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Abstract: Learning from Demonstration (LfD) approaches empower end-users
to teach robots novel tasks via demonstrations of the desired behaviors, democ-
ratizing access to robotics. However, current LfD frameworks are not capable
of fast adaptation to heterogeneous human demonstrations nor the large-scale de-
ployment in ubiquitous robotics applications. In this paper, we propose a novel
LfD framework, Fast Lifelong Adaptive Inverse Reinforcement learning (FLAIR).
Our approach (1) leverages learned strategies to construct policy mixtures for fast
adaptation to new demonstrations, allowing for quick end-user personalization,
(2) distills common knowledge across demonstrations, achieving accurate task in-
ference; and (3) expands its model only when needed in lifelong deployments,
maintaining a concise set of prototypical strategies that can approximate all be-
haviors via policy mixtures. We empirically validate that FLAIR achieves adapt-
ability (i.e., the robot adapts to heterogeneous, user-specific task preferences), ef-
ficiency (i.e., the robot achieves sample-efficient adaptation), and scalability (i.e.,
the model grows sublinearly with the number of demonstrations while maintain-
ing high performance). FLAIR surpasses benchmarks across three control tasks
with an average 57% improvement in policy returns and an average 78% fewer
episodes required for demonstration modeling using policy mixtures. Finally, we
demonstrate the success of FLAIR in a table tennis task and find users rate FLAIR
as having higher task (p < .05) and personalization (p < .05) performance.

Keywords: Personalized Learning, Learning from Heterogeneous Demonstra-
tion, Inverse Reinforcement Learning

1 Introduction

Robots are becoming increasingly ubiquitous with recent advancements in Artificial Intelligence
(AI), largely due to the success of Deep Reinforcement Learning (DRL) techniques in generating
high-performance continuous control behaviors [1, 2, 3, 4, 5, 6, 7, 8]. However, DRL’s success
heavily relies on sophisticated reward functions designed for each task. These hand-crafted reward
functions typically require iterations of fine-tuning and consultation with domain experts to be ef-
fective [9]. Instead, Learning from Demonstration (LfD) approaches democratize access to robotics
by having users demonstrate the desired behavior to the robot [10], removing the need for per-task
reward engineering. While LfD research strives to empower end-users with the ability to program
novel behaviors onto robots, we must consider that end-users may adopt varying preferences and
strategies in how they complete the same task [11]. An LfD framework that assumes homogeneity
across the set of provided demonstrations could cause the robot to fail to infer the accurate intention,
resulting in unwanted or even unsafe behavior [12, 13]. On the other hand, embracing individual
preferences can help robots achieve better performance and long-term acceptance from humans [14].

While personalization is important for accurate recovery of the demonstrator’s behavior, personal-
ization can also prove inefficient if each individual policy must be inferred separately. To avoid
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Figure 1: This figure shows an illustration of the lifelong learning process with our proposed method,
FLAIR. As each demonstrator performs their strike, FLAIR determines whether the demonstration
is novel. If a demonstration can be explained by a policy mixture of previously learned strategies,
FLAIR accepts the policy mixture without training a new strategy. If the policy mixture is not close
to the demonstration, FLAIR creates a new strategy and a prototype policy for the demonstration.

this issue, prior work, MSRD [15], decomposed shared and individual-specific reward informa-
tion across heterogeneous demonstrations (i.e., demonstrations seeking to accomplish the same task
with different styles). While MSRD significantly improves the accuracy and efficiency in personal-
ized policy modeling, the framework must be trained all-at-once and is unable to handle incremen-
tal/lifelong learning, a more realistic paradigm for LfD real-world applications.

In this work, we develop FLAIR: Fast Lifelong Adaptive Inverse Reinforcement learning. As a
running example, consider a series of humans teaching a robot how to play table tennis, a compelling
robot learning platform [16, 17, 18, 19, 20]. Users of the robot may have their preferences for table
tennis strikes. As shown in Figure 1, the first user demonstrates a topspin strike, while the second
user demonstrates a slice strike. The third user demonstrates a push strike, which could be explained
by a composition of known behaviors of the previously seen topspin and slice prototypical behaviors.

Unlike prior LfD algorithms, FLAIR is capable of continually learning and refining a set of pro-
totypical strategies either to (1) efficiently model new demonstrations as mixtures of the acquired
prototypes (e.g., the third user in our example) or (2) incorporate a new strategy as a prototype
if the strategy is sufficiently unique (e.g., the second user). Consider a real-world example where
household robots are delivered to users’ homes and the users want to teach those robots skills over
the course of the deployment. User demonstrations from different end-users form a demonstra-
tion sequence the robots personalize to. In such a lifelong learning scenario, FLAIR autonomously
identifies prototypical strategies, distills common knowledge across strategies, and precisely models
each demonstration as prototypical strategies or policy mixtures. We show FLAIR accomplishes
adaptivity, efficiency, and scalability in LfD tasks in simulated and real robot experiments:

1. Adaptive Learning: We display the adaptivity of FLAIR by successfully personalizing to het-
erogeneous demonstrations on three simulated continuous control tasks. FLAIR models demon-
strations better than best benchmarks and achieves an average of 57% higher returns on the task.

2. Efficient Adaptation: FLAIR is more efficient, empirically needing an average of 78% fewer
samples to model demonstrations compared to training a new policy.

3. Lifelong Scalability: We showcase the scalability of FLAIR in a simulated experiment obtain-
ing 100 demonstrations sequentially. FLAIR identifies on average eleven strategies and utilizes
policy mixtures to achieve a precise representation of each demonstration, providing empirical
evidence for FLAIR’s ability to learn a compact set of prototypical strategies in lifelong learning.

4. Robot Demonstration: We demonstrate FLAIR’s ability to successfully leverage policy mixtures
to achieve stronger task and personalization performance than learning from scratch in a real-
world table tennis robot experiment.

2 Related Work

Two common approaches in LfD are to either directly learn a policy, i.e., Imitation Learning (IL), or
infer a reward to train a policy, i.e., Inverse Reinforcement Learning (IRL) [21]. IL learns a direct
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mapping from states to the actions demonstrated [22, 23]. Although a straightforward approach, IL
suffers from correspondence matching issues and is not robust to changes in environment dynam-
ics due to its mimicry of the demonstrated behaviors [24, 25]. IRL, on the other hand, infers the
demonstrator’s latent intent in a more robust and transferable form of a reward function [26].

Although traditional IRL approaches often overlook heterogeneity within demonstrations, there has
been recent work that models heterogeneous demonstrations [27, 28, 29, 30, 31, 32]. One intu-
itive way is to classify demonstrations into homogeneous clusters before applying IRL [11]. The
Expectation-Maximization (EM) algorithm also operates on a similar idea and iterates between E-
step and M-step, where E-step clusters demonstrations and M-step solves the IRL problem on each
cluster [33, 34]. When the number of strategies is unknown, a Dirichlet Process prior [35, 36, 37]
or non-parametric methods [38] could be used. In these approaches, each reward function only
learns from a portion of the demonstrations, making them prone to the issue of reward ambigu-
ity [15]. Furthermore, these methods assume access to all demonstrations beforehand, which is not
realistic for LfD algorithm deployment. We instead consider the more realistic setting of lifelong
learning [39], where an agent adapts to new demos through its lifetime and continually builds its
knowledge base. One instance to generate such demonstration sequences is through crowd-sourcing
(seeking knowledge from a large set of people) [40, 41, 42].

Despite the abundance of previous approaches, few consider the relationship between the policies
learned to represent each demonstration. Our method, FLAIR, exploits these relationships to not
only model heterogeneous demonstrations (adaptability), but do so by creating expressive policy
mixtures from previously extracted strategies (efficiency), and can scale to model large number of
demonstrations utilizing a compact set of strategies (scalability).

