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ABSTRACT

Application latency requirements, privacy, and security concerns
have naturally pushed computing onto smartphone and IoT de-
vices in a decentralized manner. In response to these demands, re-
searchers have developed micro-runtimes for WebAssembly (Wasm)
on IoT devices to enable streaming applications to a runtime that
can run the target binaries that are independent of the device. How-
ever, the migration of Wasm and the associated security research
has neglected the urgent needs of access control on bare-metal,
memory management unit (MMU)-less IoT devices that are sensing
and actuating upon the physical environment. This paper presents
AEROGEL, an access control framework that addresses security gaps
between the bare-metal IoT devices and the Wasm execution envi-
ronment concerning access control for sensors, actuators, processor
energy usage, and memory usage. In particular, we treat the runtime
as a multi-tenant environment, where each Wasm-based applica-
tion is a tenant. We leverage the inherent sandboxing mechanisms
of Wasm to enforce the access control policies to sensors and actua-
tors without trusting the bare-metal operating system. We evaluate
our approach on a representative IoT development board: a cortex-
M4 based development board (nRF52840). Our results show that
AEROGEL can effectively enforce compute resource and peripheral
access control policies while introducing as little as 0.19% to 1.04%
runtime overhead and consuming only 18.8% to 45.9% extra energy.
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1 INTRODUCTION

The scope of leveraging mobile and internet-of-things (IoT) de-
vices for sensing physical spaces has generalized beyond human
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activity recognition. Distributed and deployed IoT systems leverage
the ubiquitous sensors for a myriad of applications such as smart
healthcare, smart city lighting, and transportation [25]. In the 5G
context, on-device edge computation enables nascent market appli-
cations such as augmented reality, mass IoT, and drone services [53].
Consequently, the latency requirements, privacy, and security con-
cerns for these safety-critical applications have naturally shifted
computation from centralized cloud resources to decentralized edge
10T and mobile devices [50].

The heterogeneity of the underlying device hardware and soft-
ware ecosystems poses complex challenges for application develop-
ers. The dynamicity and heterogeneity of these devices necessitate
the support for dynamically instantiated, portable workloads stem-
ming from more than one source while maintaining security and
performance for applications. More critically, the isolation mecha-
nisms to secure these platforms assume some form of memory man-
agement unit (MMU) [7]. Several resource- and energy-constrained
IoT hardware platforms do not support MMUs [5, 6]. For instance,
in 2016, experts estimated ARM to have shipped 22 billion units of
the MMU-less Cortex-M based devices [19]. Although Cortex-M
processors are enabled with Memory Protection Units (MPU) that
can provide memory isolation, MPUs can only support a finite num-
ber of memory regions. Moreover, applications need to be rewritten
under different bare-metal OSes that use MPUs because they require
different OS abstractions [10].

Latest advances. Recent works have only partially addressed the
requirements of security, performance, portability, and dynamic
instantiation for heterogeneous, resource-constrained computa-
tion. First, recent solutions that focus on memory protection for
bare-metal devices [3, 17, 37, 46, 52] almost always rely on MPU-
assuming that applications will be re-written for different OSes.
Similarly, secure formal verification-based microkernels such as
SeL4 [27] target more powerful processors such as the ARM A-series
platforms due to the performance and design restrictions. More-
over, these solutions typically ignore IoT devices’ cyber-physical
nature and do not provide sufficient access control to peripherals,
i.e., sensors and actuators. The shortfall of these solutions resides
in the fact that they were not designed for multi-tenant and het-
erogeneous applications within distributed environments. Further,
static security or ad-hoc policy implementations [13, 14, 35, 49] fall
short since the application does not need to follow the policy at
runtime if the policy enforcement mechanism does not exist-which
is where AEROGEL is expected to fill that gap.

Challenges. We summarize the three interdependent research chal-
lenges as follows. First, how do we provide fine-grained memory
protection for multi-tenant IoT devices? Second, how can we ensure
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access to sensors and actuators are protected within multi-tenant ap-
plications? Third, given time- and resource-constrained IoT devices,
how do we provide such security mechanisms while maintaining a
minimal overhead and memory footprint in real-time?
Wasm for IoT. The requirements of security, performance, porta-
bility, and dynamic instantiation for heterogeneous computation
platforms are not unique to the 5G IoT edge. In response to the in-
creasing demands of performance and security for web application
deployment in fragmented and heterogeneous environments, engi-
neers from the top four major browser vendors collaboratively de-
veloped WebAssembly (Wasm) [16]-a portable low-level bytecode
that is platform-independent. Subsequently, industry giants such
as Intel and Redhat formed an alliance, known as the Bytecode Al-
liance [12], to develop a micro-runtime for Wasm that is supported
by bare-metal 10T devices, i.e., resource-constrained, MMU-less de-
vices where all software models share the same memory space. The
Wasm Micro-runtime (WAMR) [11] enables applications that can
run the target binary at native speeds independent of the device
and can achieve sandboxing without a memory-management unit.
Although WAMR is a strong candidate to support secure, per-
formant, and multi-tenant computation on edge, the scope of IoT
applications is not limited to computation services. The computa-
tion abstractions will run alongside sensing and actuation services
provided by the IoT device that interacts with the physical world.
WAMR currently lacks the abstractions necessary to provide access
control to sensors and actuators for IoT devices while maintaining
performance and security. Steps have been made towards providing
limited access control (e.g., only for certain memory regions or
pieces of sensitive information) for multi-tenant IoT devices us-
ing hypervisors [9, 23, 34], using the compiler at the compilation
time [13, 14, 35], or using secure runtime memory views based on
offline static analysis [55]. However, the proposed architectures
are device-dependent, requiring the recoding and recompilation
of the software stack for different IoT device architectures. The
shifting workloads of the dynamic and heterogeneous IoT edge will
require over-the-air (OTA) updates at runtime while supporting
other tenants. Thus, in this paper, we aim to tackle the following
challenge: how can we extend the security capabilities of Wasm on
IoT to include access control for multi-tenant IoT device peripherals
while maintaining performance and low resource overhead?
Approach. In this paper, we design AEROGEL, a runtime frame-
work that utilizes the protection mechanisms of Wasm bytecode
sandboxing to provide access protection for IoT device peripher-
als — even when the applications and the OS are sharing the same
address space. AEROGEL builds upon the Wasm runtime to provide
micro-management for each tenant (application). Tenant applica-
tions are compiled into Wasm bytecode such that applications can
be platform-independent. The Wasm runtime isolates application
bytecode from any platform-dependent native code that needs to
interact with the application. AEROGEL instruments Wasm runtime
to provide a fine-grained access control mechanism such that users
can easily define the processor energy consumption, memory us-
age, as well as access to sensor and actuator peripherals for each
application. Moreover, our approach ensures that the applications
can be regulated based on the user’s security context while they
run on the same address space as the OS.
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We evaluate AEROGEL on a low-power, resource-constrained
MCU dev board (nRF52840) and benchmark a representative set
of safety-critical IoT applications. AEROGEL’s runtime overhead
ranges from 0.19% to 1.04% extra execution time and from 18.8% to
45.9% extra energy on our proposed benchmarks. Our results show
that the fine-grained access control mechanism provides minimal
overhead for MCU energy, and peripheral access energy while hav-
ing a minimal overhead on application execution relative to related
works.

