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Abstract— In recent years, LiDAR sensors have become
pervasive in the solutions to localization tasks for autonomous
systems. One key step in using LiDAR data for localization is
the alignment of two LiDAR scans taken from different poses,
a process called scan-matching or point cloud registration.
Most existing algorithms for this problem are heuristic in
nature and local, meaning they may not produce accurate
results under poor initialization. Moreover, existing methods
give no guarantee on the quality of their output, which can be
detrimental for safety-critical tasks. In this paper, we analyze
a simple algorithm for point cloud registration, termed PASTA.
This algorithm is global and does not rely on point-to-point
correspondences, which are typically absent in LiDAR data.
Moreover, and to the best of our knowledge, we offer the first
point cloud registration algorithm with provable error bounds.
Finally, we illustrate the proposed algorithm and error bounds
in simulation on a simple trajectory tracking task.

I. INTRODUCTION

LiDAR1 sensing is quickly becoming commonplace in au-
tonomous vehicles and robots. LiDAR sensors are accurate,
inexpensive, and provide rich environment data, enabling a
wealth of successful work in localization and Simultaneous
Localization and Mapping (SLAM) [1], [2], [3], [4]. To
use LiDAR data effectively, these works typically rely on
a crucial sub-routine for solving the point cloud registration
problem.

Point cloud registration, also referred to as scan-matching,
asks for the appropriate transformation relating two measure-
ments of the same environment to one another. Typically,
this transformation is simply a rotation and translation, but
some more general settings also consider scaling and warps
as well [5]. This problem has a standard closed-form solution
when the point clouds from each measurement are also
equipped with point-to-point correspondences, or when the
point clouds are uniformly spaced with no noise [6]. In
LiDAR sensor data, however, the associated point clouds
have very non-uniform spacing and rarely contain perfect
correspondences between points.

Despite these difficulties, a number of successful heuristic
algorithms for point cloud registration have been developed.
One of the simplest is the Iterative Closest Point (ICP)
procedure [7], which tries to repeatedly establish valid cor-
respondences and compute the associated transformations,
seeking to minimize the incurred error in alignment. Nu-
merous more exotic approaches exist with similar structure

This research was supported in part by US ARL Cooperative Agreement
W911NF-17-2-0196, NSF 2211146, and NSF 1705135.

M. Marchi, J. Bunton, B. Gharesifard, and P. Tabuada are with the Electri-
cal and Computer Engineering Department, University of California at Los
Angeles, Los Angeles, CA 90095 USA. {matmarchi, j.bunton,
gharesifard, tabuada}@ucla.edu

1Light Detection and Ranging.

and intuition, such as the Normal Distributions Transform
(NDT) [8] and various feature-based methods [4]. However,
these methods usually require a good initial estimate of the
transformation, or they rely on the existence of point-to-point
correspondences that are absent in LiDAR data.

These existing algorithms for point cloud registration have
shown good empirical performance in a variety of scenarios.
They all, however, lack any formal guarantees on the quality
of their proposed transformation. This type of error guarantee
is crucial in safety-critical applications such as LiDAR-based
localization for self-driving vehicles [9]. To the authors’
knowledge, only one registration algorithm, TEASER++,
provides such results in the form of a certification guaran-
tee on the optimality of the computed transformation [5],
which does not directly translate into an error guarantee.
TEASER++, however, still relies on the existence of corre-
sponding points in the LiDAR data.

In this paper, we show that a new algorithm recently
proposed by the authors, Provably Accurate Simple Trans-
formation Alignment (PASTA), which has precisely these
missing guarantees. Moreover, it operates without requiring
the existence of point correspondences, making it ideal for
low-density LiDAR data. In our analysis of PASTA, we prove
that its simple, globally valid algorithm has an explicit bound
on the error between its output and the true transformation
relating two point clouds. As already pointed out, these
bounds may be instrumental, for example, in guaranteeing
the safety of autonomous systems, but also in defining a
supervisor for other heuristic and learning-based methods.

II. PRELIMINARIES

We begin by introducing some notation and concepts. The
results we prove hold in Rn for any n ∈ N, but when dealing
with point clouds coming from LiDAR data, n will be 2 or 3.

