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Abstract— It was shown, in recent work by the authors, that it
is possible to learn an asymptotically stabilizing controller from
a small number of demonstrations performed by an expert on
a feedback linearizable system. These results rely on knowledge
of the plant dynamics to assemble the learned controller from
the demonstrations. In this paper we show how to leverage
recent results on data-driven control to dispense with the need
to use the plant model. By bringing these two methodologies
— learning from demonstrations and data-driven control —
together, this paper provides a technique that enables the
control of unknown nonlinear feedback linearizable systems
solely based on a small number of expert demonstrations.

I. INTRODUCTION

A. Motivation and related work

The merits of learning from expert demonstrations have
been well-reasoned in the literature (see, e.g., [1], [2]). There
are many control tasks for which demonstrating the desired
behaviour is far simpler than defining such behaviour math-
ematically (e.g., driving a car in a way that is comfortable
to passengers, teaching a robot to manipulate objects or play
sports). The ever-growing body of work in learning from
demonstrations (LfD) for robot control [2] reflects the need
for a well-defined and versatile framework for such tasks. In
this work we propose a framework that uses demonstrations
of an expert controlling an unknown dynamical system to
construct a stabilizing controller for that system.

Our framework relies on combining two methodologies:
the LfD methodology described in [3] and the data-driven
control methodology described in [4]. The former allows
us to construct a controller for a feedback linearizable
system from a finite number of expert demonstrations of
desired behaviour, provided a small set of sufficiently long
demonstrations is collected, whereas the latter provides a
method for stabilizing unknown feedback linearizable single-
input single-output (SISO) systems requiring only standard
linear control techniques and sufficiently fast sampling rates.
To set the scene, we briefly discuss the previous work related
to both learning from demonstrations component and data-
driven control component of this work. This is in no way a
comprehensive account of the literature on LfD (see, e.g., the
surveys in [2] or [5] for a roadmap of the literature on LfD),
but an overview of the approaches most related to ours.
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Most LfD methods use the expert demonstrations either to
learn the cost function or the policy [2]. The methods learn-
ing the former assume that the expert optimizes an unknown
cost function (e.g., inverse reinforcement learning methods
from [6], [7]). The methodology from [3] used in this work
belongs to a class of policy-learning LfD methods whose key
assumption is that there is a well-defined mapping, called
the expert’s policy, from states (or observations) to control
inputs that determines the expert’s response. These methods
aim to approximate the expert’s policy as best as possible
based on a set of expert demonstrations. In the context of
machine learning, policy learning is viewed as a supervised-
learning problem where states and control inputs are treated
as features and labels, respectively (e.g., [8], [9]). These
methods, however, require a large number of demonstrations
to work well and, if trained solely on data from unmod-
ified expert demonstrations, generate unstable policies that
cannot recover from drifts or disturbances [9]. In addition,
such methods rarely provide formal stability guarantees and
mainly illustrate their performance with experimental results.

To address these and other issues with policy-learning LfD
methods, many works use concepts and existing techniques
from control theory. In [10], a linear quadratic Gaussian con-
troller is used to show that learning an expert policy is dual
to system identification. In fact, there are numerous works
where expert demonstrations are assumed to come from an
underlying stable dynamical system, and the objective is to
learn this dynamical system (see, e.g., [11]–[13]). The work
that is conceptually closest to [3], however, is the work
by Palan et al. [14] wherein the authors fit a linear policy
to expert demonstrations stabilizing a linear system under
a set of constraints from [15]. These constraints guarantee
that the learned policy also stabilizes the linear system. The
methodology of [3] is different from that in [14] in that there
is no assumption of linearity of the expert’s policy.

