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Abstract— We study the decentralized resilient state-tracking
problem in which each node in a network has the objective
of tracking the state of a linear dynamical system based on
its local measurements and information exchanged with its
neighboring nodes, despite an attack on some of the nodes.
We propose a novel algorithm that solves the decentralized
resilient state-tracking problem by relating it to the dynamic
average consensus problem. Compared with existing solutions
in the literature, our algorithm provides a solution for the most
general class of decentralized resilient state-tracking problem
instances.

I. INTRODUCTION

The problem studied in this paper, the Decentralized
Resilient State-Tracking (DRST) problem, asks for the pos-
sibility of tracking the state of a linear dynamical system
monitored by a network of sensors, despite an attack altering
the measurements of some sensors. The DRST problem is
motivated by the several attacks on cyber-physical systems
that have been reported in the past decade [1], [2]. Dif-
ferent from the closely-related and well-studied Resilient
State-Reconstruction (RSR) problem [3]-[6], which aims
at securely reconstructing the state of a linear dynamical
system at a centralized location which has access to all the
measurements, the DRST problem is more challenging since
each node relies solely on information exchanged with its
neighboring nodes and obtained through its sensors.

The solvability of the RSR problem was settled in [3], [5],
[7]. In particular, the notion of sparse observability defined
in [5] for discrete-time systems and a similar notion for
continuous-time systems in [7], explicitly reveals the con-
nection between the solvability of an RSR problem instance
and the redundancy of sensing resources. Although a class
of RSR problems admits a polynomial-time solution [4], [8],
[9], the general RSR problem is intrinsically an NP-hard
problem.

Compared with the RSR problem, the DRST problem is
much more complex and the current understanding of this
problem is limited. To the best of the authors’ knowledge,
only three papers addressed the DRST problem. We can
find in [10] a formalization of the DRST problem as a
distributed convex optimization problem with time-varying
objective function which leads to a high-gain observer that
tracks the state with the help of the “blended dynamics
approach” introduced in [11]. However, the results stated
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in [10] require a special property of the system dynamics,
named Scalar Decomposability (SD). Intuitively, SD enables
one to decompose a DRST problem into multiple sub-
problems each associated with a scalar system. The DRST
problem was first addressed in [8], in which a local filter
was proposed to force the estimate of an attack-free sensor
to lie in the convex hull of the estimates of its attack-free
neighbors. Although this strategy allows extensions to defend
against, not only attacks on measurements but also attacks on
nodes, it only offers a solution for the case where the number
of attacked sensors is not large in the neighborhood of any
node. Moreover, the result in [8] also relies on an assumption
very similar to SD, but less restrictive. Lastly, paper [12]
offers an alternative solution of the DRST problem under
some restrictions on the system dynamics and the network
topology. Compared with [8] and [10], the state observer
proposed in [12] does not need the SD property but requires
a much higher communication rate than the sampling rate,
which could be demanding in real applications.

In this paper, we solve the DRST problem by relating
it to the dynamic average consensus problem. A thorough
literature review of the dynamic average consensus problem
is provided in the tutorial paper [13] and we refer interested
readers to that paper. Our solution is based on the simple
observation that it is not necessary for nodes to have access
to all the measurements in the network to track the state.
Instead, it suffices for the nodes to have access to a suitably
compressed version of all the measurements. This means that
if each sensor has access to the compressed measurements,
then the DRST problem can be solved by having each sensor
execute a slight modification of any existing algorithm for
the RSR problem that does not require assumptions beyond
those listed in Section IIl. The key step of our solution,
which is making the compressed measurements accessible to
all sensors, is achieved by invoking results in the dynamic
average consensus literature. In particular, we adopt and
extend the solution in [14] to force all nodes to reach
consensus on the compressed measurements, as we will
discuss in Section VI.

II. PRELIMINARIES AND NOTATIONS

In this section we introduce the notions used throughout
the paper.

A. Basic Notions

We denote by |S| the cardinality of a set S. For any two
sets S and .S’, the set subtraction S\S’ is the set defined by
S\S"={s e S|s¢ S'}.
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Let R, N, and C denote the sets of real, natural, and
complex numbers, respectively. The support of v € RP,
denoted by supp(v), is the set of indices of the non-zero
entries of v, i.e., supp(v) = {i € {1,2,...,p}|v; # 0}. For
a scalar s € N we say v is s—sparse if |supp(v)| < s. Also,
we define the all-ones vector 1,, = (1,1,...,1)T and I,, to
be the identity matrix of order n.