1) A point cloud is a finite set with d ∈ N elements:

X = {x(1), x(2), . . . , x(d)}, (1)

where x(i) ∈ Rn for each i ∈ {1, 2, . . . , d}.
2) Given a point cloud X , its convex hull is given by:

H =

{
x =

m∑
i=1

λix
(i)

∣∣∣∣∣
m∑
i=1

λi = 1, λi ≥ 0

}
. (2)

3) Given a compact set H ⊂ Rn, and the Lebesgue
measure µ on Rn, we denote the volume of H as:

|H| = µ(H) =

∫
H

dµ, (3)
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and define its radius as:

ρ(H) = min
q∈Rn

max
x∈H

∥x− q∥. (4)

4) We define the first moment of a compact set H ⊂ Rn

as:
c = |H|−1

∫
x∈E

x dµ. (5)

5) We define the second moment of a compact set H ⊂
Rn relative to its first moment c as:

Σ = |H|−1

∫
x∈H

(x− c)(x− c)T dµ. (6)

6) Given an orthornormal matrix R ∈ SO(n) and a set
H ⊂ Rn, we denote the rotated set as RH ⊂ Rn:

RH = {z ∈ Rn | z = Rx, x ∈ H}. (7)

7) Given two compact sets H1, H2 ⊂ Rn of non-zero
measure, we introduce a notion of “overlap” between
them. This overlap is represented by a number δ ∈
[0, 1], and is defined as follows:

δ =
|H1 ∩H2|

max {|H1|, |H2|}
. (8)

Intuitively, when δ = 0, H1 and H2 are disjoint, and
when δ = 1, H1 = H2.

8) Integral expressions without a specified domain are
interpreted as over all of Rn.

III. PROBLEM STATEMENT

In [10] we presented PASTA: a methodology for computing
the rigid transformation between point clouds generated
from LiDAR data taken at different positions in the same
environment, and empirically evaluated its effectiveness. Our
aim in this paper is to provide deterministic bounds on the
error in the translation p̂ and rotation R̂ computed by PASTA
when the point clouds are not exactly related by a rigid
transformation. This phenomenon occurs in practice because
of sensor noise and finite LiDAR resolution (see Fig. 1).

Explicitly, we are given two point clouds X1, X ′
2 corre-

sponding to measurements taken at two distinct poses, related
by the transformation (p,R). We use the notation X ′

2 here
to emphasize that X1 and X2 are not related by a simple
rotation and translation. We then compute the convex hulls
of both point clouds, denoted by H1 and H ′

2, and provide
these as input to PASTA in (15). In the following sections,
we derive worst case bounds on the errors ∥R̂ − R∥ and
∥p̂− p∥, where (p̂, R̂) = PASTA(H1, H

′
2).

We conclude by presenting simulation results for PASTA
and its error bounds in a closed-loop control task.

IV. APPROACH

In this section we provide a mathematical description
of PASTA. Readers interested in its implementation and
empirical evaluation are referred to [10]. The first observation
is that PASTA directly operates on infinite sets rather than
finite point clouds. We compute these infinite sets by first
computing the convex hulls of the point clouds. There
are advantages associated to this choice, particularly when
dealing with LiDAR data, that are explored in [10].

A. Ideal Case

PASTA is most easily understood for two compact sets
H1, H2 ⊂ Rn that are perfectly related by a rigid trans-
formation H2 = RH1 + p. Under this relationship, the
first and second moments of H1 and H2 are related by the
expressions:

c2 = Rc1 + p

Σ2 = RΣ1R
T .

(9)

These equations can easily be obtained by directly computing
c2 and Σ2, using the change of variables x = Rz + p:

c2 =

∫
H2

x dµ∫
H2

dµ
=

∫
H1

(p+Rz)det(R) dµ∫
H1

det(R) dµ

= p+R|H1|−1

∫
H1

z dµ

= p+Rc1,

(10)

noting that det(R) = 1 by the orthonormality of R. Similarly:

Σ2 =

∫
H2

(x− c2)(x− c2)
T dµ∫

H2
dµ

=

∫
H2

(x− (p+Rc1))(x− (p+Rc1))
T dµ∫

H2
dµ

.