The data-driven control methodology from [4] relies on
the feedback linearizability assumption and the observation
that, by sampling fast enough, the relevant signals can be
considered constant in between sampling instants. The latter
observation is largely inspired by the work of Fliess and
Join in [16], [17]. By leveraging the control techniques
developed in [18], [19] for the control of approximate
discrete-time models, the work in [4] proposes a technique
to asymptotically stabilize unknown feedback linearizable
systems. Unlike the data-driven control techniques inspired
by behavioural theory (e.g., [20], [21]), no prior data or
persistency of excitation is required to use the data-driven
control methodology from [4].
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B. Contributions

The results of [3] rely on the assumption that we have
complete knowledge of the system dynamics. In this work,
we use the data-driven control methodology described in [4]
to relax this assumption, and propose a method by which we
can construct a controller for an unknown feedback lineariz-
able SISO system from a finite number of expert demonstra-
tions of desired behaviour. The number of demonstrations
required to construct this controller is n+ 1, where n is the
number of states of the system being controlled. Provided the
demonstrations are sufficiently long, we can formally prove
the learned controller asymptotically stabilizes the system1.

C. Notations and basic definitions

The notation used in this paper is fairly standard. The
integers are denoted by Z, the natural numbers with zero by
N0, the real numbers by R, the non-negative real numbers
by R+

0 , and the positive real numbers by R+. We denote by
‖ · ‖ (or by ‖ · ‖2) the Euclidean norm or the induced matrix
2-norm; and by ‖ · ‖F the matrix Frobenius norm.

Let X = {x1, . . . , xk} be a finite set of points in Rn. A
point x =

∑k
i=1 θixi with

∑k
i=1 θi = 1 is called an affine

combination of points in X . A set {x1, . . . , xk} in Rn is
affinely independent if the set {x2 − x1, . . . , xk − x1} is
linearly independent.

A function α : R+
0 → R+

0 is of class K if α is continuous,
strictly increasing, and α(0) = 0. If α is also unbounded,
it is of class K∞. A function β : R+

0 × R+
0 → R+

0 is of
class KL if, for fixed t ≥ 0, β(·, t) is of class K and β(r, ·)
decreases to 0 as t→∞ for each fixed r ≥ 0.

The Lie derivative of a function h : Rn → R along a
vector field f : Rn → Rn, given by ∂h

∂xf , is denoted by Lfh.
We use the notation Lkfh for the iterated Lie derivative, i.e.,
Lkfh = Lf (Lk−1f h), with L0

fh = h.
Consider a continuous-time dynamical system of the form:

ẋ = f(t, x), (1)

where x ∈ Rn is the state and f : R+
0 ×Rn → Rn is a smooth

function. The origin of (1) is uniformly asymptotically stable
if there is β ∈ KL such that:

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0 ≥ 0. (2)

If β in (2) has the form β(r, t) = Mre−λt, then the origin
of (1) is uniformly exponentially stable.

Let (V , ‖·‖) be a normed vector space. Consider a function
f : R+

0 ×Q → V with Q ⊂ V . The notation f(t, x) = Ox(T )
denotes existence of constants M,T ∈ R+ such that, for all
t ∈ [0, T ] and x ∈ Q, we have ‖f(t, x)‖ ≤ MT‖x‖. If we
take T ≤ 1, the following rules apply to this notation:

Ox(T 2) = Ox(T ) (Ox(t))2 = Ox2(T 2)

TOx(T ) = Ox(T 2) g(x)Ox(T ) = Ox(T ),
(3)

1The reader is referred to the technical report [22] for the proofs of some
results presented here.

for all functions g with a bounded norm, i.e., there is a
b ∈ R+ such that ‖g(x)‖ ≤ b for all x ∈ Q. The subscript
x2 in Ox2(T 2) indicates that its upper bound is MT 2‖x‖2.

Let x : R+
0 → V be a continuous-time signal. We denote

the corresponding sampled-data signal by xs : N0 → V and
define it by xs(k) , x(kT ).

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem

Consider an unknown single-input single-output nonlinear
system described by:

ẋ = f(x) + g(x)u, y = h(x), (4)

where f : Rn → Rn, g : Rn → Rn, and h : Rn → R
are smooth functions and we denote by x ∈ Rn, u ∈ R,
y ∈ R the state, the input, and the output of the system,
respectively. Assume that the origin is an equilibrium point
of (4). We call a triple (x, u, y) : R+

0 → Rn × R × R a
solution of the system (4) if, for all t ∈ R+

0 , the equation (4)
is satisfied. Furthermore, we refer to the functions x, u, and
y as a trajectory, a control input, and an output of the system
(4), respectively. Given a sampling period T > 0, we assume
that the control u is constant over sampling intervals and that
the output y is measured at sampling instants kT . We denote
the values of the trajectory, the control input, and the output
at the sampling instants by xs(k) , x(kT ), us(k) , u(kT ),
and ys(k) = y(kT ), respectively.

