6] examined different
pitch profiles for a flat plate encountering a top-hat gust and broke
down the force response into contributions from gust vorticity, wing
motion, and shed vorticity. Both works [4,6] found that vortex
shedding was a key contribution to the lift overshoot experienced
by anonmaneuvering wing and that the added-mass force can be used
to negate most of the lift overshoot through pitching of the wing.
Andreu-Angulo and Babinsky [5] proposed an analytical model
based on theories of Wagner and Kiissner to calculate an ideal pitch
profile for maintaining zero lift during an encounter with a top-hat
gust. Although the approaches differ, each of works [4-6] seeks an
optimal maneuver for force regulation or a controller to generate
these maneuvers.

An optimal maneuver should ideally regulate the aerodynamic
force during the encounter. Optimal maneuvers are important
because they can show how to best achieve rejection of the gust force
through regulation of coherent structure formation, interaction with
coherent structures, and management of the sources of aerodynamic
force contributions (e.g., added-mass and circulatory contributions).
Previous works in [29,30] also studied generation of optimal pitch
maneuvers of a wing. Milano and Gharib [29] employed a genetic
algorithm to evolve a pitch maneuver in experiments in order to
maximize the average lift force produced. They established a con-
nection between maximizing the force on the wing and maximizing
the circulation strength of the LEV. Peng and Milano [30] further
identified a range of key parameters associated with the optimal lift
trajectories through similar experimental measurements. These
works demonstrated how iterated experiments can optimize an aero-
dynamic force objective and be used to study the physical mecha-
nisms involved in force production. Systematic optimization through
iterated experiments has not yet been applied to gust encounters. The
current paper changes the aerodynamic objective from lift maximi-
zation to lift regulation. Additionally, the current paper differs from
these prior works based on the algorithm used to perform the opti-
mization. The genetic algorithm utilized by Milano and Gharib [29]
required approximately 3000 experiments to achieve an optimized
maneuver. The method developed in the current paper utilizes a
model of the wing—gust encounter to guide maneuver updates, which
enables construction of the optimal maneuver in approximately 10 or
fewer experiments. Even though each experiment consists of several
runs of the same maneuver, the proposed method significantly
reduces overall experimental effort.

To guide a maneuver update, this paper examines the calculation of
an optimal maneuver in a prescribed flowfield using an algorithm
from optimal control theory. The algorithm requires a dynamic model
of the wing—gust interaction. A Goman—Khrabrov (GK) model is a
low-order, dynamic model that can predict the unsteady lift force.
Several recent studies [31-33] have used a GK model for control
design. For example, Williams and King [33] developed a closed-
loop controller based on a modified GK model that can alleviate gust
loading during periodic pitching through the use of jet actuators. This
paper uses a modified Goman—Khrabrov (mGK) model that includes
effective angle of attack to incorporate wing kinematics and the
external flow disturbance of the gust. The optimal control formu-
lation integrates a quadratic cost for lift deviations over a fixed-time
interval, subject to the dynamics of the mGK model and terminal
constraints on pitch angle and pitch rate. In preliminary work [34], the
authors applied the proposed optimal control framework to regulate
the lift during encounters with ideal, sine-squared gusts. However,
the optimal maneuver calculated in this manner is only optimal
subject to the accuracy of wing—gust interaction model. Unmodeled
effects cause lift deviations when an optimized control profile is
applied in experiments. Constructing a truly optimal maneuver in a
transverse gust encounter requires optimization over experimen-
tal data.

The objective of this paper is to provide researchers with a tool to
generate optimized maneuvers for further study of flow interactions.
This paper constructs an optimal maneuver for a real flowfield by
iteratively updating the maneuver to account for unmodeled effects



Downloaded by SUNY BUFFALO on February 1, 2023 | http://arc.aiaa.org | DOIL: 10.2514/1.J062404

Article in Advance / XUETAL. 3

that result in regulation errors during experiments. This approach is
an extension of the work of Andreu-Angulo and Babinsky [6], which
constructed a hybrid maneuver by updating a model-proposed
maneuver based on the lift error signal from experiment. This paper
proposes a framework that the authors refer to as iterative maneuver
optimization (IMO). IMO performs an optimal control calculation
over a surrogate model of the system, which is a low-order model that
is inexpensive to evaluate [35]. The mGK model serves as the
surrogate model in the proposed IMO framework, although other
surrogate models are possible. An optimal control calculation gen-
erates a candidate maneuver that regulates the force to a desired
reference value. Then, IMO tests the proposed control signal in an
experiment or a higher-fidelity simulation. The actual force signal is
compared to the predicted force from the surrogate model, and the
error is used to update the reference signal that the surrogate model
tracks, and the process repeats, and lift regulation generally improves
with each iteration. Numerical simulations in this paper suggest that a
proportional output-feedback controller with high feedback gain can
generate the optimal control profile for the mGK model. Since the
proportional output-feedback control is computationally cheaper
than the optimal control method, this paper recommends output-
feedback simulations for optimization of the mGK model at each
iteration.

The proposed IMO method is similar to iterative learning control
(ILC) in the control-system literature. ILC seeks an input to an
unknown or uncertain system that makes the output of the system
nearly identical to a desired output [36]. These methods both use
measurement data to update and refine the control input to improve
the controlled behavior of the uncertain system. However, there are
some differences between IMO and ILC related to the control
profile update. Most ILC architectures apply a learning function
to the error signal or its time rate of change to update the previous
control sequence. In contrast, each iteration of IMO performs an
optimal-control calculation in place of the learning function to
generate a new proposed control signal. Iterative feedback tuning
(IFT) is another iterative method that optimizes a control input
based on experimental data [37]. However, this method tunes the
gains of a controller based on the output error signal, rather than
seeking a prescribed input.

This paper contributes an optimal control framework for minimiz-
ing the lift response during a wing—gust encounter based on a
modified GK model. This paper also contributes an IMO method
that can rapidly optimize a pitch maneuver through repeated experi-
ments. The proposed method applies to transverse gusts but may also
be applicable to other steady-flow disturbances. This method does
not require a highly accurate model to capture the physics of the
flowfield, because good performance can be achieved by refinement
through iteration. These contributions are important because the
framework can make use of an imperfect model to generate optimal

" \
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maneuvers for a real flowfield through iterative experimentation or
high-fidelity simulation.

The outline of this paper is as follows. Section II presents back-
ground information on effective angle of attack and a modified GK
model of a gust encounter. The experimental setup is introduced to
collect training data for the mGK model. Section III formulates the
optimal-control problem for a gust encounter, presents simulation
results for a trapezoidal gust, and compares the optimal control to
proportional output-feedback control. Section IV proposes the IMO
method to construct an optimal pitch maneuver in experiment (or
high-fidelity simulation) and tests the framework in a DVM simu-
lation. Section V presents and analyzes the results of water towing
tank experiments. Section VI concludes the paper and discusses
directions for future investigation.