(11)

Using the change of variables x = p+Rz, we obtain that:

Σ2 =

∫
H1

R(z − c1)(z − c1)
TRT dµ∫

H1
dµ

= RΣ1R
T .

(12)

PASTA’s estimate is then defined as the solution of (9) in
terms of (p,R). In particular, the solution is given by

R = V2V
T
1

p = c2 −Rc1,
(13)

where V1, V2 ∈ Rn×n are the matrices whose columns are
the unit-eigenvectors of Σ1,Σ2 respectively. We can verify
this solution by directly substituting, noting that because R
is orthogonal, (9) implies that Σ1 and Σ2 have the same
eigenvalues, and thus their eigenvalue decompositions are:

Σ1 = V1Λ1V
T
1 = V1ΛV

T
1

Σ2 = V1Λ2V
T
1 = V2ΛV

T
2 ,

(14)

where Λ ∈ Rn×n is the diagonal matrix containing the
eigenvalues of Σ1 and Σ2. It is then straightforward to verify
that (9) is satisfied by the solution (13).

Before proceeding further, we clarify some technical
details regarding the solution (13). First, there is a sign
ambiguity on R, as both V2V

T
1 and −V2V

T
1 are valid

solutions of (9). This ambiguity is generally resolved by
using additional information about the sets H1 and H2,
such as the various examples provided in [10]. Second, in
order for Λ1 = Λ2 = Λ to hold in (14), we need to fix
an ordering for the eigenvalues of the second moments. To
define this ordering, we require the eigenvalues of Σ1 and Σ2

to be simple. These eigenvalues characterize the magnitude
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of variations along the principal axes of H1 and H2, so
this assumption essentially requires the environment to be
sufficiently asymmetric.

With these considerations, given two compact sets H1 and
H2, we define the output of PASTA as:

(p̂, R̂) = PASTA(H1, H2) =
(
c2 − V2V

T
1 c1, V2V

T
1

)
. (15)

B. Non-Ideal Case

As shown above, PASTA’s output is exact when the sets
H1, H2 are exactly related by a rigid transformation. We
now explore what happens when trying to reconstruct (p,R)
using (15) when this is no longer the case.

In practice, the sets H1 and H2 are constructed by
computing the convex hulls of point clouds corresponding
to LiDAR scans of some shape or environment. These scans
typically do not sample the same points and are affected
by noise, as shown in Fig. 1. Consequently, the relationship
H2 = RH1 + p will not hold. Instead we will have H ′

2 =
RH ′

1 + p, where H ′
2 is the rigid transformation of the

“perturbed” convex hull H ′
1, with the perturbation caused

by the difference in sampled points and noise.
Given the convex hulls H1, H

′
1, and H ′

2, we consider their
respective second moments Σ1, Σ′

1, and Σ′
2, with eigenvalue

decompositions defined by:

Σ1 = V1Λ1V
T
1 , Σ′

1 = V ′
1Λ

′V ′T
1 , Σ′

2 = V ′
2Λ

′V ′
2 .

Applying (15) to the sets H1 and H ′
2, i.e. (p̂, R̂) =

PASTA(H1, H
′
2), the estimated rotation R̂ is:

R̂ = V ′
2V

T
1 . (16)

Note that the following relationship holds:

Σ′
2 = RΣ′

1R
T

V ′
2Λ

′V ′T
2 = RV ′

1Λ
′V ′T

1 RT ,
(17)

implying that V ′
2 = RV ′

1 and R̂ = RV ′
1V

T
1 .

If we define V ′
1 = EV1 for some error rotation matrix

E ∈ SO(n) (which always exists since V1, V
′
1 ∈ SO(n)) ,

we arrive at
R̂ = REV1V

T
1 = RE. (18)

Consequently, since R preserves the Frobenius norm, we can
write the distance between R̂ and the real rotation R as:

∥R̂−R∥ = ∥RE −R∥ = ∥R(E − I)∥ = ∥E − I∥, (19)

which captures how close the error rotation E is to the
identity (the null rotation).

