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Abstract—Recent years have seen the increasing attention and
popularity of federated learning (FL), a distributed learning
framework for privacy and data security. However, by its fun-
damental design, federated learning is inherently vulnerable to
model poisoning attacks: a malicious client may submit the local
updates to influence the weights of the global model. Therefore,
detecting malicious clients against model poisoning attacks in
federated learning is useful in safety-critical tasks.

However, existing methods either fail to analyze potential
malicious data or are computationally restrictive. To overcome
these weaknesses, we propose a robust federated learning method
where the central server learns a supervised anomaly detector
using adversarial data generated from a variety of state-of-the-
art poisoning attacks. The key idea of this powerful anomaly
detector lies in a comprehensive understanding of the benign
update through distinguishing it from the diverse malicious ones.
The anomaly detector would then be leveraged in the process of
federated learning to automate the removal of malicious updates
(even from unforeseen attacks).

Through extensive experiments, we demonstrate its effec-
tiveness against backdoor attacks, where the attackers inject
adversarial triggers such that the global model will make in-
correct predictions on the poisoned samples. We have verified
that our method can achieve 99.0% detection AUC scores while
enjoying longevity as the model converges. Our method has
also shown significant advantages over existing robust federated
learning methods in all settings. Furthermore, our method can
be easily generalized to incorporate newly-developed poisoning
attacks, thus accommodating ever-changing adversarial learning
environments.

I. INTRODUCTION

Federated learning (FL) [18, 37, 24] has gained more
and more interests in practical learning scenarios due to its
tremendous privacy advantages. In each round of learning,
the global model will be synchronized at each involved local
client. Then each participant will train a local model and
upload it to the central server which aggregates the updates and
produces a new global model. In this case, federated learning
enables utilization of sensitive or private data to train a global
model and prevent personal data leakage simultaneously. The
learning framework can adapt to a wide range of local data
while remaining unknowing of it. An intriguing motivation
can be building health prediction and monitor systems on
personal devices such as mobile phone or smart watch using
daily activity signals [22, 23].

However, by its fundamental design, federated learning is
inherently vulnerable to model poisoning attack: the model has

Fig. 1: Federated Learning

state-of-the-art performance on normal data, but its behavior
is manipulated on seeing inputs with intentionally designed
trigger pattern which does not change human’s perception.
The malicious local clients can inject these patterns into the
training inputs to poison the model (as shown in Fig. 1) and
benefit from the abnormal behavior of the global model. For
instance, the attacker can inject a 5 × 5 pattern to replace a
part of the benign image or insert a “trigger” phrase into a
paragraph while maintaining the semantic meaning in natural
language.

To mitigate impact of these malicious data, a number of
methods have been proposed to enhance the robustness of
federated learning [36, 5, 21, 16]. However, most of them only
implement transformations on the benign updates for unsu-
pervised differentiation from malicious updates, thus limiting
their detection performance. To overcome these challenges,
we propose a novel robust federated learning method through
constructing a supervised anomaly detector. Specifically, the
supervised anomaly detector is trained for distinguishing be-
nign updates and malicious updates generated from a variety
of poisoning attacks. Through carefully comparing different
characteristics of benign and malicious updates, our method
can achieve superior performance than previous methods (that
only consider unsupervised classification). In summary, our
work makes the following important contributions.

• We propose a robust federated learning method where
we construct a supervised anomaly detector that aims to
distinguish benign updates and malicious data generated
by a range of poisoning attacks. As compared with pre-
vious methods that only leverage unsupervised detector,
our method can provide a better understanding of the
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benign updates thus achieving better robustness for the
entire federated learning process.

• The effectiveness of our proposed method has been vali-
dated by using multiple real-world data sets. Specifically,
our method can achieve up to 99.0% AUC scores in
detecting malicious updates (even from unseen attacks).