3 Preliminaries

In this section, we introduce preliminaries on Markov Decision Processes (MDP), Inverse Rein-
forcement Learning (IRL), and Multi-Strategy Reward Distillation (MSRD).

Markov Decision Process – A MDP, M , is a 6-tuple, 〈S,A, R, T, γ, ρ0〉. S and A are the state and
action space, respectively. R is the reward function, meaning the agent is rewarded R(s) in state s.
T (s′|s, a) is the probability of transitioning into state s′ after taking action a in state s. γ ∈ (0, 1) is
the temporal discount factor. ρ0 denotes the initial state probability. A policy, π(a|s), represents the
probability of choosing an action given the state and is trained to maximize the expected cumulative
reward, π∗ = argmaxπ Eτ∼π

[∑∞
t=1 γ

t−1R(st)
]
, where τ = {s1, a1, s2, a2, · · · } is a trajectory.

Inverse Reinforcement Learning – IRL considers an MDP sans reward function (MDP\R) and
infers the reward function R based on a set of demonstration trajectories U = {τ1, τ2, · · · , τN},
where N is the number of demonstrations. Our method is based on Adversarial Inverse Reinforce-
ment Learning (AIRL) [25], which solves the IRL problem with a generative-adversarial setup. The
discriminator, Dθ, predicts whether the transition, (st, st+1), belongs to a demonstrator vs. the
generator, πφ(a|s). πφ is trained to maximize the pseudo-reward given by the discriminator.

Multi-Strategy Reward Distillation – MSRD [15] assumes access to the strategy label, cτi ∈
{1, 2, · · · ,M} (M is the number of strategies), for each demonstration, τi, and decomposes the
per-strategy reward, Ri, for strategy i as a linear combination of a common task reward, RTask, and a
strategy-only reward, RS-i. MSRD parameterizes the task reward by θTask and strategy-only reward
by θS−i. MSRD takes AIRL as its backbone IRL algorithm, and adds a regularization loss which
distills common knowledge into θTask and only keeps personalized information in θS−i. The MSRD
loss for the discriminator (the reward) is shown in Equation 1.
LD =− E(τ,cτ )∼U

[
logDθTask,θS-cτ

(st, st+1)
]
− E(τ,cτ )∼πφ

[
log

(
1−DθTask,θS-cτ

(st, st+1)
)]

+ αE(τ,cτ )∼πφ
[||RS-cτ (st)||2]

(1)

4 Method

In this section, we start by introducing the problem setup and notations. We then provide an overview
of FLAIR, and its two key components: policy mixture and between-class discrimination.

We consider a lifelong learning from heterogeneous demonstration process where demonstrations
arrive in sequence, as illustrated in Figure 1. We denote the i-th arrived demonstration as τi. Unlike
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prior work, FLAIR does not assume access to the strategy label, cτi . Similar to MSRD, FLAIR
learns a shared task reward RθTask , strategy rewards RθS-j , and policies corresponding to each strat-
egy πφj . We define the number of prototype strategies created by FLAIR till demonstration τi as
Mi, and ηR(τ) =

∑∞
t=1 γ

t−1Rθ(st) as trajectory τ ’s discounted cumulative reward with the re-
ward function Rθ. The goal of the problem is to accurately model each demonstration sequentially
with as few environment samples as possible. Note that learning from sequential demonstrations is
not a requirement of FLAIR but rather a feature in comparison to batch-based methods where all
demonstrations must be available before the learning could start.

4.1 Fast Lifelong Adaptive Inverse Reinforcement Learning (FLAIR)

In our lifelong learning problem setup, when a new demonstration τi becomes available, we seek to
accomplish two goals: a) design a policy that solves the task while personalizing to the demonstra-
tion (i.e., the objective in personalized LfD), and b) incorporate knowledge from the demonstration
to facilitate efficient and scalable adaptation to future users (i.e., the characteristics required for a
lifelong LfD framework). We present our method, FLAIR, in pseudocode in Algorithm 1.

Algorithm 1: FLAIR
Input : Demonstration modeling quality threshold ε

1 M0 = 0, MixtureWeights=[], m=[]
2 while lifetime learning from heterogeneous demonstration do
3 Obtain demonstration τi
4 ~wi, D

mix
KL ←PolicyMixtureOptimization(τi, {πφj

}Mi
j=1)

5 if Dmix
KL < ε then

6 MixtureWeights[i]← ~wi, Mi+1 ←Mi

7 else
8 πnew, RθS-(Mi+1)

←AIRL(τi)

9 Dnew
KL ← Eτ∼πnewDKL(τi, τ)

10 if Dmix
KL < Dnew

KL then
11 MixtureWeights[i]← ~wi, Mi+1 ←Mi

12 else
13 Mi+1 ←Mi + 1
14 mMi+1

← i
15 MixtureWeights[i]← [0, 0, · · · , 0︸ ︷︷ ︸

Mi zeros

, 1]

16 Update RθTask , RθS-j , πφj by Between-Class Discrimination and MSRD

To accomplish these goals, FLAIR decides whether to explain a new demonstration with previously
learned policies (a highly efficient approach), or create a new strategy from scratch (a fallback
technique). In the first case, FLAIR attempts to explain the new demonstration, τi, by constructing
policy mixtures with previously learned strategies according to the demonstration recovery objective
(line 4). If the trajectory generated by the mixture is close to the demonstration (evidenced by the
KL-divergence between the policy mixture trajectory and the demonstration state distributions falling
under a threshold, ε), FLAIR adopts the mixture without considering creating a new strategy (line 6).
Since the policy mixture optimization (details in Section 4.2) is more sample efficient than the AIRL
training-from-scratch, FLAIR can bypass the computationally expensive new-strategy training (line
8) if the mixture provides a high-quality recovery of the demonstrated behavior. This procedure
results in an efficient policy inference.

If the mixture does not meet the quality threshold, ε, FLAIR trains a new strategy by AIRL with
τi and compares the quality of the new policy to the policy mixture (Lines 8-10). If the mixture
performs better, we accept the mixture weights (line 11). If the new strategy performs better, we
accept the new strategy as a new prototype and update our reward and policy models (accordingly,
in Line 13, we increment the number of strategies by one). Further, we call the demonstration, τi,
the “pure” demonstration for strategy Mi+1, meaning strategy Mi+1 represents demonstration τi
(line 14). As such, the mixture weight for τi is a one-hot vector on strategy Mi+1 (line 15).
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To effectively maintain a knowledge base, we propose a novel training signal named Between-Class
Discrimination (BCD). BCD trains each strategy reward to capture the fact that each demonstration
has a certain percentage of the strategy. In the table tennis example (Figure 1), the third user’s be-
havior is a mixture of the topspin and the slice, indicating topspin and slice strategy rewards should
be apparent in the third demonstration. BCD encourages the two strategy rewards to give partial
rewards to the third demonstration. In addition to BCD, FLAIR also optimizes MSRD loss (Equa-
tion 1) for all strategies with their corresponding pure demonstrations, and updates the generator
policies based on the learned reward (line 16).

4.2 Policy Mixture Optimization

To achieve efficient personalization for a new demonstration τi (Line 4 of Algorithm 1), we con-
struct a policy mixture with a linear geometric combination of existing policies π1, π2, · · · , πMi

(Equation 2), where wi,j ≥ 0 are learned weights such that:
∑Mi

j=1 wi,j = 1.

π~wi
(s) =

Mi∑

j=1

wi,jaj , aj ∼ πj(s) (2)

As the ultimate goal of demonstration modeling is to recover the demonstrated behavior, we optimize
the linear weights, ~wi, to minimize the divergence between the trajectory induced by the mixture
policy and the demonstration, shown in Equation 3.

minimize
~wi

Eτ∼π~wi
[DKL(τi, τ)] (3)

Specifically, we choose Kullback-Leibler divergence (KL-divergence) [43] on the state marginal dis-
tributions of trajectories in our implementation. We estimate the state distribution within a trajectory
by the kernel density estimator [44]. More details can be found in supplementary.