II. Gust Encounter Modeling

This section develops an empirical model of a wing—gust encoun-
ter based on experimental data collected in a towing tank setup with a
built-in gust generator. This section first introduces the experimental
setup that is used. Next, this section modifies a GK model for a
rapidly pitching wing to incorporate a prescribed gust flowfield. The
resulting mGK model is put in state-space form for the optimal
control framework in Sec. III.

A. Experimental Setup

The GK model requires experimental measurements to fit its
empirical terms. Experiments were carried out in a free-surface water
towing tank at the University of Maryland (UMD). The tank is 7 m
long, 1.5 m wide, and 1 m deep, as shown in Fig. 1a. The tank is
equipped with a four-degree-of-freedom motion-control system,
allowing for surging, pitching, and plunging motions of a wing
model. The freestream is created by towing the wing through the
tank, and a transverse gust is created using a recirculating jet driven
by a variable speed 1.85 HP Hayward centrifugal pump. Details on
the gust design and profile can be found in [38].

The wing model used in the experiments has a NACA 0012
profile with a chord of 0.102 m and a span of 0.254 m, as shown
in Fig. 1b. The wing is isolated from flow disturbances that may be
created by the pitching mechanism or force balance through the use
of a circular, stainless-steel splitter plate. The pitching mechanism
and splitter plate are located in the approximate center of the tow
tank’s cross-stream direction. Although the wing’s aspect ratio is
2.5, the splitter plate creates an effective aspect ratio of 5. On the
opposite end of the wing, the wing tip is free and away from the wall
of the tank. The wing was manufactured using a Formlabs Fuse 1 3D
printer. The wing was then treated using waterproof spray paint to
reduce warping due to water absorption. The wing pitches about its
center of gravity (42% of the chord from the leading edge) and is

Streamwise Translation

Gust Generation System

a) Towing tank at the university of maryland

b) NACA 0012 wing on a pitching mechanism

Fig.1 Experimental apparatus at the University of Maryland water towing tank.
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Fig. 2 a) Steady C; versus « curve for a NACA 0012 finite wing with bounding curves m; and m,. b) Empirical function ¢, versus a and a Gaussian

curve fit.

attached to a six-degree-of-freedom ATI Mini-40 force balance that
measures forces and moments at 1 kHz. The force measurements
were filtered by a zero-lag, low-pass Butterworth filter with a cutoff
frequency of 5 Hz. Each experiment (i.e., iteration of the IMO
method) was repeated five times and force measurements were
ensemble averaged over the five runs. The experiments were con-
ducted at Reynolds number 12,000.

B. Goman-Khrabrov Lift Model

Goman and Khrabrov [39] developed a low-order, empirical mod-
eling approach for unsteady aerodynamic forces and moments with-
out an attached-flow assumption [31,40]. A GK model for lift
consists of an internal variable that represents the degree of flow
attachment, an empirical function for the steady-state values of the
internal variable for varying angles of attack, and first-order dynam-
ics that model the return to steady-state conditions after perturbation.
With two time constants and an empirical steady-state function, a GK
model is capable of fitting a variety of aerodynamic force behaviors.
In addition, the low-order form of the dynamics enables rapid sim-
ulation, which is an important consideration in the optimal-control
framework presented in this paper.

Let g be an internal variable that describes the degree of flow
attachment and let C; be the dimensionless lift coefficient [40]. For a
wing with angle of attack « and pitch rate @, the GK lift model is [41]

719 + q = qo(a — 1) (D

Cp =m(@)g +my(a)(1-q) 2

where ¢o(-) is an empirical function obtained from steady-state
values of ¢ for various angles of attack, and m;(-) and m,(-) are
empirical functions of & that bound the lift curve and its variations in
timein the C; versus a plane. When the angle of attack increases from
low to high, the value of ¢ varies from approximately 1, representing
fully attached flow, to O, representing fully separated flow. Time
constant 7; indicates the time for separated flow to reach steady state,
and time constant 7, relates to the time-rate of change in angle of
attack. Researchers (e.g., see [31,32,41]) commonly choose m; and
m;, to be linear fits of the steady C; versus a curve in the attached and
separated flow regions, respectively. Occasionally, these choices for
my and m, do not enclose the data in a convex region of the plane
because the lift curve deviates from an ideal shape (e.g., see [4]).
Figure 2a shows steady lift data fora NACA 0012 wing that is used in
the experiments of Sec. V. Note that the lift slope fora < 5 degisless
than the slope for 5 < a < 10 deg. This change in slope indicates the
presence of a separation bubble that often occurs for a NACA 0012
wing operating at a low Reynolds number [42]. Also note that the
separated slope in the region a > 25 deg is small, and a linear fit in
this region would lead to an m, line that intersects rather than bounds
the remainder of the lift curve. Given the data in Fig. 2a, this paper

does not use m; and m, to represent fits of the attached and separated
portions of the curve. Instead, m; and m, are only required to enclose
the data in a convex region of the plane. An et al. [43] choose

my(a) = Ci(a—C3) and my(a) = Cr(a—Cy) 3

where C; and C; are the attached and separated lift slopes, C; is the
zero-lift angle, and C,(a — C,) is the C;, value at the smallest angle
when the flow is fully separated. A fitting procedure detailed in the
following discussion determines the constants C;, C,, C3, and C4
concurrently with a fit of the g, function.

Optimal trajectory calculations in Sec. III make use of a ¢
function that is replaced by a Gaussian fit as shown in Fig. 2b. Often,
researchers who use GK models query the g, curve directly and
perform data interpolation. Fitting a Gaussian to the gy(a) curve is a
useful approximation that improves the efficiency for the optimal-
control calculations in Sec. III. A Gaussian fit is justified because the
IMO method of Sec. IV only requires an approximate fit for the GK
model. An optimization procedure can find all the coefficients in the
my, m,, and g, curves that best fit the experimental steady-lift data in
Fig. 2a. The Gaussian fit of the g, curve and the m; and m, lines are
adjusted by the optimization problem

. R (GK) )\
emin 5;@ () = €™ (@)

C¥ (@) = Cy(a=C3)gy" + Cala—C)(1-g)

fi -
Q(()n) (a) = eXP(C—O)

subjectto

@

where qgﬁl) is the Gaussian fit, C(LGK) (a) is the steady GK lift model,

and C (LCXP) (a) is the steady experimental data at discrete angles of
attack a; for k = 1,..., N. This problem can be numerically solved
using existing optimization functions in MATLAB. Figure 2a shows
the results of fitting the steady parameters C;, C,, C3, and C, in a GK
model. Figure 2b shows the result of fitting the C, parameter to
approximate the gq(a) curve with a Gaussian. The remaining param-
eters in a GK model are the time constants 7, and 7, that require fitting
the model to an unsteady dataset. Section II.D performs the dynamic
fit to obtain 7 and 7, parameters for the wing used in the experiments
of this paper.