Definition II.1. A controller u = κ(x) is asymptotically
stabilizing for system (4) if the origin is asymptotically stable
for the system (4) with u = κ(x).

Suppose there is an unknown asymptotically stabilizing
controller u = κ(x) for (4), which we refer to as the
expert. We assume that κ : Rn → R is smooth. The
expert κ controls (4) and produces N = n + 1 finite-length
closed-loop solutions of length τs ∈ R. We denote the set
of the expert solutions by D = {(xi, ui, yi)}n+1

i=1 , where,
for each i, the trajectory xi : [0, τs] → Rn, the output
yi : [0, τs] → Rn are continuous, and the control input
ui : [0, τs]→ Rm is piecewise constant. Each (xi, ui, yi)
satisfies ui(t) = κ(xis(k)) for all t ∈ [kT, (k + 1)T ),
k ∈ {0, . . . , Ls − 2} and yi(t) = h(xi(t)) for all t ∈ [0, τs].
We also ensure that the “trivial” expert solution, wherein
x(t) = 0 and u(t) = 0 for all t ∈ [0, τ ], is included in D.

While the expert presents their solutions, we collect the
set of measurement samples Ds = {yis}n+1

i=1 corresponding to
the expert solutions in D, where yis : {0, 1, . . . , Ls−1} → R
and the length of the measurement sequence Ls ∈ N satisfies
(Ls−1)T = τs. We want to use Ds to create a controller for
(4) that is guaranteed to asymptotically stabilize the origin.

Remark II.2. The theoretical results to follow apply for any
N ≥ n+1. Having been provided more expert solutions than
n+1 raises an important question: how can we leverage this
extra data to construct the controller that best approximates
the expert? An interested reader can refer to Section IV in
[3] for a possible answer to this question.
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B. Feedback linearization
Assume that the system (4) is feedback linearizable with

the output map h having a relative degree n, that is:

LgL
i
fh(x) = 0, ∀i = 0, . . . , n− 2,

LgL
n−1
f h(x) 6= 0,

for all x ∈ Rn. Since LgLn−1f h(x) is continuous and is never
zero on Rn, it has a constant sign on Rn. We assume that the
sign of LgLn−1f h is known and, without loss of generality,
is taken to be positive.

With the goal of clear exposition in mind, we assume
throughout the paper that n = 2 — all the results, however,
hold for any n ∈ N. Applying feedback linearization,
we can rewrite the unknown dynamics in the coordinates
z = Φ(x) , (h(x), Lfh(x)):

ż1 = z2,

ż2 = α(z) + β(z)u = w,

y = z1,

(5)

where α = L2
fh ◦ Φ−1, β = LgLfh ◦ Φ−1, and

w , α(z) + β(z)u.

III. LEARNING TO CONTROL UNKNOWN SYSTEMS FROM
EXPERT DEMONSTRATIONS

The proposed methodology consists of the following steps:
1) using the state estimator from [4], estimate the state for

each of the measurement sequences in Ds;
2) based on these states, construct a linear time-varying

controller v̂(k, z);
3) use the dynamic controller proposed in [4] with v̂(k, ẑ)

as a reference, where ẑ is the state estimate produced
by the state estimator in [4].

In what follows, we show that this methodology guarantees
asymptotic stability of the origin for the closed-loop system.

A. Approximate model
It was shown in [4] that if we assume that (z, u) always

remains within a compact set R — the proof of Theorem
8.1 in [4] justifies why this is a valid assumption2 — the
dynamics (5) can be approximated with:

zs1(k + 1) = zs1(k) + zs2(k)T + (αs(k) + βs(k)us(k))
T 2

2
,

zs2(k + 1) = zs2(k) + (αs(k) + βs(k)us(k))T,

ys(k) = zs1(k),
(6)

where αs(k) and βs(k) denote values of α(z) and β(z) at
time kT , respectively. System (6) can also be written as:

zs(k + 1) = Azs(k) +B(αs(k) + βs(k)us(k)),

ys(k) = zs1(k),
(7)

where the matrices A and B are of the form:

A = I + TA1 B = TB1 + T 2B2, (8)

and (A1, B1) is a Brunovsky pair.