Lastly, for an infinitely differentiable function y(t) of time,
we denote by 3(")(t) the n-th derivative of y(t), for any
positive n € N.

B. Matrix Related Notions

For a real square matrix A, we denote by Apax(A) and
Amin(A) the eigenvalue with the largest and smallest mag-
nitude, respectively. We denote by A ® B the Kronecker
product of two real matrices A and B. We will also refer
to matrices where only the number of rows or columns is
specified using the notation A € R™** or A € R**™.

Consider a set () of indices and a matrix K, the matrix K¢
is obtained by removing any row in K that is not indexed

by Q.
C. Graph Related Notions

Here we review some of the basic notions of graph theory.
A weighted undirected graph G = (V,&,A) is a triple
consisting of a set of vertices V = {v1,ve,...,v,} with
cardinality p, a set of edges £ C V x V, and a weighted
adjacency matrix A € RP*P which we will define in the
coming paragraph. The set of neighbors of a vertex 7 € V,
denoted by N; = {j € V|(i,7) € £} is the set of vertices
that is connected to ¢ by an edge. To clarify, we assume each
vertex is not a neighbor of itself, i.e., (,7) ¢ £ for any i.

The weighted adjacency matrix A of the graph G is
defined entry-wise. The entry in the ¢-th row and j-th
column, a;;, satisfies a;; > 0 if (¢,j) € &£ and otherwise
a;; = 0. Since the graph is undirected, a;; = aj; for any
1,7 ranging from 1 to p which which results in A being a
symmetric matrix. The degree matrix D € RP*P? of the graph
G is a diagonal matrix with its i-th diagonal element defined
by di; = 3_!_, aij. The Laplacian matrix £ of the graph G
is defined by £ = D — A, which is known to be symmetric
if the graph is undirected, positive semi-definite and having
span{1,} as its kernel.

III. PROBLEM FORMULATION AND KEY IDEA
In this section we introduce the decentralized secure state-
reconstruction problem.
A. System Model

We consider a linear time-invariant system monitored by
a network of p nodes which are subject to attacks:
i = Az,
1
yi = Ciz + ey,
where x € R" is the system state, y; € R is the measurement
of node 4, which is assumed to be a scalar, where i € P £
{1,2,...,p}, and the matrices A and C; have appropriate

dimensions. Note that in the most general case sensors have
vector measurements (i.e., y;s are vectors). In the context of
this paper we adopt the scalar measurement assumption for
the sake of simplicity. The scalar e; € R models the attack
on node :. If the node ¢ is attacked by an adversary then e; is
arbitrary, otherwise, e; remains constantly equal to zero, and
y; = C;x which means node ¢ has the correct measurements.
We also assume that the adversary is omniscient, i.e., it
knows the system state x and the measurements y; from all
nodes. The only assumption we make about the adversary is
that it can only attack a fixed set of at most s nodes. This
attacked set is unknown to any attack-free node. All of the
above signals x, y;, and e; are time-varying, but for the sake
of simplicity we drop the time index.

Furthermore, by collecting the measurement together with
its (n — 1)-th derivatives' from each sensor we can write the
output of the system in the more compact form:

_ n-0]" @ _ (n-1]"
where Y; = |y, v B = e e, ,
and O; = [CT (C;A)T (C; A" 1T]T s the ob-

servability matrix of node ¢. This motivates us to write down

the following stacked-form expression of the system (1):
i = Ax,
3)
Y=0x+E,

where Y, O, and F are obtained by stacking vertically each

Y;, O;, and E;, respectively, for i € {1,2,...,p}, i.e.
Y1 01 E1
Y2 02 Eg

Y = eERP" O = e RV B = € RP™,
Yy Op Eyp

We also note that since the adversary can only attack at most
s nodes, at most s blocks in E are non-zero. Furthermore,
we define C = [C’lT cr ... C’pT}T for future use.

We assume that the communication between nodes in the
network can be modeled by an undirected graph. Each node
is modeled by a vertex ¢ € V, and a communication link
from node 4 to node j is modeled by an edge (i,j) € &
from vertex 7 to j. Since we assume the graph is undirected,
(i,7) € &€ implies (j,7¢) € £ which shows that node j can
also send messages to node .

B. Assumptions

Here we list all the assumptions we use in this paper.
Some of them have already been discussed when introducing
the adversary model. Generally speaking we classify all the
assumptions into two categories. Assumptions 1-4 are widely

I'Since the output of an attack-free node is infinitely differentiable, we
assume, without loss of generality, that e; is also infinitely differentiable
since, otherwise, the attacked nodes could be identified by simply checking
the differentiability properties of the output. The local sanity check which
we will introduce in Section V has the same spirit.