Since the trajectory generation process is non-differentiable, we seek a non-gradient-based optimizer
to solve Equation 3. Specifically, FLAIR utilizes a naı̈ve, random optimization method; it generates
random weight vectors ~wi, evaluates Equation 3, and chooses the weight that achieves the minimiza-
tion. Empirically, we find random optimization outperforms various other optimization methods for
FLAIR. Please see the supplementary for a detailed comparison.

4.3 Between-Class Discrimination

Although MSRD distills the task reward from heterogeneous demonstrations, it does not encourage
the strategy rewards to encode distinct strategic preferences. MSRD also requires access to ground-
truth strategy labels for all demonstrations, which limits scalability. In order to increase the strategy
reward’s discriminability between different strategies, we propose a novel learning objective named
Between-Class Discrimination (BCD). BCD enforces the strategy reward to correctly discriminate
mixture demonstrations from the pure demonstration: if demonstration τi has weight wi,j on strategy
j (as identified in Policy Mixture), we could view the probability that τi happens under the strategy
reward, RS-i, should be wi,j proportion of the probability of the pure demonstration, τmj

. This
property can be exploited to enforce a structure on the reward given to the pure-demonstration, τmj

,
and mixture-demonstration τi, as per Lemma 1. A proof is provided in the supplementary.
Lemma 1. Under the maximum entropy principal,

wi,j =
P (τi; S-j)
P (τmj ; S-j)

=
e
ηRS-j (τi)

e
ηRS-j (τmj

)

Thus, we enforce the relationship of strategy rewards, S-j, evaluated on pure strategy demonstration,
τmj

, and mixture strategy demonstration, τi with mixture weight wi,j , as shown in Equation 4.

LBCD(θ
S-j) =

n∑

i=1

(
e
ηθS-j

(τi) − wi,je
ηθS-j

(τmj
)
)2

(4)

An extreme case of BCD loss is when τi is the pure demonstration for another strategy, k (i.e.,
mk = i). In this case, wi,j = 0 (as τi is purely on strategy k), and Equation 4 encourages the
strategy j’s reward to give as low as possible reward to τi. In turn, strategy rewards gain better
discrimination between different strategies, facilitating more robust strategy reward learning, and
contributing to the success in lifelong learning.
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Table 1: This table shows learned policy metrics between AIRL, MSRD, and FLAIR. The higher
environment returns / lower estimated KL divergence / higher strategy rewards, the better.

Domains Inverted Pendulum Lunar Lander Bipedal Walker
Methods AIRL MSRD FLAIR AIRL MSRD FLAIR AIRL MSRD FLAIR
Environment Returns −172.7 −166.4 −38.5∗∗ −7418.1 −9895.3 −6346.6∗ −30637.2 −74166.0 −7064.0∗∗

Estimated KL Divergence 4.08 7.67 4.01∗∗ 72.0 70.9 67.2∗∗ 13.0 32.6 12.1∗∗

Strategy Rewards −5.73 −6.22 −1.23 −12.67 −20.26 −4.19∗ −5.31 −29.82 −4.22∗∗

∗ Significance of p < 0.05
∗∗ Significance of p < 0.01

Correlation between the Estimated and
the Ground-Truth Task Reward

Figure 2: This figure shows the correlation
between the estimated task reward with the
ground truth task reward for Inverted Pen-
dulum. Each dot is a trajectory. FLAIR
achieves a higher task reward correlation.

# Episodes Needed to Achieve the Same
Performance

Figure 3: This figure compares the number
of episodes needed for AIRL and MSRD to
achieve the same Log Likelihood as FLAIR’s
mixture optimization. The red bar is the me-
dian and the red triangle represents the mean.

5 Results

In this section, we show that FLAIR achieves adaptability, efficiency, and scalability in model-
ing heterogeneous demonstrations. We test FLAIR on three simulated continuous control environ-
ments in OpenAI Gym [45]: Inverted Pendulum (IP) [46], Lunar Lander (LL), and Bipedal Walker
(BW) [47]. We generate a collection of heterogeneous demonstrations by jointly optimizing an envi-
ronment and diversity reward with DIAYN [48]. For all experiments excluding the scalability study,
we use ten demonstrations. We compare FLAIR with AIRL and MSRD by running three trials of
each method. More experiment details and statistical test results are provided in the supplementary.

5.1 Adaptability

Q1: Can FLAIR’s policy mixtures perform well at the task? From ten demonstrations, FLAIR
created 6.3 ± 0.5 strategies (average and standard deviation across three trials) in IP, 5.3 ± 1.2 in
LL, and 3.3± 0.5 in BW. FLAIR’s learned policies including policy mixtures are significantly more
successful at the task (row “Environment Returns” in Table 1), outperforming benchmarks in task
performance with 77% higher returns in IP, 14% in LL, and 80% in BW than best baselines.

Q2: How closely does the policy recover the strategic preference? Qualitatively, we find that
FLAIR learns policies and policy mixtures that closely resemble their respective strategies, visual-
ized in policy renderings (videos available in supplementary). We further show that FLAIR is sta-
tistically significantly better in estimated KL divergence than AIRL (average 4% better) and MSRD
(average 18% better), shown in row “Estimated KL Divergence” in Table 1, where KL divergence
is evaluated between policy rollouts and demonstration state distributions. We further tested the
learned policies’ performance on ground-truth strategy reward functions given by DIAYN. The re-
sults on row “Strategy Rewards” illustrate FLAIR’s better adherence to the demonstrated strategies.

Q3. How well does the task reward model the ground truth environment reward? We evaluate
the learned task reward functions by calculating the correlation between estimated task rewards
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Figure 4: This figure depicts the normalized strategy
rewards on demonstrations in IP for FLAIR without
BCD (left) and with BCD (right).

Figure 5: This figure plots the returns of FLAIR
policies in a 100 demonstration experiment in In-
verted Pendulum.

with ground-truth environment rewards. We construct a test dataset of 10,000 trajectories with
multiple policies obtained during the “DIAYN+env reward” training. FLAIR’s task reward achieves
r = 0.953 in IP (shown in Figure 2), r = 0.614 in LP, and r = 0.582 in BW, with an average 18%
higher correlation than best baselines and statistical significance compared with AIRL and MSRD.

Q4. Can the learned strategy rewards discriminate between different strategies? We analyze the
learned strategy rewards on heterogeneous demonstrations (shown in Figure 4 right). We find that
each strategy reward of FLAIR identifies the corresponding pure demonstration (Demonstrations
0-4,7) alongside the mixtures (Demonstrations 5-6, 8-9). In contrast, the strategy rewards learned
without BCD (Figure 4 left) do not distinguish between different strategies. This ablation study also
finds that FLAIR with BCD achieves 70% better environment returns and 10% better KL divergence
than FLAIR without BCD (additional metrics available in supplementary). The qualitative results in
Figure 4 and quantitative results in supplementary together provide empirical evidence that FLAIR
with BCD can train strategy rewards to better identify different strategies.

5.2 Efficiency & Scalability

Q5. Can FLAIR’s mixture optimization model demonstrations more efficiently than learning
a new policy? We study the number of episodes needed by FLAIR’s mixture optimization and
AIRL/MSRD policy training to achieve the same modeling performance of demonstrations. The
result in Figure 3 demonstrates FLAIR requires 77% fewer episodes to achieve a high log likelihood
of the demonstration relative to AIRL and 79% fewer episodes than MSRD. Three (out of ten) of
AIRL’s learned policies and four of MSRD’s learned policies failed to reach the same performance
as FLAIR even given 10,000 episodes, and are thus left out in Figure 3. By reusing learned policies
through policy mixtures, FLAIR explains the demonstration in an efficient manner.