2The argument is based on the initial conditions residing in a compact
contained in some level-set of a Lyapunov function, and then proving that
such level-set is forward invariant.

B. State estimator

For state estimation purposes, we follow the
example technique provided in [4]. We define the
extended state zs(k) = (zs1(k), zs2(k), ws(k)), where
ws(k) , αs(k) + βs(k)us(k), for (6) to obtain:

zs1(k + 1) = zs1(k) + zs2(k)T + ws(k)
T 2

2
zs2(k + 1) = zs2(k) + ws(k)T

ws(k + 1) = ws(k)

ys(k) = zs1(k),

(9)

which can be written in the form:

zs(k + 1) = Ãzs(k), ys(k) = zs1(k) = C̃zs(k).

Denoting by O the observability matrix for the pair (Ã−1, C̃)
allows us to compute the extended state estimate:

ẑe(k) = (OTO)−1OTY (k), (10)

where:

Y (k) ,


ys(k)

ys(k − 1)
...

ys(k − ρ+ 1)

 , (11)

and ρ ∈ N, ρ ≥ n+ 1, is the number of measurements that
will be used for state estimation. Using Proposition 4.2 in
[4], we can show that the estimation errors satisfy:

z(kT + t)− ẑs(k) = O(zs,us−u0)(T
2) (12)

w(kT + t)− ŵs(k) = O(zs,us−u0)(T ). (13)

where u0 = −β−1(0)α(0) and t ∈ [0, T ].

C. Estimating the expert solutions from measurements

One of the uses for the state estimator (9) is to produce
the extended state estimates {ẑie}n+1

i=1 from the set of demon-
strations Ds, where each ẑie : {ρ− 1, . . . , Ls − 1} → Rn+1

is the estimated extended state sequence calculated from the
measurement sequence yis. Because the state estimator (9)
requires ρ measurements to estimate ẑie(k), the sequence
ẑie is defined only on {ρ − 1, . . . , Ls − 1}. Without loss
of generality, we shift the time index of each extended
state sequence zie and its estimate so that it is defined on
{0, . . . , L−1} instead, where L , Ls−ρ+1. We also define
the length of the demonstration estimate as τ , (L− 1)T .

We define the set of extended expert trajectories
De = {(zi, wi)}n+1

i=1 and use it to define:

Z ,
[
z2 − z1 . . . zn+1 − z1

]
(14)

W ,
[
w2 − w1 . . . wn+1 − w1

]
, (15)

where zi = Φ(xi) and wi = α(zi) + β(zi)ui. We define the
estimates of these matrices Ẑs and Ŵs in a similar manner.

In what follows, we also use the matrices defined using
the expert solutions from D given by:

U =
[
u2 − u1 . . . un+1 − u1

]
, (16)

Z1 = z11T U1 = u11T , U0 = u01
T , (17)
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where 1 ∈ Rn is a vector of ones, and define:

D = (Zs + Z1
s , Z

1
s , Us + U1

s − U0, U
1
s − U0). (18)

Lemma III.1. If the estimates ẑis and ŵis satisfy (12) and
(13) for a sampling time T > 0, then the estimates Ẑs and
Ŵs satisfy:

Z(kT + t)− Ẑs(k) = OD(T 2) (19)

W (kT + t)− Ŵs(k) = OD(T ), (20)

for all t ∈ [0, T ], where D is defined in (18).

Proof. The proof of this lemma can be found in [22].

D. Learning control from expert demonstrations

For the discussion that follows, we assume that α and β
are known — this assumption will be relaxed in the next
subsection. Knowing α and β allows us to apply to the
system (5) the following preliminary controller:

u(t) = β−1(z(t))(−α(z(t)) + v(t)), (21)

where v(t) is the new input, resulting in the following:

ż(t) = A1z(t) +B1v(t),

y(t) = z1(t).
(22)

Below we present a result showing that an affine combi-
nation of solutions of (22) is a valid trajectory for (22).