Contributions. We summarize our contributions as follows.

e We propose AEROGEL, a Wasm-based access control mech-
anism for bare-metal IoT devices. Wasm enables platform-
independent application execution necessary for heteroge-
neous IoT networks.

o AEROGEL leverages the sandboxing capabilities of Wasm
to isolate tenant applications from each other as well as
from platform-dependent native code. AEROGEL enables se-
cure sandboxing for multi-tenant applications for resource-
constrained (less than 1 MB of memory), low-power devices.

o We evaluate AEROGEL on a real low-power, resource-constrained

MCU and show results of minimal 0.39Ah extra energy and
minimal overhead 2.1ms.

The rest of the paper is organized as follows. Section 2 briefly
discusses the background information of Wasm and bare-metal IoT
devices. We then overview AEROGEL in section 3 and explain the
details of the design in section 4. We talk about the implementation
in section 5 and evaluate our work in section 6. We next analyze
the security issues and limitations and discuss the future work in
section 7. We compare AEROGEL with the related work in section 8.
Lastly, we conclude this paper in section 9.

Our source code is open-source and available online!?.

2 BACKGROUND

We first discuss the emerging field of multi-tenancy on bare-metal
IoT devices. We then describe the security guarantees provided
by Wasm and give a brief overview of the Wasm runtime for IoT
devices.

2.1 Multi-tenant Bare-metal IoT Devices

Bare-metal IoT devices have shifted away from single-purpose appli-
cations as equipped sensors and actuators enable them to perform
multiple tasks. For example, the battery-powered smart camera
Blink XT2 [51] can capture images and perform on-device object
detection. Further, the development ecosystem of IoT devices has
enabled APIs for developers to implement applications that lever-
age the sensor and actuator abstractions, e.g., the Skills API for
Amazon Alexa [2]. Hence, we model the complex and fragmented
software and hardware IoT ecosystems as multi-tenant application
environments. However, supporting multi-tenancy confounds the
challenges of performance, sustainability, and security on resource-
constrained devices.

Ihttps://github.com/nesl/wasm-trustzone.git
2https://github.com/nesl/zephyr-wasm.git
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Figure 1: The UAV example of multi-tenant bare-metal soft-
ware stacks AEROGEL targets on. All the code in the shaded
areas runs on the same address space.

Bare-metal characterization. We characterize bare-metal 10T
devices with limited resources, such as small battery capacities
containing few thousand mAh energy, low-end microprocessors
(MCUs) with only a few hundred MHz frequencies, or small mem-
ory size with few hundred Kilo-Byte(KB) memories. These devices
typically do not have complicated memory protection mechanisms
such as user space and kernel space address separation through
the Memory Management Unit (MMU). Moreover, those devices
are designed for heterogeneous sensing and actuation workloads
such as Umanned Aerial Vehicles(UAVs) and smart home sensors.
For example, Pixhawk 4 [18] flight control device is equipped with
two ARM-M processors that have 216 MHz for flight control and
24 MHz MCUs for I/O operations, and each processor has 512KB
and 8KB RAM respectively. Other popular bare-metal IoT device
examples include the Nest Protect [22] (MCU = 100 MHz [5] and
RAM = 512 KB) and the EdgeReady Voice Control platform [44]
(MCU = 600 MHz [6] and RAM = 1024 KB).

Lack of multi-tenant isolation. MMU-less, bare-metal IoT de-
vices cannot provide memory isolation among different applications.
Figure 1 shows an example of a bare-metal UAV system support-
ing two different applications, i.e., tenants, that perform sensing
tasks to control flight dynamics. If various entities develop the
applications, the bare-metal devices would not be able to protect
one safety-critical application from another application’s bugs or
vulnerabilities. Although researchers [17, 37, 46] have proposed
to leverage Memory Protection Units (MPUs) on ARM Cortex-M
based IoT devices to provide memory isolation [13], MPUs can only
support a finite number of memory regions. Moreover, the associ-
ated applications would not be portable as they need to be rewritten
under different bare-metal OSes. Thus, we require a lightweight,
portable, and software-based memory isolation for multi-tenant
applications.

2.2 WebAssembly for Non-web Embeddings

Researchers have adopted WebAssembly [16] (Wasm) to account
for the bottlenecks of security, portability, and dynamic instan-
tiation. Wasm was initially designed for web browser JavaScript
applications on heterogeneous client devices to enhance the secu-
rity of script isolation, improve web application execution speed,
and erase the execution environment’s heterogeneity requirement.
Wasm has since generalized beyond web embeddings to bare-metal
IoT devices due to the original problems’ generality.
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2.2.1 Tenets of Wasm. We first motivate the major advantages of
Wasm in the context of bare-metal IoT devices.

Performance. Wasm is designed as a statically-typed program-
ming language such that the variable type is determined at compi-
lation time. Additionally, Wasm utilizes a linear memory structure
that is loaded as a compact binary format. Hence, Wasm is able to
achieve near-native speed performance [1, 24].

Security. Wasm can provide runtime code isolation for applications
under any known memory-layout architecture (e.g., Arm M-series
boards) by running them in sandboxed execution environments.
Inside each sandbox, the Wasm application has full access to its
memory. However, any access to the memory outside of the sand-
box throws an exception. Moreover, each Wasm application has
its own sandbox, and its sandbox cannot be arbitrarily accessed by
different applications. By achieving this, Wasm runtime linearly
allocates memory regions and ensures that the entry and the exit
point of a function do not go beyond the sandbox bounds. If a Wasm
bytecode instruction reads from or writes to a specific memory ad-
dress, Wasm runtime will check whether the memory address is
within the application’s sandboxed memory regions.

