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Abstract

Simplified conditions are given for the existence and positivity of wave speed for an integro-
difference equation with a strong Allee effect and an unbounded habitat. The results are used to
obtain the existence of a critical patch size for an equation with a bounded habitat. It is shown that
if the wave speed is positive there exists a critical patch size such that for a habitat size above the
critical patch size solutions can persist in space, and if the wave speed is negative solutions always
approach zero. An analytical integral formula is developed to determine the critical patch size
when the Laplace dispersal kernel is used, and this formula shows existence of multiple equilibrium
solutions. Numerical simulations are provided to demonstrate connections among the wave speed,
critical patch size, and Allee threshold.

1 Introduction

In this paper, we are concerned with the spatial dynamics of populations governed by integro-difference
equations in the form

1 (2) = /Q k(z — 1)g(un())dy. (L1)

where the function u,(z) represents the density of the population at point = at time n, k(z) is the
dispersal kernel, g(u,(x)) describes the population growth at point = at time n, and € is the habitat
for the population to grow and disperse. Integro-difference equations describe a process in which
individuals first undergo reproduction and then offspring redistribute before reproduction occurs once
again. They have been used to predict changes in gene frequency [19, 20, 21, 27, 32|, and have been
applied to ecological problems [5, 6, 7, 9, 10, 11, 12].

Allee effects are a density-dependent phenomenon in which per capita population birth rates decline
at low densities. A strong Allee effect is an Allee effect with a critical population density. Allee
effects may occur via various mechanisms [1, 2, 3, 4, 25]. Lui [21] showed that for model (1.1) with
) = (—00,00), when g(u) exhibits a strong Allee effect, under certain conditions there is a spreading
speed, which is the unique speed of traveling waves connecting zero and the carrying capacity. Wang et
al. [31] gave conditions under which the wave speed is positive, negative or zero. When the spreading
speed is positive, a population with an initial distribution above the Allee threshold on a sufficiently
large interval expands its spatial range. The results from [21] and [31] have been widely used in the
studies of biological invasions [4, 9, 13, 17, 22, 24, 28, 29]. The reader is refereed to the monograph by
Lutscher [23] for a thorough review on the results for spreading dynamics of (1.1) with/without Allee
effect.

The results obtained by Liu [21] and Wang et al. [31] are important in understanding spatial
population dynamics with a strong Allee effect. However there are serious obstacles faced in applying
them to specific models. In [21], it is assumed that ¢'(a) with a the Allee threshold value is the
maximum value of ¢’(u). This may not be satisfied by a biologically meaningful growth function.
In [31], it is required that for a traveling wave profile w(z), all order derivatives %ﬂ@), 1=1,2,...,
are uniformly bounded. This in general is difficult to verify as the formula for w(z) is unknown. In this
paper, we remove these strong hypotheses, develop a set of simplified and easily verified hypotheses on
g(u) and k(x) to establish spreading speeds and traveling waves, and show that the sign of wave speed
can be determined without any restriction on g(u) and k(z) other than those needed to guarantee the
existence of spreading speeds and traveling waves. We particularly demonstrate that the sign of wave
speed depends on g(u) only.



The investigations of species persistence in integro-difference models in the form of (1.1) with a
bounded habitat 2 = [, ] have received much attention; see Chapter 3 in Lutscher [23] for a review.
When there is no Allee affect, species persistence depends on the principal eigenvalue of the associated
linearized integral operator, and if the principal eigenvalue value is greater than (less then) 1 then the
species persists (dies out). The critical patch size is then determined by setting the equation for the
principal eigenvalue value to 1. When there exists an Allee effect, an approach other than linearization
is needed. Lutscher conducted a case study for (1.1) with a strong Allee effect, positive equilibrium, and
Laplace kernel, and observed that even when there is almost no dispersal related loss from the habitat,
the spatial model may not have a positive equilibrium (or critical patch size) (Section 4.5 in [23]), and
that a positive equilibrium on a bounded domain can exist only if the spreading speed is positive (end
of Section 6.4 in [23]).

In this paper, we rigorously establish the existence of a positive equilibrium for (1.1) with = [—[,].
Particularly, we prove that if the traveling wave speed is positive there is a critical patch size [* such
that for [ > [* there is a positive equilibrium, and if the wave speed is negative all the solutions approach
zero and thus there is no positive equilibrium. The mathematical analysis makes use of properties of the
traveling wave speed as well as certain limit processes. We give some general results about properties
of equilibrium solutions and a lower bound for the critical patch size, and provide a theorem regarding
bifurcations of critical patch size as the standard deviation of k varies. We also study the case of the
Laplace kernel and develop an analytical integration formula for the critical patch size, and show that
when the habitat size is above the critical patch size, there are multiple positive equilibrium solutions.
Numerical simulations are provided to demonstrate connections among the wave speed, critical patch
size, and Allee threshold when the Laplace kernel is used.