We note that, although these derivatives cannot be computed in practice,
all the result in this paper admit a discrete-time version, thus making our
approach practical.
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accepted in the literature and we also use them as part of our
problem setting. Assumptions 5 and 6 are adopted to ease
the analysis but are unnecessary.

Assumption 1. The adversary is only able to change the
measurements of the attacked nodes. Each attacked node still
executes its algorithm correctly.

Assumption 2. The adversary is only able to attack at most
s nodes. The set of attacked nodes remains constant over
time. However, the identity of the attacked nodes is unknown
to any node in the network.

Assumption 3. The system dynamics are known to all nodes
in the network.

Assumption 4. The network can be modeled by a com-
munication graph which is time-invariant, undirected and
connected.

The assumptions 1, 2, 3, and 4 are in line with the
assumptions in [10] and [12] except that we also assume each
node knows the C; matrices of all other nodes throughout
the network. To simplify our analysis we also introduce the
following assumptions:

Assumption 5. All the measurements y; are scalars.

Assumption 6. The real parts of all eigenvalues of A are
positive.

Note that assumptions 5 and 6 are not necessary and we
leave for future work how to suitably modify the results so
as not to rely on them.

C. The Decentralized Resilient State-Tracking Problem

In this section we provide the definition of the DRST
problem.

In plain words, to solve the DRST problem, each node
¢ must maintain a state estimate #;(¢) which converges
asymptotically to the true state z(¢). We also refer to this
property by saying that &;(t) tracks xz(t). The rigorous
definition of the DRST problem is as follows:

Definition 1 (Decentralized Resilient State-Tracking Prob-
lem). Consider a linear system subject to attacks (1) satisfy-
ing assumptions 1-3 and 5-6, and a communication network
satisfying assumption 4. The decentralized resilient state-
tracking problem asks for an algorithm running at each
node i with measurements y; and messages from neighboring
nodes as its input, such that its output T;(t) satisfies:

Jim [&:(t) — ()| = 0.

D. Key Idea

The key idea for solving the DRST problem is based
on the simple observation that instead of having access to
measurements Y = [Y,© Y[ YPT}T of all sensors,
a compressed version (D ® I,,)Y of the measurements may
suffice to reconstruct the state, where the compression matrix

D € RY*P reduces the measurements from RP to R” with
v < p. Compression is possible, in most cases, and thus
v will be strictly smaller than p. We will elaborate on the
feasible choices for a compression matrix D in Section IV.

Equipped with the observation that the compressed version
of measurements (D ® I,,)Y suffices to reconstruct state, it
is natural to ask: how can each node have access to the
compressed measurements? We show how to reformulate
this problem as a dynamic average consensus problem in
Section V and an algorithm for each node to track (D®1,,)Y
is provided in Section VI.

Lastly, to reconstruct the state z from the compressed
measurements (D ® I,,)Y at each node, we may employ
any suitably modified algorithm for the RSR problem that
does not require additional assumptions. The modification
is required since compression slightly changes the attack
model as the effect of the attack is altered by the compression
matrix. After performing such modifications, it follows that,
as each sensor’s estimate of the compressed measurements
converges, so does the state reconstructed from the estimated
compressed measurements. However, due to the space lim-
itations, we can only provide our key results at the end of
Section VI without offering any details. These three steps
provide a solution to the DRST problem.

IV. DESIGN OF THE COMPRESSION MATRIX

There are two considerations involved in the choice of
the compression matrix D. On the one hand, in order to
reduce communications and storage, we want the D matrix
to have the least possible number of rows. On the other
hand, the compressed measurements (D®1,,)Y must provide
enough information for each node to correctly reconstruct
the state. We start with the definition of detectability and
sparse detectability with respect to a matrix, which is a
generalization of sparse observability [5], [7] as well as
sparse detectability [15] but stronger, as we will very soon
see.

Definition 2 (Detectability [16]). A pair (A, C) is detectable
if all the unobservable eigenvalues of A are stable. O

Definition 3 (Sparse detectability with respect to a matrix).
Consider the system (1), a matrix D € R"*P, and define the
following set:

P, ={L € R"*’|ker(L) = D(span V),V C E,,|V| < s}.

