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a b s t r a c t

Shape optimization is used to design flexible mechanical metamaterials. We employ the higher-
order moving-mesh method to arbitrarily parameterize the geometries and tune their nonlinear
mechanical response to our liking under different loading conditions. Rather than considering periodic
unit cells, we focus on finite size elastomeric sheets with an embedded array of pores subjected
to uniaxial tension, compression, and shear and use the optimization algorithm to tune either their
stress–strain response or their effective Poisson’s ratio. We find that for all considered targets the
algorithm converges to aperiodic geometries that are non-intuitive and comprise domain-like features.
As such, our results indicate that aperiodicity may provide new opportunities for the design of flexible
metamaterials.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Flexible mechanical metamaterials are a class of structures
with unique geometric features at the microstructural level de-
signed to lead to uncommon properties governed by their non-
linear behaviors [1]. One prominent class of flexible mechanical
metamaterials is that of an array of identical pores embedded
in an elastomeric sheet [2,3]. Such cellular metamaterials have
been shown to be endowed with exotic properties, such as aux-
eticity [4], programmability [5,6], and tunable wave filtering [7].
These functionalities can be tuned by controlling the exact geom-
etry of the individual pores [8], as well as their arrangement [9].
However, most studies to date have focused on periodic ar-
chitectures with spatially homogeneous features. On the other
hand, aperiodicity has recently emerged as a powerful platform to
realize metamaterials with enhanced functionality [10–12]. Since
the design space is extremely large in aperiodic metamaterials,
it is not sufficient to use experiments or direct simulations to
discover metamaterials with new properties.

The design of flexible aperiodic metamaterials with desired
functionality requires efficient optimization algorithms. While
gradient-free algorithms have been successfully used to explore
the complex energy landscape of these nonlinear systems [13],
they become inefficient as the number of parameters describing
the structure increases. On the other hand, gradient-based op-
timization methods have proven successful in identifying struc-
tures with target behavior in the linear regime [14,15], but their
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application to the inverse design of nonlinear flexible metama-
terials is still nascent [16–18]. The success of gradient-based
methods to generate flexible metamaterials with target responses
ultimately depends on a well-defined objective, the existence of
‘‘good-enough’’ nearby local minima (as it is difficult to isolate
the objective’s global minimum), and the ability to generate new
designs that do not violate any imposed constraints.

Two classes of gradient-based methods have been widely used
to optimize the response of metamaterials: topology optimiza-
tion [14] and shape optimization [19]. Topology optimization is
a mathematical method that optimizes material layout within a
given domain, taking into account specific design constraints. The
design variables in topology optimization are continuous fields
that specify the presence or absence of material in the domain.
Shape optimization, on the other hand, focuses on finding the
optimal shape or geometry of a domain with a fixed topology,
such as a solid object with embedded a predetermined distribu-
tion of holes. In shape optimization, the design variables involve
boundary variations rather than the material layout.

Here, we use shape optimization to identify soft, highly de-
formable, connected, finite, two-dimensional structure with spec-
ified stress–strain responses or effective Poisson’s ratios. Since
topology optimization often fails to provide connected geome-
tries for non-periodic compliant structures (see Appendix), by
restricting the space of admissible designs to a fixed topology,
we eliminate the possibility of disconnected domains. We start
by describing the basic ingredients needed to solve a shape opti-
mization problem. Then, we apply the higher-order moving mesh
method to design soft cellular structures with target responses
under tension, compression, and shear. We find that all identified
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Fig. 1. Mapping from the initial design domain ⌦0 to the updated reference configuration ⌦k via the invertible geometric transformations T
k and to the deformed

configuration ⌦"
k
via the deformation gradient F.

solutions are aperiodic, confirming aperiodicity as a promising
platform for the design of cellular metamaterials capable of sup-
porting a wide range of mechanical responses in the nonlinear
regime.

2. Governing equations

The ability to withstand large deformations and revert to the
undeformed state in a perfectly elastic manner is key to the
design of flexible mechanical metamaterials. As a result, we con-
sider an arbitrary domain⌦ of elastomeric material. The behavior
of such an elastic material can be readily described by introducing
a strain energy functional  that depends solely on the local
material deformation described by the displacement field u =
(ux, uy)T . Here, we capture the material response using a nearly
incompressible neo-Hookean model with strain energy density
function

 (F) = µ

2
�
tr(FT

F) � 3
�
� µ ln det(F) + �

2
ln det(F)2, (1)

where F = ru + I is the deformation gradient, µ is the shear
modulus, and � is the first Lamé coefficient. The neo-Hookean
model is a widely used constitutive model that well describes the
mechanical behavior of the elastomeric materials typically used
to realize flexible mechanical metamaterials [4]. We note that our
approach is not restricted to neo-Hookean, and could be applied
to a broad class of hyperelastic constitutive models.