This paper is organized as follows. In the next section, hypotheses for (1.1) are provided and the
comparison principle is given. The mathematical results regarding spreading speeds and traveling waves
are presented in Section 3. Section 4 is about critical patch size. Section 5 presents the study for a
Laplace kernel. Section 6 includes some concluding remarks and discussions.

2 The hypotheses

For convenience, we use () as a shorthand, and define

Qlul(x) = /Q k(e — y)g(uly))dy, (2.2)
so that (1.1) can be written in the form
tn1(2) = Qlun](z).

We are interested in the case of 2 = R = (—o00,00) and the case of 2 = [—[,[] where [ is a positive
number. For the former case we study spreading speeds and traveling waves, and for the later case we
investigate the critical patch size for persistence.

We make the following assumptions.
Hypotheses 2.1.
i. k(x) > 0. If By = inf{x : k(x) > 0}, By = sup{z : k(z) > 0}, then k(z) > 0 in (B, B2).

B; = —o0 or By = 00 is allowed so that k(x) need not have compact support.



it. k(x) is continuous in R except possibly at By, By where limm_)Bzrk‘(m) = p1, limx_>32_k(:v) = pa.
Also k(z) may be written in the form
k() = ka(T) = P1X(—00,B1] — P2X[Bs,00)>
where kq(x) is absolutely continuous and xs is the indicator function of the set S.
wi. [ k(x)de =1.
0. fR et k(x)dz is finite for one positive p and one negative .
v. g € CH0,1].
vi. g(0) =0, g(1) =1.
vii. There exists a constant o € (0,1) such that g(u) < u in (0,«) and g(u) > u in (a,1).
vige. ¢'(u) >0 in [0,1]. If
o1 = inf{u: g(u) > 0}, oo =sup{u: g(u) < 1},
then ¢'(u) > 0 in (01,02).
iz. ¢(0) <1, ¢(a)>1, ¢(1) < 1.

Hypotheses 2.1 (i)-(iv) show that the dispersal kernel may or may not have compact support, and
is absolutely continuous. They are satisfied by various dispersal kernels used in applications. Recall
that a function ¥ () is absolutely continuous if ¢’(z) exists almost everywhere and for all s and ¢ and
W(s) —P(t) = fst Y’ (x)dz. Hypotheses 2.1 (v)-(ix) indicate that the growth function is continuously
differentiable and nondecreasing, and it has three equilibria 0, «, 1 with 0 and 1 asymptotically stable

and « the Allee threshold value. Hypotheses 2.1 (viii) allows g(u) to be zero on an interval [0, o1] with
o1 > 0 and g(u) to be 1 on an interval [1 — o9, 1] with o3 > 0.

Hypotheses 2.1 represent a subset of the hypotheses given in Liu [21]. We have dropped the hypoth-
esis ¢'(u) < ¢'(a) for u € [0, 1], which is hypothesis (xi) in [21]. We have replaced the hypothesis that
Jg €% k(z)dx is finite for all real p (hypothesis (iv) in [21]) by the weaker hypothesis (iv). Finally we
have also dropped the hypotheses (v) and (xii) in [21], which were used to study asymptotic properties
of traveling waves.

We finish this section with the following useful lemma.

Lemma 2.1. Lemma 1 (Comparison principle) Assume that Hypotheses 2.1 hold. If un(z) and vy, (z)
are two sequences of continuous and nonnegative functions with the properties vy41(z) < Q[vy](z) and
Unt1(x) > Qluy|(x) for all nonnegative n and 0 < vo(z) < up(z) < 1, then 0 < vy(x) < up(z) <1 for
all positive integer n.

This lemma can be easily shown to be true by using the method of induction.



3 Spreading speeds and traveling waves

In this section we study spreading speeds and traveling waves for (1.1) with Q = (—o0,00). We first
recall the framework developed in Lui [21]. Let ¢(z) be a continuous nonincreasing function such that
¢(—0) € (a, 1) and ¢(z) = 0 for = > 0. Define the sequence

tnt1(¢,7) = Relag)(z) := max{o(z), Qlan](z + ¢)}, ao(e,z) = ¢(x).

an(c, x) is nondecreasing in n and z for each fixed ¢, and a,(c,x) increases to a limit function a(c, x)
as n—00. Define

*

ct =sup{c: a(c,00) = 1}.

