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ABSTRACT

Application latency requirements, privacy, and security concerns

have naturally pushed computing onto smartphone and IoT de-

vices in a decentralized manner. In response to these demands, re-

searchers have developedmicro-runtimes forWebAssembly (Wasm)

on IoT devices to enable streaming applications to a runtime that

can run the target binaries that are independent of the device. How-

ever, the migration of Wasm and the associated security research

has neglected the urgent needs of access control on bare-metal,

memory management unit (MMU)-less IoT devices that are sensing

and actuating upon the physical environment. This paper presents

Aerogel, an access control framework that addresses security gaps

between the bare-metal IoT devices and the Wasm execution envi-

ronment concerning access control for sensors, actuators, processor

energy usage, andmemory usage. In particular, we treat the runtime

as a multi-tenant environment, where each Wasm-based applica-

tion is a tenant. We leverage the inherent sandboxing mechanisms

of Wasm to enforce the access control policies to sensors and actua-

tors without trusting the bare-metal operating system. We evaluate

our approach on a representative IoT development board: a cortex-

M4 based development board (nRF52840). Our results show that

Aerogel can effectively enforce compute resource and peripheral

access control policies while introducing as little as 0.19% to 1.04%

runtime overhead and consuming only 18.8% to 45.9% extra energy.

CCS CONCEPTS

• Security and privacy→ Software security engineering;Mo-

bile platform security.
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1 INTRODUCTION

The scope of leveraging mobile and internet-of-things (IoT) de-

vices for sensing physical spaces has generalized beyond human
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activity recognition. Distributed and deployed IoT systems leverage

the ubiquitous sensors for a myriad of applications such as smart

healthcare, smart city lighting, and transportation [25]. In the 5G

context, on-device edge computation enables nascent market appli-

cations such as augmented reality, mass IoT, and drone services [53].

Consequently, the latency requirements, privacy, and security con-

cerns for these safety-critical applications have naturally shifted

computation from centralized cloud resources to decentralized edge

IoT and mobile devices [50].

The heterogeneity of the underlying device hardware and soft-

ware ecosystems poses complex challenges for application develop-

ers. The dynamicity and heterogeneity of these devices necessitate

the support for dynamically instantiated, portable workloads stem-

ming from more than one source while maintaining security and

performance for applications. More critically, the isolation mecha-

nisms to secure these platforms assume some form of memory man-

agement unit (MMU) [7]. Several resource- and energy-constrained

IoT hardware platforms do not support MMUs [5, 6]. For instance,

in 2016, experts estimated ARM to have shipped 22 billion units of

the MMU-less Cortex-M based devices [19]. Although Cortex-M

processors are enabled with Memory Protection Units (MPU ) that

can provide memory isolation, MPUs can only support a finite num-

ber of memory regions. Moreover, applications need to be rewritten

under different bare-metal OSes that useMPUs because they require

different OS abstractions [10].

Latest advances. Recent works have only partially addressed the

requirements of security, performance, portability, and dynamic

instantiation for heterogeneous, resource-constrained computa-

tion. First, recent solutions that focus on memory protection for

bare-metal devices [3, 17, 37, 46, 52] almost always rely on MPU–

assuming that applications will be re-written for different OSes.

Similarly, secure formal verification-based microkernels such as

SeL4 [27] target more powerful processors such as the ARMA-series

platforms due to the performance and design restrictions. More-

over, these solutions typically ignore IoT devices’ cyber-physical

nature and do not provide sufficient access control to peripherals,

i.e., sensors and actuators. The shortfall of these solutions resides

in the fact that they were not designed for multi-tenant and het-

erogeneous applications within distributed environments. Further,

static security or ad-hoc policy implementations [13, 14, 35, 49] fall

short since the application does not need to follow the policy at

runtime if the policy enforcement mechanism does not exist–which

is where Aerogel is expected to fill that gap.

Challenges.We summarize the three interdependent research chal-

lenges as follows. First, how do we provide fine-grained memory

protection formulti-tenant IoT devices? Second, how can we ensure
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access to sensors and actuators are protectedwithinmulti-tenant ap-

plications? Third, given time- and resource-constrained IoT devices,

how do we provide such security mechanisms while maintaining a

minimal overhead and memory footprint in real-time?

Wasm for IoT. The requirements of security, performance, porta-

bility, and dynamic instantiation for heterogeneous computation

platforms are not unique to the 5G IoT edge. In response to the in-

creasing demands of performance and security for web application

deployment in fragmented and heterogeneous environments, engi-

neers from the top four major browser vendors collaboratively de-

veloped WebAssembly (Wasm) [16]–a portable low-level bytecode

that is platform-independent. Subsequently, industry giants such

as Intel and Redhat formed an alliance, known as the Bytecode Al-

liance [12], to develop a micro-runtime for Wasm that is supported

by bare-metal IoT devices, i.e., resource-constrained, MMU-less de-

vices where all software models share the same memory space. The

Wasm Micro-runtime (WAMR) [11] enables applications that can

run the target binary at native speeds independent of the device

and can achieve sandboxing without a memory-management unit.

Although WAMR is a strong candidate to support secure, per-

formant, and multi-tenant computation on edge, the scope of IoT

applications is not limited to computation services. The computa-

tion abstractions will run alongside sensing and actuation services

provided by the IoT device that interacts with the physical world.

WAMR currently lacks the abstractions necessary to provide access

control to sensors and actuators for IoT devices while maintaining

performance and security. Steps have been made towards providing

limited access control (e.g., only for certain memory regions or

pieces of sensitive information) for multi-tenant IoT devices us-

ing hypervisors [9, 23, 34], using the compiler at the compilation

time [13, 14, 35], or using secure runtime memory views based on

offline static analysis [55]. However, the proposed architectures

are device-dependent, requiring the recoding and recompilation

of the software stack for different IoT device architectures. The

shifting workloads of the dynamic and heterogeneous IoT edge will

require over-the-air (OTA) updates at runtime while supporting

other tenants. Thus, in this paper, we aim to tackle the following

challenge: how can we extend the security capabilities of Wasm on

IoT to include access control for multi-tenant IoT device peripherals

while maintaining performance and low resource overhead?

Approach. In this paper, we design Aerogel, a runtime frame-

work that utilizes the protection mechanisms of Wasm bytecode

sandboxing to provide access protection for IoT device peripher-

als – even when the applications and the OS are sharing the same

address space. Aerogel builds upon the Wasm runtime to provide

micro-management for each tenant (application). Tenant applica-

tions are compiled into Wasm bytecode such that applications can

be platform-independent. The Wasm runtime isolates application

bytecode from any platform-dependent native code that needs to

interact with the application. Aerogel instruments Wasm runtime

to provide a fine-grained access control mechanism such that users

can easily define the processor energy consumption, memory us-

age, as well as access to sensor and actuator peripherals for each

application. Moreover, our approach ensures that the applications

can be regulated based on the user’s security context while they

run on the same address space as the OS.

We evaluate Aerogel on a low-power, resource-constrained

MCU dev board (nRF52840) and benchmark a representative set

of safety-critical IoT applications. Aerogel’s runtime overhead

ranges from 0.19% to 1.04% extra execution time and from 18.8% to

45.9% extra energy on our proposed benchmarks. Our results show

that the fine-grained access control mechanism provides minimal

overhead for MCU energy, and peripheral access energy while hav-

ing a minimal overhead on application execution relative to related

works.

Contributions.We summarize our contributions as follows.

• We propose Aerogel, a Wasm-based access control mech-

anism for bare-metal IoT devices. Wasm enables platform-

independent application execution necessary for heteroge-

neous IoT networks.

• Aerogel leverages the sandboxing capabilities of Wasm

to isolate tenant applications from each other as well as

from platform-dependent native code. Aerogel enables se-

cure sandboxing for multi-tenant applications for resource-

constrained (less than 1 MB of memory), low-power devices.

