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Abstract— In this paper, we revisit the problem of learning
a stabilizing controller from a finite number of demonstrations
by an expert. By focusing on feedback linearizable systems, we
show how to combine expert demonstrations into a stabilizing
controller, provided that demonstrations are sufficiently long
and there are at least n + 1 of them, where n is the number
of states of the system being controlled. The results are
experimentally demonstrated on a CrazyFlie 2.0 quadrotor.

I. INTRODUCTION

A. Motivation and related work

The usefulness of learning from demonstrations has been
well-argued in the literature (see, e.g., [1]–[3]). In the context
of control, there are many tasks where providing examples of
the desired behaviour is easier than defining such behaviour
mathematically (e.g., driving a car in a way that is comfort-
able to passengers, teaching a robot to manipulate objects or
play sports). The growing research interest in learning from
demonstrations (LfD) [3] reflects the need for a well-defined
controller design methodology for such tasks. In this work,
we propose a methodology that uses expert demonstrations
to construct a stabilizing controller.

In what follows, we present the previous work in learning
from demonstrations, briefly discuss how our approach is
partially inspired by the behavioural systems theory perspec-
tive, and review other works that apply the same perspective
to various problems in data-driven control. This is in no way
a comprehensive account of the literature on learning from
demonstrations, but rather an overview of the approaches
most related to ours (please refer to the surveys in [3] or [4]
for a more detailed description of the literature on LfD).

Policy-learning LfD methods, to which this work belongs,
assume that there exists a mapping from state (or observa-
tion) to control input that dictates the expert’s behaviour. This
mapping is referred to as the expert’s policy. The goal of
these methods is to find (or approximate) the expert’s policy
given a set of expert demonstrations. In many machine-
learning-based LfD methods, policy learning is viewed as a
supervised-learning problem where states and control inputs
are treated as features and labels, respectively. We refer to
these methods as behavioural cloning methods. Pioneered in
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the 80s by works like [5], this class of methods is still popular
today because of their conceptual simplicity. Behavioural
cloning methods are typically agnostic to the nature of the
expert — demonstrations can be provided by a human (see
[6], [7]), an offline optimal controller (see [8], [9]), or a
controller with access to privileged state information (see
[10]). They do, however, require a large number of demon-
strations to work well in practice and, if trained solely on data
from unmodified expert demonstrations, generate unstable
policies that cannot recover from drifts or disturbances [6].
It also needs to be mentioned that the works on behavioural
cloning typically provide few formal stability guarantees and
performance is mainly illustrated with experimental results.

Currently, there is a concerted effort to develop policy-
learning LfD methods that improve on existing techniques
using tools from control theory. In this line of effort, the
work by Palan et al. [11] is conceptually the closest to ours
— the authors use convex optimization to fit a linear policy to
expert demonstrations stabilizing a linear system. By adding
an additional set of constraints from [12] to the optimization
problem, they can guarantee that the learned policy also
stabilizes this linear system. Our methodology is different
from that in [11] because we do not assume the expert’s
policy to be linear with respect to the state.

In control theory, there has recently been a considerable
interest in data-driven techniques. In the context of this work,
we are interested in discussing the data-driven techniques
that use a behavioural systems theory perspective [13],
[14]. The key observation used in these works is that a
system can be represented by persistently exciting input-
output trajectories. Although, at first glance, the problems
addressed by these data-driven techniques and learning from
demonstrations may appear similar, this is not exactly the
case. The important distinction is that these data-driven
techniques do not attempt to construct a controller that
emulates the provided input-output trajectories. The data
from demonstrations there serves only as a form of system
representation, so it is not important whether it comes from
an expert controller or not. Both our work and these data-
driven techniques, however, are based on the insight that, for
linear systems, any trajectory can be constructed as a linear
combination of a sufficient number of trajectories.