Q6. Can FLAIR’s success continue in a larger-scale LfD problem? We generate 95 mixtures with
randomized weights from 5 prototypical policies for a total of 100 demonstrations to test how well
FLAIR scales. We train FLAIR sequentially on the 100 demonstrations and observe FLAIR learns
a concise set of 17 strategies in IP, 10 in LL, and 6 in BW that capture the scope of behaviors while
also achieving a consistently strong task performance (Figure 5 and supplementary). We find FLAIR
maintains or even exceeds its 10-demonstration performance when scaling up to 100 demonstrations.

5.3 Sensitivity Analysis

Q7. How sensitive is FLAIR’s mixture optimization threshold? We study the classification skill
of the mixture optimization threshold and find it has a strong ability to classify whether a demon-
stration should be included as a mixture or a new strategy. A Receiver Operating Characteristic
(ROC) Analysis suggests FLAIR with thresholding achieves a high Area Under Curve (0.92) in the
ROC Curve for IP; the specific choice of the threshold depends on the performance/efficiency trade-
off the user/application demands (see the ROC Curve and threshold selection methodology in the
supplementary).

5.4 Discussion

The above findings show that our algorithm, FLAIR, sets a new state-of-the-art in personalized LfD.
Across several domains, FLAIR achieves better demonstration recovery compared to the baselines.
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Figure 6: This figure illustrates a topspin and slice
mixture policy (a push-like behavior). The robot
moves from location (1) to (2) and (3).

Metrics Task Score Strategy Score
FLAIR’s Policy Mixture 66.9 ± 10.3∗ 96.6 ± 17.4∗

FLAIR’s Worst Mixture 59.5 ± 12.8 70.3 ± 23.7
Learning-from-Scratch 56.6 ± 12.3 90.0 ± 18.0

∗ Significance of p < 0.05

Table 2: This table depicts policy metrics between
FLAIR’s best mixtures, FLAIR’s worst mixtures,
and learning-from-scratch policies. The scores are
shown as averages ± standard deviations across
28 participants. Bold denotes the highest scores.

Not only can FLAIR more accurately infer the task reward and associated policies, but FLAIR is also
able to perform policy inference with much fewer environmental interactions. These characteristics
make FLAIR amenable to lifelong LfD, resulting in one of the first LfD frameworks that can handle
sequential demonstrations without requiring retraining the entire model.

6 Real-World Robot Case Study: Table Tennis

We perform a real-world robot table tennis experiment where we leverage FLAIR’s policy mixtures
to model user demonstrations. An illustration of an example policy mixture is shown in Figure 6
(more videos are available in supplementary).

We first collect demonstrations of four different table tennis strategies (i.e. push, slice, topspin, and
lob) via kinesthetic teaching from one human participant who is familiar with the WAM robot but
does not have prior experience providing demonstrations for table tennis strikes. After training the
four prototypical strategy policies, we assess how well FLAIR can use policy mixtures to model
new user demonstrations. To do so, we collected demonstrations from 28 participants by instructing
them to demonstrate five repeats of their preferred PingPong strike. We utilize this data and compare
three LfD approaches for learning a robot policy: 1) the best policy mixture identified by FLAIR, 2) a
learning-from-scratch approach, and 3) an adversarially optimized policy mixture (i.e., minimize the
KL divergence between the rollout and the demonstration). We then have users/participants observe
the robot executing these policies in a random order. Using ad hoc Likert scale questionnaires (see
supplementary), participants evaluate the robot’s performance in (i) accomplishing the task and (ii)
doing so according to the user’s preferences. Table 2 shows that FLAIR’s best mixture outperforms
both the worst mixture (task score: p < .01, strategy score: p < .001) and the learning-from-scratch
policy (task score: p < .001, strategy score: p < .05), demonstrating FLAIR’s ability to optimize
policy mixtures that succeed in the task and fit user’s preferences. Full statistical testing results are
available in the supplementary.

7 Conclusion, Limitations, & Future Work

In this paper, we present FLAIR, a fast lifelong adaptive LfD framework. In benchmarks against
AIRL and MSRD, we demonstrate FLAIR’s adaptability to novel personal preferences and effi-
ciency by utilizing policy mixtures. We also illustrate FLAIR’s scalability in how it learns a concise
set of strategies to solve the problem of modeling a large number of demonstrations.

Some limitations of FLAIR are 1) if the initial demonstrations are not representative of a diverse set
of strategies, the ability to effectively model a large number of demonstrations may be impacted due
to the biased task reward and non-diverse prototypical policies; 2) FLAIR’s learned rewards are non-
stationary (the learned reward function changes due to the adversarial training paradigm), a property
inherited from AIRL, and hence could suffer from catastrophic forgetting. For the first limitation,
we could pre-train FLAIR with representative demonstrations before deployment to avoid biasing
the task reward and to provide diverse prototypical policies. Another potential direction is to adopt a
“smoothing”-based approach over a “filtering” method. The smoothing-based approach would allow
new prototypical policies to model previous demonstrations, relaxing the diversity assumptions on
initial policies. We are also interested in studying how to recover a minimally spanning strategy set
that could explain all demonstrations. For the second limitation, we seek to leverage IRL techniques
that yield stationary reward for the FLAIR framework. f-IRL [49] could be a potential candidate,
but is notoriously slow due to the iterative reward training and policy training.
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1 Real-World Table Tennis Robot Experiment

1.1 System Setup

The setup of our table tennis environment consists of a 7-degree of freedom WAM robot arm from
Barrett Technology, a 3D printed table tennis paddle holder, three ZED 2 stereo cameras, and a But-
terfly Amicus Prime ball feeder. The angle and speed of the ball feeder were calculated empirically
prior to collecting human demonstrations and kept constant throughout the experiments. We use
Robot Operating System (ROS) as our communication framework for controlling the vision system
as well as the arm control system. We record the participant’s demonstrations by subscribing to
the robot joint state topic. This provides us with joint positions at a rate of 100 Hz. For controlled
movements, we use a PID-based positional control loop running at 500 Hz for performing swings.
Note that our algorithm sends position control commands at 100 Hz.

1.2 Vision System

A multi-camera vision system is employed to accurately localize the ball. The stereo-cameras’ poses
were calibrated using an April tag bundle [1] to find their relative world positions. To detect orange
table tennis balls, the vision system attempts to find the position of moving orange objects by using
classical computer vision techniques including background subtraction and color thresholding. The
720p camera resolution allows the vision system to detect the ball with a frequency of up to 60 Hz.

The vision system then utilizes stereo-geometry to calculate the ping-pong ball coordinates in each
stereo-camera’s frame of reference. These points are added to the position and orientation derived
from the calibration results described above to produce an absolute position of the table tennis ball
at the time of image capture. These ball position estimates are fused through an Extended Kalman
Filter (EKF) by combining the sensor measurements to produce a single pose estimate. The EKF’s
state estimate prediction is augmented using ballistic trajectory equations with a table bounce model.
An EKF was chosen due to its known robust performance to outlier measurements in presence of a
well-defined linear dynamics model. This allows us to use the world position estimate to track the
table tennis ball during demonstrations and executions.

1.3 Experiment Details

In this experiment, we test FLAIR on its capability to adapt to users’ demonstrations by optimizing
policy mixtures. We first collect demonstrations for four different table tennis strategies, push, slice,
topspin, and lob, from human subjects via kinesthetic teaching. After training the four prototypical
strategy policies, we assess how FLAIR’s policy mixtures can succeed in new user demonstration
modeling in terms of both accomplishing the task and personalizing to the user’s preference, and
compare FLAIR’s performance with a learning-from-scratch approach.