• Weevaluate Aerogel on a real low-power, resource-constrained

MCU and show results of minimal 0.39𝜇Ah extra energy and
minimal overhead 2.1ms.

The rest of the paper is organized as follows. Section 2 briefly

discusses the background information of Wasm and bare-metal IoT

devices. We then overview Aerogel in section 3 and explain the

details of the design in section 4. We talk about the implementation

in section 5 and evaluate our work in section 6. We next analyze

the security issues and limitations and discuss the future work in

section 7. We compare Aerogel with the related work in section 8.

Lastly, we conclude this paper in section 9.

Our source code is open-source and available online12.

2 BACKGROUND

We first discuss the emerging field of multi-tenancy on bare-metal

IoT devices. We then describe the security guarantees provided

by Wasm and give a brief overview of the Wasm runtime for IoT

devices.

2.1 Multi-tenant Bare-metal IoT Devices

Bare-metal IoT devices have shifted away from single-purpose appli-

cations as equipped sensors and actuators enable them to perform

multiple tasks. For example, the battery-powered smart camera

Blink XT2 [51] can capture images and perform on-device object

detection. Further, the development ecosystem of IoT devices has

enabled APIs for developers to implement applications that lever-

age the sensor and actuator abstractions, e.g., the Skills API for

Amazon Alexa [2]. Hence, we model the complex and fragmented

software and hardware IoT ecosystems as multi-tenant application

environments. However, supporting multi-tenancy confounds the

challenges of performance, sustainability, and security on resource-

constrained devices.

1https://github.com/nesl/wasm-trustzone.git
2https://github.com/nesl/zephyr-wasm.git
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Figure 1: The UAV example of multi-tenant bare-metal soft-

ware stacks Aerogel targets on. All the code in the shaded

areas runs on the same address space.

Bare-metal characterization. We characterize bare-metal IoT

devices with limited resources, such as small battery capacities

containing few thousand mAh energy, low-end microprocessors

(MCUs) with only a few hundred MHz frequencies, or small mem-

ory size with few hundred Kilo-Byte(KB) memories. These devices

typically do not have complicated memory protection mechanisms

such as user space and kernel space address separation through

the Memory Management Unit (MMU). Moreover, those devices

are designed for heterogeneous sensing and actuation workloads

such as Umanned Aerial Vehicles(UAVs) and smart home sensors.

For example, Pixhawk 4 [18] flight control device is equipped with

two ARM-M processors that have 216 MHz for flight control and

24 MHz MCUs for I/O operations, and each processor has 512KB

and 8KB RAM respectively. Other popular bare-metal IoT device

examples include the Nest Protect [22] (MCU = 100 MHz [5] and

RAM = 512 KB) and the EdgeReady Voice Control platform [44]

(MCU = 600 MHz [6] and RAM = 1024 KB).

Lack of multi-tenant isolation. MMU-less, bare-metal IoT de-

vices cannot providememory isolation among different applications.

Figure 1 shows an example of a bare-metal UAV system support-

ing two different applications, i.e., tenants, that perform sensing

tasks to control flight dynamics. If various entities develop the

applications, the bare-metal devices would not be able to protect

one safety-critical application from another application’s bugs or

vulnerabilities. Although researchers [17, 37, 46] have proposed

to leverage Memory Protection Units (MPUs) on ARM Cortex-M

based IoT devices to provide memory isolation [13], MPUs can only

support a finite number of memory regions. Moreover, the associ-

ated applications would not be portable as they need to be rewritten

under different bare-metal OSes. Thus, we require a lightweight,

portable, and software-based memory isolation for multi-tenant

applications.

2.2 WebAssembly for Non-web Embeddings

Researchers have adopted WebAssembly [16] (Wasm) to account

for the bottlenecks of security, portability, and dynamic instan-

tiation. Wasm was initially designed for web browser JavaScript

applications on heterogeneous client devices to enhance the secu-

rity of script isolation, improve web application execution speed,

and erase the execution environment’s heterogeneity requirement.

Wasm has since generalized beyond web embeddings to bare-metal

IoT devices due to the original problems’ generality.

2.2.1 Tenets of Wasm. We first motivate the major advantages of

Wasm in the context of bare-metal IoT devices.

Performance. Wasm is designed as a statically-typed program-

ming language such that the variable type is determined at compi-

lation time. Additionally, Wasm utilizes a linear memory structure

that is loaded as a compact binary format. Hence, Wasm is able to

achieve near-native speed performance [1, 24].

Security.Wasm can provide runtime code isolation for applications

under any known memory-layout architecture (e.g., Arm M-series

boards) by running them in sandboxed execution environments.

Inside each sandbox, the Wasm application has full access to its

memory. However, any access to the memory outside of the sand-

box throws an exception. Moreover, each Wasm application has

its own sandbox, and its sandbox cannot be arbitrarily accessed by

different applications. By achieving this, Wasm runtime linearly

allocates memory regions and ensures that the entry and the exit

point of a function do not go beyond the sandbox bounds. If a Wasm

bytecode instruction reads from or writes to a specific memory ad-

dress, Wasm runtime will check whether the memory address is

within the application’s sandboxed memory regions.

Portability and Dynamic Instantiation. Wasm is a platform-

independent binary format whose execution resides on top of its

runtime. Hence, Wasm applications are portable on any device that

has a Wasm runtime and can initiate the execution environment

without recompiling the software stack.

2.2.2 WasmMicro-runtime. Wasm bytecode is executed on aWasm

runtime. From the runtime’s perspective, Wasm bytecode is a group

of Wasm bytecode instructions, where each instruction is encoded

with oneOPCODE followed by one ormore arguments. For example,

i32.add(i32.const 3)(i32.const 2) computes the addition of
3 and 2. Moreover, Wasm byte code applications have a special

instruction that can execute native functions inside Wasm runtime

exported through pre-registered function tables.

Wasm micro-runtime [11] (WAMR) is one of the most popular

lightweight runtimes for Wasm bytecode on bare-metal devices.

WAMR has only a few hundred kilobytes of memory footprint.

WAMR manages all the execution of Wasm bytecode. At the begin-

ning, it allocates a contiguous memory region for theWasm applica-

tion that can only grow contiguously starting from the end address.

Next, each Wasm instruction is translated into machine code by

WAMR. To reduce the execution overhead, WAMR also allows a

mixture of Wasm bytecode execution and platform-dependent exe-

cution. A mixture may be allowed for platform-dependent function-

ality optimization. Tomaintain security enforcement, the associated

native code is provided byWAMR and not the application developer.

Although WAMR provides the initial framework for Wasm on IoT

devices, Aerogel will aim to provide a peripheral access control

framework for bare-metal IoT applications. Next, we overview the

design of Aerogel.

3 OVERVIEW

We first describe the threat model and goals of Aerogel followed

by the design workflow.
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Figure 2: An overview and the workflow of Aerogel. The

darker grey area is the component of Aerogel.

3.1 Threat Model and Assumptions

Aerogel trusts the software stack below the applications running

on bare-metal IoT devices. More specifically speaking, Aerogel

trusts the firmware, the bare-metal OS, and the Wasm runtime.

Aerogel does not trust any application. We assume the entire soft-

ware stack code–including the application, the bare-metal OS, the

Wasm runtime, and the firmware of the hardware–is running on

the same address space as there is no MMU for the memory address

space separation. Any memory attacks such as buffer-overflow per-

formed by a malicious application to obtain the unauthorized access

to sensors or actuators can be prevented. Moreover, Aerogel also

protects against attacks of improper energy usage after the applica-

tion is authorized to access a sensor or an actuator. Side-channel

attacks, including cyber-physical attacks, towards the sensors or

actuators such as GPS spoofing are out of the scope of this paper.

Moreover, we assume sensor and actuator abstractions are pro-

vided to allow multiple applications to use the sensors or actuators

simultaneously, e.g., as was done in prior works [38, 39].