Equilibrium of the structure is ensured by finding the displace-
ment field u 2 V that minimizes the total energy ⇧ (u), where V

is the space of kinematically admissible displacement fields. The
total energy is defined as

⇧ (u) =
Z

⌦

 (F)dx �
Z

⌦

b · udx �
Z

�N

t · u dS, (2)

where t is the traction applied on a portion of the boundary
�N and b represents a body force. This amounts to solving the
variational problem

@⇧ (u; v) = d⇧ (u + ✏v)
d✏

���
✏=0

= 0, 8v 2 V (3)

and can be equivalently written as

@⇧ (u; v) =
Z

⌦

 (ru)
@ru

: rvdx �
Z

⌦

b · vdx

�
Z

�N

t · v dS = 0, 8v 2 V (4)

In this study we use the finite element (FE) method to solve
Eq. (4) for different loading conditions and domains ⌦ and apply
shape optimization to identify the domain shape that leads to
target mechanical responses.

3. Shape optimization

Shape optimization seeks to identify the optimal shape of a
domain ⌦ that minimizes a shape functional J : Uad ! R,
where Uad denotes the set of admissible domains. In the context
of this study, J evaluates the mismatch between a desired target
structural properties (e.g. target stress–strain curve and target
tunable Poisson’s ratio) and the response of the structure. Gen-
erally, the shape optimization problems considered in this study
can be written as

find⌦⇤ = arg min
⌦2Uad

J(u,⌦)

subject to @⇧ (u; v) = 0 on ⌦
ci(⌦)  0 for i = 1, . . . ,Nc

where ⌦⇤ is the optimal geometry, @⇧ (u, v) is defined in Eq. (3)
and ci(⌦) denotes the ith additional constraint imposed on the
domain. Given the high sensitivity of flexible mechanical meta-
materials to small variations in geometric features [8], we expect
shape optimization to be a powerful tool to design a system
with desired properties. However, these problems are difficult
to solve since the dependence of J on the domain is typically
non-convex [19] and non-unique.

In this study, we employ a higher-order moving mesh method
to optimize the shape of the considered structures [20]. While
other strategies have been proposed such as the level set method
[21], phase field method [22], and reduced mapped parametriza-
tions [17], the higher-order moving-mesh method offers three
main advantages: (i) it enables high boundary resolutions via an
arbitrarily refinable conforming mesh, (ii) it enables the explo-
ration of a large class of shapes beyond polytopes, and (iii) it
is inherently compatible with standard finite element simulation
packages [20]. The higher-order moving-mesh method represents
the control space as a set of invertible geometric transformations
T
k that can be parameterized by the same underlying finite ele-

ment mesh used to represent the solution u. From a mechanics
perspective, the mapping T

k can be thought of as a new inter-
mediate transformation of the initial domain ⌦0 to a reference
configuration ⌦k (see Fig. 1).
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4. Numerical implementation

We simulate the response of flexible mechanical metamate-
rials under different loading conditions by solving Eq. (4) using
the open-source FE solver firedrake [23]. In all of our anal-
ysis, we use plane strain conditions and discretize the models
with quadratic triangular elements unless otherwise specified.
We employ adaptive continuation to improve convergence of the
forward problem [24]. Adaptive continuation splits up the desired
interval into smaller domains and will refine the step size if the
previous state does not generate a good-enough starting point for
the current iterate. In problems where adaptive continuation is
not sufficient, we instead perform a dynamic step using a back-
ward Euler time discretization to generate a guess for the current
load increment. We also make use of an efficient checkpointing
routine. The checkpointing routine records the load-state pairs
of the previous shape iteration and uses that as an initial guess
when we solve our nonlinear equations via Newton’s method.
By checkpointing we avoid recomputing the entire trajectory via
adaptive continuation or a dynamic step and reduce the number
of forward solves especially in steps where the shape of the
domain does not change significantly.

To identify novel geometries leading to target behaviors we
use fireshape, a shape optimization library built atop fire-
drake that is based on the higher-order moving-mesh method
[25]. Sensitivities and the update are computed automatically
through the fireshape interface. We solve the resulting prob-
lem using the augmented Lagrangian method which facilitates
the introduction of additional constraints. The unconstrained
nonlinear optimization problems that are generated by the aug-
mented Lagrangian are solved using a trust-region algorithm
with a quasi-Newton L-BFGS Hessian approximation [26]. We
configure the trust-region solver to have an initial trust radius of
10�3

L (where L is the system’s characteristic length scale), which
prevents large initial update steps that can lead to excessive mesh
distortions. An explicit barrier is constructed for problems that
fail to converge numerically and for steps that lead to excessive
distortion. In cases where a FE simulation fails to converge or
the gradient of the shape transformation is below a threshold
det(rT

k) < 0.05 (evaluated for each element) we assign a NaN
to the objective function and the trust radius. In this case, the
trust radius is decreased by a factor of 0.25L and the optimizer
computes a new step from the previous iterate. The optimization
problem is stopped when either a maximum of 50 iterations or
a minimum step size of 10�10

L or a minimum gradient tolerance
of 10�6 are reached.