B. Contributions

In this work, we propose a methodology for constructing a
controller for a known nonlinear system from a finite number
of expert demonstrations of desired behaviour, provided the
number of demonstrations is greater than the number of states
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by one and the demonstrations are sufficiently long. The
approach proposed in this paper is two-fold:
• use feedback linearization to transform the nonlinear

system into a chain of integrators;
• use affine combinations of the demonstrations in the

transformed coordinates to construct a control law sta-
bilizing the original system.

We formally prove the learned controller asymptotically
stabilizes the system. Furthermore, we demonstrate the fea-
sibility of this approach by applying it to the problem of
quadrotor control. It is important to note that, unlike [11], our
methodology produces a controller that is not linear neither
in the original nor in the transformed state. This reflects
our belief that, in many cases, the expert demonstration is
produced by a nonlinear controller.
Remark I.1. Please note that while it is possible to design
a controller that stabilizes a feedback linearizable system
without expert demonstrations, we want to emphasize that
our goal is to stabilize the system and, at the same time,
imitate the behaviour of the expert controller.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Notations and basic definitions

The notation used in this paper is fairly standard. The
integers are denoted by Z, the natural numbers, including
zero, by N0, the real numbers by R, and the non-negative
real numbers by R+

0 . We denote by ‖ · ‖ (or by ‖ · ‖2 for
clarity) the standard Euclidean norm or the induced matrix
2-norm; and by ‖ · ‖F the matrix Frobenius norm. A set of
vectors {v1, . . . , vk} in Rn is affinely independent if the set
{v2 − v1, . . . , vk − v1} is linearly independent.

A function α : R+
0 → R+

0 is of class K if α is continuous,
strictly increasing, and α(0) = 0. If α is also unbounded,
it is of class K∞. A function β : R+

0 × R+
0 → R+

0 is of
class KL if, for fixed t ≥ 0, β(·, t) is of class K and β(r, ·)
decreases to 0 as t→∞ for each fixed r ≥ 0.

The Lie derivative of a function h : Rn → R along a
vector field f : Rn → Rn, given by ∂h

∂xf , is denoted by Lfh.
We use the notation Lkfh for the iterated Lie derivative, i.e.,
Lkfh = Lf (Lk−1f h), with L0

fh = h.
Consider a continuous-time dynamical system of the form:

ẋ = f(t, x), (1)

where x ∈ Rn is the state and f : R+
0 ×Rn → Rn is a smooth

function. The origin of (1) is uniformly asymptotically stable
if there exists β ∈ KL such that the following is satisfied:

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0 ≥ 0. (2)

Let X = {x1, . . . , xk} be a finite set of points in Rn. A
point x =

∑k
i=1 θixi with

∑k
i=1 θi = 1 is called a an affine

combination of points in X .

B. Problem Statement

Consider a known continuous-time control-affine system:

Σ : ẋ = f(x) + g(x)u, (3)

where x ∈ Rn and u ∈ Rm are the state and the input,
respectively; and f : Rn → Rn, g : Rn → Rn×m are smooth
functions. Assume that the origin is an equilibrium point of
(3). We call a pair (x, u) : R+

0 → Rn×Rm a solution of the
system (3) if, for all t ∈ R+

0 , the equation (3) is satisfied.
Furthermore, we refer to the functions x and u as a trajectory
and a control input of the system (3).

Definition II.1. A controller u = k(x) is asymptotically
stabilizing for system (3) if the origin is uniformly asymp-
totically stable for the system (3) with u = k(x).

Suppose there exists an unknown asymptotically stabiliz-
ing controller u = k(x), which we call the expert controller.
We assume that k : Rn → Rm is smooth. Towards the goal
of learning a controller k̂ : R×Rn → Rm that asymptotically
stabilizes the origin of the system (3), we assume that
we are given a set of M finite-length expert solutions
D = {(xi, ui)}Mi=1 of (3), where: for each i, the trajectory
xi : [0, T ] → Rn and the control input ui : [0, T ]→ Rm
are smooth and satisfy ui(t) = k(xi(t)) for all t ∈ R+

0 ;
T ∈ R is the length of a solution; and M ≥ n+ 1. We also
ascertain that the “trivial” expert solution, wherein x(t) = 0
and u(t) = 0 for all t ∈ [0, T ], is included in D.