3.2 Goals

We enumerate the design goals for Aerogel as follows:

• Sensor and actuator access protection. Each application

is expected to be isolated from each other under a robust

sandboxed execution environment. Aerogel needs to make

sure its execution environment does not allow arbitrary ac-

cess to the peripherals such as sensors or actuators.

• Fine-grained access control. Aerogel aims to provide a

access control mechanism such that the users are able to

define the the processor energy consumption, memory usage,

as well as the energy consumption per sensor and actuator

for each application.

• Minimal overhead andmemory footprint. Aerogel aims

to provide low overhead and low memory footprint runtime

support such that it has minimal execution impact for all

applications on the resource-constrained bare-metal devices.

3.3 Workflow

Figure 2 provides an overview of Aerogel’s design workflow.

Prior to execution, all application code needs to be compiled to

Wasm bytecode. At runtime, Aerogel parses the access control

specification sheet ( 1 ), which is the user-defined access rules

whose details are discussed in section 4.2. After the specification

sheet is processed, the Wasm runtime loads the Wasm bytecode

of the applications as Wasm instructions and initiates their run-

time environment( 2 ). Wasm runtime then attempts to execute the

loaded Wasm instructions. Upon each instruction execution, the

Wasm runtime makes a request to the Aerogel runtime checker

to determine if the current application has exceeded the maximum

allowable processor energy and memory usage( 3 ). If an appli-

cation’s processor usage has exceed its allotment (assuming the

allotment exists), Aerogel will request the bare-metal OS schedule

the current application to sleep for a user-defined period of time.

The total processor energy consumption for the particular appli-

cation is reset to zero by the processor energy checker after the

user-defined reset time in the access control specification sheet has

elapsed. Resetting the application’s energy consumption prevents

the application from sleeping indefinitely. If the application’s mem-

ory usage has reached its allotment, the memory can no longer be

increased.

If the Wasm instruction requires reading sensor data or writ-

ing data to actuator peripherals, a request is sent to Aerogel’s

initial sensor and actuator permission checker to check whether

such an access is allowed in the user-defined sensor and actuator

allowlist ( 4 ). Once the initial access has been cleared, Aerogel’s

runtime checks whether the maximum total number of accesses

has been achieved for the requested sensors or actuators by the

access monitor( 5 ). If either the initial permission checking or the

maximum number of access checking fails, the access is denied.

Aerogel’s runtime throws an exception that is handled by Wasm

runtime. Otherwise, the request is passed to be registered by the

sensor and actuator module( 6 ) that directly interfaces with the

sensors and actuators. When new sensor data for or a new actuation

command from a particular application needs to be handled by the

sensor and actuator module( 7 ), the module sends requests to the

energy usage and the memory usage checkers to verify whether

the memory usage or the energy usage has exceeded the maximum

allotment for the associated sensor or actuator ( 8 ). If not, the sen-

sor and actuator module executes the actuation command or sends

back the new sensor data to the application ( 9 ). Otherwise, the

corresponding command or data is discarded.

We next explain the details of Aerogel’s design.

4 AEROGEL RUNTIME

We first describe how Aerogel provides memory protection for

sensors and actuators. We then explain how access control policies

are defined and enforced.
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4.1 Wasm-based Peripheral Memory Isolation

Aerogel’s bare-metal peripheral access control hinges on isolating

the peripheral memory locations from the application memory that

resides on the same contiguous linear memory space. We describe

how Aerogel isolates the peripherals from application memory in

two stages: application instantiation and application runtime.

4.1.1 Isolation at Application Instantiation. When the Wasm run-

time instantiates the runtime environment for an application, it

needs to allocate the associatedmemory heap. The runtime searches

for the first available memory region from the beginning of the

linear physical memory. Aerogel’s runtime checks whether such

allocation has overlapped with sensor or actuators addresses, i.e.,

by checking whether the linear regions include sensor or actuator

addresses. If an overlap is detected, Aerogel’s runtime returns the

first possible available memory regions that do not overlap with

the I/O address of the sensors and actuators with the required size

of the memory and returns the start address to Wasm runtime.

Memory collision resolution.When Wasm runtime’s requested

memory region overlaps with a sensor’s or actuator’s I/O address

that instantiates the abstractions of the corresponding I/O devices,

Aerogel’s runtime starts looking for the first possible memory

addresses that could fulfill with the request. Aerogel’s runtime

first searches from the low address to the high address of all sen-

sors and actuators without considering other conditions such as

whether the memory is used by other applications, further checked

by the Wasm runtime. For instance, a sensor and an actuator may

have addresses 0x8FFFFFE0 and 0x8FFFFFF0 respectively, and the
Wasm runtime needs to allocate 0x100 bytes of memory. Assuming
the memory is aligned in 4-byte settings, Aerogel’s runtime first

checks whether 0x8FFFFFD4 can fulfill with the request of 0x100
memory size. In this instance, the allocation overlaps with the ac-

tuator’s address (0x8FFFFFE0). Aerogel’s runtime then checks

whether 0x8FFFFFE4 can be a potential candidate and ensures

there are no other actuators or sensors between 0x8FFFFFE4 and
0x900000D0 (0x8FFFFFE4 + 0x100), hence 0x8FFFFFE4 will be re-
turned to Wasm runtime that will do further checks of whether the

memory regions will be eligible.

4.1.2 Isolation at Application Runtime. When the application’s cur-

rent memory size is not large enough to satisfy the needs, theWasm

runtime will enlarge the existing memory region. Wasm applica-

tion’s runtime memory is enlarged by extending the end address of

the original memory’s end address but keeping the same starting

address. In other words, only one chunk of contiguous physical

memory is allowed for each application. Wasm runtime will do

a similar memory checking procedure as when instantiating an

application to request Aerogel runtime to check whether such ex-

tension overlaps with memory mapped I/O addresses of the sensors

or actuators, but the anticipated memory size is the application’s

original memory heap size plus the required enlarging memory

size. If a new starting address is return by Aerogel runtime, Wasm

runtime copies the contents from the old memory chunk to the new

memory regions and frees the old memory trunk.

Given peripheral memory isolation, we can now explain how

Aerogel’s runtime enforces access control to the devices by starting

(a) An example of per-device specification sheet. This device specifica-

tion sheet is a smart home camera that has an image sensor capturing

the images and a camera angle adjustment actuator.

(b) An example of per-application specification sheet. This access con-

trol specification sheet is a smart home security monitoring applica-

tion, which is allowed to access smart camera and door controller.

Figure 3: Example of the specification sheet needed byAero-

gel.

from how the users should specify the access rules through an access

control specification sheet.

4.2 Access Control Specification

The Aerogel access control specification sheet defines the per-

mission list for each application. Aerogel requires the user to

provide two pieces of information through the specification sheet:

1) per-device specifications and 2) per-application specifications.

Per-device specification. For each device, the user needs to de-

fine the device’s manufacturer information. In particular, the user

should specify the power consumption profiles for each sensor,

actuator, and I/O addresses as well as the processor power under

different power states. The user also defines the maximum number

of applications that can access each sensor or actuator at a time.

Per-application specification. For each application on the IoT

device, the user provides an allowlist of sensors or actuators, the

maximum energy usage, the maximum processor energy usage, as
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well as the maximum memory usage. The user will also specify the

reset time for resetting the application’s total energy usage to be

zero.

Figure 3 shows an example of the two specification sheets for

Aerogel3. These specification sheets are provided by the user of

the devices. Figure 3a shows a per-device specification sheet for

a smart home security camera that has an image sensor and an

angle adjustment actuator. In this example, up to ten applications

can access the image sensor. The device has two power states:

active and sleeping. The angle actuator is only accessible by one

application at any time. Figure 3b is an example of access control per-

application specification sheet. In this example, the home_security

application is given access to the smart camera’s image sensor, the

angle adjustment actuator, and the door movement actuator. Access

to the angle adjustment actuator allows unlimited energy usage.

The total energy usage for the processor resets after 15000 ms.