It was shown that ¢7} is independent of the choice of ¢. 7} is the wave speed in the positive direction. 7
is a finite number or ¢} = co. The wave speed in the negative direction ¢* can be defined by starting
with the function ¢(x), ¢(x) continuous and nondecreasing function, ¢(cc) € (a,1) and ¢(x) = 0
for x < 0 and letting @ = ¢, any1 = Rel[an]. Then a,(c,x) increases to a limit function a(c,z) and
¢ =inf{c: a(c,—o0) = 1}.

Let m = max,gjo 1] @. Clearly m > 1. Define h(u) = mu in the internal [0,1/m] and h(u) =1 in
the interval (1/m,1]. Let H[u](z) be Q[u](x) with g(u) replaced by h(u). It is easily seen Q[u](z) <
Hlu](x) for 0 < u(x) < 1. Consequently ¢’ is bounded above by inf,,~o i In {m{ [ e"*K(z)dz}, which
is the rightward spreading speed of the operator H and which is a finite number under Hypotheses 2.1

(iv) (see Weinberger and Zhao [34]). Similarly ¢* is also a finite number.

We have the following theorem.

Theorem 3.1. Assume that Hypotheses 2.1 are satisfied. The following statements hold:

i. Assume that ug(x) is piecewise continuous, ug(x) =0 for large x, 0 < ug(z) < 6 < 1 in R where
0 is a constant. If u, is defined by the recursion (1.1) then

lim sup up(x) =0  for every c > ci.
n—oo x>nce

ii. Assume that ug(x) is piecewise continuous and 0 < ug(x) < 1. Let ¢ < ¢1 < ca < ci. For any
o > a, there exists a constant r, > 0 such that if ug(x) > o on an interval of length equal to 74,
then u,, defined by the recursion (1.1) satisfies

lim min  wu,(z) =1
n—00 ncy <x<nca

iii. There exists a nonincreasing traveling wave solution u,(r) = w(x — nc’) of the operator Q such
that w(—o0) = 1 and w(co) = 0, and ¢ is the only wave speed for which a nonincreasing traveling
wave with values 1 at —oo and 0 at oo can exist.

Statements (i)-(iii) of Theorem 3.1 justify that ¢ is the rightward spreading speed and ¢ is the
unique speed of nonincreasing traveling waves connecting 1 and 0. Statement (i) is Theorem 1 a’,
statement (ii) is Theorem 1b, and statement (iii) is the combination of Theorem 5 and Corollary
1 in Lui [21] where additional hypotheses are needed. Results similar to Theorem 3 for ¢* also hold.
Particularly, —c* is the leftward spreading speed and —c¢* is the unique speed of nondecreasing traveling
waves connecting 1 and 0.



Proof. As shown in the proof of Theorem 1b of Lui [21], the proof of Theorem 6.2 of Weinberger [33]
works to prove statement (ii). In [21], statement (iii) was proven using Proposition 4 in the paper that
involves the hypothesis ¢’'(u) < ¢'(«) for u € [0, 1]. One can see that the proof of the proposition given
in [21] is still valid if ¢’(«) is replaced by the maximum value of ¢'(u) on [0,1], so that ¢'(u) < ¢'(«)
in [0,1] is not needed. Finally for ug(x) given in statement (i) and for a nonincreasing traveling wave
w(z — ncy) with w(—oo) = 1 and w(co) = 0, there is a real number s such that ug(z) < w(z — s).
Lemma 2.1, the comparison principle, shows u,(z) < w(x — s —nc} ) for all n and . For any ¢ > ¢
and z > nc,
sup un(z) < w(n(c—ci) —s).

r>nc
This and lim, o w(n(c — ) — s) = 0 lead to statement (i). The proof is complete. O
We now study the sign of ¢! when k(x) is even. In this case ¢ = —c*.

Theorem 3.2. Assume that Hypotheses 2.1 are satisfied and k(x) is even. The following statements
hold:

i. ¢t >0 if and only if fol [g(u) — u)du > 0.
ii. ¢ = 0 if and only if fol [9(u) — uldu = 0.

iii. ¢ <0 if and only if fol [g(u) — u]du < 0.