Portability and Dynamic Instantiation. Wasm is a platform-
independent binary format whose execution resides on top of its
runtime. Hence, Wasm applications are portable on any device that
has a Wasm runtime and can initiate the execution environment
without recompiling the software stack.

2.2.2 Wasm Micro-runtime. Wasm bytecode is executed on a Wasm
runtime. From the runtime’s perspective, Wasm bytecode is a group
of Wasm bytecode instructions, where each instruction is encoded
with one OPCODE followed by one or more arguments. For example,
i32.add(i32.const 3)(i32.const 2) computes the addition of
3 and 2. Moreover, Wasm byte code applications have a special
instruction that can execute native functions inside Wasm runtime
exported through pre-registered function tables.

Wasm micro-runtime [11] (WAMR) is one of the most popular
lightweight runtimes for Wasm bytecode on bare-metal devices.
WAMR has only a few hundred kilobytes of memory footprint.
WAMR manages all the execution of Wasm bytecode. At the begin-
ning, it allocates a contiguous memory region for the Wasm applica-
tion that can only grow contiguously starting from the end address.
Next, each Wasm instruction is translated into machine code by
WAMR. To reduce the execution overhead, WAMR also allows a
mixture of Wasm bytecode execution and platform-dependent exe-
cution. A mixture may be allowed for platform-dependent function-
ality optimization. To maintain security enforcement, the associated
native code is provided by WAMR and not the application developer.
Although WAMR provides the initial framework for Wasm on IoT
devices, AEROGEL will aim to provide a peripheral access control
framework for bare-metal IoT applications. Next, we overview the
design of AEROGEL.

3 OVERVIEW

We first describe the threat model and goals of AEROGEL followed
by the design workflow.
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Figure 2: An overview and the workflow of AEROGEL. The
darker grey area is the component of AEROGEL.

3.1 Threat Model and Assumptions

AEROGEL trusts the software stack below the applications running
on bare-metal IoT devices. More specifically speaking, AEROGEL
trusts the firmware, the bare-metal OS, and the Wasm runtime.
AEROGEL does not trust any application. We assume the entire soft-
ware stack code—including the application, the bare-metal OS, the
Wasm runtime, and the firmware of the hardware—-is running on
the same address space as there is no MMU for the memory address
space separation. Any memory attacks such as buffer-overflow per-
formed by a malicious application to obtain the unauthorized access
to sensors or actuators can be prevented. Moreover, AEROGEL also
protects against attacks of improper energy usage after the applica-
tion is authorized to access a sensor or an actuator. Side-channel
attacks, including cyber-physical attacks, towards the sensors or
actuators such as GPS spoofing are out of the scope of this paper.
Moreover, we assume sensor and actuator abstractions are pro-
vided to allow multiple applications to use the sensors or actuators
simultaneously, e.g., as was done in prior works [38, 39].

3.2 Goals
We enumerate the design goals for AEROGEL as follows:

e Sensor and actuator access protection. Each application
is expected to be isolated from each other under a robust
sandboxed execution environment. AEROGEL needs to make
sure its execution environment does not allow arbitrary ac-
cess to the peripherals such as sensors or actuators.

¢ Fine-grained access control. AEROGEL aims to provide a
access control mechanism such that the users are able to
define the the processor energy consumption, memory usage,
as well as the energy consumption per sensor and actuator
for each application.
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e Minimal overhead and memory footprint. AEROGEL aims
to provide low overhead and low memory footprint runtime
support such that it has minimal execution impact for all
applications on the resource-constrained bare-metal devices.

3.3 Workflow

Figure 2 provides an overview of AEROGEL’s design workflow.
Prior to execution, all application code needs to be compiled to
Wasm bytecode. At runtime, AEROGEL parses the access control
specification sheet (@), which is the user-defined access rules
whose details are discussed in section 4.2. After the specification
sheet is processed, the Wasm runtime loads the Wasm bytecode
of the applications as Wasm instructions and initiates their run-
time environment(@). Wasm runtime then attempts to execute the
loaded Wasm instructions. Upon each instruction execution, the
Wasm runtime makes a request to the AEROGEL runtime checker
to determine if the current application has exceeded the maximum
allowable processor energy and memory usage(@)). If an appli-
cation’s processor usage has exceed its allotment (assuming the
allotment exists), AEROGEL will request the bare-metal OS schedule
the current application to sleep for a user-defined period of time.
The total processor energy consumption for the particular appli-
cation is reset to zero by the processor energy checker after the
user-defined reset time in the access control specification sheet has
elapsed. Resetting the application’s energy consumption prevents
the application from sleeping indefinitely. If the application’s mem-
ory usage has reached its allotment, the memory can no longer be
increased.

If the Wasm instruction requires reading sensor data or writ-
ing data to actuator peripherals, a request is sent to AEROGEL’s
initial sensor and actuator permission checker to check whether
such an access is allowed in the user-defined sensor and actuator
allowlist (@). Once the initial access has been cleared, AEROGEL’s
runtime checks whether the maximum total number of accesses
has been achieved for the requested sensors or actuators by the
access monitor(@)). If either the initial permission checking or the
maximum number of access checking fails, the access is denied.
AEROGEL’s runtime throws an exception that is handled by Wasm
runtime. Otherwise, the request is passed to be registered by the
sensor and actuator module(@) that directly interfaces with the
sensors and actuators. When new sensor data for or a new actuation
command from a particular application needs to be handled by the
sensor and actuator module(@), the module sends requests to the
energy usage and the memory usage checkers to verify whether
the memory usage or the energy usage has exceeded the maximum
allotment for the associated sensor or actuator (@). If not, the sen-
sor and actuator module executes the actuation command or sends
back the new sensor data to the application (€)). Otherwise, the
corresponding command or data is discarded.

We next explain the details of AEROGEL’s design.

4 AEROGEL RUNTIME

We first describe how AEROGEL provides memory protection for
sensors and actuators. We then explain how access control policies
are defined and enforced.
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4.1 Wasm-based Peripheral Memory Isolation

AEROGEL’s bare-metal peripheral access control hinges on isolating
the peripheral memory locations from the application memory that
resides on the same contiguous linear memory space. We describe
how AEROGEL isolates the peripherals from application memory in
two stages: application instantiation and application runtime.