Remark II.2. In practice, we cannot record continuous so-
lutions provided by the expert — we can only record the
values of these solutions at certain sampling instants. In this
work, however, we choose to work in continuous-time to
simplify theoretical analysis. We can do this without sac-
rificing the practical applicability because it is well-known
that continuous-time controller designs can be implemented
via emulation and still guarantee stability [15].

We make the assumption that the system (3) is feedback
linearizable on Rn. To avoid the cumbersome notation that
comes with feedback linearization of multiple-input systems,
we assume that m = 1, that is, the system (3) has only
a single input. Readers familiar with feedback lineariza-
tion can verify that all the results extend to multiple-input
case, mutatis mutandis (refer to [16, Ch. 4] for a complete
introduction to feedback linearization). In the single-input
case, the system (3) is feedback linearizable if there is an
output function h : Rn → R that has relative degree n, i.e.,
LgL

i
fh(x) = 0 for i = 0, . . . , n − 2 and LgL

n−1
f h(x) 6= 0

for all x ∈ Rn. We further assume, without loss of generality,
that h(0) = 0.

III. LEARNING A STABILIZING CONTROLLER FROM n+ 1
EXPERT DEMONSTRATIONS

In this section, we describe the proposed methodology for
constructing an asymptotically stabilizing controller based on
a set of M = n+ 1 demonstrations and present some of the
main results. Due to the space limit, we will not consider
the case when M ≥ n + 1 in this paper, but the interested
reader can refer to Section 4 of [17] for a detailed discussion
of that case.
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A. Feedback linearization

Recall that using the feedback linearizability assumption,
we can rewrite the nonlinear system dynamics (3) in the
coordinates:

z = Φ(x) =
[
h(x) Lfh(x) · · · Ln−1f h(x)

]T
, (4)

resulting in:
ż1 = z2,

...
żn−1 = zn,

żn = a(z) + b(z)u,

(5)

where a =
(
Lnfh

)
◦ Φ−1 and b =

(
LgL

n−1
f h

)
◦ Φ−1. The

feedback law:

u = b(z)
−1

(−a(z) + v), (6)

further transforms the system (3) into a linear time-invariant
(LTI) controllable system:

ż = Az +Bv, (7)

where (A,B) is a Brunovsky pair.
Remark III.1. The expert controller κ : Rn → R in the
transformed state and input coordinates is given by κ(z) =
a(z)+b(z)k(Φ−1(z)). The smoothness of k implies that the
function κ is also smooth.

B. Expert demonstrations

Recall that the set of demonstrations D satisfies the
nonlinear system dynamics (3). Using (4) and (6), we can
represent the demonstrations D in (z, v)-coordinates. We
denote the resulting set by D(z,v) = {(zi, vi)}n+1

i=1 , where
the functions zi : [0, T ]→ Rn and vi : [0, T ]→ R are:

zi(t) , Φ(xi(t)) (8)

vi(t) , Lnfh(xi(t)) + LgL
n−1
f h(xi(t))ui(t), (9)

for all i ∈ {1, · · · , n + 1} and for all t ∈ [0, T ]. We define
the set of demonstrations D(z,v) evaluated at time t as:

D(z,v)(t) = {(zi(t), vi(t))}n+1
i=1 . (10)

It can be easily verified that the demonstrations in D(z,v)

satisfy the dynamics (7) and vi(t) = κ(zi(t)).

