2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS) | 978-1-6654-5954-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/ISPASS55109.2022.00037

2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

A SIMT Analyzer for Multi-Threaded CPU
Applications

Ahmad Alawneh

ECE department

Purdue University
aalawneh @purdue.edu

Abstract—The use of GPUs for general purpose applications
has drastically increased. However, the performance gain from
porting multithreaded CPU workloads to massively parallel
SIMT-based accelerators, like GPUs, is often unpredictable. Even
with enough parallelism, programmers do not know if their
CPU code will run well on a GPU without first investing the
effort to refactor it into a GPGPU programming language.
Most of this unpredictability stems from two key side-effects
of the GPU’s energy-efficient SIMT hardware: control-flow and
memory divergence.

To alleviate this issue, we propose SIMTec, an analysis tool that
computes the control-flow and memory divergence of arbitrary
pre-compiled CPU binaries. The tool constructs and analyzes a
dynamic control flow graph of the application, batches threads
into warps and emulates the operation of a SIMT stack for
each warp to compute the projected SIMT efficiency. Given each
warp’s execution mask, memory coalescing is computed using the
addresses accessed by memory instructions from parallel threads.
The tool reports the SIMT efficiency and memory divergence
characteristics.

We validate SIMTec using a suite of 11 applications with
both x86 CPU and CUDA GPU implementations on an NVIDIA
Volta V100, demonstrating that SIMTec has a correlation factor
of 1.00 and 0.98 for SIMT efficiency and memory divergence,
respectively. To demonstrate the predictive power of SIMTec,
we explore another 16 CPU workloads for which there is no
1:1 GPU implementation. We perform case studies on these
applications that range from compute-intensive thread-parallel
workloads to cloud-based request-parallel microservices. Using
SIMTec, we demonstrate that many of these CPU-only workloads
are amenable to SIMT acceleration as-is.

I. INTRODUCTION

Single Instruction Multiple Thread (SIMT) hardware, like
Graphics Processing Units (GPUs), has been widely adopted in
many areas, including graphics, High Performance Computing
(HPC) and machine learning. The Single Program Multiple
Data (SPMD) pattern available in these workloads make them
amenable to lock-step execution on SIMT hardware, as threads
execute the same program code and exhibit similar control
flow. Moreover, these workloads show regular memory behav-
ior which increases memory coalescing opportunities. These
program characteristics have led to significant performance
and energy efficiency gains when these workloads are ported
to SIMT-based GPU hardware [1]. The inherent efficiency in
SIMT hardware comes from: (i) amortizing the pipeline front-
end overhead by fetching and decoding each instruction only
once for all the threads in the same warp, and (ii) generating

Mahmoud Khairy
ECE department
Purdue University

abdallm @purdue.edu

Timothy G. Rogers
ECE department
Purdue University

timrogers @purdue.edu

TN BBL TN MEM
s FuNL OKFF18 0810 R
P OxFF18 0x814 R
RFUNL 24 0xB10 W

\

~—
Parse and
Scale Trace Analysis
Gen Efficiency
and Mem Div SIMTStack War;?
= report Simulation Formation

per thread trace

SIMTizer
(a) Step 1: Per-thread (b) Step 2: Control flow and memory

PIN trace generation divergence analysis

Fig. 1: SIMTec architecture.

less memory traffic to the memory system by coalescing
accesses from threads in the same warp.

However, these efficiency gains cannot be captured by all
parallel programs. The grouping of threads into warps for
lock-step execution creates significant penalties for workloads
where parallel threads traverse different control-flow paths
or access dissimilar data. Often, the greatest barrier to the
adoption of the GPU as an accelerator for arbitrary parallel
workloads is that the effects of these inefficiencies cannot
be evaluated without porting the code to a General Purpose
Graphics Processing Unit (GPGPU) language and evaluating
the results on real hardware. The porting process takes signif-
icant effort and often results in programs that are less efficient
than their parallel CPU counterparts. As a result, the exercise is
often only attempted on codes with obviously regular control-
flow and access patterns, leaving the acceleration opportunities
in many highly-parallel applications unexplored.