C. Effective Angle of Attack

Effective angle of attack is a composite quantity that integrates
effects from an external flowfield with effects from kinematic
motions such as pitching, plunging, and surging. Several works
[44-46] have used quantities similar to effective angle of attack in
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construction of state-space models that predict the unsteady lift
response of an actuated wing. For a thin airfoil of semichord b
pitching and plunging in a freestream with speed V,, the classical
quasi-steady effective angle of attack is [14]

h 1 &
aeff—a+V—w+b(§—a)K (%)

where £ is the plunge rate, & is the pitch rate, and a locates the pitch
axis along the chord. In [15], the authors present a more general
effective angle-of-attack expression

1 [r w —u'%
Aoy = ——/ —F——=/(cos 6y - 1)db, (6)

v\
that incorporates the external flow effects by integrating the local
flow velocity along the chord, where V is a characteristic flow speed,
which is often set to the freestream flow speed V, and 6, is a
coordinate that parameterizes the airfoil chord from 6, = 0 at the
leading edge to 6, = = at the trailing edge. Effective-angle-of-attack
expression (5) also contains the camber slope dz/dx so that it is also
applicable for cambered airfoils. In [15], the authors show that, for a
maneuvering symmetric airfoil in uniform flow, the expression of
effective angle of attack (6) properly encompasses the classical quasi-
steady effective angle of attack in Eq. (5). The relative velocity
components at location 6, are

u'(p) = (5 — u,) cos @, — (h—u)sinf, — 0,(z(8p) —z¢) (7)

w'(6y) = (§ — u,)sind, + (h —u;)cosd,

+0, (% (1 = cos 90) —x¢0) 8)

which include the external flow components u, and u,, and surging,
pitching, and plunging terms, s, ég, and A, respectively. Here, 0, is the
geometric angle of attack of the airfoil (i.e., the pitch angle). The
notation for the angle of attack « is replaced in this paper by 0, to
highlight that 6, represents only the orientation angle of the wing; the
local angle of the external flow enters from the (u,, u,) flow compo-
nents in a.s. The coordinates of the pitch-axis center in the airfoil’s
body frame are (x¢, z¢). Note that the derivation of Eqs. (6-8) in [15]
uses a coordinate system in which the body-z direction is positive
downward in agreement with a convention in aircraft flight dynamics.
In subsequent sections, this paper considers a pitching symmetric
airfoil. For this scenario, the effective angle of attack simplifies to

a, jsinH +ég 3 + x
ff — — = > — | —-C
eff vV g v \4 C

cost,

i / " 1.(8y) (cos B, — 1) db, )
0

In the modified GK model, the rate of change of effective angle of
attack can be derived by differentiating Eq. (9) with respect to time,
yielding

Vv Vv

1 TUu. 0, 9 inf, — i, 0 0
+_/ u(6)0, sin 8‘7 tt;(0y) cos & (cosfy—1)dd,  (10)
7 Jo

0 0, (3
Oogr = —ngcosﬂg +2 (ZC +xc)

Note that the surge rate § is constant in this paper, and the pitch
acceleration 0, appears in the equation. The pitch acceleration serves
as the control variable in Sec. III.

D. Modified Goman-Khrabrov Model for Gust Encounters

This section introduces the mGK model used in this paper. The
model incorporates the effective angle of attack to predict the lift
force experienced while maneuvering in a transverse gust encoun-
ter. Previous work [4] presented a modified GK model that allows
forincorporation of a gust by replacing the geometric angle of attack
and the pitch rate in Egs. (1) and (2) by the effective angle of attack
and its rate of change, respectively. Additionally, a term is included
in [4] to model the added-mass effect, which is important for rapid
maneuvers. Added mass describes the inertial resistance of fluid
surrounding the body during acceleration of the body [47]. The
added-mass force required to accelerate this inertia can greatly
influence the lift for a maneuvering wing. Even though a GK model
is an empirical dynamic model that can be fit to force data, it is
shown in [4] that explicitly including a separate term for added mass
in the output equation can improve the model’s fit. Stutz et al. [48]
also noted a deficiency in the GK model due to a lack of an added-
mass term.

The modified GK model used in this paper (hereafter, the mGK
model) is

o . ) -
q= E(—q + qo(@ese (0,. 0,) — 1201 (0,, 0,4, 6,)))

Cp = C1(a(8,.0) — C3)q + Co(ac(0,.0,) — Co)(1 = q)

. b
+C5(9g—%ag) an

Equation (11) incorporates the gust velocity through the effective
angle of attack. The effective angle of attack in Eq. (9) is a function of

0, and é’g, and the time derivative of effective angle of attack (10)is a

function of Gg, 9g, and Hg The explicit ég and ég terms in the C;,
output equation are added-mass terms based on Theodorsen’s expres-
sion for added mass [16]. Instead of using Theodorsen’s analytical
expression, the constant term zb/V is replaced by the empirical
coefficient Cs, which can be trained to improve the model fit for a
maneuvering wing. After the steady fit in Sec. I1.B is complete, the
additional coefficient C5 can be derived simultaneously with time
constants 7; and 7,. In this work, the 7; and 7, parameters are trained
to match the lift coefficient of a periodic pitching wing without the
presence of a gust. The reduced frequency for a gust encounter is
k = mc/(2W), where c is the chord length of the wing and W is the
gust width [7]. The maneuver for training data was set to periodically
pitch at reduced frequency k = 1, which is approximately the
reduced frequency of the gust in this work. The dynamic-fit pro-
cedure for parameters Cs, 7;, and 7, of the mGK model involves
solving the optimization problem

Cs.t1.1p

1 1 o ex
min EZ(C(L p) () — C(LGK)(ak))
k
subject to C;GK) (a) = Ci(a— Ca)q(()ﬁ[) + Cyla—Cy)(1 — q(()flt))
. ab -
refa-ts,

(12)

Similar to the steady fit, this problem can be solved using MAT-
LAB’s optimization functions to find the dynamic fit variables
C5, Tl and 7.

Figures 3a and 3b present the lift coefficients measured from
experiment (black lines) and predicted by the mGK model (red lines)
for sinusoidal pitching between —40 and 40 deg with reduced fre-
quency k = 1. The results show that the trained 7; and 7, values fit
both the phase and amplitude of the lift coefficient well for the
prescribed pitching motion of the wing. The resulting parameter
values were (Cs,7y,7,) = (0.531,0.287,0.165), where 7, and 7,
are nondimensionalized by ¢/V.
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Fig.3 Measured lift coefficients compared to the mGK model for a sinusoidal pitching motion with k = 1.