Proof. Let w(x) be a nonincreasing traveling wave profile with speed ¢’ such that w(—oo) = 1 and
w(oo) = 0. w(x) satisfies

wiz—ct) = / b — gy = [ kgl — )y (3.1)

R

Lemma 5 in Lui [19] and its corollary imply that w(z) is in C'(R) and

Wz - ) = / k() (w(z — )’ (z — y)dy.

Since w(x) is nonincreasing, w'(xz) < 0. As in the proof of Theorem 2.1 in Wang et al. [31], we write
g(w(x —y)) as the sum of an odd and an even function in y

g(w(z —y)) = go(z,y) + ge(z, 2),

where
o) = 3lofwle — y) — glwlz + )],
and

ge(,) = 3lofwle — y) + glwlz + )]
We therefore have

/k(y)g(W(ﬂf—y))dyz/k(y)go(w,y)dy+/k(y)ge(x,y)dy- (3.2)
R R R



Observe that the right-hand side of (3.2) is well defined as both gy and g, are bounded functions. Since
k(y)go(x,y) is odd in y, [ k(y)go(x,y)dy = 0. It follows that

/ k(y)g(w(z - y))dy = / k(y)ge(, y)dy.
R R

This and (3.1) show
w(z - ¢}) - w(z) = /R k(y) e, 1) dy — w(z). (3.3)

Since ¢'(u) > 0 for 0 < u <1, M = ¢'(w(z))w'(z) <0 for € R, and furthermore

X

/Rdg(wwdac = gu(@)[I=, = g(w(o0)) — glw(-o0)) = 9(0) — g(1) = ~1.

dz
Since 0 < w(x) <1, [pw dg(w x))dx and [ w( cQ%dm are convergent. From (3.3) we have
/[w(fv—ci) —w(x)] //k Y)ge(T,y) dg(w(x ))d dx—/w(x)dg(wu:))dx. (3.4)
R dx R dx

Since dg(fi”f)) is non-positive and thus k(y)ge(z, y)w does not change sign, by Tonelli’s theorem

(Wheeden and Zygmund [35]), we can switch the order of the double integral in (3.4) to obtain

Je S k( )9 (2, ) 2D gy gy
= Jp Jr kW)ge(w,y dg(wx(x))d dy (3.5)
=%J’Rk<y> Slo(w(z — y) + g(w(x + y)] 22D gy gy,

Using integration by parts, we find

[ stwte+ ) 28D gi = gute + g7, - [ otwen D an )
R R
Note
gw(z +y))gw(@)[;_7 = g(w(o0))g(w(o0)) — g(w(—00))g(w(—o0)) = g(0)g(0) — g(1)g(1) = ?17)
3
Using a variable change x — x + y, we find
dg(w(z+y)) , dg(w(z))
[ atwen = b [ gt - )L . (33

Combining (3.5) - (3.8), we have

// Y)ge(x,y) (d( ))dydx——;/Rk(y)dy:—;.

w T wa
[ stotan 22teted, _ £tz

On the other hand,

dzx 2
We therefore have

dow(e)) , do(w (),
[ [ kst s = [ o) as,



This and (3.4) yield

Jiuwte =) = w8 s [yt - we) 2. (3.9)
R -z R -
It is shown in the proof of Theorem 4 in [21] that w'(z) < 0 if w(z) € (0,1). Since w(—oc) = 1 and
w(oo) = 0 and w'(z) is continuous, there are two numbers d; > da, where d; is allowed to be oo and do
is allowed to be —oo, such that (i) w(dy) =0, w(dz) =1, (ii) w'(z) < 0 for z € (da,dy), (iii) w(z) =1
for x < dy if dy is finite, and (iv) w(z) = 0 for x > d; if d; is finite. Consider Hypotheses 2.1 (viii)
where o7 is either 0 or a positive number and o9 is either 1 or a positive number less than 1. Let é; be
the number such that (i) if o3 = 0,d; = o0, 61 = o0, (ii) if 01 = 0,d; < 00, 7 is the smallest solution
w(dy) = 0, and (iii) if o1 > 0, d1 is the smallest solution w(d1) = o1. Let d2 be the number such that
(i) if og = 1,da = —00, d3 = —o0, (ii) if o2 = 1,d2 > —00, d is the largest solution w(d2) = 1, and (iii)
if 09 < 1, 09 is the largest solution w(d2) = o3. We see that g(w(x)) = ¢'(w(z))w'(z) <0 in (d2,61) and
w = ¢'(w(x))w'(x) = 0 outside this interval if one of d; and 02 is finite. Form (3.9), we find
61 0
Jiuwte =) = w8 s - [" gt — w5 D s < [T gt wian, @10
R <z 52 z 1
where u = g(w(x)). In the u — y plane, the graph of y = g~ '(u) for 0 < u < 1 and the graph of
y = g( ) for 01 < u < o9 are symmetric about the line y = uw. This shows that the sum of fo )dy

and fo y)dy is the area of the unit square with vertices (0,0) and (1,1). Thus

1 1
-1 .
/O g(y)dy+/0 g (y)dy = 1.