II. SYSTEM OVERVIEW

To remove the high initial evaluation barrier and uncover
new multithreaded CPU workloads that might benefit from
SIMT hardware, we propose SIMTec. SIMTec traces the
control-flow and memory access pattern of unaltered CPU
binaries to generate a per-function breakdown of a parallel
application’s SIMT efficiency and memory divergence level.
Figure 1 depicts the end-to-end flow of our SIMTec tool.
First, we use Intel’s x86 PIN tool [2] to generate the dynamic
control flow graph and memory accesses pattern for each CPU
thread. Second, these traces are then fed up to our backend that

978-1-6654-5954-9/22/$31.00 ©2022 IEEE 248
DOI 10.1109/ISPASS55109.2022.00037

Authorized licensed use limited to: Purdue University. Downloaded on May 07,2023 at 19:37:09 UTC from IEEE Xplore. Restrictions apply.

100%

80%

60%

© 00 CORREL=1.00 MAE=6%
X 01 CORREL=1.00 MAE=4%
A 02 CORREL=0.99 MAE=5%
© 03 CORREL=0.99 MAE=5%

40%

SIMTIZER SIMT EFFICIENCY

20%

20% 40% 60%

VOLTA V100 EFFICIENCY

80% 100%

Fig. 2: SIMTec SIMT control flow efficiency correlation.
100000000

10000000

1000000

100000 > 00 CORREL=0.99 MAE=30%
%01 CORREL=0.98 MAE=17%
A 02 CORREL=0.96 MAE=27%

O 03 CORREL=0.96 MAE=31%

10000

1000
1000

SIMTIZER MEMORY TRANSACTIONS

10000

100000 1000000 10000000
VOLTA V100 MEMORY TRANSACTIONS

100000000
Fig. 3: SIMTec memory divergnce correlation.

groups the threads into warps based on a configurable batching
algorithm. Then, SIMTec runs a stack-based Immediate Post-
Dominator (IPDOM) reconvergence analysis for the grouped
threads [1] to calculate the SIMT control-flow efficiency.
The tool also reports the application’s predicted memory
divergence by determining the number of memory transactions
for each x86 instruction that generates memory accesses after
employing a memory coalescing algorithm similar to the
ones used in GPU hardware [1]. The tool reports the SIMT
efficiency and memory divergence characteristics for each
function in the application, which gives the programmer the
ability to identify SIMT-specific bottlenecks. It also explores
the effect of warp size on their efficiency and identify GPU-
specific bottlenecks in the source code.

III. CORRELATION RESULTS

To demonstrate the validity of our tool, we correlate the
reported metrics with real SIMT hardware using 11 multi-
threaded CPU workloads that have OpenMP/Pthread imple-
mentations and CUDA implementations that mirror each other.
On these applications, SIMTec uses the CPU execution of the
programs to predict the GPU’s SIMT efficiency and memory
divergence characteristics with a mean absolute error of 4%
and 17% respectively, as depicted in Figures 2 and 3.

The CUDA workloads are compiled via nvec with -O3
optimization level. We did not find significant differences in
the results when compiled with different optimization options.
On the other hand, the CPU workloads are compiled via gcc
with different optimization options, i.e., 00, OI, 02, O3.
SIMTec has a 1.0 correlation with hardware when OO, and
O1 optimizations are used. O/ has a 5% mean absolute error
making it the closest to the real SIMT control flow efficiency.
In general, when O3 is used, the analyzer tends to slightly
overestimate the SIMT efficiency, in view of the fact that

249

SIMT EFFICIENCY

Rotate MD5 Pigz

Genreal multithreaded workloads Average

Fig. 4: Warp efficiency of general-purpose multi-threaded

workloads (Warp size=32).