C. Constructing the learned controller

We denote by v = κ̂(t, z) the controller learned from
the expert demonstrations. We begin by partitioning time
into intervals of length T and indexing these intervals with
p ∈ N0. Let us define Z(t) = π1

(
D(z,v)(t)

)
and V(t) =

π2
(
D(z,v)(t)

)
, and construct the following matrices:

Z(t) ,
[
z2(t)− z1(t) · · · zn+1(t)− z1(t)

]
(11)

V (t) ,
[
v2(t)− v1(t) · · · vn+1(t)− v1(t)

]
, (12)

for t ∈ [0, T ]. A first attempt at constructing the learned
controller, which we improve upon later in the paper,
would be to use the piecewise-continuous control law

v(t) = κ̂(t− pT, z(pT )) for all t ∈ [pT, (p + 1)T ), where
the value of κ̂(t, z) is given by:

κ̂(t, z(pT )) = V (t− pT )ζ(p), (13)

where ζ(p) = Z−1(0)z(pT ), and Z(t), V (t) are defined in
(11) and (12), respectively.

The next lemma formally shows that an affine combination
of trajectories of (7) is a valid trajectory for (7).

Lemma III.2. Suppose we are given a set of finite-length
solutions {(zi, vi)}n+1

i=1 of the system (7), where each (zi, vi)
is defined for 0 ≤ t ≤ T , T ∈ R. Assume that {zi(0)}n+1

i=1

is an affinely independent set. Then, under the control law
v(t) = V (t − t0)ζ with ζ = Z−1(0)z0, the solution of the
system (7) with the initial state z(t0) = z0 is:

z(t) = Z(t− t0)ζ,

for t0 ≤ t ≤ T + t0, where the matrices Z(t) and V (t) are
defined in (11) and (12), respectively.

Proof. This lemma can be verified by substitution.

Remark III.3. The requirement that {zi(0)}n+1
i=1 is an affinely

independent set is a generic property, i.e., this is true for
almost all expert demonstrations. In practice, if this condition
is violated, a user can ask the expert to provide additional
demonstrations until there is a subset of n+1 demonstrations
that is affinely independent.

We note, however, that the control law (13) samples the
state z with a sampling time T and essentially operates in
open loop in between these samples. To allow for more
frequent sampling, we improve the controller (13) by further
partitioning each interval [pT, (p + 1)T ) into ` ∈ N equal
intervals of length ∆ = T/` and sampling the state at the
boundaries of such smaller intervals. The improved controller
has, for all t ∈ [pT+q∆, pT+(q+1)∆), the following form:

v(t) = κ̂(t, z(pT + q∆)) = V (t− pT )ζ(p, q), (14)

where p = bt/T c, q = b(t− pT )/∆c, and

ζ(p, q) = Z−1(q∆)z(pT + q∆).

Note that, in the absence of uncertainties and disturbances,
by Lemma III.2, the coefficients ζ satisfy:

ζ(p, q) = Z−1(q∆)z(pT + q∆) = Z−1(0)z(pT ), (15)

for all q ∈ {0, 1, . . . , `− 1} (i.e., the controller (14) applies
the input equal to that applied by the controller (13)). In
practice, however, the systems are often subject to uncertain-
ties and disturbances and, therefore, using the controller (14)
instead of (13) significantly improves robustness in realistic
scenarios. The interested reader can check this by comparing
the disturbance-to-state L2-gains of the system (7) when
using (13) and when using (14).
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D. Stability of the learned controller

Assuming (15) holds, the system (7) in closed loop with
(14) has the following form:

ż = Az +BV (t− pT )Z−1(0)z(pT ), (16)

for all t ∈ [pT, (p+1)T ). Integrating the dynamics, we show
that the sequence {z(pT )}p∈N0

satisfies:

z((p+ 1)T ) = Ψ(T )z(pT ), (17)

where

Ψ(T ) , eAT +

∫ T

0

eA(T−τ)BV (τ)Z−1(0)dτ. (18)

By adopting a term from Floquet’s theory, we refer to Ψ(T )
in (18) as the closed-loop monodromy matrix [18].

The main result of this section presents sufficient condi-
tions for asymptotic stability of the system (3) in closed loop
with (6)-(14).