5. Results

Our starting point is a structure consisting of an elastomeric
square block with edges of length L and an embedded 9 ⇥ 9
square array of circular holes (see Fig. 2-a). The holes have radius
r and center-to-center distance a = L/10, chosen so that the
initial porosity is �0 = ⇡r2/a2 = 0.6. Further, the structure
has the two vertical edges flanked by a column of semicircles
and the horizontal ones ending with a strip of solid material
of width, a � r . As such, the area of the structure covered by
elastomeric material is Aelas = 0.462L2. The behavior of the
elastomeric material is captured by a quasi-incompressible neo-
Hookean model with strain energy density given by Eq. (1), initial
shear modulus µ and first Lamé coefficient � = 24µ, which
results in a Poisson’s ratio of ⌫ = 0.48.

In Fig. 2-b, -c and -d we report the evolution of the normal-
ized nominal stress as a function of the applied strain for the
structure subjected to uniaxial tension, uniaxial compression and
shear, respectively. To simulate uniaxial loading conditions we

apply a normal displacement on the top and bottom boundaries,
un = 0.5L " n, where " is the applied strain and n denotes the
outward unit normal to the edges. During these simulations we
monitor (i) the resulting reaction force in vertical direction at
the top boundary per unit thickness, F2, from which we calculate
the nominal stress as S22 = F2/L, and (ii) the displacement in
horizontal direction in a region of size L/2 centered at the middle
of the structure on the left and right boundaries, � L

⌫ and � R

⌫ (see
region highlighted in blue in Fig. 2-a), from which an effective
structural Poisson’s ratio is then calculated as

⌫̃ = 1
L"

✓
1

|� L
⌫ |

Z

� L
⌫

uxdS � 1
|� R
⌫ |

Z

� R
⌫

uxdS

◆
. (5)

In the shear simulations we apply a tangential displacement on
the top and bottom boundaries, u? = 0.5L"n?, where n? is a
unit vector obtained by rotating n by 90� in a clockwise direction.
We monitor the resulting reaction force in horizontal direction at
the top boundary, F1, from which we calculate the nominal shear
stress as S12 = F1/L.

The results of Fig. 2-b indicate that under uniaxial tension all
pores elongate in the direction of the applied strain, leading to
a nearly-linear stress–strain curve with S22/µ ⇡ 0.94" and a
slowly decreasing effective Poisson’s ratio ⌫ ⇡ 0.27 � 0.45". By
contrast, when subjected to uniaxial compression the response
of the structure is characterized by two distinct regions (Fig. 2-
c): (i) an initial nearly-linear stress–strain response with stiffness
identical to that measured upon uniaxial tension, S22/µ ⇡ 0.99",
and nearly-constant Poisson’s ratio, ⌫ ⇡ 0.28 and (ii) for strains in
excess of "cr = �0.025 a stress plateau and a rapidly decreasing
effective Poisson’s ratio that eventually becomes negative. In the
initial linear regime all vertical ligaments separating the circu-
lar holes uniformly compress, but the sudden departure from
linearity is caused by their buckling, which induces the forma-
tion of a pattern of mutually orthogonal elliptical holes [2] (see
inset in Fig. 2-c). This pattern of perpendicular elongated holes
leads to an effective negative Poisson’s ratio, and substantially
reduces the overall stiffness of the structure. Finally, for shear we
find a nearly-linear stress–strain response with S12/µ ⇡ 0.06"
(Fig. 2-d).

Because of its rich mechanical behavior the structure pre-
sented in Fig. 2 provides a good platform to identify architectures
supporting a wide range of mechanical responses. As such, we
choose it as the initial domain ⌦0 and use shape optimization to
find domain shapes that lead to target stress–strain responses and
Poisson’s ratio evolutions under uniaxial tension, uniaxial com-
pression and shear. In pursuit of a target response, we define the
shape functional (objective) J as the squared difference between
the computed response f (") and target behavior f targ (x) over the
considered range of applied strain " 2 [0, "max],