Wheap BEstack

8

3

5
|
|
|

MEM TRANS PER LOAD/STORE
°

Rotate

MD5 Pigz

Genreal multithreaded workloads Average

Fig. 5: Memroy transactions per load/store instruction for
general-purpose multi-threaded workloads (Warp size=32).

the compiler applies more aggressive optimizations to deliver
higher performance.

IV. CASE STUDY

Using our tool, we perform a case study to demonstrate
both its potential use cases and the opportunities present in
contemporary multithreaded CPU applications that have not
been ported to the GPU. In our case study, we examine the
feasibility of porting general-purpose multi-threaded Linux
utilities to SIMT hardware [3], [4]. In these compute-intensive
applications, the program breaks down the workload into
multiple chunks and each thread computes the assigned chunk
in parallel. We used the original workloads as-is without any
alterations.

Figure 4 shows that some of these workloads exhibit
promisingly convergent control-flow with up to 99% SIMT
efficiency, suggesting that a straight-port of the application
code to SIMT hardware would result in significant efficiency
gains. However, the data compression benchmark, pigz, ex-
hibits limited efficiency as its control flow is inherently data-
dependent. In Figure 5, we plot the memory divergence degree.
The workloads demonstrate high memory divergence, as each
thread has its private stack and the memory manager allocates
scattered data chunks in the heap segment, decreasing the data
coalescing opportunity at run-time. Data reformatting -like
changing data representation from array-of structure (AoS) to
structure-of-array (SoA)- can improve the memory efficiency
of these workloads [1].

V. CONCLUSION

Application developers can use SIMTec to quickly evaluate
the SIMT-friendliness of any multithreaded CPU application
without changing the source code. We believe that SIMTec can
uncover new classes of applications that can benefit from GPU
acceleration. With access to the source code, we demonstrate

Authorized licensed use limited to: Purdue University. Downloaded on May 07,2023 at 19:37:09 UTC from IEEE Xplore. Restrictions apply.

how our per-function analysis quickly identifies problem
areas in the code, allowing the developer to understand the
scope of code changes necessary to make the application
more amenable to the SIMT-based hardware, like GPU.

From an architect and system designers standpoint, we
believe SIMTec provides interesting insights into new software
classes that can help drive future GPU and general SIMT-
accelerator design. It allows architects to ask: What should a
SIMT-accelerator look like for general-purpose multithreaded
CPU applications? SIMTec can also be easily modified to gen-
erate warp-based instruction traces from CPU programs that
can be input into contemporary trace-based GPU simulators
like Accel-Sim [5], enabling more detailed microarchitectural
design studies.

VI. ACKNOWLEDGMENTS

This work was supported, in part, by NSF CCF #1943379
(CAREER) and the Applications Driving Architectures (ADA)
Research Center, a JUMP Center cosponsored by SRC and
DARPA.

REFERENCES
[1

“NVIDIA CUDA C Programming Guide,” https://docs.nvidia.com/cu-da/
cuda-c-programming- guide/index.html, NVIDIA Corp., 2020, accessed
August 6, 2020.

[2] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2005.

[3] M. Andersch, B. Juurlink, and C. C. Chi, “A benchmark suite for

evaluating parallel programming models,” in Proceedings 24th Workshop

on Parallel Systems and Algorithms, 2011. [Online]. Available:
http://www.aes.tu-berlin.de/fileadmin/fg196/publication/anderschO1.pdf

“A parallel implementation of gzip for modern multi-processor, multi-

core machines,” https://zlib.net/pigz/.

[5] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:

An Extensible Simulation Framework for Validated GPU Modeling,” in

Proceedings of the International Symposium on Computer Architecture

(ISCA). ACM, 2020.

[4

250

Authorized licensed use limited to: Purdue University. Downloaded on May 07,2023 at 19:37:09 UTC from IEEE Xplore. Restrictions apply.