The optimal-control framework in Sec. III requires the system’s
dynamics to be in state-space form. Let the state vector be

X1 0,
x=|x||6, (13)
X3 q

and the output be

y = CL(aeff(egs ég)v q, gg)

For a pitch acceleration input, such that ég = u, the mGK model (11)
in state-space form is

)’Cz == 1 u )
X3 . (=x1 + g (e (x2, X3) — Tl (X2, X3, 1))
1

= Cy(aegr(x2,x3) = C3)x3 + Co(@tegp (X2, X3) — C4)(1 — x3)

+ Cs(XZ—%M) (14)

<
|

State-space form (14) differs from the form given in [4] because the
state variables in [4] are error states relative to a reference flight
condition. Additionally, the effective angle of attack o is not treated
as a state variable in Eq. (14) since it is a known function of the other
states. The functions a.¢(-) and a.(-) are retained in Eq. (14) for
notational brevity. The order of the variables in the state vector also
differs from [4], because the state-space form (14) is designed for the
gradient-descent algorithm in the optimal-control framework of
Sec. III. The algorithm requires variables that are treated as uncon-
strained at the terminal time to be listed last in the state vector. This
paper does not constrain g at the terminal time, so it appears last in the
state vector.

Figure 4 shows the time-averaged velocity profile of a trapezoi-
dal gust (gray line) that has a gust ratio of approximately 0.7 and a
gust width of approximately 1.5¢. The velocity data of the trap-
ezoidal gust were measured using particle image velocimetry
(PIV) in [38]. The black line shows the lift coefficient measured
during the gust encounter for anonmaneuvering wing traveling ata
constant speed of 0.118 m/s, corresponding to a Reynolds number
of 12,000. Note that the simulation of the mGK model (red line)
approximately captures the magnitude of the lift overshoot during
the encounter. However, there is a noticeable delay in the mGK
simulated response compared to the lift measured in experiment.
This delay for a modified GK model is also noted and discussed by
the authors in previous work [34] for a sine-squared gust and may
be attributable to the role of leading-edge shed vorticity, which is
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©
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-
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Fig. 4 Trapezoidal gust velocity profile (gray), lift coefficient of a non-
maneuvering wing in the gust encounter measured in experiment (black),
and lift coefficient predicted by the mGK model (red).

not explicitly part of the mGK model. The observation of a delay in
the mGK response motivates the need to improve or augment the
model so that it may be used to calculate optimal trajectories in real
gust encounters. The IMO method in Sec. IV overcomes the delay
in the mGK model and generates an optimized maneuver in a real
experiment.

III. Optimal Control in a Transverse Gust Encounter
Model

This section seeks an optimal, open-loop maneuver to regulate lift
in a transverse gust encounter about a constant value, and presents an
existing framework for optimal control design during a fixed-time
interval with terminal constraints. It then applies this framework for a
gust encounter represented by an mGK model.

A. Optimal Trajectory Problem with Terminal States Partially
Specified

Consider a fixed-time interval [y, #;] during which an optimal
control is sought., .and let xj(tf). =X, forj=1,..., p‘be. state
components specified at the terminal time. Note that p < n indicates
partial specification of the terminal state, and it is assumed that all
specified states appear before unspecified states in the state vector.
The optimal-trajectory problem seeks an open-loop optimal control
signal u that solves

t
min  J(u) = / " L(x, u, ) dt
u 7

subject to x = fzx, u, t) with x(ty) = x¢ as)
0 =w(x(tf))
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where L(-) is the integrand of the performance measure J, f(-)
represents the system dynamics, and y(-) is a vector of terminal
constraints for p specified states, such that y; = x;(¢;) — x; ; for
j =1, ..., p. Equation (15) represents an optimal-control problem
subject to the systems dynamics as a constraint and some state
variables constrained at the terminal time.

The performance measure J in the optimal control problem (15)
can be rewritten by adjoining the terminal state constraints using a
Lagrange multiplier vector v and adjoining the system dynamics
using a vector of time-varying Lagrange multipliers known as cos-
tates A. The augmented performance measure is

J= vy (x(1f)) + /tf L(x,u,t) + AT(f —x)dt (16)

Ty

Note that if the terminal and dynamic constraints are satisfied, J
equals J. To derive the first-order necessary conditions for stationar-
ity, it is useful to define a Hamiltonian function H = L + AT f. Using
techniques from the calculus of variations, the first-order necessary
conditions for stationarity are [49]

H\T
X = (607) , with x(lo) = Xy (17)
i= (' iy =0 I=heor g
- ox /)’ NI710, j=p+1,...,n

oH
0=2" 1

o (19)
Xj(l‘f):x“, f0rj=1,...,p (20)

An optimal control # must satisfy conditions (17-20), which form a
two-point boundary-value problem, with initial states and some
terminal states specified.

Bryson and Ho [49] present a gradient-based method to solve for
acandidate optimal control signal that satisfies Egs. (17-20). For an
initial guess of control signal u, the corresponding state trajectory x
can be determined from Eq. (17). The costate values at the terminal
time should satisfy Eq. (18); however, the Lagrange multiplier
vector v is not known a priori. The method of Bryson and Ho [49]
solves the costate Eq. (18) from a zero terminal condition A(¢;) = 0
backward in time, which corresponds to a costate solve in a problem
without state components specified at the terminal time. To deal
with state constraints at the terminal time, Bryson and Ho [49] solve
the co-state equation (18) several more times from altered terminal
conditions in which the jth entry of A is 1 and all other entries are 0
for j =1, ..., p. These integrations are known as influence or
sensitivity solves, because they provide costate trajectories that
are useful in determining how the jth component of x(t,) is affected
by a change in the control signal. Collecting the terminal conditions
together in the columns of an influence matrix R at time 7, the
influence costate trajectories can be determined simultaneously by
solving the matrix differential equation [49]

; af\* li=j, i=1,....n
R=-(-2) R, R(tp)=1""7" .~ " (@l
(ax) i (17) {O,Z;ﬁj, j=1....p @

using the solution of Eq. (21), Bryson and Ho [49] define integrals
useful in calculating the Lagrange multiplier vector v, which
appears in the terminal condition of Eq. (18). They subsequently
update the control guess in the —0H /du direction. Algorithm 1
presents the numerical method of Bryson and Ho [49], which is
designed to iteratively improve the control signal, moving it closer
to satisfying the necessary conditions and boundary conditions in
Egs. (17-20) with each step.

Previous work of the authors [34] showed that Algorithm 1
worked well for ideal, sine-squared gusts with various strengths
and widths. Here, the mGK model and Algorithm 1 are applied to

Algorithm 1:  Optimal control algorithm for fixed-time problems
with partially specified terminal state [49]

Input: Initial guess of control signal u.
1) Solve the state equation numerically from x(¢,) to ¢;.

2) Using the state trajectory obtained in step 1, numerically solve the costate
Eq. (18) backward from A(t¢) = 0, and the influence performance in
Eq. 21).