4.1.1 lIsolation at Application Instantiation. When the Wasm run-
time instantiates the runtime environment for an application, it
needs to allocate the associated memory heap. The runtime searches
for the first available memory region from the beginning of the
linear physical memory. AEROGEL’s runtime checks whether such
allocation has overlapped with sensor or actuators addresses, i.e.,
by checking whether the linear regions include sensor or actuator
addresses. If an overlap is detected, AEROGEL’s runtime returns the
first possible available memory regions that do not overlap with
the I/O address of the sensors and actuators with the required size
of the memory and returns the start address to Wasm runtime.

Memory collision resolution. When Wasm runtime’s requested
memory region overlaps with a sensor’s or actuator’s I/O address
that instantiates the abstractions of the corresponding I/O devices,
AEROGEL’s runtime starts looking for the first possible memory
addresses that could fulfill with the request. AEROGEL’s runtime
first searches from the low address to the high address of all sen-
sors and actuators without considering other conditions such as
whether the memory is used by other applications, further checked
by the Wasm runtime. For instance, a sensor and an actuator may
have addresses 0x8FFFFFEQ and 0x8FFFFFFO respectively, and the
Wasm runtime needs to allocate @x100 bytes of memory. Assuming
the memory is aligned in 4-byte settings, AEROGEL’s runtime first
checks whether 0x8FFFFFD4 can fulfill with the request of 9x100
memory size. In this instance, the allocation overlaps with the ac-
tuator’s address (0x8FFFFFEQ). AEROGEL’s runtime then checks
whether 0x8FFFFFE4 can be a potential candidate and ensures
there are no other actuators or sensors between 0x8FFFFFE4 and
0x900000D0 (0x8FFFFFE4 + 0x100), hence 0x8FFFFFE4 will be re-
turned to Wasm runtime that will do further checks of whether the
memory regions will be eligible.

4.1.2  Isolation at Application Runtime. When the application’s cur-
rent memory size is not large enough to satisfy the needs, the Wasm
runtime will enlarge the existing memory region. Wasm applica-
tion’s runtime memory is enlarged by extending the end address of
the original memory’s end address but keeping the same starting
address. In other words, only one chunk of contiguous physical
memory is allowed for each application. Wasm runtime will do
a similar memory checking procedure as when instantiating an
application to request AEROGEL runtime to check whether such ex-
tension overlaps with memory mapped I/O addresses of the sensors
or actuators, but the anticipated memory size is the application’s
original memory heap size plus the required enlarging memory
size. If a new starting address is return by AEROGEL runtime, Wasm
runtime copies the contents from the old memory chunk to the new
memory regions and frees the old memory trunk.

Given peripheral memory isolation, we can now explain how
AEROGEL’s runtime enforces access control to the devices by starting
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1. <Device-Spec>

2.

3. <Param name="home_camera" description="Home smart camera"/>
4. <Sub-Devices>

5. <Property>

6.

7. <Param name="image_sensor" address="Ox8FFFFFEQ"/>
8.

9. <Max-Access val="108"/>

10. <Power-State val="active" power="800"/>

11. <Power-State val="sleep" power="300"/>

12. </Property>

13. <Property>

14.

15. <Param name="angle_actuator” address="0x8FFFFFF4"/>
16. <Max-Access val="1"/>

17.

18. <Power-State val="active" power="1000"/>

19. </Property>

20. </Sub-Devices>

21. </Device-Spec>

(a) An example of per-device specification sheet. This device specifica-
tion sheet is a smart home camera that has an image sensor capturing
the images and a camera angle adjustment actuator.

<App-Spec>
<Applications>

<Param name="home_security" description="Home security App"/>

<Access-Devices>

<Device name="image_sensor" energy="2500" reset="10000"/>

<Device name="angle_actuator” energy="unlimited" reset="0"/>

<Device name="door_actuator" energy="1500" reset="15000"/>
</Access-Devices>

<Processor-Memory>
<Processor val="5000"
<Memory val="131072"/>
</Processor-Memory>
</Applications>

reset="15000"/>

. </App-Spec>

(b) An example of per-application specification sheet. This access con-
trol specification sheet is a smart home security monitoring applica-
tion, which is allowed to access smart camera and door controller.

Figure 3: Example of the specification sheet needed by AERO-
GEL.
from how the users should specify the access rules through an access

control specification sheet.

4.2 Access Control Specification

The AEROGEL access control specification sheet defines the per-

mission list for each application. AEROGEL requires the user to
provide two pieces of information through the specification sheet:
1) per-device specifications and 2) per-application specifications.
Per-device specification. For each device, the user needs to de-
fine the device’s manufacturer information. In particular, the user
should specify the power consumption profiles for each sensor,
actuator, and I/O addresses as well as the processor power under
different power states. The user also defines the maximum number
of applications that can access each sensor or actuator at a time.
Per-application specification. For each application on the IoT
device, the user provides an allowlist of sensors or actuators, the
maximum energy usage, the maximum processor energy usage, as
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well as the maximum memory usage. The user will also specify the
reset time for resetting the application’s total energy usage to be
Zero.

Figure 3 shows an example of the two specification sheets for
AEROGEL?. These specification sheets are provided by the user of
the devices. Figure 3a shows a per-device specification sheet for
a smart home security camera that has an image sensor and an
angle adjustment actuator. In this example, up to ten applications
can access the image sensor. The device has two power states:
active and sleeping. The angle actuator is only accessible by one
application at any time. Figure 3b is an example of access control per-
application specification sheet. In this example, the home_security
application is given access to the smart camera’s image sensor, the
angle adjustment actuator, and the door movement actuator. Access
to the angle adjustment actuator allows unlimited energy usage.
The total energy usage for the processor resets after 15000 ms.

Once the specification sheet policies are loaded in memory, AERO-
GEL’s runtime starts enforcing the access control rules using a hier-
archy of access checkers. The first access control checker focuses
on compute resource access control.

4.3 Compute Resource Access Control

The first stage of AEROGEL’s access control focuses on compute
resource policies. AEROGEL first checks compute resource access
policies before peripheral access policies since all applications will
require compute resources, but not all applications will access pe-
ripherals. AEROGEL’s compute access control has two components:
the memory usage checker and the processor energy usage checker.

4.3.1 Memory usage checker. The memory usage checker performs
the total memory usage checking when a new piece of memory
region needs to be allocated by the Wasm runtime. Thus, this type of
access control checking is triggered in two scenarios: 1) application
instantiation and application runtime memory expansion. Because
Wasm runtime allows only one chunk of contiguous memory for
each Wasm application, the memory usage checker only needs to
keep track of each application’s start and end addresses when its
memory regions are changed. The memory usage checker computes
the total memory usage of a specific application by subtracting
the application’s end address from the application’s start address.
The difference is compared with the user-specified memory usage
threshold. Hence, the performance of checking the memory usage
is always constant, i.e., O(1).