The sparse detectability index of the system (1) with respect
to D is the largest integer k such that the pair (A, LDC)
is detectable for any L € Py. When the sparse detectability
index with respect to D is k, we say that system (1) is k-
sparse detectable with respect to D. 0

Also, if a pair (A, C) is s—sparse detectable with respect
to I, then we say that the pair (A, C') is s—sparse detectable.

Lemma 1. Any non-s—sparse detectable pair (A, C) is not
s—sparse detectable with respect to any matrix of appropri-
ate dimension. O
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Lemma 2. Consider the linear system subject to attacks
defined in (1) satisfying assumptions 1-4, the compressed
measurement (D ® I,)Y suffices to track the state x, if and
only if (A, C) is 2s—sparse detectable with respect to D. [

The proofs of all results in this document can be found in
[17].

Corollary 1. The measurements Y1, ...,Y, suffice to track
the state x if and only if (A, C) is 2s—sparse detectable. [

This corollary is obtained by noting that if the pair
(A, C) is 2s—sparse detectable, then we can always find a
compression matrix D such that the pair (A, C') is 2s—sparse
detectable with respect to D, for example, by taking D to
be the identity matrix. On the other hand, in the light of
Lemma 1, if the pair (A4, C) is not 2s—sparse detectable,
then the non-existence of such a matrix D implies the
unsolvability of the DRST problem.

V. REDUCTION TO DYNAMIC AVERAGE CONSENSUS

One key step of our solution to the DRST problem is
to have each node tracking the compressed measurements
(D ® I,)Y. To do this, we ask each node to maintain
an estimate vector J = [(J1)T (J*)T (J”)T}T €
RY™, whose j-th block, .J7, tracks the j-th linear combination
of measurements 27 d;;Y;, where dj; is the entry at the j-th
row and ¢-th column of D.

In this section and in the one that follows, we focus on
the problem of tracking (D; ® I,,)Y, where D; is the first
row of D, which could also be written as ZZ dy;Y;. For
technical reasons we will actually be tracking %Zl di;Ys,
which serves the same purpose since by assumption 3 the
value of p is known to all nodes. Note that any algorithm that
can track % >, d1;Y; can be extended to track %(D ®I,)Y
but running v concurrent copies, each with a ditferent set of
weights {d;;}. We observe that this problem can be seen as
an instance of the dynamic average consensus problem [13].
In brief, suppose that each agent in the network has a
local reference signal ¢; : [0,00) — R™. The dynamic
average consensus algorithm asks for an algorithm that
allows individual agents to track the time-varying average
of the reference signals, given by:

u () = 13" 0ilh). @)

In our problem setting, we let ¢;(t) = dy;Yi(t) and
what we want to track is 3 37, ¢;(t). In other words, we
may adopt any algorithm that solves the dynamic average
consensus algorithm which thereby enabling all nodes to
track (D ® I,,)Y.

However, in the setting of dynamic average consensus
problem, no knowledge about reference signals ¢; is as-
sumed, whereas in our problem, for an attack-free node i,

we have the following:

0 1 0 0
0 0 1 0
Yi=| . : : i, )
—Qp —a1 —Q2 —Qp—1
A
This equality comesT from the construction Y; =
{yi Ui ... ygnfl) where o, g, . .., 0,1 are the co-

efficients of the characteristic polynomial of A4, i.e., det(Al—
A) = \"+a,,_1A\" "1+ .4qyp. This can be seen by nothing
that ygn) =CiA"z = Ci(ay 1 A" 1+ -+ a1 A+ ag)z =
an_lyi”_l + -+ 4+ a19; + apy; whenever node ¢ is attack
free. Moreover, we note that A is the controller form of A
and has the same eigenvalues as A and by Assumption 6 all

the eigenvalues of A have positive real parts.

Remark 1. We note that the state portion corresponding to
the stable eigenvalues will decay to zero with the elapse of
time. This argues for why 6 can be dropped without loss of
generality. 0

Based on Equation (5), we define the following local sanity
check:

Local sanity check?: given measurement y; (t) of node i, we
say node ¢ passes the local sanity check if || Y;(¢)—AY;(¢)|| <
e for any t > 0, where € is the error tolerance.

In practice, we ask all nodes in the network to constantly
run the local sanity check. It is trivially seen that all attack-
free nodes would pass the check at any time. On the
other hand, if a node fails the local sanity check, then we
immediately reach the conclusion that this node is under
attack. Therefore, we assume that all the attack vectors e;
corresponding to attacked nodes are constructed so that the
resulting measurements Y;(t) pass the local sanity check, i.e.,
IY:(t) - AY;(0)]] < e.