Theorem III.4. Consider the feedback linearizable system
(3) under the transformation (4) and the feedback law
(6). Suppose we are given a finite set of solutions D =
{(xi, ui)}n+1

i=1 generated by the system (3) in closed loop with
a smooth asymptotically stabilizing controller k : Rn → R.
Assume that {Φ(xi(t))}n+1

i=1 is affinely independent for all
t ∈ [0, T ], and define Z(t) and V (t) as in (11) and (12),
respectively. Then, there exists T̃ ∈ R+

0 such that for all
T ≥ T̃ , the origin of system (3) in closed-loop with controller
(6)-(14) is uniformly asymptotically stable.

Proof. The asymptotic stability of (3) and (7) are equivalent
[19], and, therefore, the set D(z,v) given by (8) and (9) also
consists of asymptotically stable solutions, i.e., there exists
β ∈ KL such that:

‖zi(t)‖ ≤ β(‖zi(0)‖, t), ∀t ∈ R+
0 , (19)

for all i ∈ {1, ..., n+ 1}.
Consider the closed-loop system:

ż = Az +BV (t)Z−1(0)z(pT ).

By Lemma III.2, we have that:

z((p+ 1)T ) = Z(T )Z−1(0)z(pT ), ∀T ∈ R+
0 .

At the same time, by (17), we have z(T ) = Ψ(T )z(pT ).
This implies that:

Ψ(T ) = Z(T )Z−1(0). (20)

We claim that, for any constants a, b, c > 0, there exists
t ∈ R+

0 such that β(r, t) < c for all r ∈ [a, b]. This claim will
be shown using an argument similar to that of the proof of
Lemma 16 in [20]. Using Lemma 4.3 from [21], there exist
class K∞ functions σ1, σ2 such that β(r, t) ≤ σ1(σ2(r)e−t)
for all r, t ∈ R+

0 . Let 0 < ε < c. Define, for all r ∈ R+
0 ,

t(r) to be the solution of σ1(σ2(r)e−t) = c− ε and obtain:

t(r) = − log
σ−11 (c− ε)
σ2(r)

.

Since t(r) is a continuous function and [a, b] is compact, the
extreme value theorem implies that t∗ = maxr∈[a,b] t(r) is
well-defined. For all r ∈ [a, b], it is true that:

β(r, t∗) ≤ σ1(σ2(r)e−t
∗
) ≤ c− ε < c.

Using the previous claim with
a = mini∈{1,...,n+1} ‖zi(0)‖, b = maxi∈{1,...,n+1} ‖zi(0)‖
and c = 1/

(
2
√
n
∥∥Z−1(0)

∥∥), we conclude the existence of
T̃ ∈ R for which the following inequality holds:

β(‖zi(0)‖, T ) <
1

2
√
n‖Z−1(0)‖

,

for all i ∈ {1, . . . , n + 1} and for all T ≥ T̃ . Therefore, by
(19), we have:

‖zi(T )‖ < 1

2
√
n‖Z−1(0)‖

, (21)

for all i ∈ {1, . . . , n+ 1} and for all T ≥ T̃ . Using (20), we
have:

‖Ψ(T )‖ ≤ ‖Z(T )‖
∥∥∥(Z(0))

−1
∥∥∥ ≤ ‖Z(T )‖F

∥∥∥(Z(0))
−1
∥∥∥

=

(
n+1∑
i=2

‖zi(T )− z1(T )‖2
) 1

2 ∥∥∥(Z(0))
−1
∥∥∥

<

√
n

√
n
∥∥∥(Z(0))

−1
∥∥∥ ·
∥∥∥(Z(0))

−1
∥∥∥ < 1,

(22)
for all T ≥ T̃ . The second to last inequality follows from
(21) and the triangle inequality.

According to stability conditions for linear discrete-time
systems, equation (22) implies that, for all T > T̃ , the system
(7) in closed loop with the controller (14) is uniformly
exponentially stable. From [18], we know that uniform
exponential stability of the sampled-data system (17) implies
uniform exponential stability of the system (7)-(14) because
the matrices Ψ(t) are bounded for t ∈ [0, T ]. Uniform
asymptotic stability of the origin for the system (7)-(14) in
the (z, v)-coordinates implies uniform asymptotic stability of
the origin for the feedback equivalent system (3)-(6)-(14) in
(x, u)-coordinates [19].