Once the specification sheet policies are loaded inmemory, Aero-

gel’s runtime starts enforcing the access control rules using a hier-

archy of access checkers. The first access control checker focuses

on compute resource access control.

4.3 Compute Resource Access Control

The first stage of Aerogel’s access control focuses on compute

resource policies. Aerogel first checks compute resource access

policies before peripheral access policies since all applications will

require compute resources, but not all applications will access pe-

ripherals. Aerogel’s compute access control has two components:

the memory usage checker and the processor energy usage checker.

4.3.1 Memory usage checker. The memory usage checker performs

the total memory usage checking when a new piece of memory

region needs to be allocated by theWasm runtime. Thus, this type of

access control checking is triggered in two scenarios: 1) application

instantiation and application runtime memory expansion. Because

Wasm runtime allows only one chunk of contiguous memory for

each Wasm application, the memory usage checker only needs to

keep track of each application’s start and end addresses when its

memory regions are changed. The memory usage checker computes

the total memory usage of a specific application by subtracting

the application’s end address from the application’s start address.

The difference is compared with the user-specified memory usage

threshold. Hence, the performance of checking the memory usage

is always constant, i.e., 𝑂 (1).

4.3.2 Processor energy usage checker. An application’s processor

energy usage is defined as the processor energy consumed by exe-

cuting its Wasm instructions and invoked native functions. We rely

on the additional counters from MCU to collect the information of

the power state of the MCU at given time. Meanwhile, we use pre-

profile the actual MCU instructions needed by each Wasm instruc-

tion, and we combine these two pieces of information to compute

the MCU power consumption for the specificWasm instruction. For

example, suppose a Wasm instruction adds two numbers with the

opcode ADDITION followed by two numbers as the arguments. In

that case, the processor energy consumed is the processor energy

3The grammar template can be found here: https://tinyurl.com/aerogel-spec-sheet

that needs to add those two numbers, including loading them to

the registers and storing the result back to the memory.

For each Wasm instruction or native function invocation, Aero-

gel’s runtime records the total execution time under different pro-

cessor states and computes the energy consumption by summing

up 𝑃𝑖 ∗ 𝑡𝑖 , where 𝑃1, 𝑃2, ..., 𝑃𝑛 are the different power states of the
processor and 𝑡1, 𝑡2, ..., 𝑡𝑛 are the corresponding execution times.
After the execution of one Wasm instruction, the processor en-

ergy usage checker checks whether the application’s total energy

cost has exceeded the maximum allowable value. Suppose the to-

tal energy cost is more than the allowed maximum. In that case,

the application is scheduled to sleep for a period defined by the

user. Once the period has passed, the total energy cost resets to zero.

Performance optimizations.

Since one application might have many Wasm instructions, it

is inefficient to compute the energy for every instruction. We in-

troduce two optimization methods to reduce the overhead of the

processor energy checking procedures.

• For the static instructions whose execution times do not

change under different applications, e.g., addition and sub-

traction, Aerogel’s runtime stores the value of their as-

sociated energy cost. When Aerogel encounters those in-

structions, the checker retrieves the value from the first

computation.

• Similarly, when instructions have the same processor execu-

tion cycles, we only need to compute the processor energy

consumption for one of them and reuse the calculated value

for the rest instructions. For example, loading a 32-bit float

to a register has the same number of execution cycles as

loading a 32-bit integer.

4.4 Sensor And Actuator Access Control

Unlike the compute resource access controls checkers, the sensor

and actuator access control checkers only enforce the access control

rules when an application requires access to the sensors or actuators.

Aerogel’s sensor and actuator access control consists of three

components: the sensor and actuator initial permission checker, the

access monitor, and the sensor and actuator energy usage checker.

4.4.1 Sensor and actuator initial permission checker. The initial

permission checker is triggered when a new application requests

Aerogel’s runtime to read the sensor data or write data to actuator

peripherals. When such a request is received, the initial permission

checker checks whether the requested sensor or actuator is in the

allowlist of sensors and actuators for the application parsed from

the specification sheet. If the requested sensor or actuator is on the

list, the initial access checker will allow the request to advance to the

next stage. Otherwise, a denial will be sent back to the application.

4.4.2 Access monitor. The access monitor verifies that only a cer-

tain (user-defined) number of applications are accessing the sensors

and actuators, i.e., Aerogel enforces the user-defined counting

semaphores for sensor and actuator peripherals. For example, for

a temperature measuring application, the user only wants this

application to measure the average temperature during a certain

time, which can be limited by the number of allowed accesses.
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When an application needs to register with the sensor and actuator

module, the access monitor finds the current total number of appli-

cations accessing the sensor or actuator. If the access is less than

the total number of allowed accesses, the peripheral access will be

granted. Aerogel’s runtime then increments the total number of

accesses. When an application dispatches from the sensor and actu-

ator module, Aerogel’s runtime will decrement the total number

of applications accessing the sensor or actuator.

4.4.3 Sensor and actuator energy usage checker. When there is a

new peripheral event to be handled such as new sensor data or

new actuation command, the sensor and actuator module sends

the power states of the sensor or actuator and the duration of that

application on each power state to the sensors and actuators energy

usage checker. The checker looks up the power information of

each power state sent from the module according to the previously

parsed per-device specification sheet. The checker then computes

the energy usage of this event and adds this energy to the total

sensor or actuator energy consumed by the application for that

particular sensor or actuator.

The energy usage checker also compares whether the energy

usage has exceeded the maximum allowable value. If yes, the access

checker will request Aerogel’s runtime to virtually dispatch the

corresponding application from the sensor and actuator module,

i.e., the application cannot read or write to peripherals. The appli-

cation’s total energy consumption for the given sensor or actuator

is only reset to zero when the user-defined reset period has passed.

If the application was previously dispatched from the sensors and

actuators module, it would be virtually registered back with the

module. All virtual dispatches or registrations do not decrease or

increase the number of total accesses for that sensor or actuator.

5 IMPLEMENTATION

In this section, we will discuss the implementation of Aerogel.

5.1 System Setup

We prototyped our design Aerogel as depicted in figure 2 with

the Wasm micro-runtime (WAMR) [11]–which is implemented in a

mixture of C and assembly on both a bare-metal dev board (Nordic

nRF52840 [43]) and a simulator (QEMU [48]). We use the Zephyr

real-time OS [56] as the bare-metal operating system. The nRF52840

dev board is equipped with a 32-bit ARM Cortex-M4 MCU whose

running frequency is 64 MHz with 1MB flash and 256 KB RAM. The

nRF52840 is mainly utilized by wireless IoT devices such as wireless

security cameras. Because we need to measure the overhead of

Aerogel under different processor frequencies, we also set up the

QEMU simulator with various MCU frequencies from 10 MHz to

110 MHz with 512 KB RAM.

Aerogel and the associated runtime are implemented with a

total of 2321 significant Lines of Code (sLoC): 1399 sLoC for the

Aerogel runtime implementation, 108 sLoC for testing and debug-

ging purposes, and 814 sLoC for evaluation.

5.2 Aerogel Runtime

We now describe howwe implement the three major components of

the Aerogel runtime: the access control specification sheet parser,

the sensor and actuator module, and the access control checkers.

Moreover, we describe how we augmented our implementation to

support Just-in-Time (JIT) compilation for the Wasm applications

enabled by the WAMR.

5.2.1 Access control specification sheet parser. The parser needs

to initiate two types of state variables when parsing the specifica-

tion sheet: global state variables and per-application state variables.

The global state variables are shared among all the applications. In

particular, all variables extracted from the per-device specification

sheet information are considered global variables, e.g., the address

of each sensor and actuator, the power states, and the maximum

allowable concurrent access to a particular sensor or actuator. The

access control specification sheet initiates the global state vari-

ables only once. We implement the parse_per_device() function
to parse the per-device access control specification sheet at the

beginning of the wasm_env_create()–which creates the Wasm

environment for all Wasm applications.