Similarly, under these non-ideal conditions, the translation
vector estimated by PASTA is:

p̂ = c′2 − R̂c1, (20)

and if we define e = c′1 − c1 as the difference in the
first moments of H ′

1 and H1, we can bound the difference

between the estimated and the real translation vector as:

∥p̂− p∥ = ∥c′2 − R̂c1 − c2 +Rc1∥
= ∥p+Rc′1 −REc1 − p−Rc1 +Rc1∥
= ∥R(c1 + e)−REc1∥
= ∥R((I − E)c1 + e)∥
= ∥(I − E)c1 + e∥ ≤ ∥I − E∥∥c1∥+ ∥e∥,

(21)

where the first equality holds due to the relationships H2 =
RH1 + p and H ′

2 = RH ′
1 + p, and the final equation holds

because R is norm preserving.
In section V, we provide bounds on ∥e∥ = ∥c′1 − c1∥

and ∥I −E∥ = ∥I − V ′
1V

T
1 ∥, parameterized by how “close”

H ′
1 is to H1 in a manner described next. Note again that the

“closeness” of H ′
1 and H1 is determined by the measurement

noise and non-uniform sampling effects in the LiDAR sensor.

C. Perturbation Measure

The bounds that we will provide shortly are expressed as
functions of the size of H1 and H ′

1, described by ρ(H1 ∪
H ′

1), and an overlap parameter δ defined in (8) that describes
how close H1 is to H ′

1. Fig. 1 illustrates how point clouds
generated from LiDAR measurements in different positions
of a rectangular room sample different points, resulting in
these different and non-overlapping convex hulls. Moreover,
as the LiDAR resolution increases and its measurement noise
lowers, there is greater overlap between H1 and H ′

1.
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Fig. 1. Top row: LiDAR rays from different positions in a 2D environment.
Bottom left: point clouds corresponding to the two measurements (blue is
the first measurement, red is the second). Bottom right: hulls of the two
point clouds and their intersection (hatched region). Here, δ is the surface
area of the hatched region divided by the greatest of the areas of the two
hulls.

V. THEORETICAL RESULTS

We now present the main results. First, we describe a
bound on the difference of the first moments of two compact
sets H,H ′ ⊂ Rn depending on their overlap δ and their size,
expressed as the radius of H ∪H ′.

Theorem 1 (First moment perturbation): Let H,H ′ ⊂
Rn be compact sets of non-zero measure, and let their first
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moments be c, c′ ∈ Rn respectively. Further, let the overlap
between H and H ′ be δ ∈ [0, 1]. Then:

∥c′ − c∥ ≤ 2(1− δ)ρ(H ∪H ′). (22)
Proof: First, let the vector b ∈ Rn be such that:

b ∈ argmin
b∈Rn

max
x∈H∪H′

∥x− b∥, (23)

which exists by compactness of H ∪H ′. Then, we write:

∥c′ − c∥ = ∥c′ − b− (c− b)∥

=

∥∥∥∥ 1

|H ′|

∫
x∈H′

(x− b) dµ− 1

|H|

∫
x∈H

(x− b) dµ

∥∥∥∥ . (24)

Before computing the bound, we observe that the first
moment of a compact set is the expected value of a uniform
probability distribution with that set as a support. To simplify
the following expressions we define the indicator function:

1H(x) =

{
1, x ∈ H

0, else.
(25)

Then, we can write the uniform distribution over H ′ evalu-
ated at any point x ∈ Rn as:

1H′(x)

|H ′|
=

1H′(x)

|H ′|
+

1H(x)

|H|
− 1H(x)

|H|

+
1H∩H′(x)

max{|H |, |H ′|}
− 1H∩H′(x)

max{|H |, |H ′|}

=
1H(x)

|H|
+ f+(x)− f−(x),

(26)

where we have defined f+ and f− as:

f+(x) =
1H′(x)

|H ′|
− 1H∩H′(x)

max{|H |, |H ′|}

f−(x) =
1H(x)

|H|
− 1H∩H′(x)

max{|H |, |H ′|}
.