4.3.2  Processor energy usage checker. An application’s processor
energy usage is defined as the processor energy consumed by exe-
cuting its Wasm instructions and invoked native functions. We rely
on the additional counters from MCU to collect the information of
the power state of the MCU at given time. Meanwhile, we use pre-
profile the actual MCU instructions needed by each Wasm instruc-
tion, and we combine these two pieces of information to compute
the MCU power consumption for the specific Wasm instruction. For
example, suppose a Wasm instruction adds two numbers with the
opcode ADDITION followed by two numbers as the arguments. In
that case, the processor energy consumed is the processor energy

3The grammar template can be found here: https://tinyurl.com/aerogel-spec-sheet
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that needs to add those two numbers, including loading them to
the registers and storing the result back to the memory.

For each Wasm instruction or native function invocation, AERO-
GEL’s runtime records the total execution time under different pro-
cessor states and computes the energy consumption by summing
up P; * t;, where Py, Py, ..., P, are the different power states of the
processor and t1, to, ..., tp are the corresponding execution times.

After the execution of one Wasm instruction, the processor en-
ergy usage checker checks whether the application’s total energy
cost has exceeded the maximum allowable value. Suppose the to-
tal energy cost is more than the allowed maximum. In that case,
the application is scheduled to sleep for a period defined by the
user. Once the period has passed, the total energy cost resets to zero.

Performance optimizations.

Since one application might have many Wasm instructions, it
is inefficient to compute the energy for every instruction. We in-
troduce two optimization methods to reduce the overhead of the
processor energy checking procedures.

e For the static instructions whose execution times do not
change under different applications, e.g., addition and sub-
traction, AEROGEL’s runtime stores the value of their as-
sociated energy cost. When AEROGEL encounters those in-
structions, the checker retrieves the value from the first
computation.

o Similarly, when instructions have the same processor execu-
tion cycles, we only need to compute the processor energy
consumption for one of them and reuse the calculated value
for the rest instructions. For example, loading a 32-bit float
to a register has the same number of execution cycles as
loading a 32-bit integer.

4.4 Sensor And Actuator Access Control

Unlike the compute resource access controls checkers, the sensor
and actuator access control checkers only enforce the access control
rules when an application requires access to the sensors or actuators.
AEROGEL’s sensor and actuator access control consists of three
components: the sensor and actuator initial permission checker, the
access monitor, and the sensor and actuator energy usage checker.

4.4.1 Sensor and actuator initial permission checker. The initial
permission checker is triggered when a new application requests
AEROGEL’s runtime to read the sensor data or write data to actuator
peripherals. When such a request is received, the initial permission
checker checks whether the requested sensor or actuator is in the
allowlist of sensors and actuators for the application parsed from
the specification sheet. If the requested sensor or actuator is on the
list, the initial access checker will allow the request to advance to the
next stage. Otherwise, a denial will be sent back to the application.

4.4.2  Access monitor. The access monitor verifies that only a cer-
tain (user-defined) number of applications are accessing the sensors
and actuators, i.e., AEROGEL enforces the user-defined counting
semaphores for sensor and actuator peripherals. For example, for
a temperature measuring application, the user only wants this
application to measure the average temperature during a certain
time, which can be limited by the number of allowed accesses.
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When an application needs to register with the sensor and actuator
module, the access monitor finds the current total number of appli-
cations accessing the sensor or actuator. If the access is less than
the total number of allowed accesses, the peripheral access will be
granted. AEROGEL’s runtime then increments the total number of
accesses. When an application dispatches from the sensor and actu-
ator module, AEROGEL’s runtime will decrement the total number
of applications accessing the sensor or actuator.

4.4.3 Sensor and actuator energy usage checker. When there is a
new peripheral event to be handled such as new sensor data or
new actuation command, the sensor and actuator module sends
the power states of the sensor or actuator and the duration of that
application on each power state to the sensors and actuators energy
usage checker. The checker looks up the power information of
each power state sent from the module according to the previously
parsed per-device specification sheet. The checker then computes
the energy usage of this event and adds this energy to the total
sensor or actuator energy consumed by the application for that
particular sensor or actuator.

The energy usage checker also compares whether the energy
usage has exceeded the maximum allowable value. If yes, the access
checker will request AEROGEL’s runtime to virtually dispatch the
corresponding application from the sensor and actuator module,
i.e., the application cannot read or write to peripherals. The appli-
cation’s total energy consumption for the given sensor or actuator
is only reset to zero when the user-defined reset period has passed.
If the application was previously dispatched from the sensors and
actuators module, it would be virtually registered back with the
module. All virtual dispatches or registrations do not decrease or
increase the number of total accesses for that sensor or actuator.

5 IMPLEMENTATION

In this section, we will discuss the implementation of AEROGEL.

5.1 System Setup

We prototyped our design AEROGEL as depicted in figure 2 with
the Wasm micro-runtime (WAMR) [11]-which is implemented in a
mixture of C and assembly on both a bare-metal dev board (Nordic
nRF52840 [43]) and a simulator (QEMU [48]). We use the Zephyr
real-time OS [56] as the bare-metal operating system. The nRF52840
dev board is equipped with a 32-bit ARM Cortex-M4 MCU whose
running frequency is 64 MHz with 1MB flash and 256 KB RAM. The
nRF52840 is mainly utilized by wireless IoT devices such as wireless
security cameras. Because we need to measure the overhead of
AEROGEL under different processor frequencies, we also set up the
QEMU simulator with various MCU frequencies from 10 MHz to
110 MHz with 512 KB RAM.

AEROGEL and the associated runtime are implemented with a
total of 2321 significant Lines of Code (sLoC): 1399 sLoC for the
AEROGEL runtime implementation, 108 sLoC for testing and debug-
ging purposes, and 814 sLoC for evaluation.

5.2 AEROGEL Runtime

We now describe how we implement the three major components of
the AEROGEL runtime: the access control specification sheet parser,
the sensor and actuator module, and the access control checkers.
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Moreover, we describe how we augmented our implementation to
support Just-in-Time (JIT) compilation for the Wasm applications
enabled by the WAMR.