The purpose of the local sanity check is to force the
dynamics of Y; to be governed by (5), including those from
attacked nodes. We may exploit this additional knowledge of
d1;Y; (or ¢;) to achieve better tracking results.

VI. SOLVING THE DRST PROBLEM

We argued in Section V that the tracking of the com-
pressed measurements (D ® I,,)Y is intrinsically identical to
a dynamic average consensus problem. We extend the results
in [14] from the scalar-input case to the vector case and
present such extension in the time-domain.

We obtain that each node updates its estimate of the
average according to:

2 Again, we note that Y; cannot be computed in real systems and thus the
local sanity check can only be implemented for the corresponding discrete-
time version of the results.
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jz‘ = - AJZ + 2AA¢1 — 2kg Z (77j - 7)1‘)7
JEN;
b= Abi+kr Y (J;—J), (6)
JEN;
ni = kpbi+kr Z (Jj = Ji)s
JEN;

where J; is the estimate at node 7 of the average of the
input signal’ % > ®i> kr, kp are design parameters, b; is an
internal state of node ¢ and 7, is an additional state of node
1. The following theorem states that under suitable choices
of k; and kp the estimate of each node v; approaches the

1
true state - >, ¢;.

Theorem 1. Consider the average tracking algorithm in (6)
where the input signal satisfies ¢; = flgb,- for all v €
{1,2,...,p}. There exist constants kjog > 0 and kpy > 0
such that for any k; > kjo and kp > kpg the state estimate
J; at each node tracks the average of the input signals
exponentially fast, i.e.:

—at
< Be™ ",

Ji(t) — pl Z i(t)

for some o, 3 > 0. O
Before proving the theorem we present the following two
lemmas that will be used afterwards.

Lemma 3. Consider a positive semi-definite matrix B =
BT € R™" and a matrix S € R™™™ such that R(S) N
ker(B) = {0}. The matrix ST BS is diagonalizable and
positive definite. O

Lemma 4. Consider a block matrix B of the form B =

— — 2 —
L A =23, ey, where A € R™ ™, There exist

AL, A
0,co > 0 such that B is Hurwitz for any X\ > Xy and
c>co . |
Instead of proving directly Theorem 1, for the sake of
simplicity, we prove the convergence result for a broader
class of systems in the form of:

v= —FEv+2Ep—2kiFn,
m= Em+k;Fuv, 7
n= kpm+krFv,

where k1, kp € R, v,m,p,n € R* forsome a € N, E, F €
Re*e, F = FT is positive semi-definite and all eigenvalues
of E have positive real parts, which implies that (¢) is an
exponentially growing input satisfying ¢ = Eo.

We first show that tracking algorithms of the form of (7)
can be decoupled into 2 sub-systems and then we analyze the
convergence properties for each sub-system. To do this, we
introduce an orthogonal matrix [R S| € R**® and make
the following two assumptions:

3In previous sections we denote this value by Ji1 and the superscript is
dropped here for simpler notation.

1) Additional Assumption 1: The matrices R and .S have
the properties that R(R) = kerF, R(S)NkerF' = {0},
and RTES =0, STER = 0.

2) Additional Assumption 2: E and F' are simultane-
ously block diagonalizable and each block in E cor-
responds to an identity block in F' up to some scaling
factor A\;. In other words, there exists an invertible
matrix P such that P~'EP = diag{Ay,...,A,} and
P7IFP = diag{\I,,...,\-Is, } such that A; €
R#*% with ¢ ranging from 1 to 7.

Note that these two additional assumptions are introduced
to prove the desired tracking property and any system in
the form of (6) automatically falls into the broader class
of systems described in (7), which we will argue at the
end of this section. Now we are ready to present our
decomposition result based on the change of coordinates
(21,22) = (RT,ST)v where z; describes the sum of local
estimates and z» is the difference among local estimates. We
see that if z; converges to R” ¢ and zo converges to 0, then
all nodes reach the consensus ¢ which is the target of the
tracking algorithm.

Proposition 1. The dynamical system in (7) can be de-
coupled into the following two sub-systems if it satisfies
Additional Assumption 1:

4 = —RTERz +2RTEo, (8)
and:
Zo = — STESZQ — Qk[STFSfQ + 25TE<P7
Go= STESgy+ k;STFSz,, ©)

fo= kpgs +krSTFSz,

where 21 = RTv, 20 = 8Tv, fo = STy and go = STm. O
The following proposition shows that z; converges to R” ¢
as desired.