• Our method has shown significant advantages over the
state-of-the-art methods by reducing the attack success
rate by 90% in defending against manipulation of mali-
cious data. In addition, newly-proposed poisoning attacks
can be incorporated into our method in a straightforward
manner for enhanced robustness against ever-developing
adversarial perturbations.

II. RELATED WORKS

A. Poisoning Attack in FL Setting
Based on the attackers’ goals, poisoning attack in federated

learning settings can be roughly classified into three cate-
gories:
Untargeted attacks. The adversary’s goal is to make the
model converge to a sub-optimal point or to make the model
perform poorly, e.g., completely diverge. These attacks are also
refereed as convergence attacks in the settings for Byzantine
adversaries [3, 5, 36, 7].
Targeted attacks. Adversary wants the model to misclassify
only a set of chosen samples while the overall performance
on the main task remains untouched [4, 29].
Backdoor attacks. Backdoor attacks are designed to mislead
the trained model to predict a specific label on any input data
that has an attacker-chosen pattern, i.e., trigger. Instead of
misclassifying a set of samples, backdoor attack is to make
the trained model wrongly behave when seeing the trigger
pattern [32, 33, 25, 2]. Besides, [2, 25] also empirically
show that it is challenging to defend against backdoor attacks
using unsupervised learning methods such as clustering and
distance auditing. This motivates us to improve the defense
performance using supervised anomaly detection.

B. Robust Aggregation in FL
Coordinate-wise median [36]. Given the set of updates,
{θ̃

t

j}kj=1, the aggregator generates the update θj+1 by taking
the coordinate-wise median of the set of updates from k
clients.
Krum [5]. Krum assumes n agents and f of them are
Byzantine adversaries, where n ≥ 2f +3. At a particular time
t, for each θ̃

t

j , the n − f − 2 closest (in terms of Lp-norm)

other updates are chosen and their distances to θ̃
t

j are added

up to compute a score Sj . Krum then selects the θ̃
t

j with the
lowest score to produce the global model.
RFA [21]. Given the set of updates {θ̃

t

j}kj=1, RFA calculates
the geometric median (GM) of the set by minimizing θt+1 =

argmin
θ

∑k
j=1 αk||θ− θ̃

t

j ||, where αk is the weight parameter

and
∑

k αk = 1 w.l.o.g.
Ditto [16]. Instead of learning a single global model θ,
Ditto proposes to learn n local model vt

j to strengthen the

personalization and robustness. Specifically, this method uses
an additional regularization term ||θt − vj || in the training of
local models and the robustness is evaluated on those benign
clients vj .

C. Secure Training and Inference in FL

The problem of secure training and inference can be solved
via generic secure computation techniques such as secure two-
party (2PC) computation [35], fully homomorphic encryption
[8], and trusted execution enclaves (TEEs) [26]. This thread
of research is independent of our objective of developing new
robust federated learning algorithms. However, given that our
method needs to calculate a function over individual updates,
we discuss the possibility of applying the above techniques to
relieve the privacy concern of accessing the above information.
Two-party computation. [19] allows two parties to approx-
imately or exactly compute an arbitrary operation function
(e.g., matrix multiplication) on their inputs without sharing
their inputs with the opposing party.
Fully homomorphic encryption (FHE). CryptoNets [9] is the
first work that attempts to optimize and tailor FHE schemes
for secure inference. However, the computation overhead of
FHE is enormous which limits its application to networks of
a few layers.
Trusted Execution Environment (TEE). [26] uses the Intel
SGX hardware enclave to securely perform inference. It guar-
antees code and data loaded inside to be protected with respect
to confidentiality and integrity.

III. OUR PROPOSED ROBUST FEDERATED LEARNING

A. Federated Learning

The training objective. Federated learning distributes the
training among n total clients and aggregates local models to
iteratively learn a global model θ. Specifically, it minimizes
the learning objective below.