J =
Z "max

0

⇥
f (") � f

targ (")
⇤2

d" ⇡
NX

i

wi

⇥
f ("i) � f

targ ("i)
⇤2

, (6)

where the function f stands for either the nominal stress or the
effective Poisson’s ratio and the integral is approximated using a
composite Simpson’s quadrature rule with N = 12 equally spaced
control points "i through the quadrature weights wi. Finally, we
note that in all our optimization analyses we choose |"max| = 0.1,
constrain the top an bottom edges to remain horizontal and of
length L and keep the total area of the elastic matrix identical to
that of the initial domain (i.e. 0.462L2). When seeking for struc-
tures with target stress–strain response, we allow for changes in
shape of the boundaries of all the pores. Differently, when looking
for target Poisson’s ratio evolutions, to facilitate the calculation of
the Poisson’s ratio, we do not allow for changes in shape of the
two columns of semicircular holes that flank the structures.
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Fig. 2. (a) Our starting point is a structure consisting of an elastomeric square block with edges of length L and an embedded 9 ⇥ 9 square array of circular holes
(note that � L/R include the entire boundary sections include the curved regions). (b)–(c) Evolution of the nominal stress (dark green) S22 (left axis) and structural
Poisson’s ratio (light blue) ⌫̃ (right axis) as a function of the applied strain " for (b) uniaxial tension and (c) uniaxial compression. (d) Evolution of the nominal
stress S12 as a function of the applied strain " for shear. Insets show deformed configuration at |"| = 0.1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

5.1. Designing the response under uniaxial tension

We aim to identify geometries that under uniaxial tension
result in a target stress–strain response

S
targ

22 (")
µ

= C
targ

1 " + C
targ

2 "2, (7)

where C
targ

1 denotes the initial stiffness and C
targ

2 determines the
stiffening behavior. Such geometries are identified by minimizing
the shape functional J as defined in Eq. (6) with f (") = S22(")/µ
and f

targ (") = S
targ

22 (")/µ.
Since flexible mechanical metamaterials subjected to large

deformations typically exhibit non-linear stress–strain behav-
ior, we first aim at identifying architectures characterized by a
purely linear response when uniaxially stretched. More specif-
ically, in Fig. 3 we report results for C

targ

2 = 0 and C
targ

1 =
0.1, 0.2, 0.3, 0.5, 0.8, 1.0. In Fig. 3-a we show the evolution of
the objective function J at each instance it was evaluated, in
Fig. 3-b we compare the optimal stress–strain curves to the
target ones and in Fig. 3-c we report the optimal geometries
in the undeformed configuration (i.e. at " = 0) and at " =
0.1. We find that for all considered targets the optimization
algorithm converges after approximately 100 function evalua-
tions and that these solutions closely match their corresponding
targets. Further, inspection of the identified optimal geometries
reveal that none of them is periodic. As the overall structural
stiffness increases, the region of elongated mutually orthogonal
holes monotonically shrinks. Further, when the stiffness of the
target response approaches or surpass that of the initial domain
⌦0, the optimization algorithm allocates more material to the
vertical ligaments, effectively creating thick vertical columns that
accommodate the imposed axial deformation and lead to a stiff
response.

The geometries identified by the optimization algorithm using
the elasticity norm exhibit stress–strain curves that closely match
the target ones, but given the extremely large design space we
expect many more architectures to exist that result in similar
mechanical responses. For example, the response of all designs
remains unaltered when they are reflected over the x-axis and the
y-axis. However, due to the deterministic nature of the employed
algorithm, we are unable to access multiple solutions leading to
the same response using the same initial domain and numerical
scheme. To identify them we must either change the shape of
the initial domain or modify the optimization algorithm. Though,
there are no guarantees that either of these methods will identify
different structures leading to the same response. In an attempt
of identifying a different solution to the optimization problem
(while avoiding symmetric solutions) we change the update in
the optimization algorithm and choose to calculate it as the Riesz
representation of the H

1 norm. In Fig. 4 we focus on structures
with C

targ

2 = 0.0 and C
targ

1 = 0.2 and 0.5 and report results
obtained using the H

1 norm. Our results indicate that for Ctarg

1 =
0.5 the optimization algorithm finds a geometry whose response
closely approximates the target. Remarkably, this optimal struc-
ture is very different from that reported in Fig. 3-c and it is nearly
periodic. All pores have shapes close to the initial circular one and
the target stiffness is met by thinning the ligaments in the vertical
direction. However, this design strategy fails when considering
more compliant targets. For C

targ

1 = 0.2 the objective function
is hardly reduced since the optimization algorithm attempts to
converge to structures with very thin vertical ligaments whose
behavior leads to large distortions in the underlying mesh. As
described in Section 4, when the mesh is excessively distorted
(i.e. for det(rT) < 0.05), we abort the simulation and assign a
NaN to the objective function, preventing convergence to a local
minimum.
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Fig. 3. Target linear responses under uniaxial tension. (a) Evolution of the objective function J during the shape optimization iterations for six targets defined by
C
targ