3) Calculate the following integrals:

t T
= /[RTa—fE‘la—f Rd:
ou ou

Iy

ir (. 0f OL\__,0fT
Iy, =1, = /’(Af—f+—)3“l Rdr
1y

I

wyr

v ou  ou ou

s of oL of oL\T
Iy = AT—4 e AT =+ —) dr (22
v /,0( 0u+6u) ( 0u+6u) @2

where the weight matrix = is a user-defined, positive-definite matrix that
influences the step size of the algorithm.

4) Evaluate the stopping criteria to determine if the current control signal is
satisfactory. Stop when y(x(¢;)) = 0 and Iy; — IJWIV’,,:,IV,J = 0, to within
desired tolerance.

5) Select a value of ¢ for a desired update in the terminal constraint, oy =
—ey(x(tr)),0 < e < 1, to obtain the Lagrange-multiplier vector

V= —I;&,(él[/ + I,/,J) (23)
Update the control signal u according to

Su(r) = -8 (a—L + (A(0) + Rv)T a—L)T (24)
ou ou

and return to step 1.
Output: Optimal control signal u.

calculate an optimal pitch maneuver when encountering the time-
averaged velocity profile of a trapezoidal gust, based on the exper-
imental gust profile from Fig. 4. Since the gust profile does not
change during the wing—gust encounter, the gust is assumed to be
nondeforming. For certain gusts, gust deformation does not
strongly influence the lift force during the encounter, as examined
in DVM calculations in [7].

B. Optimal Control Problem Using the mGK Model

Before the gust encounter, the wing flies at a steady reference flight
condition

X1 (tO) Hg,rcf
X2 (t()) = égmef (25)
x3(tp) Gref

that corresponds to a constant lift coefficient C; ¢ for 9g‘,ef =0.
Lift regulation seeks to maintain the lift coefficient as close as
possible to the reference value C; .. To implement C; regulation,
this paper uses pitch acceleration 6, as the control input, such
that u = 0.

An appropriate performance measure for penalizing deviations of
the output lift coefficient from the reference lift coefficient is

1 [t

J:
2

(y - CL.ref)2 dt (26)

fo

Therefore, the integrand of the performance measure of Eq. (15)
becomes
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L(x,u,t) =

| —

The terminal time ¢, is chosen to be 14 time constants 7, after the
time that the trailing edge leaves the gust. This choice is based on
the time required for the lift signal observed in the nonmaneuver-
ing experiment in Fig. 4 to return near zero. At the terminal time,
the wing’s state should return to the same reference flight condition
that it had before the gust encounter, as shown in Eq. (25).
However, constraining all states at the terminal time greatly
reduces the performance of Algorithm 1 for a lift regulation
problem, because the algorithm tries to pitch the wing to strictly
enforce q(ty) = ¢y¢ at the terminal time. The dynamics of the
mGK model naturally drive g to g, after the wing stops maneu-
vering. Hence, strictly enforcing q(tf) = ¢ef 1S NOt Necessary in
practice. Requiring that 6, (t;) = 6, ..f and 9g(tf) = 9g,ref at the
terminal time and penalizing deviations of the output from Cj ¢
are sufficient to ensure that g(ty) is nearly equal to g,s for the
terminal time #; selected in this work. By constraining only two of
the three state components at the terminal time, the terminal-
constraint vector becomes

(28)

y(ty) = [xl(fﬂ - Hgiref}

x2(tf) - ég;ef

The mGK model and the selection of the performance measure,
time interval, and initial and terminal conditions fully specify the
optimal-trajectory problem for lift regulation. Remaining details
of derivatives necessary to implement Algorithm 1 are available
in [34].

The optimal-control framework was applied in simulation to a
wing at a reference angle of attack of 0 deg, surging through the
trapezoidal gust with gust ratio GR = 0.7 at a constant speed of
0.118 m/s (Re = 12,000). The reference flight conditions are
therefore Cp o = 0, 9g_ref =0, and g,y = 1. Figure 5a presents
the simulated lift coefficients for anonmaneuvering wing (blue line)
and a wing pitching according to the open-loop, optimal-control
calculation (black line). In Fig. 5b, note that the optimal control
input ég is nearly zero after convective time t* = 4, which shows
that this solution is not sensitive to a small change in the terminal
time #;.

C. Comparison to Proportional Output-Feedback Control

Sedky et al. [7] used proportional output-feedback of the
lift signal to pitch a flat plate in a transverse gust encounter
modeled using a DVM. In [7], the proportional output-feedback

2.5

Oy R

— Optimal
—— No maneuver

0 2 4 6
y Convective Time
a

b)

— ab 2
(Cl(aeff = C3)x3 + Colaer — Co)(1 — x3) + C5V(x2 - 7“) - CL,ref) 27

controller effectively regulated lift, which motivates a comparison
of proportional output-feedback control to the optimal control
results derived in this paper. The proportional output-feedback
controller is

Uout = _K(CL - CLJel')

= _K(Cl (@efr — C3)q + Ca(aerr — Cy)(1 = q)

. ab-
+Cs (Qg - 7%) - CLA,ref) (29)

where K is a constant feedback gain that must be selected. This
section tests a sequence of different K values for the trapezoidal
gust profile.

Figure 6a shows simulation results for a wing encountering a gust
while applying proportional output-feedback control for several
choices of feedback gain K. When the gain is small, the lift regu-
lation is poor, but the performance significantly improves as K
increases. Figure 6b shows the corresponding control signals. Note
that proportional output-feedback control signal closely aligns with
the optimal control signal for K > 100. The simulation results
indicate that the proportional output-feedback controller is optimal
for a sufficiently large K. This numerical observation suggests that
open-loop optimal control signals can be generated for the mGK
model of this paper without optimal control calculations; only
simulation of the mGK model with the control choice in Eq. (29)
is needed. This finding is useful because the computational cost for
a proportional output-feedback simulation is much lower than the
cost of an optimal trajectory calculation. Thus, one can rapidly
generate the optimal pitch maneuver in the IMO method presented
in the next section. However, it is important to note that the consid-
eration of proportional output-feedback control as optimal for very
large gains, as suggested numerically here, should be limited to the
generation of open-loop trajectories in simulation. Real experimen-
tal data contain noise that could be amplified by the feedback gain of
a high-gain controller, which would lead to poor lift regulation in
practice.

IV. Iterative Construction of an Optimal Maneuver

The optimal-control algorithm of Sec. III provides an optimal-
control signal based on the mGK model for the wing—gust encoun-
ter. However, as noted in Sec. II.D, there is a delay in the lift
response of the mGK model in comparison to experimental

0 2 4 6 8
Convective Time

Fig. 5 Simulation results for encounters with a trapezoidal gust using the mGK model. a) Lift coefficients for nonmaneuvering and optimally

maneuvering wings. b) Control profiles of the optimal maneuver.
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Fig.6 Simulation results for a) lift coefficient and b) pitch acceleration input for encounters with a trapezoidal gust using proportional output-feedback control.

measurements. It is important to develop a method that can
generate optimal-control signals for real-gust flows. This section
employs the useful, yet imperfect, mGK model to develop an
iterative-optimization method applicable to real-gust flows.