θ = argmin
θ

∑
j∈[n]

∑
xi,yi∈Dj

Ltrain(θ,xi, yi) (1)

In essence, n local clients jointly learn the global model.
At each round t, there are k clients participating in the
training and the central server will select the k participants
and broadcast a global model θt among them. Then each local
client j will initialize the local model with θt and learn a local
model θt

j on its personal dataset Dj = {xi, yi}
|Dj |
i=1 by solving:

θt
j = argmin

θ

∑
xi,yi∈Dj

Ltrain(θ,xi, yi) (2)

After that, the update θ̃
t

j = θt
j − θt is sent back to the

central server, which will be further aggregated to produce a
new global model. Then, the central server averages over all k
updates with its own learning rate to produce a new model 1:

θt+1 = θt +
η

k

∑k

j=1
(θt

j − θt) (3)

1For simplicity, we will ignore the superscript t in the following discussion.

997

Authorized licensed use limited to: UCLA Library. Downloaded on May 07,2023 at 22:45:15 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Our Robust Federated Learning Algorithm

B. Model Poisoning Attack

Given the designed framework of federated learning, it is
generically vulnerable to model poisoning attack: where a
malicious client may submit the local updates to influence
the weights of the global model. For instance, previous work
has shown that adversaries can apply triggers (by simply
replacing the corners of the image while barely affecting
human’s perception) to lead to misbehavior of the model, by
predicting the poisoned cat image as airplane for example
(as shown in Fig. 3). This will raise concerns in deploying
the machine learning model in safety-critical tasks such as
autonomous driving.
Trigger definition. Let Dj = {xi, yi}

|Dj |
i=1 be the training

dataset available at client j. For the dataset Dj = {xi, yi}
|Dj |
i=1 ,

its backdoor version is D̂j = {x̂i, ŷi}
|Dj |
i=1 , where x̂i = xi+δj ,

ŷi ̸= yi.
Following the conventions in [14, 10, 27, 32, 28], we restrict

the perturbation amount bounded by Lp-norm, e.g., [14] uses
L2 ≤ 5, L0 ≤ 2, and L∞ ≤ 0.16 for CIFAR10 dataset.
Attacker Capability. Following the setting in [2, 4, 32], we
consider the strong attacker here who has full control of their
local training process, such as backdoor data injection and
updating local training hyperparameters. It can also up scale
its model weights to compensate the learning rate in the central
server to perform stronger attacks. However, attackers do not
have the ability to influence the privilege of central server
such as changing aggregation rules, nor tampering the training
process and model updates of other parties
Attacker Objective. The poisoning attacker is designed to
mislead the trained model to predict the poisoned sample x̂i

as the target label ŷi, while the accuracy on the normal dataset
remains untouched. The adversary’s learning objective is as
follows:

θ̂j = argmin
θ

∑
xi,yi∈Dj

Ltrain(θ,xi, yi) +
∑

x̂i,ŷi∈D̂j

Ltrain(θ, x̂i, ŷi)

(4)

C. Our Approach

Motivation. Previous robust aggregation in FL mainly focus
on transforming benign updates through various transforma-
tion strategies such as median of gradients [36, 5], singular
value decomposition [7], etc. However, these methods are
only limited to unsupervised classification where only benign
updates are analyzed. These observations motivate our work

Algorithm 1 Supervised Anomaly Detection

1: Input: Central server collects a small independent portion
of benign training dataset Dc (5% of the whole dataset).
At communication round t, there are k local models θtj
and one produced global model θt.

2: Output: The learned anomaly detector Fϕ(θ) and the
global model θt.

3: Server generates malicious input data samples D̂c given
Dc.

4: The server trains local models and generate benign model
updates and the malicious model updates denoted as Θb =
{θb} and Θm = {θm}, respectively.

5: The detector Fϕ(θ) (parameterized by ϕ) is trained on the
model updates Θ = {Θb,Θm} by minimizing Eqn. (5).