* denotes equal contribution
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1.3.1 Prototypical Strategy Policy Creation

We recruit one participant (male, college student) for the purpose of providing prototypical strategy
demonstrations for push, slice, topspin, and lob strikes. Note this participant is familiar with the
WAM robot but does not have past experience providing demonstrations for table tennis strikes. The
participant provides kinesthetic teaching to the arm, where we idle the robotic arm with gravity com-
pensation and record joint positions along with ball position estimates. Each demonstration starts
from the first frame the cameras detect the ball, and lasts one second (100 timesteps). The partic-
ipant provides five demonstrations for each of the strategy. After the demonstrations are given, we
replay the demonstrations and select one demonstration for each strategy that empirically performs
the best for the following training procedure.

For each prototypical strategy policy, we train a two-layer fully connected neural network (with
64 neurons on each layer and ReLU activation functions for hidden layers). The neural network’s
input is 17-dimensional with seven joints’ positions and velocities and the ball’s 3D coordinates.
The output is 7-dimensional, encoding the difference of the newly desired positions for seven joints
relative to the current joint positions. In order to warmstart the policy neural network training, we
conduct three phases of warmstart training.

First, we train the policy with behavior cloning loss, minimizing the distance between the policy
output action with the ground-truth action taken by the demonstrator.

Second, we augment the behavior cloning data with replays of the human demonstration on the
robot and continue behavior cloning with the augmented data, making the policy more robust to
robot execution drifts. We repeat this “data-augmented behavior cloning” phase of training for ten
environment episodes.

Third, we adopt DAGGER [2] training scheme where we let the policy control the execution and
the “expert” (the demonstration) provides corrective feedback for the robot to move back to the
demonstrated trajectory, shown in Equation 1, where sdemonstration

t+1 is the robot position in the next
timestep in the demonstration, and scurrent is the current robot position (not from demonstration). We
perform this phase until the policy converges.

acorrected
t = sdemonstration

t+1 − scurrent (1)

Through the three phases of warmstarting training, we get fluent, successful robot trajectories for
each strategy. This phase essentially represents FLAIR building up a set of prototypical strategy
policies with initial demonstrations.

1.3.2 User Demonstration Adaptation by Policy Mixtures

We recruit twenty-eight participants from a population of college students to provide demonstrations
that FLAIR adapts to. The experiment is split up into two sessions. In the first session, we start by
teaching the participants the push, slice, topspin, and lob strikes with participant’s practice after each
to get them familiar with the setup. Once the participant subjectively judges he/she is comfortable
with the setup, he/she starts to practice his/her preferred strike. When the participant is ready, we
record five repeats of his/her preferred strikes.

After the first session (personalized demonstration collection), we create 20 policy mixtures with the
four prototypical strategy policies, calculate the KL divergence on the state marginals between the
demonstrations and the policy mixtures, and obtain the most and the least matching policy mixtures
for each participant. Through this approach, FLAIR could reuse the same 20 policy mixtures across
participants. To compare with FLAIR’s policy mixtures, we train a learning-from-scratch neural
network for each of the participant through the approach described in Section 1.3.1 with a budget of
20 episodes to make the comparison fair between FLAIR and learning-from-scratch. Note we also
try to train AIRL for each participant with 20 environment episodes, but AIRL fails to produce any
meaningful policy on the robot without the warmstart training of the learning-from-scratch approach.
Therefore, we compare FLAIR’s closest mixtures and least-close mixtures with the learning-from-
scratch policy for each participant. For the simplicity of description, we name the FLAIR’s closest
mixtures as “FLAIR’s best mixture” and FLAIR’s least-close mixture as “FLAIR’s worst mixture”.

In the second human-subject session, we invite the participants back to show them the robot striking
a ping pong ball based upon what the robot learned from their demonstration. We show twelve
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Table 1: This table depicts policy metrics between FLAIR’s best mixtures, FLAIR’s worst mix-
tures, and learning-from-scratch with AIRL. The scores are shown as averages± standard deviations
across twenty-eight participants. Bold denotes the highest scores.

Metrics FLAIR’s Best Mixture FLAIR’s Worst Mixture Learning-from-Scratch
Task Score 66.9± 10.3 59.5± 12.8 56.6± 12.3

Strategy Score 96.6± 17.4 70.3± 23.7 90.0± 18.0

strikes (i.e., trajectories) consisting of three sets of four replications each of 1) FLAIR’s best mixture
for that subject, 2) FLAIR’s worst mixture for that subject, and 3) a policy that was learned from
scratch on that subject’s demonstrations. The order of the trajectories shown is randomized.

After each robot trajectory, we administer a 10-item Likert Scale on a 5-point response scale
(Strongly Disagree to Strongly Agree). The questionnaire includes ten questions, where four ques-
tions pertain to whether the robot successfully accomplishes the task, and six questions are about
whether the performed trajectory fits the participant’s style. The participants are invited to express
their comments about the strikes performed by the robot after the questionnaire is completed.

The ten questions in the questionnaire are listed below. Questions 1-6 are for assessing the strategy
component and questions 7-10 are for the task component of the robot’s performance.

1. The robot did a good job performing the task using the style I demonstrated.
2. The robot understands my style in performing the task.
3. The robot paid attention to the style I demonstrated.
4. The robot failed to imitate the style I demonstrated for the task.
5. The robot tried to perform the task using its own style.
6. The robot ignored my preferences for how to do the task.
7. The robot attempted to accomplish the task.
8. The robot knows how to hit the targeted spot.
9. The robot did not work on assigned task.

10. The robot performed the task poorly.

1.4 Experimental Results

In this section, we quantitatively compare FLAIR’s performance on accomplishing the task and
personalizing to user preference with the learning-from-scratch approach, and qualitatively show
policy mixtures FLAIR creates.

Based on the questionnaire each participant fills, we calculate a strategy score and a task score by
summing the corresponding Likert items. As such, the strategy score ranges from 24-120 (four
repeated trajectories for one policy by 6 strategy questions with each question having a score of
1-5). Similarly, the task score ranges from 16-80.

The strategy and task scores results are summarized in Table 1. Levene’s test shows the homoscedas-
ticity assumption holds for comparisons of strategy score (W = 1.24, p = 0.296) and task score
(W = 0.78, p = 0.464), and therefore we carry out ANOVA tests when comparing the three poli-
cies. The one-way repeated measure ANOVA shows significant differences in both the task score
(F (2, 54) = 9.88, p < .001) and the strategy score (F (2, 54) = 22.55, p < .001). The posthoc
paired t-test shows the FLAIR best mixture has significantly higher task scores than both learning-
from-scratch (t(27) = 5.06, p < .001) and the FLAIR worst mixture (t(27) = 2.88, p = 0.004).
The posthoc paired t-test on strategy score shows that the FLAIR best mixture has significantly
higher strategy scores than both learning-from-scratch (t(27) = 1.93, p = 0.032) and the FLAIR
worst mixture (t(27) = 5.88, p < .001). Learning-from-scratch has a higher strategy score than
the FLAIR worst mixture (t(27) = 4.62, p < .001). We applied the Holm–Bonferroni method
to counteract the problem of multiple comparisons. After ranking the three p-values, we observe
the lowest p-value (the FLAIR best mixture vs. the FLAIR worst mixture, p < .001) is less than
0.05/n = 0.05/3 ≈ 0.017, thus being significant. The second lowest p-value (learning-from-
scratch vs. the FLAIR worst mixture, p < .001) is less than 0.05/(n − 1) = 0.05/2 = 0.025, thus

3



Figure 1: Frames of a 90% Topspin + 10% Lob mixture (full video available in the supplementary
video). It is seen in the motion that the paddle starts in a tilted motion (standard for a topspin strike)
and curves upward to return a ball with high curvature (typically of a lob strike). The location of the
paddle also moves from low to high, which fits the characteristics of a lob strike.

being significant. The third lowest p-value (the FLAIR best mixture vs. the FLAIR worst mixture,
p = 0.032) is less than 0.05/(n− 2) = 0.05, thus also being significant. These results indicate the
success of FLAIR’s mixture optimization in identifying a policy mixture that accomplishes the task
and fulfills the user’s preference in the table tennis real-robot setup.