Per-application state variables are parsed from the per-application

specification sheets and vary for different applications. We imple-

ment the parse_per_app() function to parse the per-application
access control specification sheet such that each application’s vari-

ables are initialized. These variables include information about the

allowable set of sensors and actuators, the energy allowed, and the

associated reset time. The access control checker will use the vari-

ables after each application is instantiated by the wasm_instantiate()
function–which initiates the Wasm application runtime for a par-

ticular application.

5.2.2 Sensor and Actuator Module. We implement the sensor and

actuator module as native functions that are exported and exposed

to theWasm applications.When aWasm application calls the sensor

and actuator module functions, the Wasm runtime looks into a

function table pre-registered with all native functions and finds the

symbols of the sensor and actuator module functions. The symbols

are linked with the Wasm application at runtime.

We implement two APIs for application developers, as summa-

rized in table 2. The sensing API is used to register the application

to listen to any sensing events, and the actuation API is used to send

an actuation command to the actuators from the application. When

a Wasm application invokes either of these APIs, the sensing and

actuating functions will first call the access_control_checking()
function of the Aerogel runtime to ensure such a request is legiti-

mate. If the request is to periodically send actuation commands or

receive sensing data, the sensing or actuating functions will call

the energy and memory usage checking functions to ensure the

total energy and memory usage has not exceeded the application’s

allotment.

5.2.3 Access Control Checkers. The sensor and actuator access

checkers’ implementation is integrated with the sensor and actu-

ator module. In particular, the sensor and actuator initial permis-

sion checker and the access monitor are called at the beginning

of the functions sensing (id, freq, duration, cb_func) and
actuation(id, *value, cb_func) before executing the sens-
ing or actuation requests. The sensor and actuator energy usage

checker is implemented at the sensor and actuator module before

the peripheral request is executed. The reset timer used by the
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Table 1: Simulated sensors and actuators4 for Unmanned Aerial Vehicles (UAVs) and smart home for Aerogel evaluations.

Category Device Name Peripherals Description Index Power Max Concurrent Access 

Un
m

an
. 

Ae
ria

l 
Ve

hi
cle

 
(U

AV
) Camera Camera image sensor Capturing the images  2W 5 

GPS GPS sensor Sensing GPS positioning signals  1W 10 
Propellers Motor actuators Controlling UAV propeller motors  10W 1 

Sm
ar

t H
om

e 

Camera 
Camera image sensor Capturing images  5W 5 
Angle control actuator Controlling camera angles  4W 1 

Door Control 
Motion Sensor Detection moving objects  0.2W 10 
Door motor actuator Controlling door opening and closing  3W 1 
Battery usage sensor Detecting battery capacity  0.2W 10 

Speaker Speaker actuator Playing sound from the speaker  4W 1 
Microphone Microphone sensor Sensing acoustic signals  1W 2 

 

Table 2: APIs implemented of the sensor and actuator mod-

ule exposed to the Wasm application developer.

APIs Description

sensing (id, freq, duration, cb_func)
Register the application to the sensor with id for

given frequency and duration. The results are sent

back by the callback function.

actuation(id, *value, cb_func)

Send the actuation command with the expected

value to the actuator with id. The returned values

if any from the actuator are sent back through the

callback function.

Aerogel access control checkers to reset the total peripheral en-

ergy is realized with the Zephyr up-time timer, which is the time

relative to the board’s boot-up time.

The compute resource access checkers are implemented where

a Wasm native function or bytecode instruction is called. For the

memory usage checker, it is invoked when extra memory is needed

for theWasm application’s runtime. In particular, thememory usage

checker is implemented at the beginning of wasm_instantiate()
function that instantiates theWasm runtime environment for the ap-

plication and the wasm_enlarge_memory() function that requests
extra memory when the current memory is not large enough. The

processor energy usage checker is implemented at the end of the

execution of each Wasm bytecode instruction or native function.

6 EVALUATION

We evaluate our design Aerogel on both nRF5840 dev board and

QEMU. We first explain the benchmarks we used for our evaluation,

followed by the experimental results.

6.1 Benchmarks

To evaluate our design, we first implemented several simulated

sensors and actuators for Unmanned Aerial Vehicles(UAVs) and

smart home environments. For the UAVs, we simulated a camera, a

GPS, and the motor for the propellers. For the smart home scenario,

we simulated four different devices that have more than one sensor

or actuator, e.g., a smart home camera and a door controller. Table 1

summarizes all of the simulated devices.

To the best of our knowledge, our work is the first known to use

Wasm for bare-metal device access control. We proposed micro-

benchmarks based on real-life examples of UAV systems and smart

home systems. The sensing or actuation rate and execution time

we chose in the benchmark is to closely imitate the real sensing

or actuation rate people use for their sensors and actuators in

their life. We evaluated eight different Wasm sensing and actuation

applications, as summarized in table 3 based on the sensors and

actuators of the UAVs and the smart home. Among these eightWasm

sensing and actuation applications, four of them have regular access

to the sensors or actuators. The other four are restricted to evaluate

denial for certain access requests.

The regular access Wasm applications for UAVs are the uav_ctrl

that is designed to be the UAV flight control system, and uav_sense

that is used to capture an image through the camera of the UAV. In

the smart home scenario, we proposed a home_monitor application

that monitors the home status through the available sensors and

a home_security application that protects the safety of the home.

The four restricted access applications are used to evaluate the four

different access control checkers under extreme conditions such

as a shortage of processor energy consumption and sensor energy

consumption, maximum concurrent accesses to peripherals, and

initial access to peripherals denial. For each sensor or actuator the

applications try to access, we set the duration for one second.

6.2 Results

We analyze the results of the benchmarks on the nRF52840 board

and QEMU. We combined the overhead of the initial access checker,

the memory usage checker, and the maximum concurrent access

checker for all of our results. The total overhead in the worst case

is less than 0.07% of the execution time.

6.2.1 Latency overhead. We run all benchmark Wasm applications

on the nRF52840 board, as summarized in table 4. The reported

overhead in this table does not include the specification sheet pars-

ing since this is done only at the system boot up time, where the

average overhead of parsing the specification sheet is 450ms that

occupies 30% of the overall system bootup time.

Our results show that for the regular access applications, Aero-

gel runtime introduces at most 1.04% overhead. Most of the over-

head comes from the sensor and the actuator energy checker, whose

energy checking happens more frequently than the other checkers.

For the UAV sensing application, the overhead is only 0.19% of the

total execution. This reduction comes from the shorter execution

time of sensing and actuating energy consumption checkers. Given

that there are more Wasm instructions in UAV control applications

and the Aerogel access control checkers for each Wasm applica-

tion consume more cycles than energy checkers, we expect such

101

Authorized licensed use limited to: UCLA Library. Downloaded on May 07,2023 at 22:25:34 UTC from IEEE Xplore.  Restrictions apply. 



Table 3: Benchmark applications running on nRF52840 board and its access configurations.

 
App Name Description Devices 

Used 

# of 
Wasm 
inst.1 

Wasm 
file size 
(Bytes) 

Allowed 
Devices 

Device 
Energy 
Allowed 

MCU 
Energy 
Allowed 

Memory 
Usage 

Allowed 

Re
gu

la
r 

A
cc

es
s 

uav_ctrl UAV flight control system  75 542  100 mAh 20 Ah Unlimited 
uav_sense UAV image capturing based on different locations  41 362  50 mAh Unlimited 250 KB 
home_monitor Voice control to get home info and play it via the speaker  86 607  Unlimited Unlimited 255 KB 
home_security Door opening after image identity verification  70 565  100 mAh Unlimited 230 KB 

Re
str

ic
t. 

A
cc

es
s 

uav_shortage_mcu Exceeds max allowed MCU power usage on UAV  41 374  10 mAh 0.5 Ah 250 KB 
home_shortage_cam Exceeds max allowed home camera power usage  41 393  1.5 Ah 60 Ah 240 KB 
uav_max_access Exceeds max allowed access to UAV propellers  77 549  60 mAh 70 Ah 250 KB 
home_init_denial Access to some smart home sensors denied  55 490  60 mAh 50 Ah 200 KB 

 

Table 4: Aerogel overhead of benchmark applications run-

ning on nRF52840 dev board.