6: for communication round t do
7: θt+1 = θt

8: for client j do
9: local model θtj is returned by client j

10: if θtj is classified as benign by Fϕ(θ) then
11: θt+1 = θt+1 + η

k (θ
t
j − θt)

where we leverage the state-of-the-art poisoning attacks for
generating various malicious updates, based on which we train
a supervised learning model for distinguishing benign and
malicious updates. The key intuition behind our method is to
utilize the current poisoning attacks as public information for
generating malicious examples so that a supervised anomaly
detector can be constructed.

min
ϕ

∑
θj∈Θ

Fϕ(θj) (5)

Our Algorithm. We propose to learn a supervised anomaly
detector on the central server side based on the self-generated
malicious updates (see Algorithm 1). Fig. 2 shows the detailed
process of our method.

Our method is generalizable to any newly-developed poison-
ing attacks since they can be easily incorporated to produce
more diverse/powerful malicious data. In our experiments, we
leverage fully connected neural networks for anomaly detector.
It is worthy noting that more sophisticated model architecture
can be applied for enhanced detection performance.

IV. EXPERIMENTS

To validate the effectiveness of our method, we conduct
extensive experiments using 3 real-world datasets. Specifically,
we validate the effectiveness of our method which achieve high
AUC scores in detecting malicious updates (even from unseen
attacks). Then, we will compare our proposed method with

TABLE I: Details of Datasets used in Our Experiments

Dataset No. of Training No. of Testing Label Format
CIFAR-10 50,000 10,000 10 32× 32× 3

SVHN 73,257 26,032 10 32× 32× 3
MNIST 60,000 10,000 10 28× 28× 1
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several state-of- the-art robust aggregation algorithms, in order
to show the advantage of our method. Finally, we evaluate the
robustness of our method against adaptive attacker where the
adversary has prior knowledge of our method and aims to
evade its performance. All our evaluations are conducted on
a PC with Intel Xeon Platinum 2.5 GHz and 64 GB memory
and NIVIDA TITAN RTX graphics card. We will make our
code publicly accessible to motivate future work on enhancing
robustness in federated learning.

A. Experimental Setup

Datasets In our experiments, we use 3 real-world datasets
(CIFAR-10 [12], SVHN [20], and MNIST [13]) to evaluate the
performance of our method, and Table I provides an overview
of all datasets. CIFAR-10 dataset [12] represents various types
of vehicles, animals, etc., and SVHN dataset [20] represents
street-view house numbers, while MNIST dataset [13] repre-
sents handwritten digits
Evaluation Metrics Evaluating the performance of our
method includes quantification of the detection performance
of the anomaly detector and the classification performance of
the global federated learning model.

For the anomaly detector, we first compute True Posi-
tive (TP): malicious updates being correctly identified, False
Positive (FP): benign updates being incorrectly recognized
as malicious, True Negative (TN): benign data being cor-
rectly identified, False Negative (FN): malicious data being
incorrectly recognized as benign data, based on which we
compute receiver operating charateristic (ROC) that measures
the tradeoff between True Positive Rate: TP

TP+FN and False
Positive Rate: FP

TN+FP . From the ROC curve, we quantify the
overall detection performance under all possible values of the
threshold parameters using Area Under the ROC (AUC) [17].

For the global federated learning model, we compute the
following two metrics to quantify its robustness under pertur-
bations of malicious data:

• Attack Accuracy: measures the percentage of the pre-
dicted label equaling to poisoned label ŷi on the poisoned
testing dataset D̂test.

• Clean Accuracy: measures the percentage of the pre-
dicted label equaling to the original label yi on the clean
testing dataset Dtest.