2 = 0 and C
targ

1 = 0.1 (dark green), 0.2 (teal), 0.3 (light blue), 0.5 (light pink), 0.8 (dark pink) and 1.0 (brown). (b) Target response (circular markers) and
stress–strain curves for the optimal designs (continuous lines). The black dotted line denote the stress–strain curve of the initial domain ⌦0. (c) Numerical snapshots
of the optimal geometries in the undeformed configuration (i.e. at " = 0) and at " = 0.1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. Target linear responses under uniaxial tension with H
1 norm. (a) Evolution of the objective function J during the shape optimization iterations for two targets

defined by C
targ

2 = 0 and C
targ

1 = 0.2 (teal), 0.5 (light pink). Note that, when a simulation is aborted, we assign a NaN to the objective function and do not report
a marker in the plot. (b) Target response (circular markers) and stress–strain curves for the optimal designs (continuous lines). The black dotted line denote the
stress–strain curve of the initial domain ⌦0. (c) Numerical snapshots of the converged geometries in the undeformed configuration (i.e. at " = 0) and at " = 0.1.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Next, we consider target nonlinear stress–strain responses
with stiffening. In particular, in Fig. 5 we focus on four target
stress–strain curves all characterized by C

targ

1 = 0.2, but with
C
targ

2 = 1, 2, 3 and 5. For all four cases we find that the optimiza-
tion algorithm reduces the objective function J over the iterations,
with better convergence for targets with less pronounced stiff-
ening (i.e. with smaller values of Ctarg

2 ). Similar to the structures
presented in Fig. 3, all optimal geometries are non-periodic and
comprise a cluster of mutually orthogonal elliptical holes sur-
rounded by nearly-circular pores. However, different from the
optimal geometries for linear response, in this case the size of the
cluster with elliptical holes is similar for all four geometries and
the stiffening rate is controlled by the aspect ratio of the pores.
As we move from C

targ

2 = 1 to C
targ

2 = 5, the aspect ratio of the
elliptical pores monotonically decreases. This is because the more
elongated the elliptical holes are, the more applied deformation
is needed for the ligaments to align along the vertical direction
and, therefore, lead to a stiffer response.

To validate the numerical results, we fabricated the optimal
structures identified by our optimization algorithm for (Ctarg

1 ,

C
targ

2 ) = (0.3, 0.0) and (0.2, 3) via a molding approach out
of a silicone rubber (Elite Double 32, Zhermack - with µ =
0.262MPa [27,28]). In Fig. 7-a, we compare the numerical and
experimental stress–strain curves for the two structures, whereas
in Fig. 7-b we display snapshots taken at " = 0.0 and 0.1.
We find good agreement between simulations and experiments,
confirming the validity of our optimization strategy.

Having demonstrated that the optimization algorithm can suc-
cessfully identify architectures with target stress–strain curves,
we next seek to find architectures with a desired effective Pois-
son’s ratio ⌫̃ over a range of applied strain,

⌫̃targ (") = D
targ

0 + D
targ

1 ". (8)

In Fig. 6 we present results for both target constant (with (Dtarg

0 ,

D
targ

1 ) = (�0.1, 0), (0, 0), and (0.1, 0)), linearly increasing (with
(Dtarg

0 ,D
targ

1 ) = (�0.1, 0.5) and (0.1, 0.5)), and linearly decreasing

5
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Fig. 5. Target nonlinear responses under uniaxial tension. (a) Evolution of the objective function J during the shape optimization iterations for four targets defined
by C

targ

1 = 0.2 and C
targ

2 = 1 (dark green), 2 (teal), 3 (light blue) and 5 (light pink), (b) Target response (circular markers) and stress–strain curves for the optimal
designs (continuous lines). The black dotted line denotes the stress–strain curve of the initial domain ⌦0. (c) Numerical snapshots of the optimal geometries in the
undeformed configuration (i.e. at " = 0) and at " = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 6. Target Poisson’s ratio responses under uniaxial tension. (a) Evolution of the objective function J during the shape optimization iterations for seven targets
defined by (Dtarg

0 ,D
targ

1 ) = (0.1, 0.5) (dark green), (0.1, 0) (teal), (0.1, �0.5) (light blue), (0, 0) (light pink), (�0.1, 0.5) (dark pink), (�0.1, 0) (brown), (�0.1, �0.5),
(red). (b) Target response (circular markers) and Poisson’s ratio–strain curves for the optimal designs (continuous lines). The black dotted line denotes the stress–strain
curve of the initial domain ⌦0. (c) Numerical snapshots of the optimal geometries in the undeformed configuration (i.e. at " = 0) and at " = 0.1. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