5.2.1 Access control specification sheet parser. The parser needs
to initiate two types of state variables when parsing the specifica-
tion sheet: global state variables and per-application state variables.
The global state variables are shared among all the applications. In
particular, all variables extracted from the per-device specification
sheet information are considered global variables, e.g., the address
of each sensor and actuator, the power states, and the maximum
allowable concurrent access to a particular sensor or actuator. The
access control specification sheet initiates the global state vari-
ables only once. We implement the parse_per_device() function
to parse the per-device access control specification sheet at the
beginning of the wasm_env_create()-which creates the Wasm
environment for all Wasm applications.

Per-application state variables are parsed from the per-application
specification sheets and vary for different applications. We imple-
ment the parse_per_app() function to parse the per-application
access control specification sheet such that each application’s vari-
ables are initialized. These variables include information about the
allowable set of sensors and actuators, the energy allowed, and the
associated reset time. The access control checker will use the vari-
ables after each application is instantiated by thewasm_instantiate()
function-which initiates the Wasm application runtime for a par-
ticular application.

5.2.2  Sensor and Actuator Module. We implement the sensor and
actuator module as native functions that are exported and exposed
to the Wasm applications. When a Wasm application calls the sensor
and actuator module functions, the Wasm runtime looks into a
function table pre-registered with all native functions and finds the
symbols of the sensor and actuator module functions. The symbols
are linked with the Wasm application at runtime.

We implement two APIs for application developers, as summa-
rized in table 2. The sensing API is used to register the application
to listen to any sensing events, and the actuation API is used to send
an actuation command to the actuators from the application. When
a Wasm application invokes either of these APIs, the sensing and
actuating functions will first call the access_control_checking()
function of the AEROGEL runtime to ensure such a request is legiti-
mate. If the request is to periodically send actuation commands or
receive sensing data, the sensing or actuating functions will call
the energy and memory usage checking functions to ensure the
total energy and memory usage has not exceeded the application’s
allotment.

5.2.3 Access Control Checkers. The sensor and actuator access
checkers’ implementation is integrated with the sensor and actu-
ator module. In particular, the sensor and actuator initial permis-
sion checker and the access monitor are called at the beginning
of the functions sensing (id, freq, duration, cb_func) and
actuation(id, #*value, cb_func) before executing the sens-
ing or actuation requests. The sensor and actuator energy usage
checker is implemented at the sensor and actuator module before
the peripheral request is executed. The reset timer used by the
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Table 1: Simulated sensors and actuators* for Unmanned Aerial Vehicles (UAVs) and smart home for AEROGEL evaluations.

Category Device Name | Peripherals Description Index | Power | Max Concurrent Access
c_ o _ Camera Camera image sensor | Capturing the images [€) 2W 5
g E % E GPS GPS sensor Sensing GPS positioning signals 1w 10
> == Propellers Motor actuators Controlling UAV propeller motors 10w 1

Camera image sensor | Capturing images 5W 5

° Camera Angle control actuator | Controlling camera angles 4w
g Motion Sensor Detection moving objects 0.2wW 10
I Door Control | Door motor actuator | Controlling door opening and closing 3w 1
é Battery usage sensor Detecting battery capacity 0.2W 10
2 Speaker Speaker actuator Playing sound from the speaker 9 4w 1
Microphone Microphone sensor Sensing acoustic signals 10 1w 2

Table 2: APIs implemented of the sensor and actuator mod-
ule exposed to the Wasm application developer.

APIs

Description

Register the application to the sensor with id for
given frequency and duration. The results are sent
back by the callback function.

sensing (id, freq, duration, cb_func)

Send the actuation command with the expected
value to the actuator with id. The returned values
if any from the actuator are sent back through the
callback function.

actuation(id, xvalue, cb_func)

AEROGEL access control checkers to reset the total peripheral en-
ergy is realized with the Zephyr up-time timer, which is the time
relative to the board’s boot-up time.

The compute resource access checkers are implemented where
a Wasm native function or bytecode instruction is called. For the
memory usage checker, it is invoked when extra memory is needed
for the Wasm application’s runtime. In particular, the memory usage
checker is implemented at the beginning of wasm_instantiate()
function that instantiates the Wasm runtime environment for the ap-
plication and the wasm_enlarge_memory () function that requests
extra memory when the current memory is not large enough. The
processor energy usage checker is implemented at the end of the
execution of each Wasm bytecode instruction or native function.

6 EVALUATION

We evaluate our design AEROGEL on both nRF5840 dev board and
QEMU. We first explain the benchmarks we used for our evaluation,
followed by the experimental results.

6.1 Benchmarks

To evaluate our design, we first implemented several simulated
sensors and actuators for Unmanned Aerial Vehicles(UAVs) and
smart home environments. For the UAVs, we simulated a camera, a
GPS, and the motor for the propellers. For the smart home scenario,
we simulated four different devices that have more than one sensor
or actuator, e.g., a smart home camera and a door controller. Table 1
summarizes all of the simulated devices.

To the best of our knowledge, our work is the first known to use
Wasm for bare-metal device access control. We proposed micro-
benchmarks based on real-life examples of UAV systems and smart
home systems. The sensing or actuation rate and execution time
we chose in the benchmark is to closely imitate the real sensing
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or actuation rate people use for their sensors and actuators in
their life. We evaluated eight different Wasm sensing and actuation
applications, as summarized in table 3 based on the sensors and
actuators of the UAVs and the smart home. Among these eight Wasm
sensing and actuation applications, four of them have regular access
to the sensors or actuators. The other four are restricted to evaluate
denial for certain access requests.

The regular access Wasm applications for UAVs are the uav_ctrl
that is designed to be the UAV flight control system, and uav_sense
that is used to capture an image through the camera of the UAV. In
the smart home scenario, we proposed a home_monitor application
that monitors the home status through the available sensors and
a home_security application that protects the safety of the home.
The four restricted access applications are used to evaluate the four
different access control checkers under extreme conditions such
as a shortage of processor energy consumption and sensor energy
consumption, maximum concurrent accesses to peripherals, and
initial access to peripherals denial. For each sensor or actuator the
applications try to access, we set the duration for one second.

6.2 Results

We analyze the results of the benchmarks on the nRF52840 board
and QEMU. We combined the overhead of the initial access checker,
the memory usage checker, and the maximum concurrent access
checker for all of our results. The total overhead in the worst case
is less than 0.07% of the execution time.

6.2.1 Latency overhead. We run all benchmark Wasm applications
on the nRF52840 board, as summarized in table 4. The reported
overhead in this table does not include the specification sheet pars-
ing since this is done only at the system boot up time, where the
average overhead of parsing the specification sheet is 450ms that
occupies 30% of the overall system bootup time.