Model Architecture In the experiments, we consider ResNet-
18 [11] as the global model used in the federated learning
setting, and we distribute each of the 3 real-world datasets to
100 agents for jointly learning the global model. Furthermore,
we use a four-layer fully connected network as the anomaly
detector. The anomaly detector has [256, 128, 128, 2] neurons
in each layer with ReLU activation. In our experiments, we
randomly pick the convolution layer of ResNet-18 to train the
anomaly detector.
Generating Malicious Data To produce poisoning examples,
the local adversary can inject the trigger patterns into local
data using the strategies following [34] (as shown in Fig. 3):
i) Blended: the intensity backdoored is reduced by a factor
of α. ii) Corner: the corners of the image are replaced by

Fig. 3: Backdoor patterns utilized in our experiments.
Dataset Scale 100 75 50 10

CIFAR10 AUC 1.00 1.00 1.00 1.00
Attack accuracy 12% 11% 10% 10%
Clean accuracy 91% 91% 91% 91%

MNIST AUC 0.96 0.97 0.96 0.96
Attack accuracy 10% 12% 12% 10%
Clean accuracy 96% 96% 96% 96%

SVHN
AUC 0.98 0.98 0.96 0.96

Attack accuracy 12% 12% 10% 10%
Clean accuracy 93% 94% 94% 93%

TABLE II: The performance of anomaly detector and federated
learning model with varying scaling parameters.

some random patterns. iii) Watermark: a patch of size k×k is
replaced by random watermarks. To evaluate how the anomaly
detector perform under unseen poisoning strategies, we will
report the results of using Watermark strategy to generate
poisoning sampling for training the detector, while the Corner
strategy is used for testing. In Sec. IV-E, we will rotate various
backdoor pattern combinations and report the results. The
adversary will poison all the local training data to generate
θm. Following [2], in the testing process, we measure the
attack accuracy on 1000 poisoned samples, i.e., the fraction
of samples that are misclassified into the desired class under
the presence of backdoor patterns. And we report the normal
accuracy on 10000 benign data samples.
Learning Anomaly Detector To validate the effectiveness of
our method, the data used for training the anomaly detector
does not overlap with the data used by normal clients and
attackers participating in the learning process. Specifically,
in our experiments, we assume the central server owns 5%
of the original training dataset to synthesize distribution of
benign and malicious weights. These data is excluded through
the entire federated learning process and is irrelevant to the
local clients. Then the server uses the Watermark strategy in
Fig. 3 to produce backdoor images and follows Agorithm 1 to
produce anomaly detector for robust federated learning.

B. Effectiveness of Our Method

Table. II shows the AUC of the anomaly detector and the
corresponding attack/clean accuracy of the federated learning
model using our defense, with various scaling of the local
models which is one of the indicator of the attack strengths
[2, 33]. To make the attack effective, instead of returning θt

j to
the central server, the attacker will return θt

j ← θt+γ(θt
j−θ

t).
According to Eqn. (3), when γ = k

η , and θt
i − θt ≈ 0 for
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(a)
(b)

Fig. 4: (a) AUC of the anomaly detector under varying rounds and
(b) Distribution of distance to the global models for CIFAR-10.

Fig. 5: (a) First row: The accuracy in the poisoned task which is the
classification accuracy in the poisoned dataset and (b) Second row:
The accuracy in the normal task which is the classification accuracy
in the benign dataset.

∀i ̸= j, then θt+1 ≈ θt
j . In this case, the attacker will simply

perform model replacement attack [2]. We assume there are 20
attackers existing in the 100 clients and we run the experiments
for 100 rounds. Here we choose γ equaling to 100, 75, 50,
10, respectively. We will use the same setting in the following
experiments unless specified.

From Table. II, we observe that i) As γ decreases, the attack
accuracy is consistently around 10% (close to random guess),
thus effective in defending against the backdoor attacks. ii)
Our method is insensitive to the value of γ with stable
detection AUC and clean accuracy in federated learning task.
These observations validate the effectiveness of our method in
detecting malicious updates in adversarial federated learning
settings.

Fig. 4(a) demonstrates that the detection AUC is well
maintained as the federated learning model starts to converge
(with an increasing number of rounds), which validates the
longevity of the anomaly detector.