Proposition 2. For any solution z1(t) of (8) we have:
[21(8) = RT(t)|| < e

for some o, 5 > 0. O
Similarly, we prove that zo converges to O in the following
proposition.

Proposition 3. For any solution (z3(t),g2(t)) of (9) we
have:

lz2(t)]| < Be™,

for some o, > 0 if the system defined in (7) satisfies
additional assumptions 1 and 2. O

Lastly, we go back to prove Theorem 1. The dynamic
average tracking algorithm in (6) can be compactly written
in the form:

J= —(I,®A)J+2(1,®A)p— 2k (L& L),
b= (I, @ Ab+ k(L ®I,)J,
n= kpb+ki(L®I,)J,

(10)
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where J = [J{ JJ
nating estimates from all nodes, b = [blT bl bg

andn=1[n n3 ... n ]T are similarly defined. Recall
that £ is the Laplacian of the graph and ® denotes the
kronecker product. It is not hard to check that system (10)
falls into the class of systems of the form (7) by picking
E = I, ® A all of whose eigenvalues have positive real
parts, F = FT = L® I, > 0, and a = np. We also pick
p = [qSlT A gb]ﬂT and ¢; = A¢; with i ranging
from 1 to p and obtain that ¢ = (I, ® A)p = E¢ which
meets the requirement.

Next we show that the additional assumptions 1 and 2 are
satisfied. The conditions R(R) = kerF' and R(S) NkerF =
{0} are naturally satisfied by the construction of R and S.
We also notice that £ is the Laplacian of the graph and
the only eigenvector corresponding to the zero eigenvalue
is 1,. Therefore, we pick R = ﬁlp and [R S| being
an orthogonal matrix. We note that [R S| ® I, is also
an orthogonal matrix with R ® I, lying in the kernel of
(L ® I,,). Moreover, we can check by direct computation
that the following equalities hold:

(RT@I)E(S®I,) = (R" ®1,)(I,® A)(S ®1,)

Jr ]T is obtained by concateT—

—RTS®A=0,
(ST@IL)E(R®I,) = (ST @ I,)(I, ® A)(R® I,)
=STR® A=0,

which satisfy the additional assumption 1. Also, £ = LT
for an undirected graph, £ is diagonalizable and we assume
T~1LT is a diagonal matrix with eigenvalues A1, ..., \,.. To
show that the additional assumption 2 is also satisfied, we
directly compte the following two similarity transformations:
(T® L) YL L)(T®I,) = dag{\1,,...,\I,} and
(T®I,) Y, AT oI, =1, ® A=dag{A4,..., A}.
This calculation shows that F' and E are simultaneously di-
agonalizable and each block in E corresponds to an identity
block in F, after diagonalization, up to a scalar \;, hence
the additional assumption 2 is also satisfied.

Since the dynamic average tracking system in (10) falls
into the class (7) and satisfies both additional assumptions,
we can apply Propositions 2 and (3) to analyze the trajectory
of J;s in Equation (6). By Proposition 2 we conclude that
(RT ® I,,)J = % >, Ji converges to (RT @ I,,)p =
% >_; ¢i exponentially fast. By Proposition 3 we conclude

(ST ® I,,)J converges to 0 exponentially fast, which shows
the difference between any two estimates in two nodes
decays to zero exponentially fast. Combining both we note
any .J; converges to % >, ¢i and hence Theorem 1 is proved.

At this point, we know that if each node in the network
executes the tracking algorithm (6), then its estimate vector
J; converges to (D ® I,,)Y exponentially. The missing piece
now is a decoding algorithm, that enables each node to
reconstruct the state estimate &;(t) from the compressed
measurement J;. However, in the interest of space we will
not present the decoding algorithm, but proceed to the main
result of this paper:

Theorem 2. Consider the linear system subject to attacks
defined in (1) satisfying assumptions 1-6, the tracking al-
gorithm (6) together with a state-reconstruction algorithm
enables each node to asymptotically track the state of the
system (1), if the pair (A, C) is 2s-sparse detectable. O

VII. CONCLUSION

In this paper, we propose a novel algorithm that solves
the decentralized resilient state-tracking problem. The pro-
posed solution consists of a dynamic consensus algorithm
enabling each node to compute a compressed version of
all the measurements that it then use by any secure state
reconstruction algorithm to track the state. Compared with
existing solutions of the DRST problem, our algorithm solves
the DRST problem for a wider class of systems than any of
the solutions available in the literature.
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