(with (Dtarg

0 ,D
targ

1 ) = (�0.1, �0.5) and (0.1, �0.5)) Poisson’s ra-
tio. We find that for all considered cases except for (Dtarg

0 ,D
targ

1 ) =
(�0.1, �0.5) the optimization algorithm successfully reduces the
objective function J and identifies geometries with effective Pois-
son’s ratio that closely matches the desired one. The optimal
structures discovered are again aperiodic and comprise a cluster
of mutually orthogonal elliptical pores. Since the geometry of this
region resembles that of the rotating squares, which are known

to exhibit large negative values of Poisson’s ratio [29], the size of
the cluster grows as ⌫̃ is reduced. An exception is represented by
the structure with a specified target of ⌫̃targ = �0.1�0.5". In this
case the optimization algorithm identifies another mechanism
to achieve large negative values of ⌫̃. Specifically, it combines
a smaller region of elongated ellipses with pores that resemble
rotated rounded squares. However, although this geometry leads
to an effective Poisson’s ratio ⌫̃ more negative than the other
considered in Fig. 6, its response does not match the decreasing
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Fig. 7. Experimental realization of structures with target responses under uniaxial tension. (a) Numerically predicted (continuous lines) and experimentally measured
(dashed lines) stress–strain curves for the optimal designs for two targets defined by (Ctarg

1 , C
targ

2 ) = (0.3, 0.0) (light blue) and (0.2, 3) (dark pink). The black dotted
line denote the stress–strain curve of the initial domain ⌦0. (b) Numerical and experimental snapshots of the optimal geometries in the undeformed configuration
(i.e. at " = 0) and at " = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Target buckling responses under uniaxial compression. (a) Evolution of the objective function J during the shape optimization iterations for three targets
defined by (Etarg

1 , E
targ

2 , "
targ

cr ) = (1.03E0
1 , E

0
2 , 0.3) (light pink), (1.05E0

1 , E
0
2 , 0.35) (dark pink), and (E0

1 , E
0
2 , 0.024) (light blue), where E

0
1 = 0.996 and E

0
2 = �0.0167

are the pre- and post-buckling stiffness measured when compressing the initial domain ⌦0. (b) Target response (circular markers) and stress–strain curves for the
optimal designs (continuous lines). The black dotted line denote the stress–strain curve of the initial domain ⌦0. (c) Numerical snapshots of the optimal geometries
in the undeformed configuration (i.e. at " = 0) and at " = �0.1. (d) Zoom in of the optimal configuration (dark pink) overlayed above the initial domain ⌦0 (black).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

target behavior. This discrepancy may be due to either the fact
that this specific target behavior is unfeasible or is far from the
initial starting configuration.

5.2. Designing the response under uniaxial compression

We now seek to optimize structures with target behavior upon
uniaxial compression. This is a more challenging task since insta-
bilities can be triggered upon compression, which can make the
underlying system of nonlinear equations poorly conditioned and
result in a complex energy landscape, characterized by multiple
bifurcations from which stable and unstable solution branches
emanate [5].

We aim at identifying structures with target initial stiffness
and an approximate critical buckling strain. To this end, we
specify a target response of the form

S22(")
µ

=
(
E
targ

1 " for " > "
targ

cr ,

E
targ

2 " + E
targ

1 "
targ

cr for "  "
targ

cr .
(9)

During optimization we do not explicitly prescribe the critical
buckling strain "targcr , since this would require either the introduc-
tion of an additional eigenvalue constraint [30] or a formulation
constrained by an augmented system of equations [31]. Instead,
as described in Section 4, we still use 12 equally spaced points
to describe the target and calculate J (see Eq. (6)). In Fig. 8
we report results for (Etarg

1 , E
targ

2 , "
targ

cr ) = (1.03E0
1 , E

0
2 , �0.03),

(1.05E0
1 , E

0
2 , �0.035), and (E0

1 , E
0
2 , �0.024) where E

0
1 = 0.996 and

E
0
2 = �0.0167 are the pre- and post-buckling stiffness mea-

sured when compressing the initial configuration⌦0. For all three
cases the optimization algorithm reduces the objective function J

over the iterations (Fig. 8-a) and identifies architectures with re-
sponses that closely matches the target ones (Fig. 8-b). All optimal
structures reported in Fig. 8-c at first glance appear to be identical
to the initial domain, with a square array of circular pores. How-
ever, closer inspection of the holes reveals the target behavior is
achieved by introducing small fluctuations that move the bound-
aries of the pores away from a perfect circular shape (Fig. 8-d).
Since these underlying aperiodic fluctuations do not suppress the

7
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Fig. 9. Target linear and quadratic responses under uniaxial compression. (a) Evolution of the objective function J during the shape optimization iterations for four
target defined by C

targ

2 = 0 and C
targ

1 = 0.2 (light pink), 0.4 (light blue) and C
targ

1 = 0.6, Ctarg

2 = 3.3 (dark green) and 4.0 (teal). (b) Target response (circular markers)
and stress–strain curves for the optimal designs. The black dotted line denotes the stress–strain curve of the initial domain ⌦0. (c) Numerical snapshots of the
optimal geometries in the undeformed configuration and " = �0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

instability, it suggests that the buckling-induced pattern transfor-
mation observed in this class of mechanical metamaterials is a
robust phenomenon.