Fig. 4(b) shows the distribution of distances of benign local
models ||θt

j − θt||. As shown in the figure, the majority of
the benign local models has a norm smaller than 20 with
scaling factor γ = 1. However, the corresponding distances
of the poisoned weights generated by the attacker can be
made smaller than 1, which makes the defense of distance-
based method challenging thus validating the usefulness of
our method.

C. Superiority over Previous Works

Next, we compare our method with the state-of-the-art
robust federated learning methods. Here, we consider a strict
setting: the central server has a norm auditing mechanism,
where local model θt

j that has a larger distance to the current
global model will be automatically rejected. We use L2-norm
||θt

j−θ
t|| ≤ β and we set β = 20. We introduce this setting for

comparisons because as is shown in Fig. 4(b), it is unlikely that
the benign weights θt

j will have a larger distance to the global
model than 20. So any weights with unusually large distances
can be rejected by the central server. Here we assume there
is certain percentage of attackers in the 100 clients, ranging
from 1 to 100, and we run the experiment for 1000 rounds.

Fig. 5(a) and Fig. 5(b) show the attack accuracy and
the clean accuracy of different methods, including FedAvg
(baseline), Coordinate-wise Median [36], Krum [5], RFA [21],
CONTRA [1], Validate [30], Spectral [15] and ours on CIFAR-
10 dataset, under varying percentage of adversaries in the
system. We follow the same experimental settings of original
papers for comparison. We observe that 1) our method reduces
the attack accuracy by 90% in defending against manipulation
of attackers as compared to previous works (shown in Fig.
5(a)). 2) our method achieves similar performance in classi-
fying benign data as previous works (shown in Fig. 5(b)).
3) Due to the adaptive learning rate scaling strategy (see
Algorithm 1 in CONTRA [1]), CONTRA is not numerically
stable, and the global models diverge when the percentage
of malicious clients is large. Hence, CONTRA produces a
much lower clean accuracy and cannot effectively perform
defense. 4) None of the existing works [36, 5, 21, 1, 30, 15]
can successfully defend against the backdoor attack when
the percentage of attackers is larger than 30%, while our
approach can consistently produce high performance. These
observations validate the significant advantages of our method
over the state-of-the-art robust federated learning approaches.

D. Robustness Against Adaptive Attack

In order to further evaluate the robustness of our method,
we quantify performance of the anomaly detector against an
adaptive attacker who has prior knowledge of our method.
Constructing Adaptive Attacker: Given the current global
federated learning model, both the adversary and the defender
learn an anomaly detector using the self-generated malicious
and benign gradient updates. The attacker first learns an
anomaly detector using the local training data Dj and the
known global model θ. Here, we denote the current global
model as θ, the j-th malicious update as θj ∈ Rn, the anomaly
detector as F(θi) : Rn → [2], and the loss function as
Lmal = L(F(θj)) that penalizes θj if it is in the malicious
class. In addition to the regular training loss that minimizes
both the normal and the backdoor accuracy, the adversary aims
to solve the following optimization problem:

min
θj

Ltrain(θj ;θ) + λL(F(θj)) (6)

To combat the adaptive attack, we propose two strategies:
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Dataset CIFAR-10 SVHN MNIST

Rounds AUC adapt. AUC AUC adapt. AUC AUC adapt. AUC

10 0.995 0.966 0.957 0.991 0.974 0.950

20 0.998 0.961 0.969 0.999 0.974 0.953

50 0.990 0.964 0.988 0.914 0.967 0.953

100 0.990 0.964 0.980 0.921 0.955 0.941

TABLE III: The AUC of detecting malicious data under adaptive
adversary.

(a) (b)
Fig. 6: AUC of the anomaly detector (a) without adaptive attacker
and (b) under adaptive attack for CIFAR-10.