A. Iterative Maneuver Optimization

Figure 4 shows the result of unmodeled vortex shedding in the
mGK model, whereby the experimental lift measurements rise
faster than the predicted lift as the wing enters the gust between
convective times 0 and 1. One possible solution to this model-error
problem is to pitch the wing in anticipation of the delayed response
of the model. One approach to implement such a model correction
is to update the reference signal for tracking. In a regulation pro-
blem, the reference signal is a constant. However, altering the
reference signal can feed-forward information about model defi-
ciencies. The IMO method that this paper proposes takes into
account force errors due to unmodeled effects and updates the
control profile accordingly. To illustrate the proposed procedure,
assume that an open-loop optimal-pitch maneuver derived by the
optimal-control framework presented in Sec. III.B predicts a lift

coefficient that is labeled as C (L'_imdel. In general, the lift coefficient

predicted by the mGK model on the ith iteration is C,(f,)model, and the
derived optimal-pitch maneuver can be tested in experiment or in a

higher fidelity simulation to provide the measured lift coefficient

Cg)[esl. Note that the lift coefficient predicted by the mGK model in
(1)

L,model’
C,(f?lesl would be close to C(L’?model, but there are some unmodeled
effects, and thus the error between the measured and modeled lift

coefficients in the i th iteration is

the first iteration, C is nearly the reference C; ... Ideally, the

ACY) = Cg.)tcst - Cg.)model (30)

The cost function in Eq. (26) seeks to find a C; ,4e) that minimizes
the deviation of the lift coefficient from a reference lift coefficient
signal during a simulated gust encounter. The errors from Eq. (30)
can update the reference lift coefficient according to

1Y = Cpper — ACY 31)

Note that Egs. (30) and (31) are equations of C; signals over the
time interval [z, ¢/].

With the new reference lift curve, one can derive a new optimal-
control signal to minimize the modified performance measure

A 1 Iy i i 2
j=7 / (Chtbha@ - cil @) a (32)
fy

which penalizes the differences between the model prediction
C(L"‘fnlo)del and the new reference lift coefficient C(Lijelf). The new
optimal-control profile can be applied in experiment again, and
repeating this procedure several times causes the C (. signal to
approach the ideal reference lift C; ;. Algorithm 2 summarizes this
procedure, which the authors refer to as iterative maneuver optimi-
zation (IMO). As an example of these equations, at a particular time
t,, consider the case in which C; o (%),) is greater than C;, poqe1(2))-
Then, the error AC, (z,) indicates that the new reference lift coef-

ficient C(Li:relf) should be reduced according to Eq. (31). The optimal-

control framework would then generate a control signal such that
Cl mode1 (f,) closely matches C(L'jclf) (tp). The new control signal
seeks to produce less lift in anticipation of encountering the excess
in lift that occurred during the previous test, thereby compensating
for an unmodeled effect. As discussed in Sec. III.C, the optimal-
control framework requires nonnegligible computation time, but
high-gain, proportional output-feedback control can rapidly gen-
erate the optimal-control profile for the mGK model. Exploiting the
correspondence between the optimal-control and the high-gain
feedback results can lead to significant time savings for the IMO
method. The updated control signal derives from the output-
feedback control law

i+1 i+1 i
ugluT ) = _K(C(Ll.-:—no)del - Cg.)ref (33)

Note that due to the appearance of (i 4 1) at both sides of Eq. (33),
the control signal must be generated during the closed-loop simu-
lation of the mGK model.

The IMO method only requires the mGK model and several runs
through the experiment or higher-fidelity model to generate an
optimal maneuver for the higher-fidelity system. Notably, it does
not require any real-time feedback signals within the higher-fidelity
system to update the control profile. Although the surrogate model
(i.e., the mGK model) is not very accurate, it is computationally
cheap to optimize using output-feedback control. Iterative imple-
mentation and refinement of the maneuver helps to overcome the
inaccuracies of the surrogate model.

B. Numerical Implementation of Iterative Maneuver Optimization

The IMO method is first implemented numerically using a DVM in
place of physical experiments. The DVM represents a higher-fidelity
model, because it captures vortex shedding that is not explicitly part
of the mGK model. Note that one could alternately use computational
fluid dynamics (CFD) simulations for the high-fidelity model, but the
time per iteration would greatly increase.

The DVM in this work has LEV shedding that is either turned on or
off according to the value of the leading-edge suction parameter
(LESP). Hence, the simulation is called an LESP-modulated DVM
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Algorithm 2:

Iterative maneuver optimization method

Inputs: Flow conditions, wing kinematics, reference states

iteration = iteration+1

iteration = 1 ¥

ACL,

Surrogate model
optimization of J

CL,model —

4

Uopt

Experiment or Higher-

CL,test

/ |CL,lesl - CL,refldt
< tolerance?

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
! fidelity simulation
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

No

Stop and record the control signal uopt

Output: Optimal pitch maneuver ég = Uy

(LDVM). A prescribed velocity field represents the gust, and the
wing sheds vorticity in response to the flowfield and kinematic
maneuvering. The LESP is a nondimensional quantity introduced
by Ramesh et al. [24] that serves as the criterion of leading-edge
shedding. When the LESP value exceeds the critical value LESPc,
which is determined empirically from experimental or CFD data, the
airfoil sheds vortices from the leading edge. Otherwise, only the
trailing edge of the airfoil sheds vortices according to a Kelvin
condition [50]. For additional information regarding the construction
of the LDVM used in this work and the lift force calculation from the
LDVM model, please refer to [26].

A common issue for DVMs is overprediction of lift due to their
omission of viscous effects [51]. To address this issue, this paper
compares the experimental, steady-lift curve slope for attached flow
that is used in the mGK model to the ideal 2z slope from thin-airfoil
theory. To better predict the lift coefficient, the LDVM lift coefficient
is multiplied by C, /2 to provide closer agreement with experimen-
tal measurements. Figure 7 presents the lift coefficient results for a
nonmaneuvering wing encountering a trapezoidal gust with a gust
ratio GR = 0.7. The blue dashed line is the LDVM simulation result,
which includes the empirical C, /2z lift adjustment. The black line is

— Experiment

Convective Time

Fig.7 Simulations of anonmaneuvering wing during the gust encounter
of a trapezoidal gust.
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the experimental measurement, and the red line is the simulation from
the mGK model. The LDVM result matches the experimental data
well during gust entry and exit, but it still overpredicts the lift peak.
Note that the LDVM result more closely agrees with the experiment
than the mGK model. Here, the LDVM represents a higher-fidelity
model than the mGK model and can be used to test the IMO method
before carrying out experimental validation.