Additionally, we can use the optimization algorithm to iden-
tify architectures for which instabilities are not triggered upon
application of a compressive strain " = �0.1. Towards this
end, we again use Eq. (7) to specify a linear stress–strain target
response defined by C

targ

2 = 0.0 and C
targ

1 = 0.2 and 0.4. To
our surprise, the optimization algorithm did not converge and
could not identify geometries that support the desired responses.
In order to improve convergence, we then switched to linear
elements and refined the original mesh. While with these changes
the algorithm can perform more iterations, it cannot still identify
geometries with responses that closely match the target ones
(Fig. 9-b). More specifically, for the case of Ctarg

1 = 0.4 the iden-
tified structure nearly converges to the target linear response,
whereas for C

targ

1 = 0.2 no architecture is found that captures
the target response.

Next, we examine the stress–strain curves of the intermedi-
ate domains ⌦k explored by the optimization algorithm when
searching for linear behaviors and find that many of them can be
captured by Eq. (7) with C

targ

2 6= 0. Guided by these observations,
we set C

targ

1 = 0.6 and C
targ

2 = 3.3 and 4.0. We find that
for these two targets the objective J is greatly reduced over
the iterations and that the identified optimal geometries closely
match the target responses. We note that both structures are once
more aperiodic and comprise domains of mutually orthogonal
elliptical pores. In these regions the ligaments are not straight
in the undeformed configuration and therefore mainly deform
via bending, suppressing the instability. As for the exact mech-
anisms governing the evolution of the overall structural stiffness,
these are hard to deduce. However, the ability of the identified
designs to capture a wide range of mechanical behaviors sug-
gests that aperiodic metamaterials may support a richer set of
functionalities than their periodic counterparts.

Finally, we focus on tailoring the effective Poisson’s ratio under
compression. While the effective Poisson’s ratio for the initial
domain exhibits a sharp transition induced by buckling (Fig. 2-c),
here we aim at identifying architectures with constant ⌫̃ over the
considered range of applied compressive strain. More specifically,
in Fig. 10 we report results for five constant target Poisson’s ratios
specified by Eq. (8) with D

targ

1 = 0 and D
targ

0 = 0.2, 0.1, 0.0,
�0.1 and �0.2. The snapshots of the optimal structures reported
in Fig. 10-c indicate that to achieve the target behaviors the
optimization algorithms identifies a mechanism different from
that exploited to reach a target Poisson’s ratio under tension (see
Fig. 6). More specifically, the algorithm converges to structures
with several rows of pores next to the horizontal boundaries
that transform into a pattern of mutually orthogonal elongated
ellipses upon compression. This transformation leads to a sig-
nificant lateral contraction, but it does not affect the effective
Poisson’s ratio, since it occurs outside of the region used to
evaluate ⌫̃. Further, it absorbs most of the applied compressive
strain, so that the interior region does not have to deform sig-
nificantly to satisfy the boundary conditions. Finally, since the
chosen targets have a lower Poisson’s ratio compared to the initial
domain in the undeformed configuration, the pores of the interior
region are mutually orthogonal ellipses, which aspect ratio that
monotonically increases as ⌫̃ decreases.

5.3. Designing the response under shear

We now search for geometries that under shear result in a
target linear response
S12

µ
= C

targ

1 ". (10)

In Fig. 11 we focus on C
targ

1 = 0.025, 0.05, 0.08, 0.1. For all
prescribed targets the optimization algorithm finds aperiodic
and non-intuitive pore arrangements leading to stress–strain
responses that closely match the target ones. To achieve the

8
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Fig. 10. Target Poisson’s ratio responses under uniaxial compression. (a) Evolution of the objective function J during the shape optimization iterations for five targets
defined by D

targ

1 = 0 and D
targ

0 = 0.2 (teal), 0.1 (light pink), 0.0 (dark green), �0.1 (dark pink), �0.2 (light blue) (b) Target response (circular markers) and Poisson’s
ratio–strain curves for the optimal designs (continuous lines). The black dotted line denote the stress–strain curve of the initial domain ⌦0. (c) Numerical snapshots
of the optimal geometries in the undeformed configuration (i.e. at " = 0) and at " = �0.1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 11. Target linear responses under shear. (a) Evolution of the objective function J during the shape optimization iterations for the four targets defined by C
targ