Lemma III.2 ([3]). Suppose we are given a set of finite-
length solutions {(zi, wi, yi)}n+1

i=1 of the system (22), where
each (zi, wi, yi) is defined for t ∈ [0, τ ], τ ∈ R+

0 . Assume
that {zi(0)}n+1

i=1 is an affinely independent set. Then, under
the control law v(t) = W (t − t0)ζ with ζ = Z−1(0)z(t0),
the solution of the system (22) with the initial state z(t0) is:

z(t) = Z(t− t0)ζ,

for all t ∈ [t0, t0 + τ ], where the matrices Z(t) and W (t)
are defined in (14) and (15), respectively.

Proof. This lemma can be verified by substitution.

Remark III.3. The requirement that {zi(0)}n+1
i=1 is an affinely

independent set is a generic property, i.e., this is true for
almost all expert demonstrations. In practice, if this condition
is violated, a user can eliminate one of the affinely dependent
demonstrations and collect additional demonstrations.

We propose using the following control law for the system
(22):

v(t, z(t)) = W (t− pτ)Z−1(t− pτ)z(t) = K(t)z(t),
(23)

for all t ∈ [pτ, (p+ 1)τ) and p ∈ N0, where:

K(t) ,W (t− pτ)Z−1(t− pτ). (24)

The following lemma presents sufficient conditions for
exponential stability of the system (22) in closed loop with
(21)-(23). Its proof is similar to that of Theorem III.4 in [3]
and is presented in [22].

Lemma III.4. Suppose a set of extended trajectories
De = {(zi, wi)}n+1

i=1 of length τ ∈ R+ is generated by the
system (5) in closed loop with an asymptotically stabilizing
controller u = κ(z). Assume that {zi(t)}n+1

i=1 is affinely
independent for t ∈ [0, τ ], and define Z(t) and W (t) as
in (14) and (15), respectively. Then, there is τ̄ ∈ R+ so that
for all τ ≥ τ̄ , the origin of the system (22) in closed loop
with the controller in (23) is uniformly exponentially stable.

Remark III.5. Lemma III.4 shows that there is τ̄ ∈ R+ such
that ‖Ψ(τ)‖ < 1 for all τ ≥ τ̄ . In practice, a user can
determine the upper bound on ‖Ψ(τ)‖ by calculating the
product of the maximum singular value of Z(τ) and the
minimum singular value of Z(0), and guarantee exponential
stability by ensuring that this product is less than 1.

E. Effect of the estimation error

A careful reader must have noticed that we used the exact
values of Z and W to construct the controller (23). Recall,
however, that we do not have access to Z and W and use the
estimates Ẑs = Z+EZ and Ŵs = W +EW instead, where,
by Lemma III.1, the additive errors satisfy ES = OD(T 2)
and EW = OD(T ). Therefore, we, in fact, use3:

v̂(k, zs(k)) = Ŵs(k − pL′)Ẑ−1s (k − pL′)zs(k)

= K̂s(k)zs(k)
(25)

for k ∈ {pL′, . . . , (p+ 1)L′ − 1} and p ∈ N0, where:

K̂s(k) , Ŵs(k − pL′)Ẑ−1s (k − pL′). (26)

The following lemma shows how using these estimates
merely results in an additive error relative to the ideal
controller K in (23). Its proof can be found in [22].

Lemma III.6. Let Z : [0, τ ] → Rn×n and W : [0, τ ] →
R1×n be defined in (14) and (15), respectively, and Ẑs :
{0, . . . , L− 1} → Rn×n and Ŵs : {0, . . . , L− 1} → R1×n

be estimates of Z and W satisfying (19) and (20). Assume
that Z(t) is non-singular for all t ∈ [0, τ ] and that Ẑs(k) is
non-singular for all k ∈ {0, . . . , L−1}. Then, the gains K(t)
and K̂s(k) defined in (24) and (26), respectively, satisfy:

K(t)− K̂s(k) = OD(T ), (27)

for all t ∈ [kT, (k + 1)T ] and k ∈ {0, . . . , L− 1}.