Observe that f+ and f− are non-negative, and by definition
of δ enjoy the following property:∫

f+(x) dµ =

∫
f−(x) dµ ≤ 1− δ. (27)

We can now directly compute:

∥c′ − c∥ =

∥∥∥∥∫ (x− b)
1H′

|H ′|
dµ−

∫
(x− b)

1H

|H|
dµ

∥∥∥∥
=

∥∥∥∥∫ (x− b) (f+ − f−) dµ

∥∥∥∥
≤

∫
∥x− b∥ (|f+|+ |f−|) dµ

≤ 2(1− δ)ρ(H ∪H ′).

(28)

We now prove an analogous result bounding the difference
between the second moments of two compact sets H and H ′

in terms of their overlap, δ.
Theorem 2 (Second moment perturbation): Let

H,H ′ ⊂ Rn be compact sets of non-zero measure,
and let their second moments be Σ,Σ′ ∈ Rn×n respectively.
If the overlap between H and H ′ is some δ ∈ [0, 1], then:

∥Σ′ − Σ∥ ≤
(
2(1− δ) + 4(1− δ)2

)
ρ2(H ∪H ′). (29)

Proof: Identically to the proof of Theorem 1, the second
moments of H and H ′ can be expressed as the second
moments of uniform distributions whose supports are H and
H ′ respectively. Then, defining ∆c = c′ − c we write:

∥Σ′ − Σ∥ =

∥∥∥∥ ∫ (x− c′)(x− c′)T
1H′

|H ′|
dµ

−
∫

(x− c)(x− c)T
1H

|H|
dµ

∥∥∥∥
=

∥∥∥∥ ∫ (x− c′)(x− c′)T (f+ − f−) dµ

−
∫ (

∆c∆cT − (x− c)∆cT −∆c(x− c)T
) 1H′

|H ′|
dµ

∥∥∥∥
=

∥∥∥∥ ∫ (x− c′)(x− c′)T (f+ − f−) dµ

−
(
∆c∆cT − (c′ − c)∆cT −∆c(c′ − c)T

) ∥∥∥∥
≤

∥∥∥∥∫ (x− c′)(x− c′)T (f+ − f−) dµ

∥∥∥∥+
∥∥∆c∆cT

∥∥
≤ ρ2(H ∪H ′)

∫
(|f+|+ |f−|) dµ+ 4(1− δ)2ρ2(H ∪H ′)

≤
(
2(1− δ) + 4(1− δ)2

)
ρ2(H ∪H ′),

where the penultimate inequality is obtained by noting that
∥∆c∥ ≤ 2(1− δ)ρ(H ∪H ′) by Theorem 1.

Following (13), PASTA uses the unit eigenvectors of the
second moments to estimate the relative rotation between
frames. We are therefore interested in bounding the change
in these eigenvectors as a function of the perturbation of
the second moment. We prove precisely this bound in the
following result.

Lemma 1 (Eigenvector perturbation): Let A,B ∈
Rn×n be symmetric matrices, with A positive definite.
Suppose that all eigenvalues of A are simple, and
2∥B∥ < mini̸=j |λi − λj |, i, j ∈ {1, 2, . . . , n}, with λi

denoting the i-th eigenvalue of A. Then:

∥u′
i − ui∥ ≤ −1

2
ln

(
1− 2∥B∥

mini̸=j |λi − λj |

)
, (30)

where u′
i and ui are the i-th unit eigenvectors of A and

A+B, respectively.
Proof: First, consider A + tB, with t ∈ [0, 1], and let

λi(t), ui(t) be the i-th eigenvalue and unit-eigenvector of
A+ tB, respectively. From the perturbation analysis in [11,
Chapter 2], we can bound the derivative of the eigenvalues
of A+ tB with respect to t as:∣∣∣∣∂λi

∂t
(t)

∣∣∣∣ ≤ ∥B∥, (31)

which implies that |λi(t)− λi(0)| ≤ t∥B∥. Consequently:

min
i̸=j

|λi(t)− λj(t)| ≥ min
i̸=j

|λi(0)− λj(0)| − 2∥B∥t. (32)

This holds because each eigenvalue can change by at most
∥B∥, and if the initial distance between any pair is greater
than 2∥B∥, the eigenvalues λi(t) are simple for all t ∈ [0, 1].
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Using [12, Corollary 4], we also know that:∥∥∥∥∂ui