2 = 0
and C

targ

1 = 0.025 (dark green), 0.05 (teal), 0.08 (light blue), 0.1 (light pink). (b) Target response (circular markers) and stress–strain curves for the optimal designs
(continuous lines). The black dotted line denote the stress–strain curve of the initial domain ⌦0. (c) Numerical snapshots of the optimal geometries in the undeformed
configuration (i.e. at " = 0) and at " = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

softest target behavior the numerical algorithm tilts the vertical
ligaments in the central part of the structure in direction opposite
of that of the applied strain. As a result, these ligaments mainly
rotate upon shearing, leading to a soft behavior. By contrast,
the vertical ligaments in the stiffest structure are tilted in the
direction of the applied strain and generate a diagonal band-like
structure. It follows that the applied deformation further stretch
them, resulting in a stiff response.

6. Discussion

We have used shape optimization to identify porous archi-
tectures with target mechanical responses. In contrast to previ-
ous studies which have focused on the optimization of periodic
unit cells [16,17], here we considered a finite size structures.
Remarkably, all optimal solutions identified by our numerical
algorithm are aperiodic and non-intuitive. As such, our study sug-
gests that non-periodicity may open new avenues for the design

9
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Fig. 12. Target linear responses under uniaxial tension for a metamaterial comprising a triangular array of holes. (a) Evolution of the objective function J during
the shape optimization iterations for a target defined by S

targ

22 /µ = 0.4". (b) Target response (circular markers) and stress–strain curves for the optimal designs
(continuous lines). The black dotted line denote the stress–strain curve of the initial domain ⌦0. (c) Numerical snapshots of the initial domain and optimal geometry
in the undeformed configuration (i.e. at " = 0) and at " = 0.1.

Fig. A.13. Topology optimization for non-periodic compliant structures. Evolution of the strain energy and the overall volume of the structure during the topology
optimization iterations when we seek to minimize the strain energy under (a) uniaxial tension and (b) shear. For both loading conditions we show a numerical
snapshot of the optimal geometry.

of structures capable of supporting a wide range of mechanical
responses.

In this study we focused on an elastomeric metamaterial com-
prising a square array of holes and subjected to uniaxial tension,
uniaxial compression, and shear, but the proposed numerical
approach can be extended to flexible structures with different
geometries and made of different materials. As an example, in
Fig. 12 we consider an elastomeric square block with edges of
length L and an embedded triangular array of holes. We choose
the holes to be circular in the initial domain ⌦0, with radius
r = 0.0442L and center-to-center spacing of L/10, resulting in
an area Aelas = 0.325L2 covered by elastomeric material. When
subjected to uniaxial tension, this structure has a nearly-linear
stress–strain curve with S22/µ ⇡ 0.325" (dotted line in Fig. 12-b).
We then seek a domain shape leading to a stiffer linear response,
S22/µ = 0.4". As shown in Fig. 12-c, the optimization algorithm
successfully identifies an aperioidic structure whose stress–strain
response closely approximates the target.

Our results indicate that the proposed optimization strategy
is capable of identifying optimal geometries for different load-
ing conditions and initial geometries, but for certain targets it
may fail to find an appropriate structure. Such failures arise
either because these targets are unfeasible, or because the designs
separating the initial domain from the local minimum exhibit
very small geometric features that cause excessive distortion in
the underlying mesh. To overcome this issue, in future endeav-
ours the mesh-distortion constraint can be relaxed in place of a
method that adaptively remeshes to preserve an underlying high
quality mesh.
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Appendix. Topology optimization for non-periodic compliant

structures

To demonstrate the limitations of topology optimization for
the design of non-periodic compliant structures, we performed
topology optimization using the solid isotropic material with
penalization (SIMP) technique [32] implemented in firedrake
[23]. We consider an initially square domain with sides length
L = 1 and model the material as linear elastic, assuming that
the Young’s modulus is proportional to the material density,
E / ⇢3 [32]. To identify very compliant architectures under
uniaxial tension and shear, we then minimize the strain–energy
while applying suitable displacements to the top and bottom
boundaries.
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In Fig. A.13, we plot the evolution of the strain energy and the
overall volume of the structure for both uniaxial tension (left)
and shear (right). We find that for both loading conditions the
algorithm generates disconnected domains. To the best of the
authors’ knowledge, the ability to generate connected finite sized
aperiodic still remains an open problem in topology optimization.
As such, in this study we chose to use shape optimization to guide
the design of nonlinear flexible mechanical metamaterials.
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