Remark III.7. The matrix Ẑs(k) becomes singular whenever
any pair of trajectory estimates ẑis(k) and ẑjs(k) takes on
the same value. If the expert demonstrations are initialized
sufficiently far from each other, this usually only happens
as the trajectories approach the origin. We can assume that
Ẑs(k) is non-singular for all k ∈ {0, . . . , L − 1} since we
can remove the tail end of the trajectories whenever the
eigenvalues of Ẑs(k) become too small.

3Even though we will implement the controller with a state estimate ẑs,
in this subsection we assume that the controller has access to the sampled
state zs to simplify the exposition. We relax this assumption in the next
subsection.
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F. Data-driven dynamic controller

In this subsection, we show how we can control the system
(7) without knowing the values of α and β. This can be
achieved using the dynamic controller:

u(k + 1) = u(k) + γ(v̂(k, zs(k))− ws(k)), (28)

from [4] in closed loop with (4) if we choose γ ∈ R+ to
be sufficiently small. Given that we do not have access to
zs(k) and ws(k), we resort to using ẑs(k) and ŵs(k) from
(10) instead:

u(k + 1) = u(k) + γ(v̂(k, ẑs(k))− ŵs(k)). (29)

According to Lemma 8.2 in [4], to conclude that the con-
troller (29) asymptotically stabilizes the origin of (7), it
suffices to show that the system (22) in closed loop with
the control law v̂(k, zs(k)) satisfies the following dissipation
inequality:

V (zs(k + 1))− V (zs(k)) ≤ −λT‖zs(k)‖2

+O(zs,us−u0)2(T 2),
(30)

where V : Rn → R is a quadratic Lyapunov function, λ ∈
R+, and v̂(k, zs(k)) satisfies the relation:

v̂(k, zs(k) +O(zs,us−u0)(T )) = v(k, zs(k))

+O(zs,us−u0)(T ).
(31)

The following lemma shows that the controller (23) satisfies
the requirements (30) and (31) and is proven in [22].

Lemma III.8. Consider the system (22) in closed loop with
the controller (25) and assume initial conditions reside in a
set R ⊂ R2. Then, there exists τ̄ , T ∗ ∈ R+ such that for
any τ ≥ τ̄ and all T ∈ [0, T ∗] there exist a quadratic time-
varying Lyapunov function V : N0 × Rn → R and λ ∈ R+

such that the dissipation inequality:

V (k + 1, zs(k + 1))− V (k, zs(k)) ≤ −λT‖zs(k)‖2

+O(zs,us−u0)(T
2),

holds in the compact R. Furthermore, the controller (25)
satisfies:

v̂(k, zs(k) +O(zs,us−u0)(T )) = v(k, zs(k))

+O(zs,us−u0)(T ).

Remark III.9. In the current work we use time-varying
quadratic Lyapunov functions, while in [4] time-invariant
quadratic Lyapunov functions are used instead. A detailed
analysis of the main proof of [4] shows that due to our
proposed Lyapunov functions being quadratic, and the same
dissipation inequalities being satisfied, Lemma 8.2 in [4] can
be applied with our proposed controller.

In what follows, we present the sufficient conditions for
asymptotic stability of the system (4) in closed loop with
(29)-(25). The proof uses all the previous results in this paper.

Theorem III.10. Consider an unknown feedback lineariz-
able SISO system (4) where the output function h has a
relative degree 2. Let T ∈ R+ be the sampling time and

τ ∈ R+ be the demonstration length. Suppose we are
given a set of finite-length measurement sequences Ds =
{yis}n+1

i=1 generated by the system (4) in closed loop with
a piecewise constant asymptotically stabilizing controller.
Further, suppose the state estimator (9) is used to construct
a set of finite-length solution estimates D̂e =

{(
ẑis, ŵ

i
s

)}n+1

i=1

of (7). Assume that
{
ẑis(k)