Our results show that for the regular access applications, AERO-
GEL runtime introduces at most 1.04% overhead. Most of the over-
head comes from the sensor and the actuator energy checker, whose
energy checking happens more frequently than the other checkers.
For the UAV sensing application, the overhead is only 0.19% of the
total execution. This reduction comes from the shorter execution
time of sensing and actuating energy consumption checkers. Given
that there are more Wasm instructions in UAV control applications
and the Aerogel access control checkers for each Wasm applica-
tion consume more cycles than energy checkers, we expect such
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Table 3: Benchmark applications running on nRF52840 board and its access configurations.

Devices #of | Wasm Allowed Device MCU Memory
App Name Description Used Wasm | file size Devices Energy Energy Usage

inst.l (Bytes) Allowed Allowed Allowed

uav_ctrl UAUV flight control system 75 542 100 mAh 20 puAh | Unlimited

= g uav_sense UAV image capturing based on different locations 41 362 50 mAh | Unlimited | 250 KB
éﬂ & | home_monitor Voice control to get home info and play it via the speaker 86 607 Unlimited | Unlimited | 255 KB
home_security Door opening after image identity verification 70 565 100 mAh | Unlimited | 230 KB

) uav_shortage_mcu | Exceeds max allowed MCU power usage on UAV 41 374 10 mAh 0.5 pAh 250 KB
g’ g home_shortage cam | Exceeds max allowed home camera power usage 41 393 1.5 pAh 60 pAh 240 KB
D&"’) £ | uav_max_access Exceeds max allowed access to UAV propellers 71 549 60 mAh 70 pAh 250 KB
home_init_denial Access to some smart home sensors denied 55 490 60 mAh 50 pAh 200 KB

Table 4: AEROGEL overhead of benchmark applications run- m Sen./Act. Energy Checker ¥ Processor Energy Checker = Other Checkers

ning on nRF52840 dev board.

Aerogel Overhead Breakdown

Processor Sen./Act. Total Total
Percentage over Other App .

Total time Energy Energy Checkers Aerogel Execution time
Checker  Checker Overhead (ms)

uav_ctrl 0.01% 1.02% 0.01% 1.04% 98.96% 3166
uav_sense 0.00% 0.17% 0.01% 0.19% 99.81% 1056
home_monitor 0.00% 0.92% 0.02% 0.94% 99.06% 4127
home_security 0.00% 0.58% 0.02% 0.61% 99.39% 4092
uav_shortage_mcu 0.01% 0.12% 0.01% 0.14% 99.86% 1530
uav_shortage_cam 0.01% 0.52% 0.02% 0.55% 99.45% 1171
uav_max_access 0.01% 0.17% 0.06% 0.24% 99.76% 1064
home_init_denial 0.01% 0.09% 0.07% 0.16% 99.84% 1054
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Figure 4: The overhead percentage of different AEROGEL
runtime access control checkers under each Wasm applica-
tion on nRF52840 board.

reduction. When examining the runtime overhead of the restricted
access applications, we found the sensor energy shortage applica-
tion has the most overhead at 0.55%. This overhead is the result of
the applications that require frequent access to sensors and, thus,
more energy checks when new sensor data is available. On the
other hand, the lowest MCU application’s overhead is 0.14%. When
the application’s energy usage is denied, the application is sched-
uled to sleep immediately-resulting in fewer checks than other
applications.

We examined the overhead percentage of different access checks
relative to the total AEROGEL overhead. The results—depicted in Fig-
ure 4-show that the sensor and the actuator energy usage checker
consumes the most overhead. The energy usage checker is triggered
when a new sensor event or actuation command needs to be han-
dled. Some applications, e.g., the uav_control that sends more than
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Figure 5: The overhead of AEROGEL for uav_sense on
nRF52840 board under various camera sensing frequency.
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Figure 6: The overhead of AEROGEL for home_security on
QEMU simulator under various MCU frequency.

1000 actuation commands, trigger thousands of sensor and energy
usage checking procedures. In contrast, the processor energy usage
checker triggers only tens of times, as shown in table 3. Hence, the
overhead of the sensor and actuator energy usage checker is signifi-
cantly higher than that of the processor energy usage checker. Other
access control checkers, such as the initial access control checker,
consume a large portion of the overhead only in restricted access
applications, especially the initial access denial app. This overhead
is due to the high-frequency sensor’s access denial, resulting in
fewer energy usage checks.

Moreover, the overhead introduced by the checkers of AEROGEL
is likely correlated to the access frequency to the required sensors
and actuators. For example, in the uav_ctrl application, the sensors
and actuators are more frequently accessed than other applications.
Hence, the overall overhead is contributed most from the sensor
and actuator energy checker.

We ran the experiment under different sensing frequencies on
the nRF52840 dev board and different processor frequencies on
the QEMU emulator. Figure 5 shows the different camera sensing
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Figure 8: The SRAM usage of nRF52840 board when running
different applications.

frequencies of the uav_sense application. The overhead of the sensor
and actuator energy usage checker increases with respect to the
increase of the sensing frequency. In contrast, the overhead of other
access control checker does not increase. The sensing frequency
change only increases the number of sensing events that trigger
the sensor energy usage checking. We also show the overhead of
AEROGEL runtime under different MCU frequencies on the QEMU
simulator, as illustrated in Figure 6. AEROGEL runtime has very
minimal overhead when the MCU frequency is greater than or
equal to 70 MHz.

6.2.2  Memory overhead. We next evaluated AEROGEL’s SRAM and
flash memory overhead. We only evaluated the memory overhead
for the four regular access applications since the restricted access
applications cannot provide full execution paths. The flash memory
size is the size of all the compiled code-including the OS, the appli-
cations, and the AEROGEL runtime. For the flash memory, AEROGEL
runtime only introduces a marginal overhead that is less than 5KB-
independent of the application. The AEROGEL runtime overhead of
SRAM is also minimal around 0.1KB. This minimal overhead is due
to the fact that no significant amount of temporary data is stored
in memory.