∂t
(t)

∥∥∥∥ ≤ ∥B∥
mini̸=j |λi(t)− λj(t)|

≤ ∥B∥
mini̸=j |λi − λj | − 2∥B∥t

,

(33)

from which we establish:

∥ui(1)− ui(0)∥ ≤
∫ 1

0

∥∥∥∥∂ui

∂t
(t)

∥∥∥∥ dt
≤

∫ 1

0

∥B∥
mini̸=j |λi − λj | − 2∥B∥t

= −1

2
ln

(
1− 2∥B∥

mini̸=j |λi − λj |

)
.

(34)

Finally, we derive an additional result that relates the
perturbation of the eigenvectors to the perturbation of the
corresponding rotation matrices constructed by PASTA.

Lemma 2 (Rotation perturbation): Let U, V ∈ Rn×n be
orthonormal and ε ∈ R≥0. Assume that:

∥ui − vi∥ ≤ ε for all i = 1, 2, ..., n, (35)

where ui and vi are the i-th columns of U and V , respec-
tively. Then, the orthonormal matrix R = UTV is such that:

∥R− I∥ ≤ ε
√
n. (36)

Proof: By direct computation:

∥R− I∥2 = ∥U(R− I)∥2 = ∥V − U∥2 ≤ ∥V − U∥2F

=
n∑

i=1

∥vi − ui∥2 ≤
n∑

i=1

ε2 = ε2n.

(37)
The first equality holds because the 2-norm is invariant to
multiplication by an orthonormal matrix, and ∥·∥F denotes
the Frobenius norm.

We are now in a position to state the main result, which
relates the overlap between H1 and H ′

1, δ ∈ [0, 1], to the
error in the position and rotation estimated by PASTA.

Theorem 3 (PASTA error bound): Let H1, H
′
1 ⊂ Rn be

non-empty compact sets of non-zero measure with an overlap
of δ ∈ [0, 1]. Let c be the first moment of H1, and define:

ec = 2(1− δ)ρ(H1 ∪H ′
1), and

eΣ =
(
2(1− δ) + 4(1− δ)2

)
ρ2(H1 ∪H ′

1).

Then, if mini,j |λi − λj | > 2eΣ, where λi is the ith
eigenvalue of the second moment of H1, the following holds:

∥R̂−R∥ ≤ −
√
n
2 ln

(
1− 2eΣ

mini̸=j |λi−λj |

)
∥p̂− p∥ ≤ −∥c∥

√
n
2 ln

(
1− 2eΣ

mini̸=j |λi−λj |

)
+ ec.

(38)

Proof: By Theorems 1 and 2, we know that

∥c′1 − c1∥ ≤ ec and ∥Σ′
1 − Σ1∥ ≤ eΣ.

Accordingly, we can write the perturbed second moment as
Σ′

1 = Σ1 + Σe, with ∥Σe∥ ≤ eΣ. Applying Lemma 1 with
A = Σ1 and B = Σe, we have that:

∥u′
i − ui∥ ≤ −1

2
ln

(
1− 2eΣ

mini̸=j |λi − λj |

)
, (39)

with u′
i the ith eigenvector of Σ′

1, ui the ith eigenvector of
Σ1, and λi the ith eigenvalue of Σ1. Finally, by applying
Lemma 2 with ε = − 1

2 ln
(
1− 2eΣ

mini̸=j |λi−λj |

)
, we see:

∥R̂−R∥ = ∥E − I∥ ≤ −
√
n

2
ln

(
1− 2eΣ

mini̸=j |λi − λj |

)
.

As for the translation, we can simply write the bound:

∥p̂− p∥ ≤ ∥E − I∥∥c∥+ ∥c′ − c∥

≤ −∥c∥
√
n

2
ln

(
1− 2eΣ

mini̸=j |λi − λj |

)
+ ec.

The bounds in (38) depend on the size of the environment
(described by ρ) and the achievable overlap (described by
δ). While these bounds are always valid, it should be noted
that in practice δ can be especially low in non-convex
environments, because different parts of the environment
are visible from different positions. Note that there is an
additional dependence on the minimum separation in the
eigenvalues of Σ. This quantity depends on how “asymmet-
ric” the environment is. For example, a very long but thin
room would have a high minimum separation.