Remark III.5. Theorem III.4 shows the existence of T̃ ∈ R+

such that ‖Ψ(T )‖ < 1 for all T ≥ T̃ . In practice, a user
can determine T ∈ R+ satisfying this condition by directly
computing ‖Ψ(t)‖ = ‖Z(t)Z−1(0)‖ for various t ∈ R+

0 .
Remark III.6. Up to this point, we strictly assumed that
the expert controller k aims to stabilize the system at the
origin and provided a guarantee that the learned controller k̂
does the same. The aforementioned results easily extend to
the case where the objective of the learned controller is to
track a trajectory. The key idea is to recast the problem of
trajectory tracking into that of stabilizing the error dynamics
similar to what is done in Section 4.5 in [16]. We consider
this generality of the learned controller to be a strength of
this approach since a user cannot ask the expert to provide
demonstrations of all the trajectories they might want to
track. We will experimentally illustrate this in Section IV.
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IV. EXPERIMENTS

We illustrate the performance of our framework using the
example of quadrotor dynamics:

p̈ =
1

m
(τRe3 − [ω]×Jω) , (23)

Ṙ = R[ω]×, (24)

ω̇ = J−1(η − [ω]×Jω), (25)

where: p ∈ R3, R ∈ SO(3), ω ∈ R3 are the position, ori-
entation, and angular velocity of the quadrotor, respectively;
τ ∈ R and η ∈ R3 are thrust and torque inputs, respectively;
m ∈ R, and J ∈ R3×3 are the mass and the inertia matrix;
and [ · ]× denotes the matrix form of the vector cross product.

We split the dynamics (23)-(25) into two subsystems: one
described by (23)-(24) with the state x = (p, ṗ, R, τ) and
the virtual inputs u = (τ̇ , ω), and the other described by (25)
with the state x′ = ω and the virtual inputs u′ = η. Typically,
quadrotors have high-frequency internal controllers that track
the desired angular velocity based on state feedback and,
therefore, it is reasonable to assume that we can directly
control the angular velocity [22].

It is known that the dynamics (23)-(25) are differentially
flat with respect to position and yaw angle [23]. In what
follows, we focus on controlling the position p, whereas
the yaw angle is controlled to remain constant. Differential
flatness allows us to transform the dynamics (23)-(24) into
linear dynamics ż1 = z2, ż2 = z3, ż3 = v via a coordinate
transformation:

z =
[
z1 z2 z3

]T
,
[
p ṗ p̈

]T
, (26)

and the feedback law:

v =
1

m
(τ̇Re3 − τRω1e2 + τRω2e1) , b(z)u. (27)

We apply the controller design from [24] to the dynamics
(23)-(25) in simulation1 and use the resulting solutions
as the expert demonstrations. The controller parameters
are chosen as follows: KP = diag(7.0, 7.0, 16.5), KI =
diag(0, 0, 15.5), KD = diag(5.0, 5.0, 3.4), Krp = 6.0,
Ky = 2.0. The expert is commanded to stabilize the
quadrotor at the origin, starting from various positions,
velocities and accelerations. Given the dimension of the state
z equals to 9, we record 10 pairs of expert demonstrations
{(zi, vi)}10i=1 from simulations, including the pair corre-
sponding to the trivial solution (z1, v1) ≡ (0, 0). Please note
that the pairs (zi, vi) in this context are merely evolutions of
position, velocity, acceleration, and jerk. The recorded data
is studied to ensure that the sufficient conditions of Theorem
III.4 are satisfied, i.e., the matrix Z(t) in (11) is always
invertible and ‖Z(T )Z−1(0)‖ < 1, and a fragment of length
T = 2 s is used to construct a stabilizing controller (14).