}n+1

i=1
is affinely independent for

all k ∈ {0, . . . , L − 1}, where L ∈ N is the solution
length, and define Ẑs(k) and Ŵs(k) in a similar way to
(14) and (15), respectively. For any compact set S ⊂ Rn of
initial conditions containing the origin in its interior, there
exists a sampling time T̄ ∈ R+, a constant b ∈ R+ (both
depending on S) and demonstration length τ̄ ∈ R+ so that,
for any sampling time T ∈ [0, T̄ ] and any demonstration
length τ ∈ [0, τ̄ ], the dynamic controller (29), based on the
learned controller (25), using the state estimates provided by
an estimation technique satisfying (12) renders the closed-
loop solutions bounded, i.e., ‖ẑs(k)‖ ≤ b for all k ∈ N and
‖x(t)‖ ≤ b for all t ∈ R+

0 . Moreover, limt→∞ x(t) = 0.

Remark III.11. Although we have presented all the results in
the context of stabilization to the origin, they easily extend to
the problem of trajectory tracking (see Section 4.5 of [23]).

IV. A NUMERICAL EXAMPLE

To demonstrate the performance of the proposed con-
troller, we use it for altitude control of a quadrotor, which is
described by the following model:

ẋ1 = x2, ẋ2 =
σ0 − g
m

+
σ1
m
u, (32)

where x1 ∈ R and x2 ∈ R are the position and velocity of
quadrotor in the z-axis, respectively, u ∈ [0, 1] is the PWM
signal for thrust, m ∈ R is the mass of the quadrotor, and
σ0 ∈ R and σ1 describe an affine map from the PWM signal
to physical thrust (see [4] for more details).

We define:

α ,
σ0 − g
m

, β ,
σ1
m
, (33)

and apply the following expert controller:

u = sat[0,0.9]

(
Kx− α

β

)
, (34)

with K =
[
−5 −2

]
, to the dynamics (32) in simulation. In

the resulting expert demonstrations, the expert controller sta-
bilizes the quadrotor state at the origin, starting from different
positions and velocities. Since the dimension of the state
is equal to 2, we simulate 3 expert demonstrations, record
their corresponding measurements {yi}3i=1, and use the state
estimator (9) to estimate the expert solutions {(ẑi, ŵi)}3i=1.
In this context, the pairs (ẑi, ŵi) are just estimates of
evolutions of vertical position, velocity, and acceleration. We
check that the recorded demonstrations of length τ = 3 s
satisfy the sufficient conditions from Lemma III.4, i.e., the
matrix Z(t) is non-singular and ‖Z(τ)Z−1(0)‖ < 1. and use
them to construct a stabilizing controller (25). Currently, we
assume there is no measurement noise when collecting expert
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Fig. 1. Reference tracking by the expert controller (red) and the learned
controller (blue). Reference is shown with the black dash-dot line.

0 5 10 15 20
Time [s]

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 in

 a
lti

tu
de

 [m
]

Fig. 2. Comparison of tracking errors of the expert controller (red) and
the learned controller (blue).

demonstrations. We intend to address effects of measurement
noise on this methodology in future work.

The learned controller is used, together with the state
estimator (9) with ρ = 5 and the data-driven controller (29)
with γ = 0.002, to track the reference trajectory shown in
Figure 1, which consists of two parts: a sinusoid trajectory
with period of 5 s from t = 0 s to t = 10 s and a setpoint
to the origin from t = 10 s to t = 20 s. To elaborate, when
tracking a sinusoid yR(t) = sin (2π/5)t, we use the learned
controller gain K̂s from (26) to control the tracking error
ez = ẑs(k)− zRs (k) with:

v̂(k, ez) = K̂s(k)ez + ÿRs (k), (35)

where zR = (yR, ẏR). When stabilizing to the origin, we
use (35) with yR ≡ ẏR ≡ ÿR ≡ 0.

In Figure 1, we present the trajectories for the expert
controller and the learned controller tracking the aforemen-
tioned reference when the measurement noise is white noise
with RMS of 10−3. In Figure 2, we compare the tracking
errors of the learned controller with those of the expert
controller. After awhile, both the learned controller and the
expert controller begin to track the sinusoid well. We can also
observe that the expert controller tracks the reference slightly
better than the learned controller. Both when tracking the
sinusoid and stabilizing to the origin, we can note that the
tracking errors exponentially decreases to zero, confirming
the theoretical results from the previous sections.
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