 Aerogel Overhead Breakdown    

Percentage over 
Total time 

Processor 
Energy 

Checker 

Sen./Act. 
Energy 

Checker 

Other 
Checkers 

Total 
Aerogel 

Overhead 

App 
Execution 

Total 
time 
(ms) 

uav_ctrl 0.01% 1.02% 0.01% 1.04% 98.96% 3166 
uav_sense 0.00% 0.17% 0.01% 0.19% 99.81% 1056 
home_monitor 0.00% 0.92% 0.02% 0.94% 99.06% 4127 
home_security 0.00% 0.58% 0.02% 0.61% 99.39% 4092 
uav_shortage_mcu 0.01% 0.12% 0.01% 0.14% 99.86% 1530 
uav_shortage_cam 0.01% 0.52% 0.02% 0.55% 99.45% 1171 
uav_max_access 0.01% 0.17% 0.06% 0.24% 99.76% 1064 
home_init_denial 0.01% 0.09% 0.07% 0.16% 99.84% 1054 

 

Figure 4: The overhead percentage of different Aerogel

runtime access control checkers under each Wasm applica-

tion on nRF52840 board.

reduction. When examining the runtime overhead of the restricted

access applications, we found the sensor energy shortage applica-

tion has the most overhead at 0.55%. This overhead is the result of

the applications that require frequent access to sensors and, thus,

more energy checks when new sensor data is available. On the

other hand, the lowest MCU application’s overhead is 0.14%. When

the application’s energy usage is denied, the application is sched-

uled to sleep immediately–resulting in fewer checks than other

applications.

We examined the overhead percentage of different access checks

relative to the total Aerogel overhead. The results–depicted in Fig-

ure 4–show that the sensor and the actuator energy usage checker

consumes the most overhead. The energy usage checker is triggered

when a new sensor event or actuation command needs to be han-

dled. Some applications, e.g., the uav_control that sends more than

Figure 5: The overhead of Aerogel for uav_sense on

nRF52840 board under various camera sensing frequency.

Figure 6: The overhead of Aerogel for home_security on

QEMU simulator under various MCU frequency.

1000 actuation commands, trigger thousands of sensor and energy

usage checking procedures. In contrast, the processor energy usage

checker triggers only tens of times, as shown in table 3. Hence, the

overhead of the sensor and actuator energy usage checker is signifi-

cantly higher than that of the processor energy usage checker. Other

access control checkers, such as the initial access control checker,

consume a large portion of the overhead only in restricted access

applications, especially the initial access denial app. This overhead

is due to the high-frequency sensor’s access denial, resulting in

fewer energy usage checks.

Moreover, the overhead introduced by the checkers of Aerogel

is likely correlated to the access frequency to the required sensors

and actuators. For example, in the uav_ctrl application, the sensors

and actuators are more frequently accessed than other applications.

Hence, the overall overhead is contributed most from the sensor

and actuator energy checker.

We ran the experiment under different sensing frequencies on

the nRF52840 dev board and different processor frequencies on

the QEMU emulator. Figure 5 shows the different camera sensing
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Figure 7: The flash memory usage of nRF52840 board when

running different applications.

Figure 8: The SRAMusage of nRF52840 board when running

different applications.

frequencies of the uav_sense application. The overhead of the sensor

and actuator energy usage checker increases with respect to the

increase of the sensing frequency. In contrast, the overhead of other

access control checker does not increase. The sensing frequency

change only increases the number of sensing events that trigger

the sensor energy usage checking. We also show the overhead of

Aerogel runtime under different MCU frequencies on the QEMU

simulator, as illustrated in Figure 6. Aerogel runtime has very

minimal overhead when the MCU frequency is greater than or

equal to 70 MHz.

6.2.2 Memory overhead. We next evaluated Aerogel’s SRAM and

flash memory overhead. We only evaluated the memory overhead

for the four regular access applications since the restricted access

applications cannot provide full execution paths. The flash memory

size is the size of all the compiled code–including the OS, the appli-

cations, and the Aerogel runtime. For the flash memory, Aerogel

runtime only introduces a marginal overhead that is less than 5KB–

independent of the application. The Aerogel runtime overhead of

SRAM is also minimal around 0.1KB. This minimal overhead is due

to the fact that no significant amount of temporary data is stored

in memory.

6.2.3 Energy consumption. Finally, we evaluated nRF52840’s board

energy consumption for our benchmark. To measure the energy

consumption, we used the Monsoon power monitor [41] to con-

nect to the dev board. The monitor provides a 3V external battery

for the board. Our results show that the Aerogel runtime costs a

maximum of 0.65 𝜇𝐴ℎ and a minimum of 0.39 𝜇𝐴ℎ for all regular
access applications. For the restricted access control applications,

the energy consumption with Aerogel runtime enabled for some

applications such as home_init_denial and uav_max_access is less

than those without enabling Aerogel runtime. This is because

Figure 9: The energy consumption of nRF52840 board when

running different applications.

when such access is denied, Aerogel runtime does not need to

have further energy usage check of the sensor or actuators. The

application is not allowed to further execute to read the sensor data

or to send the actuation commands. It is the application developers’

responsibility to take care of such access denials, otherwise, a res-

cue control will be triggered to take over the control of the device.

The reason why the relative energy consumption is higher than the

relative overhead is that the energy checking is at high energy con-

sumption mode because the MCU is always awake and executing,

but the benchmark applications are I/O intensive applications.

7 DISCUSSION AND FUTUREWORK

We discuss the security analysis and future work of Aerogel.

Attack prevention. Due to the memory protection characteristics

of Wasm, Aerogel can build a secure runtime that provides soft-

ware memory isolation for all peripherals even when the devices

lack the memory address space separation from MMU. Aerogel

also protects the bare-metal IoT devices from malicious applica-

tions that try to drain the device’s resources such as the battery and

memory. Moreover, Aerogel can protect the sensors and actuators

of the device from being accessed without the user’s authorizations.

Further, Aerogel’s processor energy usage checker can mitigate a

Denial-of-Service (DoS) attack from a malicious Wasm application

because it has a restricted energy and memory usage allotment.

Limitations. Aerogel cannot protect against side-channel mem-

ory attacks [36]. Aerogel also cannot protect against cyber-physical

attacks on the peripherals such as GPS spoofing. Furthermore,

Aerogel cannot prevent the application from misusing the sensor

data or sending dangerous actuation commands if it is granted ac-

cess to the sensor or the actuator. Finally, Aerogel cannot provide

access control for sensors or actuators that are not memory-mapped

I/Os, e.g., interrupt-based sensors, because Wasm runtime only pro-

vides the isolation of the memory although most sensors on SoC

nowadays are memory-mapped sensor. If we would further like to

support the protections for non-memory-mapped I/Os as well, we

will need the extra hardware protections such as the Memory Pro-

tection Unit (MPU) in Arm-M series to separate the main memory

bus and the interrupt devices.
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Future work. Our evaluation did not explore the adaptation of

Aerogel to dynamic instantiation of application workloads across

IoT devices. In the context of dispersed IoT computational net-

works where devices may leverage opportunistically available re-

sources [28, 42], Aerogel would need to adapt to applications

that are dynamically streamed from other devices. In this context,

the specification and enforcement of access control policies would

need to be dynamic and partially autonomous. Future directions

can also explore optimization of access control enforcement in the

face of third-party, dynamically streamed and instantiated applica-

tion workloads. Although Wasm’s runtime (e.g., Wamr) supports

dynamic application installation, future work can minimize the

impact of executing applications when the over-the-air installation

is happening given the limited resources on bare metal IoT devices.

8 RELATEDWORK

We now compare the existing work with Aerogel.