Some additional remarks are in order. We note that ex-
plicitly computing the bounds requires knowledge of the
parameter δ. One open question is if one can obtain a bound
on the errors which only depends on knowledge of the size
and shape of the environment, resolution of the LiDAR, and
bounds on the measurement noise. In practice, an estimate
for δ can easily be obtained via a calibration-like experiment,
where the LiDAR sensor is used to collect point cloud data
from multiple positions, and the overlaps of their hulls are
evaluated. Empirically, we observe that the lowest overlaps
– and therefore worst associated guarantees – occur at poses
where the sensor is close to walls and corners.

VI. SIMULATION RESULTS

In this section, we illustrate the effectiveness of PASTA
as a localization method in a simple simulated closed-
loop trajectory tracking task2. Together with the simulation
results, we show a numerical evaluation of the pose estimate
bounds according to the theoretical analysis above.

Our simulation consists of a simple robot moving within
a convex 2D environment that extends approximately 6m
horizontally and 3m vertically. The robot possesses three
degrees of freedom (horizontal position, vertical position,
and angle) and obeys simple double integrator dynamics in
each state,where ux, uy, uω ∈ R are positional and angular
acceleration control inputs. The system does not have access
to the state, but instead receives a point cloud constructed
from LiDAR measurements at the current pose.

In the experiment, the LiDAR data is produced with a
resolution of 1◦ (360 rays), and the distance measurements
are affected by zero mean Gaussian noise with a standard

2Results using a real LiDAR sensor in a non-control task can be found
in [10]. Empirically we observed an average position estimation error below
10cm, and average angle estimation error below 1◦ in a room of size
approximately 6m×3m. We also noted some inherent robustness to non-
convexity in the environment.
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deviation of 1cm. The values are picked to be comparable
to the performance of available real-world LiDAR sensors.

The system is simulated using zero-order hold control
inputs generated at a frequency of 100Hz. The controller con-
sists of a simple full state feedback linear controller acting
on a state estimate provided by a Luenberger observer. The
Luenberger observer operates using only the pose estimate
generated by PASTA from the LiDAR data.

We then ask the system to track a sinusoidal trajectory
within the environment. A visualization of the environment
and the trajectories is shown in Fig. 2.
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Fig. 2. Visualization of the environment, the reference and actual position
trajectories in the closed-loop simulation.

We initialized the state of the system at a position within
0.75m and 45◦ of the reference trajectory with zero velocity.
Similarly, the initial state estimate is chosen within 0.25m
and 15◦ from the real initial state.

In Fig. 3, we show the error in state estimation when
the Luenberger observer uses the pose estimate provided by
PASTA as opposed to the true pose of the system. Notably,
the errors are almost identical, with steady state errors in the
order of centimeters and fractions of a degree.
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Fig. 3. Norm of the trajectory tracking error over time for the closed-loop
control task with the observer fed by the real pose and the pose estimated
by PASTA. We do not plot the initial transient for ease of visual comparison.

We also evaluate the numerical bounds for the pose
estimate provided by PASTA along the trajectory, together
with its actual incurred error, plotted using different scales,
in Fig. 4. Note that the error bound on the norm of the
rotation matrix is converted to a bound on the corresponding
rotation angle for ease of interpretation. As expected, the
worst case bound is conservative, with the actual error being
at least an order of magnitude lower.
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Fig. 4. Norms of the actual error of the pose estimated by PASTA along the
trajectory compared with the error bound guaranteed by Theorem 3. Note
the bound scale (left-hand side) differs from the actual error scale (right-
hand side).

VII. CONCLUSIONS

In this paper, we analyzed a new algorithm for the point
registration problem, termed PASTA. Our analysis produced
hard error bounds for the estimated rigid transformation
even when data is affected by noise and other non-idealities.
We then demonstrated the effectiveness of our method and
derived bounds in a simulated closed-loop control task.
Given PASTA’s theoretical guarantees, future work consists
in extending PASTA to heavily non-convex environments and
integrating it into a simple SLAM framework.
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