6.2.3  Energy consumption. Finally, we evaluated nRF52840’s board
energy consumption for our benchmark. To measure the energy
consumption, we used the Monsoon power monitor [41] to con-
nect to the dev board. The monitor provides a 3V external battery
for the board. Our results show that the AEROGEL runtime costs a
maximum of 0.65 yAh and a minimum of 0.39 pAh for all regular
access applications. For the restricted access control applications,
the energy consumption with AEROGEL runtime enabled for some
applications such as home_init_denial and uav_max_access is less
than those without enabling AEROGEL runtime. This is because
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Figure 9: The energy consumption of nRF52840 board when
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when such access is denied, AEROGEL runtime does not need to
have further energy usage check of the sensor or actuators. The
application is not allowed to further execute to read the sensor data
or to send the actuation commands. It is the application developers’
responsibility to take care of such access denials, otherwise, a res-
cue control will be triggered to take over the control of the device.
The reason why the relative energy consumption is higher than the
relative overhead is that the energy checking is at high energy con-
sumption mode because the MCU is always awake and executing,
but the benchmark applications are I/O intensive applications.

7 DISCUSSION AND FUTURE WORK

We discuss the security analysis and future work of AEROGEL.

Attack prevention. Due to the memory protection characteristics
of Wasm, AEROGEL can build a secure runtime that provides soft-
ware memory isolation for all peripherals even when the devices
lack the memory address space separation from MMU. AEROGEL
also protects the bare-metal IoT devices from malicious applica-
tions that try to drain the device’s resources such as the battery and
memory. Moreover, AEROGEL can protect the sensors and actuators
of the device from being accessed without the user’s authorizations.
Further, AEROGEL’s processor energy usage checker can mitigate a
Denial-of-Service (DoS) attack from a malicious Wasm application
because it has a restricted energy and memory usage allotment.
Limitations. AEROGEL cannot protect against side-channel mem-
ory attacks [36]. AEROGEL also cannot protect against cyber-physical
attacks on the peripherals such as GPS spoofing. Furthermore,
AEROGEL cannot prevent the application from misusing the sensor
data or sending dangerous actuation commands if it is granted ac-
cess to the sensor or the actuator. Finally, AEROGEL cannot provide
access control for sensors or actuators that are not memory-mapped
I/Os, e.g., interrupt-based sensors, because Wasm runtime only pro-
vides the isolation of the memory although most sensors on SoC
nowadays are memory-mapped sensor. If we would further like to
support the protections for non-memory-mapped I/Os as well, we
will need the extra hardware protections such as the Memory Pro-
tection Unit (MPU) in Arm-M series to separate the main memory
bus and the interrupt devices.
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Future work. Our evaluation did not explore the adaptation of
AEROGEL to dynamic instantiation of application workloads across
IoT devices. In the context of dispersed IoT computational net-
works where devices may leverage opportunistically available re-
sources [28, 42], AEROGEL would need to adapt to applications
that are dynamically streamed from other devices. In this context,
the specification and enforcement of access control policies would
need to be dynamic and partially autonomous. Future directions
can also explore optimization of access control enforcement in the
face of third-party, dynamically streamed and instantiated applica-
tion workloads. Although Wasm’s runtime (e.g., Wamr) supports
dynamic application installation, future work can minimize the
impact of executing applications when the over-the-air installation
is happening given the limited resources on bare metal IoT devices.

8 RELATED WORK

We now compare the existing work with AEROGEL.

Memory Protection on Bare-metal Devices. ACES [13], Mi-
croGuard [49], uXOM [35] and Clements et al. [14] use the compiler
to achieve the memory compartmentalizing on bare-metal devices
based on ARM Cortex-M’s Memory Protection Unit (MPU). Pi-
coXom [52] uses MPU to provide read-only memory execution
environment on ARM Cortex M environment. zRAI [3] enforces
Return Address Integrity (RAI) by modifying the compiler to move
the return address from writable memory to read- and execute-only
memory regions. Moreover, ARMor [57] uses formal verification
methods of software fault isolation (SFI) to ensure the memory
safety and the control flow integrity of applications by inserting
dynamic check before certain instructions. Unlike them, AEROGEL
is able to achieve memory isolation including the protections to
the peripherals at runtime without pre-inspecting the applications.
Prior works [17, 37, 46] use MPU to achieve runtime memory protec-
tion. However, the applications need to be rewritten under different
bare-metal OSes, while those applications on AEROGEL do not need
to be reprogrammed for different bare-metal OSes. Some distributed
lower-level protections [15, 20, 32] such as the firmware-level can
provide the protections for specific devices. AEROGEL provides ac-
cess protection for general IoT devices that support the Wasm
execution environment.

Access Control on IoT Devices. AccTee [21] uses Intel SGX
with Wasm to enforce access control usage for the memory and CPU
usage for cloud applications. Several prior works [4, 29, 40, 45, 47]
adopt blockchain techniques to achieve decentralized access control
for IoT devices. Atlam et al. [8] builds an access control model based
on the context of the environment to decide whether granting the
access request exposes the security risks of the data usage. However,
although the above works propose access control framework for IoT
networks, these works fail to provide fine-grained access control
for applications running on an individual device as in AEROGEL.

Secure Microkernels. Secure-formal verification-based micro-
kernels such as SeL4 [33] are also capable providing fine-grained
access control under certain circumstances. However, the microker-
nels lack easily fine-grained control of instruction execution, while
Wasm JIT runtime can provide an accurate measurement of the
MCU time for a given Wasm instruction, which makes microkernels
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hard to control the processor power consumption that can be con-
sumed by different applications. Moreover, unlike AEROGEL, SeL4
mainly targets on the powerful processors such as ARM A-series
platforms due to the performance and design restrictions (e.g. lack
of hardware assisted memory protections) of the micro-controller
platforms such as ARM M-series SoCs [27].

Wasm on the Edge. OneOS [31] designs a single-image univer-
sal edge OS for heterogeneous IoT devices using JavaScript that can
enable Wasm execution. Hall et al. [26] utilizes Wasm to execute
serverless functions on edge to reduce the hardware resources us-
age with respect to traditional edge serverless computation systems.
Wasmachine [54] uses Wasm to host an edge operating system with
kernel written by Rust to speed up the applications running on top
of it. Jeong et al. [30] proposes a system offloading Wasm functions
mingled with JavaScript to edge server from the mobile devices
to reduce execution latency. However, unlike AEROGEL, none of
the above focuses on access protections to use peripherals such as
sensors and actuators on bare-metal IoT devices where MMU is not
available.

9 CONCLUSION

In this paper, we propose AEROGEL, a lightweight access control
framework to define fine-grained access control policies for Wasm-
based, bare-metal IoT devices. AEROGEL leverages the security fea-
tures of Wasm runtime to protect the access and usage of peripher-
als. We prototype AEROGEL on nRF52840 dev board, and the results
show that AEROGEL only introduces 0.19% to 1.04% overhead.
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