Memory Protection on Bare-metal Devices. ACES [13], Mi-

croGuard [49], uXOM [35] and Clements et al. [14] use the compiler

to achieve the memory compartmentalizing on bare-metal devices

based on ARM Cortex-M’s Memory Protection Unit (MPU). Pi-

coXom [52] uses MPU to provide read-only memory execution

environment on ARM Cortex M environment. 𝜇RAI [3] enforces
Return Address Integrity (RAI) by modifying the compiler to move

the return address from writable memory to read- and execute-only

memory regions. Moreover, ARMor [57] uses formal verification

methods of software fault isolation (SFI) to ensure the memory

safety and the control flow integrity of applications by inserting

dynamic check before certain instructions. Unlike them, Aerogel

is able to achieve memory isolation including the protections to

the peripherals at runtime without pre-inspecting the applications.

Prior works [17, 37, 46] useMPU to achieve runtimememory protec-

tion. However, the applications need to be rewritten under different

bare-metal OSes, while those applications on Aerogel do not need

to be reprogrammed for different bare-metal OSes. Some distributed

lower-level protections [15, 20, 32] such as the firmware-level can

provide the protections for specific devices. Aerogel provides ac-

cess protection for general IoT devices that support the Wasm

execution environment.

Access Control on IoT Devices. AccTee [21] uses Intel SGX

withWasm to enforce access control usage for thememory and CPU

usage for cloud applications. Several prior works [4, 29, 40, 45, 47]

adopt blockchain techniques to achieve decentralized access control

for IoT devices. Atlam et al. [8] builds an access control model based

on the context of the environment to decide whether granting the

access request exposes the security risks of the data usage. However,

although the above works propose access control framework for IoT

networks, these works fail to provide fine-grained access control

for applications running on an individual device as in Aerogel.

Secure Microkernels. Secure-formal verification-based micro-

kernels such as SeL4 [33] are also capable providing fine-grained

access control under certain circumstances. However, the microker-

nels lack easily fine-grained control of instruction execution, while

Wasm JIT runtime can provide an accurate measurement of the

MCU time for a givenWasm instruction, which makes microkernels

hard to control the processor power consumption that can be con-

sumed by different applications. Moreover, unlike Aerogel, SeL4

mainly targets on the powerful processors such as ARM A-series

platforms due to the performance and design restrictions (e.g. lack

of hardware assisted memory protections) of the micro-controller

platforms such as ARM M-series SoCs [27].

Wasm on the Edge. OneOS [31] designs a single-image univer-

sal edge OS for heterogeneous IoT devices using JavaScript that can

enable Wasm execution. Hall et al. [26] utilizes Wasm to execute

serverless functions on edge to reduce the hardware resources us-

age with respect to traditional edge serverless computation systems.

Wasmachine [54] uses Wasm to host an edge operating system with

kernel written by Rust to speed up the applications running on top

of it. Jeong et al. [30] proposes a system offloading Wasm functions

mingled with JavaScript to edge server from the mobile devices

to reduce execution latency. However, unlike Aerogel, none of

the above focuses on access protections to use peripherals such as

sensors and actuators on bare-metal IoT devices where MMU is not

available.

9 CONCLUSION

In this paper, we propose Aerogel, a lightweight access control

framework to define fine-grained access control policies for Wasm-

based, bare-metal IoT devices. Aerogel leverages the security fea-

tures of Wasm runtime to protect the access and usage of peripher-

als. We prototype Aerogel on nRF52840 dev board, and the results

show that Aerogel only introduces 0.19% to 1.04% overhead.

ACKNOWLEDGMENTS

The research reported in this paper was sponsored in part by the

National Science Foundation (NSF) under award #CNS-1705135, by

the CONIX Research Center, one of six centers in JUMP, a Semicon-

ductor Research Corporation (SRC) program sponsored by DARPA,

and by the Army Research Laboratory (ARL) under Cooperative

Agreement W911NF-17-2-0196. The views and conclusions con-

tained in this document are those of the authors and should not be

interpreted as representing the official policies, either expressed or

implied, of the ARL, DARPA, NSF, SRC, or the U.S. Government.

The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright

notation here on.

REFERENCES

[1] https://medium.com/@torch2424/webassembly-is-fast-a-real-world-
benchmark-of-webassembly-vs-es6-d85a23f8e193.

[2] Alhadlaq, A., Tang, J., Almaymoni, M., and Korolova, A. Privacy in the
amazon alexa skills ecosystem. Star 217, 11 (1902).

[3] Almakhdhub, N. S., Clements, A. A., Bagchi, S., and Payer, M. 𝜇rai: Securing
embedded systems with return address integrity.

[4] Andersen, M. P., Kumar, S., AbdelBaky, M., Fierro, G., Kolb, J., Kim, H.-S.,
Culler, D. E., and Popa, R. A. WAVE: A decentralized authorization framework
with transitive delegation. In 28th USENIX Security Symposium (USENIX Security
19) (Santa Clara, CA, Aug. 2019), USENIX Association, pp. 1375–1392.

[5] ARM. Arm cortex m4. https://developer.arm.com/ip-products/processors/cortex-
m/cortex-m4.

[6] ARM. Arm cortex m7. https://developer.arm.com/ip-products/processors/cortex-
m/cortex-m7.

[7] ARM. The memory management unit (mmu). https://developer.arm.com/
architectures/learn-the-architecture/memory-management/the-memory-
management-unit-mmu.

104

Authorized licensed use limited to: UCLA Library. Downloaded on May 07,2023 at 22:25:34 UTC from IEEE Xplore.  Restrictions apply. 



[8] Atlam, H. F., Alenezi, A., Walters, R. J., Wills, G. B., and Daniel, J. Developing
an adaptive risk-based access control model for the internet of things. In 2017
IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData) (2017), pp. 655–661.

[9] Avramidis, I., Mackay, M., Tso, F. P., Fukai, T., and Shinagawa, T. Live
migration on arm-based micro-datacentres. In 2018 15th IEEE Annual Consumer
Communications & Networking Conference (CCNC) (2018), IEEE, pp. 1–6.

[10] Bai, Y. Arm® memory protection unit (mpu).
[11] BytecodeAlliance. Wasm micro-runtime. https://github.com/bytecodealliance/

wasm-micro-runtime.
[12] Clark, L. Announcing the bytecode alliance: Building a secure by default,

composable future for webassembly. https://bytecodealliance.org/articles/
announcing-the-bytecode-alliance, 2020. Last accessed: 2020-07-29.

[13] Clements, A. A., Almakhdhub, N. S., Bagchi, S., and Payer, M. ACES: Auto-
matic compartments for embedded systems. In 27th USENIX Security Symposium
(USENIX Security 18) (Baltimore, MD, 2018), USENIX Association, pp. 65–82.

[14] Clements, A. A., Almakhdhub, N. S., Saab, K. S., Srivastava, P., Koo, J., Bagchi,
S., and Payer, M. Protecting bare-metal embedded systems with privilege over-
lays. In 2017 IEEE Symposium on Security and Privacy (SP) (2017), pp. 289–303.

[15] Clements, A. A., Gustafson, E., Scharnowski, T., Grosen, P., Fritz, D.,
Kruegel, C., Vigna, G., Bagchi, S., and Payer, M. Halucinator: Firmware re-
hosting through abstraction layer emulation. In 29th USENIX Security Symposium
(USENIX Security 20) (Aug. 2020), USENIX Association, pp. 1201–1218.

[16] Community, W. Webassembly. https://webassembly.org/.
[17] Danner, D., Müller, R., Schröder-Preikschat, W., Hofer, W., and Lohmann,

D. Safer sloth: Efficient, hardware-tailored memory protection. In 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS) (2014),
pp. 37–48.

[18] Dronecode. Pixhawk 4. https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.
html.

[19] Ensergueix, T. Cortex-m23 and cortex-m33 - security foundation for billions of
devices, October 2016.