The mean task and strategy scores FLAIR best mixture achieves are higher than the ones of the
learning-from-scratch policy. Moreover, FLAIR best mixture has smaller standard deviation on
both scores, showing FLAIR’s best mixture not only achieve higher scores in general but also has
a more stable performance. In fact, multiple participants note the learning-from-scratch policies
are “jerky” and “noisy”. On the contrary, three participants provided compliments for FLAIR best
mixture trajectories including “these four trajectories (from FLAIR best mixture) performs much
better than others and are very similar to what I did”, “this trajectory is amazing”, “this trajectory
performs my strategy even better than I did”, and “this trajectory is exactly what I want. Can I give
it a star on top of the score 5?”

We further qualitatively provide several mixture videos in the supplementary video. Policy mixtures
are versatile, creating novel behaviors that successfully accomplish the task of hitting the ping pong
ball over the net. We illustrate one such mixture (90% Topspin + 10% Lob) in Figure 1, displaying
a frame-by-frame example of a mixture producing an interesting motion.

2 Method Details

2.1 State Marginal Distribution KL-Divergence Estimation

Why utilize the KL Divergence? The KL-divergence is a common choice to measure the distance
between two distributions in the machine learning community and within the imitation learning
field [3]. A recent study of different f-divergence measures shows Forward KL is a well-performing
f-divergence metric to compare expert trajectories with policy-generated trajectories in an IRL set-
ting [4]. Our method, FLAIR, utilizes the forward KL divergence between the demonstration’s and
mixture policy’s estimated state distributions as the minimization objective in mixture optimization
and a goodness-of-fit metric.

How do we estimate the KL-Divergence between two state marginal distributions with their
samples? To calculate the estimated KL-Divergence between two state marginal distributions, we
utilize the identity in Equation 2, where p and q are two probability distributions, H(p, q) denotes
cross entropy, and H(p) denotes entropy.

DKL(p, q) = H(p, q)−H(p) (2)

We adopt the Kozachenko-Leonenko estimator, a non-parametric entropy estimator that uses k-
nearest-neighbors distances of n i.i.d random vectors, to estimate the entropy and cross entropy [5].
The states in demonstrations and policy rollouts are pooled to serve as i.i.d. random samples for the
two state marginal distributions. FLAIR performs k-nearest-neighbors to estimate KL-divergence
between the true state marginal distribution (expert demonstration) and the generated state marginal
distribution (rollouts from mixture policy), which follows [4].
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Table 2: This table shows the results of multiple, non-differentiable optimization methods in mini-
mizing the estimated KL Divergence in Inverted Pendulum in one trial.

Estimated KL Divergence Random Search PSO GPO CMAES
Demonstration 1 2.39124 6.420129 6.489698 17.45635
Demonstration 2 -0.91501 -1.03243 -0.78408 22.73914
Demonstration 3 2.676944 2.492234 2.705531 14.91208
Demonstration 4 -0.7321 -0.7271 -0.70971 18.07601
Demonstration 5 0.348959 0.272621 0.6422 14.0717
Demonstration 6 18.8059 18.91321 19.37367 21.19286
Demonstration 7 -2.85413 -2.93581 0.558 19.046
Demonstration 8 2.5174 -1.35019 12.76616 22.05171
Average 2.779906 2.756573 5.130184 18.69326

2.2 Policy Mixture Optimization Method

We study different approaches for performing the non-differentiable policy mixture optimization.
We consider approaches including Particle Swarm Optimization (PSO) [6], Bayesian Optimization
(GPO) [7], and Covariance Matrix Adaptation Evolution Strategy (CMAES) [8]. We examine how
these approaches perform during a trial of FLAIR and find that random search proves to be the
most effective method. As shown in Table 2.2, we find that, despite the marginally lower average
estimated KL divergence of 1% (≈ 2.78 for Random Search compared to ≈ 2.76 for PSO), random
search is a reliable method for exploring the space of possible mixture policies and selecting a well-
performing one. Other approaches such as GPO or CMAES fail to meet similar performance as
Random Search and PSO (GPO is 85% higher than Random Search, CMAES is 572% higher than
Random Search).

2.3 Proof of Lemma 1

If demonstration τi has weight wi,j on strategy j (as identified in Policy Mixture), we could view
the probability that τi happens under the strategy reward, RS-i, should be wi,j proportion of the
probability of the pure demonstration, τmj . This property can be exploited to enforce a structure on
the reward given to the pure-demonstration, τmj , and mixture-demonstration τi, as per Lemma 1.
Lemma 1. Under the maximum entropy principal,

wi,j =
P (τi; S-j)
P (τmj ; S-j)

=
eηRS-j (τi)

eηRS-j (τmj )

Proof. According to the maximum entropy principle,

P (τ ;R) =
eηR(τ)

∫
τ ′ e

ηR(τ ′)

Therefore,

P (τi;S-j)
P (τmj ;S-j)

=

e
ηRS-j

(τi)

∫
τ′ e

ηR(τ′)

e
ηRS-j

(τmj
)

∫
τ′ e

ηR(τ′)

=
eηRS-j (τi)

eηRS-j (τmj )

Combined on our assumption, wi,j =
P (τi;S-j)
P (τmj ;S-j) , we prove Lemma 1.

3 Simulation Experiment Details

3.1 Environment Details

We test FLAIR on three simulated continuous control environments in OpenAI Gym [9]: Inverted
Pendulum [10], Lunar Lander, and Bipedal Walker [11]. The goal in Inverted Pendulum (IP) is to
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balance a pendulum by the cart’s horizontal movements, where reward is given by the negative angle
between the pendulum and the upright position. The objective in Lunar Lander (LL) is to achieve a
controlled landing of a spacecraft. The agent receives a reward of 100 if it successfully lands, −100
if it crashes, 10 for each leg-ground contact, and −0.3 for firing its engine. The goal in Bipedal
Walker (BW) is to teach a robot to walk using the hull speed, joints’ angular speed, and 10 LiDAR
rangefinder measurements. BW receives a reward based on forward-moving speed.

Generally, various strategies in IP include sliding or swinging along the rail. In LL, the spacecraft
takes unique flight paths to approach the landing pad. In BW, the robot limps, runs, or hops to propel
itself forward1.

We note that we modified InvertedPendulum-v2, LunarLanderContinuous-v2, and BipedalWalker-
v3 environments to disable the option “terminate when unhealthy” and set a fixed horizon of 1000,
500, and 1000, respectively. In turn, when calculating the task reward correlation, it is more difficult
to achieve a high correlation with the ground truth task reward due to large cumulative negative
rewards that punish failing behaviors and modest rewards reinforcing successful behaviors.

3.2 Experiment Details

We generate a dataset of 10 heterogeneous demonstrations by jointly optimizing an environment
and diversity reward with DIAYN [12] for each domain, Inverted Pendulum (IP), Lunar Lander
(LL), and Bipedal Walker (BW). We utilize this dataset of ten heterogeneous demonstrations for
all experiments except the scalability experiment. We provide these same demonstrations in our
experiments to each of the baseline methods and FLAIR. We also generate an additional test dataset
of 10,000 demonstrations and record the cumulative reward of trajectories during training to evaluate
the correlation between our learned task reward and the ground truth environment reward.

On policy evaluation metrics, we train AIRL on each individual demonstration (named AIRL Single)
in favor of its personalization. On reward metrics, we train AIRL on the entire set of demonstrations
(named AIRL Batch) to improve its reward robustness.