The IMO method was performed with the LDVM simulation
taking the place of the experiment in Algorithm 2 to produce
C1 test- The surrogate model optimization in Algorithm 2 was high-
gain output-feedback control of the mGK model, which produced
C model- The time-averaged velocity profile of the trapezoidal gust in
Fig. 4 provided the external disturbance. For the LDVM simulation,
the LESPc value was set to 0.18, which is a common value found in

literature [24,52]. The LESPc value differs in a subsequent inves-
tigation of this section.
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Figure 8 shows the results of the IMO method applied to the
LDVM of the wing—gust encounter. The first iteration directly
applied the optimal-control profile derived for the mGK model in
the LDVM. Figure 8a shows a noticeable delay in lift response due to
the known delay in the mGK model. However, the second iteration
adjusted the C; . signal and derived an optimal-control profile for
tracking C;Z;ef. As aresult, the regulation performance significantly
improved. The performance of the maneuver improved further in the
third iteration. Figure 8c shows the rapid convergence of lift to
Cr et = 0 after five iterations. Figure 8e shows that the lift remained
0 for additional iterations. The simulation results show that the IMO
method can successfully construct an optimal-pitching maneuver in
only a few iterations.

The optimal pitch maneuver is shown in Fig. 8b. Figures 8d and
8f contain the pitch rate and the pitch acceleration, respectively. The
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Fig.8 IMO of a wing—gust encounter in an LDVM simulation.
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wing generally pitched down, then up, to negate the lift overshoot in
the gust encounter. In this simulation, the IMO method was able to
eliminate lift deviations; however, the LDVM simulation is an ideal
case since the flowfield is highly repeatable. The errors in the
previous iteration can therefore be completely corrected in the next
iteration until there are no errors between the desired output and the
real output. In a real experiment, the flowfield may contain spurious
disturbances that reduce run-to-run repeatability. Additionally,
there may be many more effects not captured by the surrogate
model. The Sec. V explores implementation of IMO in a real
flowfield.

Figure 9 shows different moments during the gust encounter when
the optimal-pitch maneuver derived in the mGK model was applied to
the LDVM simulations. Each iteration shows vorticity in the flow-
field during a pitch-down, then pitch-up maneuver. After the first
iteration, changes in the wake of the wing at * = 0.3 indicate that
IMO adjusted the maneuver to pitch down sooner during entry. At
time r* = 1.2, alarge LEV is present that sheds over the upper surface
of the wing. For subsequent IMO iterations, the size of the LEV is
reduced and the location is further aft on the upper surface. Since this
LEV during gust entry is associated with lift overshoot, the maneuver
regulates lift by reducing its size and encouraging its shedding during

t*=0.3 t*=1.2

0.2

0.1
Gl —
-0.1

02

0.2

0.1

-0.1

02

0.2

0.1
e, T A R
-0.1

02

0.2

0.1
E 0 S = /q"’—‘
N

0.1

02

0.2

0.1

E . 2= /’1,_
N

-0.1

02 02 01 0 01 02 03 02 01 0 01 02 03

X (m) X (m)

pitching. At time * = 2.3, both the first and second iterations show
remnants of a high-pressure side LEV beneath the wing that is
eliminated in subsequent iterations. Iteration 1 also shows the
roll-up of a TEV with negative circulation (red) that does not roll
up in subsequent iterations. In general, the optimal maneuver gen-
erated by IMO created fewer and smaller vortical structures during
the encounter.

To further investigate the design of an optimal pitch maneuver in
LDVM simulation using IMO, the LESPc value was reduced to 0.12,
which corresponds with a greater tendency to shed from the leading
edge. Figure 10 shows the lift coefficient of the wing during the gust
encounters with LESPc = 0.12 for nine iterations of IMO. Although
the lift coefficient in iteration 4 is small, the performance in sub-
sequent iterations does not converge. In fact, lift deviations worsen
and seem to oscillate between iterations. The IMO method cannot
generate an ideal lift coefficient curve that is as flat as the LESPc =
0.18 case. Iteration-to-iteration oscillation of the lift curve continued
in the IMO process after iteration 9. Nonetheless, the IMO method
was able to significantly reduce lift deviations. The finding of oscil-
lations indicates that the optimization process may not be able to
further improve performance, and may need a stopping criterion that
identifies a lack of further progress. Monitoring for an increase in the
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Fig. 9 Flow vorticity fields of the LDVM simulation for five IMO iterations with LESPc = (.18.



Downloaded by SUNY BUFFALO on February 1, 2023 | http://arc.aiaa.org | DOIL: 10.2514/1.J062404

Article in Advance / XUETAL. 13

--=-No maneuver
Iteration 1
— lteration 2

-1

0 2 4 6
Convective Time
a) Iterations 1 to 3

3 :
--=-No maneuver
lteration 5
29 — lteration 6
— lteration 7
2 L
1.5
o_l
1 L
0.5
0
-0.5

Convective Time

¢) Iterations 5 to 7

3
----No maneuver
lteration 3
25 — Iteration 4
—— Iteration 5
2 L
1.5
wd
O
1 L
0.5
0
-0.5

Convective Time
b) Iterations 3 to 5

3 T
--=-No maneuver
lteration 7
— Iteration 8
—— Iteration 9

Convective Time

d) Iterations 7 to 9

Fig. 10 LDVM Simulation results of the IMO method, LESPc = (.12.

cost function J, for example, would have stopped to select the control
signal at iteration 4 for the optimized maneuver.

Figure 11 presents the vorticity field of the LDVM simulations
with LESPc = 0.12. Time * = 0.3 closely resembles the simula-
tion in Fig. 9 with the higher LESPc value. However, at time
t* = 1.2, the LEV above the wing is larger in comparison to Fig. 9
for all iterations. After pitching down, LEVs with negative circu-
lation strength (red) were shed on the high-pressure side of the wing,
which can be observed at t* = 2.3 in every iteration. Since the wing
more easily shed LEVs than the higher LESPc case, the IMO
method did not eliminate the high-pressure side LEVs at
t* = 2.3. Additionally, the wake behind the wing at * = 2.3 shows
more iteration-to-iteration variation for the LESPc = 0.12 case than
the LESPc = 0.18 case. The larger LEV that appears at t* = 1.2 for
LESPc = 0.12 may have caused greater wake variation when inter-
acting with trailing-edge shed vorticity. The wing has very little
control over vorticity in the wake, which may explain the inability of
the IMO method to completely eliminate lift deviations for the
LESPc = 0.12 case. Nonetheless, the control signal from iteration
4 did provide significant gust rejection for the maneuver determined
by the IMO method.