[20] Feng, B., Mera, A., and Lu, L. P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling. In 29th USENIX
Security Symposium (USENIX Security 20) (Aug. 2020), USENIX Association,
pp. 1237–1254.

[21] Goltzsche, D., Nieke, M., Knauth, T., and Kapitza, R. Acctee: A webassembly-
based two-way sandbox for trusted resource accounting. In Proceedings of the
20th International Middleware Conference (New York, NY, USA, 2019), Middleware
’19, Association for Computing Machinery, p. 123–135.

[22] Google. Nest protect. https://store.google.com/us/product/nest_protect_2nd_
gen.

[23] Gudeth, K., Pirretti, M., Hoeper, K., and Buskey, R. Delivering secure appli-
cations on commercial mobile devices: The case for bare metal hypervisors. In
Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices (New York, NY, USA, 2011), SPSM ’11, Association for Computing
Machinery, p. 33–38.

[24] Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman,
D., Wagner, L., Zakai, A., and Bastien, J. Bringing the web up to speed with
webassembly. SIGPLAN Not. 52, 6 (June 2017), 185–200.

[25] Habibzadeh, H., Qin, Z., Soyata, T., and Kantarci, B. Large-scale distributed
dedicated-and non-dedicated smart city sensing systems. IEEE Sensors Journal
17, 23 (2017), 7649–7658.

[26] Hall, A., and Ramachandran, U. An execution model for serverless functions
at the edge. In Proceedings of the International Conference on Internet of Things
Design and Implementation (New York, NY, USA, 2019), IoTDI ’19, Association
for Computing Machinery, p. 225–236.

[27] Heiser, G. The sel microkernel an introduction.
[28] Hu, D., and Krishnamachari, B. Throughput optimized scheduler for dispersed

computing systems. In 2019 7th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud) (2019), IEEE, pp. 76–84.

[29] Hwang, D., Choi, J., and Kim, K. Dynamic access control scheme for iot de-
vices using blockchain. In 2018 International Conference on Information and
Communication Technology Convergence (ICTC) (2018), pp. 713–715.

[30] Jeong, H.-J., Shin, C. H., Shin, K. Y., Lee, H.-J., and Moon, S.-M. Seamless
offloading of web app computations from mobile device to edge clouds via html5
web worker migration. In Proceedings of the ACM Symposium on Cloud Computing
(New York, NY, USA, 2019), SoCC ’19, Association for Computing Machinery,
p. 38–49.

[31] Jung, K., Gascon-Samson, J., and Pattabiraman, K. Oneos: Iot platform based
on POSIX and actors. In 2nd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 19) (Renton, WA, July 2019), USENIX Association.

[32] Kim, C. H., Kim, T., Choi, H., Gu, Z., Lee, B., Zhang, X., and Xu, D. Securing
real-time microcontroller systems through customized memory view switching.
In NDSS (2018).

[33] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch,

H., and Winwood, S. Sel4: Formal verification of an os kernel. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles (New York,
NY, USA, 2009), SOSP ’09, Association for Computing Machinery, p. 207–220.

[34] Klingensmith, N., and Banerjee, S. Hermes: A real time hypervisor for mobile
and iot systems. In Proceedings of the 19th International Workshop on Mobile
Computing Systems & Applications (2018), pp. 101–106.

[35] Kwon, D., Shin, J., Kim, G., Lee, B., Cho, Y., and Paek, Y. uxom: Efficient execute-
only memory on ARM cortex-m. In 28th USENIX Security Symposium (USENIX
Security 19) (Santa Clara, CA, Aug. 2019), USENIX Association, pp. 231–247.

[36] Lehmann, D., Kinder, J., and Pradel, M. Everything old is new again: Binary
security of webassembly. In 29th {USENIX} Security Symposium ({USENIX}
Security 20) (2020), pp. 217–234.

[37] Levy, A., Campbell, B., Ghena, B., Giffin, D. B., Pannuto, P., Dutta, P., and
Levis, P. Multiprogramming a 64kb computer safely and efficiently. In Proceedings
of the 26th Symposium on Operating Systems Principles (New York, NY, USA, 2017),
SOSP ’17, Association for Computing Machinery, p. 234–251.

[38] Liu, R., and Srivastava, M. VirtSense: Virtualize Sensing through ARM TrustZone
on Internet-of-Things. Association for Computing Machinery, New York, NY, USA,
2018, p. 2–7.

[39] Liu, R., Wang, Z., Garcia, L., and Srivastava, M. Remediot: Remedial actions
for internet-of-things conflicts. In Proceedings of the 6th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation
(New York, NY, USA, 2019), BuildSys ’19, Association for Computing Machinery,
p. 101–110.

[40] Lunardi, R. C., Michelin, R. A., Neu, C. V., and Zorzo, A. F. Distributed access
control on iot ledger-based architecture. In NOMS 2018 - 2018 IEEE/IFIP Network
Operations and Management Symposium (2018), pp. 1–7.

[41] Monsoon Solutions Inc. https://www.msoon.com/online-store.
[42] Noor, J., Tseng, H.-Y., Garcia, L., and Srivastava, M. Ddflow: visualized

declarative programming for heterogeneous iot networks. In Proceedings of the
International Conference on Internet of Things Design and Implementation (2019),
ACM, pp. 172–177.

[43] Nordic Semiconductor. https://www.nordicsemi.com/Products/Low-power-
short-range-wireless/nRF52840.

[44] NXP. Nxp edgeready. https://www.nxp.com/applications/solutions/enabling-
technologies/edgeverse/edgeready:EDGEREADY.

[45] Ourad, A. Z., Belgacem, B., and Salah, K. Using blockchain for iot access
control and authentication management. In Internet of Things – ICIOT 2018
(Cham, 2018), D. Georgakopoulos and L.-J. Zhang, Eds., Springer International
Publishing, pp. 150–164.

[46] Pan, R., Peach, G., Ren, Y., and Parmer, G. Predictable virtualization on memory
protection unit-based microcontrollers. In 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS) (2018), pp. 62–74.

[47] Putra, G. D., Dedeoglu, V., Kanhere, S. S., and Jurdak, R. Trust management
in decentralized iot access control system, 2019.

[48] QEMU. https://www.qemu.org/.
[49] Salehi, M., Hughes, D., and Crispo, B. Microguard: Securing bare-metal micro-

controllers against code-reuse attacks. In 2019 IEEE Conference on Dependable
and Secure Computing (DSC) (2019), pp. 1–8.

[50] Samie, F., Tsoutsouras, V., Bauer, L., Xydis, S., Soudris, D., and Henkel, J.
Computation offloading and resource allocation for low-power iot edge devices.
In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT) (2016), IEEE, pp. 7–12.

[51] Security, B. H. Blink xt2. https://blinkforhome.com/products.
[52] Shen, Z., and Criswell, J. Fast execute-only memory for embedded systems,

2020.
[53] STL. 5g and edge computing: Why does 5g needs edge compute?, Jun 2020.
[54] Wen, E., and Weber, G. Wasmachine: Bring iot up to speed with a webassembly

os. In 2020 IEEE International Conference on Pervasive Computing and Communi-
cations Workshops (PerCom Workshops) (2020), pp. 1–4.

[55] Yun, M. H., and Zhong, L. Securing real-time microcontroller systems through
customized memory view switching. In 22nd Network and Distributed Security
Symposium (NDSS 2018) (San Diego, CA, 2018).

[56] Zephyr. https://www.zephyrproject.org/.
[57] Zhao, L., Li, G., De Sutter, B., and Regehr, J. Armor: Fully verified software

fault isolation. In Proceedings of the Ninth ACM International Conference on
Embedded Software (New York, NY, USA, 2011), EMSOFT ’11, Association for
Computing Machinery, p. 289–298.

105

Authorized licensed use limited to: UCLA Library. Downloaded on May 07,2023 at 22:25:34 UTC from IEEE Xplore.  Restrictions apply. 