3.3 Mixture Optimization Details

In order to accelerate the mixture optimization process, we parallelize the mixture policy rollouts
in fixed batches of thirty for Inverted Pendulum and nine for Lunar Lander and Bipedal Walker
trajectories. This difference is due to computational constraints to parallel rollouts. After each batch,
we check whether any of the mixtures has an estimated KL Divergence below our KL divergence
threshold, ε, and, if so, we end the search. If not, we continue the search until we reach the cap of
random search samples, which is 2000. If we cannot find a suitable mixture by this limit of 2000
samples, we train a new policy and compare its performance with the best mixture found. We include
the new demonstration as a mixture if the mixture policy has a lower estimated KL divergence with
the demonstration. Otherwise, the demonstration is introduced as a new strategy with the newly
trained policy, as shown in the pseudocode of the main paper.

3.4 Implementation Details and Hyperparameters

We utilized the rllab [13], garage [14], AIRL [15], MSRD [16] implementations of TRPO, AIRL,
and MSRD to develop FLAIR2.

For Inverted Pendulum, FLAIR trains 600 iterations of AIRL if it is needed for a new strategy and
400 iterations of MSRD when each demonstration is introduced. We train AIRL for 600 iterations
since it is empirically the number of iterations it takes for AIRL to converge in Inverted Pendulum
and the additional iterations of MSRD improve the learned task reward. The mixture optimization
threshold, ε, is 1.0, empirically tuned to encourage the best performance by evaluating how closely
the mixture videos align with the demonstrations. FLAIR starts the MSRD and Between Class
Discrimination training once three strategies are introduced. The maximum number of samples
used for policy mixture optimization is 2000.

1Link for the videos of the demonstrations and learned policies of FLAIR: https://tinyurl.com/
FLAIRVIDS

2All code/data will be open sourced.
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Table 3: This table shows the hyperparameters used in the benchmark experiments for all methods
studied (AIRL, MSRD, and FLAIR).

Hyperparameter Method Value
Discriminator Update Step In Each Iteration All 10
Batch Size All 10000
Episode for Rollouts per Iteration All 10
γ All 0.99
Entropy Weight All 0.0
Fusion Size All 10000
L2 Regularization: Strategy Reward MSRD & FLAIR 0.01
L2 Regularization: Task Reward MSRD & FLAIR 0.0001

Table 4: This table shows learned policy metrics between AIRL, MSRD, and FLAIR.
Domains Inverted Pendulum Lunar Lander Bipedal Walker
Methods AIRL MSRD FLAIR AIRL MSRD FLAIR AIRL MSRD FLAIR

Demonstration Log Likelihood −29216.5 −40870.5 −6525.0 −14835.5 −11124.2 −14550.8 −48162.6 −88557.8 −59406.6
Environment Return −172.7 −166.4 −38.5 −7418.1 −9895.3 −6346.6 −30637.2 −74166.0 −7064.0

Estimated KL Divergence∗ 4.08 7.67 4.01 72.0 70.9 67.2 13.0 32.6 12.1
Strategy Rewards −5.73 −6.22 −1.23 −12.67 −20.26 −4.19 −5.31 −29.82 −4.22

∗ Lower is better

For Lunar Lander, FLAIR trains 1000 iterations of AIRL if it is needed for a new strategy and 100
iterations of MSRD when each demonstration is introduced. Likewise for Bipedal Walker, FLAIR
trains 1800 iterations of AIRL and 100 iterations of MSRD. The mixture optimization threshold
is 40.0 for Lunar Lander and 8.0 for Bipedal Walker. FLAIR starts MSRD and Between Class
Discrimination when three strategies are introduced. The maximum number of samples for random
search is 900, with three repeats for each mixture weight, meaning each mixture policy is rolled out
three times and all three trajectories are used in the KL divergence estimation. The KL divergence is
calculated with respect to three repeats of the policy rollouts, thus ensuring a more robust estimation
of the state marginal distributions.

In all domains, Flair has a learning rate of 0.0001 for Between Class Discrimination (BCD) and each
iteration it samples 10 trajectories for training. For a fair comparison against AIRL and MSRD, we
calculate the number of environment episodes used by FLAIR, and train both AIRL and MSRD to
the same number of samples in each domain. All methods use a replay buffer (named fusion) in
reward training which keeps a record of generated trajectories for reward training, similar to [15].
For AIRL, MSRD, and FLAIR, the hyperparameters for policy and reward training are shown in
Table 3.

3.5 Result Details

3.5.1 Policy Performance

This section corresponds to the Q1&Q2 in the main paper.

Table 4 summarizes our results for comparing policy metrics, and Table 5 provides results of associ-
ated statistical tests. Tests for normality and homoscedasticity indicate that the data does not satisfy
the assumptions of a parametric ANOVA test when comparing FLAIR with benchmarks. Thus, we
instead perform a non-parametric Friedman test followed by a posthoc Nemenyi–Damico–Wolfe
(Nemenyi) test [17].

Demonstration Log Likelihood FLAIR is able to model the personal preferences demonstrated
by the users similarly to AIRL and MSRD, shown as “Demonstration Log Likelihood” in Table 4.
Note that AIRL trains a separate policy for each demonstration from scratch, and MSRD has access
to the ground-truth strategy labels. A Friedman test is significant for IP and BW (p < .01) and only
AIRL significantly outperforms MSRD in the posthoc Nemenyi test (p < .01). AIRL models each
demonstration individually while MSRD builds a static joint model of all demonstrations. We note
that AIRL has advantage on the metric by creating a separate model for each of the demonstrations
but are notoriously inefficient as shown in Figure 3 of the main paper. In contrast, FLAIR auto-
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Table 5: This table shows statistical tests for policy metrics comparing AIRL, MSRD, and FLAIR.
Domains Inverted Pendulum Lunar Lander Bipedal Walker

Tests Friedman Nemenyi Nemenyi Friedman Nemenyi Nemenyi Friedman Nemenyi Nemenyi
FLAIR vs. AIRL MSRD AIRL MSRD AIRL MSRD

Q2 = q87 = q87 = Q2 = q87 = q87 = Q2 = q87 = q87 =
Demonstration Log Likelihood 16.8∗∗ 0.77 3.87∗∗ 2.4 31.2∗∗ 2.32 3.49∗∗

Environment Return 29.4∗∗ 4.26∗∗ 5.03∗∗ 6.6∗ 1.16 2.52∗ 34.2∗∗ 2.32 5.81∗∗

Estimated KL Divergence 22.2∗∗ 0.39 4.26∗∗ 12.6∗∗ 2.53∗ 3.49∗∗ 37.8∗∗ 1.16 5.81∗∗

Strategy Rewards 1.40 0.77 0.39 6.87∗ 0.90 2.58∗ 26.87∗∗ 0.65 4.78∗∗

∗ Significance of p < 0.05
∗∗ Significance of p < 0.01

Figure 2: This figure shows the correlation between the estimated task reward with the ground truth
task reward for Lunar Lander and Bipedal Walker respectively. Each dot is a trajectory. FLAIR
achieves a higher task reward correlation than baselines. The diagonal dashed lines denote perfect
correlation.

matically constructs policy mixtures to more efficiently adapt to each demonstration and achieves a
similar performance.

Environment Return FLAIR succeeds at learning policies that perform better at the ground truth
task. A Friedman test is significant in all three domains (p < .01 in IP/BW, p < .05 in LL) and
FLAIR outperforms both AIRL and MSRD in IP (p < .01) and BW (p < .05 for AIRL, p < .01 for
MSRD). Additionally, FLAIR outperforms MSRD in LL (p < 0.05), showing that FLAIR is able to
adeptly tease out the latent task goal and leverage it to train highly successful policies.

Estimated KL Divergence Qualitatively, we find that FLAIR learns policies and policy mixtures
that closely resemble their respective strategies, visualized in policy renderings1. Quantitative ev-
idence that FLAIR generates trajectories that are closer to the demonstration than both AIRL and
MSRD, shown as row “Estimated KL Divergence” in Table 4, which is evaluated between the pol-
icy rollout and the demonstration state marginal distributions. A Friedman test is significant in all
domains (p < .01). In IP and BW, FLAIR significantly outperforms MSRD (p < .01) while in LL,
FLAIR significantly outperforms both AIRL (p < .05) and MSRD (p < .01).