V. Experimental Construction of an Optimal Pitch
Maneuver

This section presents experimental validation of the IMO method
in a water towing tank with a transverse gust generator. The experi-
ments followed the same IMO procedure as the LDVM simulations,
with the physical system replacing the LDVM. As described in
Sec. IV, the first iteration applied the open-loop control profile
derived by simulation of the mGK output-feedback control. The
pitching mechanism actuated the wing, and the lift response was
recorded. The measured output lift was used to update the desired
reference lift signal for the wing to track. Performing an mGK output-

feedback control simulation provided a new optimal-control profile
to test in experiment on the next iteration. Although the LDVM of the
previous section provides a perfectly repeatable flowfield and lift
signal for a given maneuver, the experiments contain experimental
variation and sensor noise. Since noise may influence the control
profile calculation, during each iteration, the control profile was run
five times in the tow tank and the output lift coefficient was ensemble
averaged. To examine continued iteration of the IMO method, a
stopping criterion was not set. However, the experiment was termi-
nated after iteration 7 due to the appearance of iteration-to-iteration
oscillation in the lift deviations.

Figure 12 presents the experiment results of the IMO method
applied to a NACA 0012 wing encountering the trapezoidal gust
with gustratio GR = 0.7. Figure 12a shows the first three iterations.
The first iteration again exhibited a delay due to the surrogate
model. The second iteration improved the lift regulation signifi-
cantly, and the third iteration showed an even better result. These
data show that the IMO method can improve open-loop control
maneuvers in experiment. Figure 12c contains the results of iter-
ations 3-5, where iteration 3 is retained from Fig. 12a for compari-
son. Iterations 4 and 5 show an improvement in the lift coefficient
during the gust encounter in comparison to iteration 3, although
some oscillations are present after the gust, between convective
times t* = 5and t* = 7. Initeration 5, the maximum absolute value
of the lift coefficient is below 0.2 during the encounter time. This
value is less than 8% of the peak value for the nonmaneuvering
experiment, representing a 92% reduction in the lift overshoot. With
continued iterations, Fig. 12e shows that the lift coefficient no
longer improved, and in fact worsened in performance. Iterations
6 and 7 increased the amplitude of oscillation in the lift deviations.
Continuation of the algorithm provided lift curves that oscillated
between the convective times t* = 5 and #* = 7 without further
improvement.



Downloaded by SUNY BUFFALO on February 1, 2023 | http://arc.aiaa.org | DOIL: 10.2514/1.J062404

14 Article in Advance / XUETAL.

t*=0.3 t*=1.2
0.2
0.1
E _—t
-0.1
-0.2
0.2

- —_— B W
E
N

02 02 -01 0 01 02 03 02 -01 0 01 02 03

X (m) X (m)

t*=23 t¥=3.4

-
\ AL =
. \ 1 ) B
/\.rﬁ\ Tj“m ~ 8
2
b3
o
®57 wN G
d}/‘w i {2
{ ¢ \ =
Se— — 8
2
2yt e 0
—~
/'bw ’::.~L'> & g
j N— —" i E’
5]
N
2. -
{ ~
5 s 7 T E
oy %2 L1
Ne— gt E
2
«
A %
feth -
P e
*® o i o
\/—— ———‘(“ =
5
2
02 -01 O 0.1 02 03 02 -01 0 01 0.2 0.3
X (m) X (m)

Fig. 11 Flow vorticity fields of the LDVM simulation for select IMO iterations with LESPc = 0.12.

The pitch maneuvers in Fig. 12b are pitch-down, then pitch-up
maneuvers for all the iterations. The later iterations overcame the
delay present in the first iteration. Since lift response did not improve
after iteration 4, Figs. 12b, 12d, and 12f only include data from
iterations 1 through 4 for clarity. The pitch angle profiles after
iteration 2 agree during the gust encounter but deviate after the wing
exits the gust. A possible explanation for the oscillations in the lift
responses may be vibrations in the pitching mechanism, which were
visible during the experiments. Unlike the aerodynamic lift, vibra-
tions in the setup are not directly controllable by pitching the wing.
Hence, the IMO method may have responded to vibrations in the
output signals by giving unnecessary maneuver updates to the wing.
In future work, experimental flowfield measurements, such as PIV,
may yield further insight and provide a comparison to the LDVM
simulations.

VI. Conclusions

This paper explores the generation of maneuvers that optimally
regulate aerodynamic force on a wing when encountering an exter-
nal flow disturbance. In particular, the paper studies a pitching wing
in a transverse gust encounter. First, a gradient-based algorithm
from optimal-control theory is applied to calculate an optimal-pitch

maneuver to regulate lift during a transverse gust encounter, subject
to a modified GK model of the physics in the wing—gust encounter.
The gradient-based method searches for a locally optimal solution.
Simulation results indicate that a proportional output-feedback con-
troller with a sufficiently large control gain can generate optimal-
control solutions for an mGK model. However, comparison of the
mGK model to experimental gust encounter data reveals a noticeable
time delay due to unmodeled effects. To address unmodeled effects,
this paper proposes an IMO method. The method generates a proposed
maneuver by optimizing the tracking of a reference force signal in the
mGK model. Then, testing in experiment or high-fidelity simulation is
performed to update the reference signal according to deviations from
the expected output force signal. A new candidate maneuver is gen-
erated by tracking the new reference signal, and the process repeats.
Simulations show that the IMO method can overcome the time-delay
problem of the surrogate mGK model to generate an optimal maneu-
ver. Experimental results in a water towing tank demonstrated that the
IMO method can construct an optimal pitch maneuver in a real gust
encounter. Small oscillations in the lift coefficient remained in the
experimental results, but an overall 92% reduction in the lift overshoot
was obtained in experiment.

In future work, the authors are interested in collecting flowfield
measurements, such as PIV during the iteration process. The authors



Downloaded by SUNY BUFFALO on February 1, 2023 | http://arc.aiaa.org | DOIL: 10.2514/1.J062404

Article in Advance / XUETAL. 15

2.5 T
N —-—-No Maneuver
2l i Iteration 1
i ——Iteration 2
T —— Iteration 3

Convective Time

2.5 T
A —-—-No Maneuver
fy Iteration 3
27 / 4 — Iteration 4
[ — lteration 5

Convective Time

2.5 T
= —-—-No Maneuver
A Iteration 5
27 / 4 — Iteration 6
[ —— lteration 7

Convective Time

e) Iterations 5to 7

400 T
— Iteration 1
L - = lteration 2
300 Iteration 3
—-—-Iteration 4
200 -
100 -
:%m
0 b
-100 -
-200 r 1
-300 - - - -

—lteration 1
- = lteration 2
Iteration 3 |
--=-|teration 4
-35 L L L n
0 2 4 6 8
Convective Time
b) Angles of attack
60 :
— Iteration 1
- = lteration 2
40 Iteration 3
----Iteration 4
20
< 0
-20
-40
-60 L L L L

Convective Time
d) Pitch rate

0 2 4 6 8

Convective Time
f) Pitch acceleration

Fig. 12 Experimental results of the IMO method.

may also examine application of the IMO method to other types of
gusts, wings, and methods of actuation.
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