Next, we compare the learned controller (14) and the ex-
pert controller from [24] by using them to control a BitCraze
CrazyFlie 2.0 quadrotor. In these experiments, the control

1The only difference of the expert controller used in this work and that
used in [24] is that here the low-level controller is a linear PD controller.

Fig. 1. Trajectory tracking of the nonlinear controller from [24] (left
column) and the learned controller from (14) (right column) under five
different initial conditions. Each experiment is plotted with a different color.
The trajectories in the first lap (top row) are plotted separately from the
trajectories in the subsequent laps (bottom row).

inputs (τ, ω) are supplied by a computer via a USB radio
at the average rate of 300 Hz. The internal PD controller
of the CrazyFlie tracks (τ, ω) by controlling angular speeds
of individual rotors. For state estimation, we use a Kalman
filter that gets the position and attitude measurements from
the OptiTrack motion capture system.

The experimental benchmark2 we choose to compare the
controllers is to track the reference depicted on Figure 1,
which consists of two parts: a figure of eight given by:

pR(t) =

(
sin

4πt

T
, sin

2πt

T
, 0.1 sin

2πt

5
+ 0.7

)
,

where T = 10 s, from t = 0 s to t = 40 s; and a
setpoint at the origin after t ≥ 40 s. We use the learned
controller κ̂ from (14) to control the tracking error with
v(t) = κ̂(t, z(t)− zR(t)), where zR = (pR, ṗR, p̈R), to-
gether with the feedback law:

u(t) = (
...
pR(t) + v(t))/b(z(t)). (28)

For each controller, we perform five experiments — each
with a different initial position3.

In Figure 1, we depict the quadrotor trajectories for both
the nonlinear controller in [24] and the learned controller
(14) tracking the aforementioned trajectory. We plot the
position trajectories in the first lap separately from those
in the subsequent laps to decouple the transient behaviour
of a controller from the steady-state behaviour. In Figure
2 we compare the tracking errors of the learned controller
with those of the nonlinear controller from [24] for all five
experiments. The learned controller appears to track the
trajectory well — the error is of the order of centimeters.
It can be seen qualitatively, however, from Figure 1 that,

2Code used in the experiments can be found at
https://github.com/cyphylab/cyphy_testbed/tree/LFD.

3The initial positions used are (0, 0, 0.7), (0.3, 0.3, 0.7),
(0.3,−0.3, 0.7), (−0.3, 0.3, 0.7), (−0.3,−0.3, 0.7).
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Fig. 2. Comparison of tracking errors in X , Y and Z coordinates of learned controller from (14) (red) and nonlinear controller from [24] (blue) for five
different initial conditions.

in comparison to the expert controller, the learned controller
takes a longer time to settle — this is especially noticeable in
the experiments where the initial position of the quadrotor
does not match that of the reference. From Figure 2, we
observe that the errors of the learned controller and the expert
controller are comparable, with the errors of the learned
controller being slightly smaller in X and Y coordinates,
whereas being slightly larger in Z coordinates. For t ≥ 40
s, the error in position does not tend to zero for neither of
the controllers, which appears to contradict the theoretical
results. We attribute this to the several milliseconds of delay
with which the control input is sent to the quadrotor4.

V. CONCLUSION

In this work, we have presented a methodology for con-
structing a stabilizing controller from expert demonstrations.
Compared to machine-learning approaches, this methodology
requires fewer demonstrations (i.e., the minimal number
of demonstrations is n + 1) and provides formal stability
guarantees. As part of future work, we intend to examine
if the same methodology can be applied when the system
controlled by the expert is unknown. This will be an impor-
tant extension to this work because, typically, for the tasks
where learning from demonstrations is required, it is rarely
the case that the underlying dynamical system is completely
known. In addition, it would be interesting to consider how
this methodology changes if a different method for system
linearization is used.

4Even in the ideal conditions of a simulation, an introduction of such
a delay into the control loop has resulted in the trajectory stabilizing at a
non-zero steady-state error.
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