3.5.2 Task Reward Correlation

This section corresponds to the Q3 in the main paper.

We evaluate the learned task reward functions by calculating the correlation between estimated task
rewards and ground-truth environment rewards. We construct a test dataset of 10,000 trajectories
with multiple policies obtained during the “DIAYN+env reward” training by collecting ten trajec-
tories for each policy every 100 training iterations. Through this approach, the test dataset has
different strategies with varying success. We compare correlations using a z-test after Fischer r-to-
z-transformation [18]. For IP, FLAIR has a better correlation than AIRL (z = 58.56, p < .01), and
than MSRD (z = 20.76, p < .01). Likewise in LL, as shown in Figure 2, FLAIR has a correlation
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Table 6: This table shows the performance of FLAIR in an Ablation experiment with Between Class
Discrimination (BCD) for Inverted Pendulum.

Average Metrics FLAIR without BCD FLAIR with BCD
Environment Return -129.593 -38.5

Log Likelihood -16947.5 -6525.0
Estimated KL Divergence∗ 4.44 4.01
Task Reward Correlation 0.954 0.953

Cosine Distance∗ 0.43 0.03
∗ Lower is better

Figure 3: This figure depicts the normalized rewards on demonstrations based on the strategy reward
output in Inverted Pendulum for FLAIR without BCD (left) and with BCD (right).

r = 0.614 which is better than AIRL r = 0.502 (z = 11.55, p < .01) and MSRD r = 0.586
(z = 3.09, p < .01). In BW, as shown in Figure 2, FLAIR has a correlation r = 0.582 which is
better than AIRL r = 0.281 (z = 26.6, p < .01) and MSRD r = 0.401 (z = 17.0, p < .01).
AIRL underperforms since it treats heterogeneous demonstrations as homogeneous and does not
distinguish between the strategic preference and the underlying task objective.

3.5.3 Strategy Reward Learning & BCD Ablation

This section corresponds to the Q4 in the main paper.

We evaluate learned strategy rewards on the demonstrations, “predict” the strategy mixture weights
for each demonstration via strategy rewards, and compare the predicted strategy labels to the
strategy weights obtained from mixture optimization. More specifically, we normalize the strat-
egy reward outputs with a demonstration to obtain the predicted strategy reward label by Ci,j =

e
RθS-i

(τj)

maxnk=1 e
RθS-i

(τk) . We compute the cosine distance between the true mixture weights (obtained via

mixture optimization) and the predicted label (calculated with strategy rewards) as in Equation 3.

Cosine Distance = 1− ~w · ~Ci
||~w|| × || ~Ci||

(3)

With this metric, we compare how successful the strategy reward is in discriminating strategic pref-
erences at the end of training with and without BCD. We calculate the predicted class labels by
the learned strategy rewards for each demonstration (shown in Figure 3, Figure 4, and Figure 5
for the three domains) and compare them to the ground-truth strategy weights (estimated by mix-
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Figure 4: This figure depicts the normalized rewards on demonstrations based on the strategy reward
output in Lunar Lander for FLAIR without BCD (left) and with BCD (right).

ture optimization). The performance improvement with BCD is shown in Table 6. Along with all
key policy metrics such as Environment Return and Log Likelihood, FLAIR with Between Class
Discrimination shows a lower cosine distance of 0.03, compared to 0.43 of FLAIR without BCD,
between the true strategy labels and the strategy reward predictions. The results show FLAIR with
Between Class Discrimination can train the strategy reward to better recognize the class labels of
each demonstration. In contrast, the strategy rewards in FLAIR without Between Class Discrim-
ination do not clearly distinguish between different strategies hence cannot identify the strategic
preference for each strategy.

3.5.4 Scalability

This section provides more details to Q6 of the main paper.

As described in our larger scale LfD experiment, we generate 95 mixtures with randomized weights
from 5 base policies for a total of 100 demonstrations to test how well FLAIR scales. Our goal is to
study the success of FLAIR in a lifelong learning setting by evaluating how it scales to the challenge
of modeling a large number of demonstrations. We perform this large scale experiment in all 3
domains and compare the results to the baseline metrics of AIRL, MSRD, and FLAIR from the ten
demonstration experiment in Section 3.5.1. We include results of the environment returns as each
demonstration is introduced in the experiment along with additional results for other key metrics,
including log likelihood, KL divergences, and task reward correlation in Figure 8.

FLAIR demonstrates consistently strong performance in environment returns as it is able to mitigate
capacity saturation by dynamically expanding the model if presented with new strategies. However,
FLAIR inherits a shortcoming in AIRL (unstationary reward learning [19]) that makes it prone to
catastrophic forgetting [20, 4], reflected in the marginal decline in performance with the task reward
correlation and KL divergence as the number of demonstrations increases. Yet, through reward
distillation and BCD, FLAIR is able to extract key knowledge from an excess of information to
learn well-performing policies that explain each expert’s preferences effectively.

3.5.5 Sensitivity Analysis

This section corresponds to the Q7 in the main paper.
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Figure 5: This figure depicts the normalized rewards on demonstrations based on the strategy reward
output in Bipedal Walker for FLAIR without BCD (left) and with BCD (right).

Figure 6: This figure shows the correlation
between the estimated task reward with the
ground truth task reward for Inverted Pen-
dulum. Each dot is a trajectory. FLAIR
achieves a higher task reward correlation.

Figure 7: This figure compares the number
of episodes needed for AIRL and MSRD to
achieve the same Log Likelihood as FLAIR’s
mixture optimization. The red bar is the me-
dian and the red triangle represents the mean.

We generate a Receiver Operating Characteristic (ROC) Analysis by treating the classification of
the threshold as our estimation, and the KL divergence comparison between the best mixture policy
and the new-strategy as the true signal. FLAIR with a mixture optimization threshold has a high
Area Under Curve (0.92) in the ROC Curve for IP, suggesting that there is a wide range of accept-
able threshold values that can determine whether to accept the policy mixture without considering
training a new policy by AIRL.

Tuning the threshold parameter trades off computational efficiency and modeling accuracy: Creating
more strategies would be correlated with higher accuracy but with increased computational costs.
As such, there is not a one-size-fits-all. In our experiments, we empirically tune this threshold to
maximize the modeling accuracy of FLAIR. For deployment, one could collect a subset of the data,
tune the threshold for application-specific criteria, and continue running with this tuned parameter.
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Figure 8: This figure shows the key metrics for FLAIR during the lifelong learning experiment in
all three domains. The blue lines show the performance of FLAIR in the scalability experiment for
each demonstration. We see FLAIR demonstrates consistently strong performance in environment
returns as it is able to mitigate capacity saturation by dynamically expanding the model if presented
with new strategies. Note: Estimated KL Divergence is better when it’s lower, while for all other
metrics, the higher the better.

3.5.6 More Benchmarks

We compare our method, FLAIR, with InfoGAIL [21], a state-of-the-art method for learning from
heterogeneous (i.e., diverse) demonstrators. Unlike FLAIR, InfoGAIL is unable to perform incre-
mental learning and must be retrained given any new demonstrations. Averaged over our dataset
of ten demonstrations in Inverted Pendulum, FLAIR outperforms InfoGAIL in terms of the log-
likelihood of the demonstrators’ actions (Infogail: −24504, 276% worse than FLAIR), the policies’
rewards (InfoGAIL: −511 reward; 1227% worse than FLAIR), and forward KL divergence (Info-
GAIL: 12.32, 207% worse than FLAIR).
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Figure 9: This figure depicts the ROC curve with FLAIR’s ability to predict the mixture- vs. new-
strategy as the threshold is varied. We see FLAIR with a mixture optimization threshold has a high
Area Under Curve (0.92) in the ROC Curve for IP.
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