• We employ the adversarial training to make the detector
robust to adversarial perturbation. Instead of minimizing
the objective (5), the defender minimizes the objective
of min

ϕ
max

||θ′−θj ||≤ϵ

∑
θj∈Θb

Fϕ(θj). This objective will

make the detector robust to the small perturbations that
will otherwise fool the model.

• Following [6, 31], we sample a set of m random detectors
{Fϕj

}{j=1...m} by setting its parameters to random val-
ues sampled from the normal distribution. When training
the random detector Fϕj

, we injected noise to each
sample θj + η, where η ∼ N (0, ϵI). In the inference
time, we aggregate the prediction of the set of the
m random detectors and define a randomized detector
F̂ϕ =

∑m
i=1 F̂ϕm

. The key motivation is that i) By
setting part of the system parameters to be random values,
the attacker cannot calculate the exact value of Lmal on
the randomized detectors F̂ϕ and malicious updates are
unlikely to be transferred to the randomized detectors.
ii) Even if some of malicious updates transfer to a few
detectors, it is unlikely that the malicious updates will
fool all of the detectors at the same time. Hence, the
aggregation of m random detectors will be more robust
to the malicious updates.

For the adaptive attack, we assume there are 20 attackers
existing in the 100 clients and we run the experiments for 100
rounds. And we present AUC scores of the anomaly detector
in Table III, using a scaling factor γ = 100. From Table III,
we have the following observations: 1) the adaptive attacker
that has prior knowledge of our algorithm would degrade the
detection performance of our method. 2) our method still
detects most malicious updates with high AUC scores, thus
demonstrating the advantages of our method even against
advanced adversaries. For instance, there is a 0.02 drop in
the AUC score for adaptive attacks on CIFAR-10 dataset. As
shown in Fig. 6, by setting FPR to 0.2, we can still achieve a
high TPR, i.e., a large majority of the poisoned updates will
be detected by the anomaly detector.

AUC Attack backdoor pattern

Defense backdoor pattern

Watermark Corner Blended
Watermark 0.99 0.96 0.97

Corner 0.97 0.99 0.96
Blended 0.96 0.98 1.00

TABLE IV: The AUC of detecting malicious data for unforeseen
backdoor patterns.

E. Rotating unforeseen backdoor patterns

Here we evaluate the detector using various unforeseen
trigger pattern combinations. The defense backdoor pattern is
used by the central server to train the detector, while the attack
backdoor pattern is used by the attacker to produce malicious
updates. Table IV shows the AUC of the anomaly detector
on the MNIST dataset. We can see that the trained detector
achieves similar detection results as before. This clearly shows
the robustness of our methods to various backdoor patterns.

F. Summery and discussion

The experimental results verified the following:
• Our method can achieve good detection performance with

up to 99.0% AUC scores on multiple real-world datasets.
• Our method outperforms previous methods which reduces

the attack accuracy by 90% in defending against mali-
cious data.

• The robustness of our method has been further validated
against advanced attacker who adaptively adjusts attack-
ing strategies with prior knowledge of our algorithm.

Besides, while we show the effectiveness of our method in
various settings, there is still work to provide theoretical jus-
tification for the proposed defense. Moreover, the efficacy of
supervised anomaly detection against a much stronger adaptive
attacker that only targets the detector is also worth exploring
in the future. Nevertheless, we emphasize that our goal is to
initiate the discussion among researchers and practitioners on
using supervised learning to defend against backdoor attacks,
given the privacy concern and increasing heterogeneity of
clients in federated learning settings.

V. CONCLUSION

In this paper, we propose a robust federated learning algo-
rithm that leverages the state-of-the-art poisoning attacks for
generating malicious updates and then constructs a supervised
anomaly detector for enhanced robustness. Through extensive
experiments on three datasets, we have validated the effective-
ness of our method in detecting malicious updates as well as
its advantages over previous methods. In summary, our method
can serve as a key enabler in enhancing robustness in federated
learning.
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