This, (3.10), and the simple fact 1 — fol udu = fol udu show

pdgtw@) 0
[ wte) =@ = e = [ fa( — ujau,

which is equivalent to

01 1
/ fw(z) — w(z — ci)]dg(s}(w))dm _ / [g(u) — uldu.
d2 xz 0

Recall that 0 < w(z) < 1, w'(z) < 0, and w < 0 in (d2,41), and that w(xz) = 0 if < J§y for
do # —o0 and w(z) = 1 if > §; for ; # oco. If fol[g(u) — u|du > 0, then there exist a number
xo € (02,01) such that w(zg) — w(xg — ¢} ) < 0 which implies ¢f > 0. This proves statement (i).
Statement (iii) can be shown in a similarly way. Statement (ii) follows from statements (i) and (iii).
The proof is complete. O

Wang et al. [31] proved statements (i)-(iii) under the conditions that a nonincreasing traveling wave
w(x — nc*) connecting 0 and 1 satisfies w(z) € C*°(R), w'(x) < 0 for all x,
d'w d'w

lim - = lim
z—o0 dat r——o0 drt

=0, i=12,..,

and there exists a positive number M such that
‘dig(w(ﬂ«“))

dz?
These conditions are dropped in Theorem 3.2.

| <M forallz andi=1,2,...



4  Critical patch size

In this section we study the critical patch size for (1.1) when Q = [—[,[]. To avoid possible confusion,
we use Qr and Q; to denote Q defined by (2.2) for Q = R and 2 = [, ], respectively. A function u(z)
is said to be a positive equilibrium for Q; if u(x) = Q;[u](z), u(x) > 0, and u(z) # 0 for x= € [, ].

Consider the sequence ay, (I, z) defined by

l
an+1(l,x) = /_l k(x —y)g(an(l,y))dy, ao(l,x) = 1. (4.1)

We have the following lemma.

Lemma 4.1. Assume that Hypotheses 2.1 hold and k(z) is even. an(l,x) defined by (4.1) are even
functions, 0 < apt1(l,x) < an(l,x) for all m > 0 and for x € [—1,1], and ay(l,z) converges to a
nonnegative even function a(l,z), i.e.,

a(l,z) = lim ay(l,x), (4.2)

n—o0

satisfying 0 < a(l,z) <1, a(l,z) <1 ifoa =1, and

l
at) = [ ko= )glalt.y))dy (4.3
Furthermore a(l,x) is differentiable in x.

Proof. Tt is easily seen that 0 < aq (I, x) f k(x—y)g(1)dy = fl k(x—y)dy < 1, s0 that 0 < al(l,x) <
ap(l,z) for z € [—1,1]. On the other hand, since k(z) is even, a1 ([, z) f k(z —y)dy = f k(y)dy is

even. Furthermore

! l o+l
at.a) = [ ka=patartdy = [ Karnglart. =)y = [ k(=a=pa(.n)ds = ax(t.~a)
so that as(l, z) is even. Induction shows that for all n > 0, a, (I, x) is even, and 0 < ap4+1(l,z) < an(l, z)
for z € [—1,1]. Consequently, ay(l,z) converges to a limit function a(l,z), which is even, nonnegative,
and no bigger than 1. By taking limits on both sides of (4.1) and using the dominate convergence
theorem, we find that a(l,x) satisfies (4.3) and 0 < a(l,z) < 1. On the other hand, for oo = 1 and
ng = ]+ 1, where [[-]] is the largest integer function, a,,(l,z) < 1 for x € [, 1].

2
Hlength of support of
This leads to a(l,z) < 1 for x € [—[,!]. Finally differentiability of a(l, z) follows from absolute continuity

of k(z) given in Hypotheses 2.1 (ii). The proof is complete.
O

Lemma 4.2. Assume that Hypotheses 2.1 hold and k(x) is even. Let lo > 11 > 0. Then for a(l,z)
given by (4.2), a(lo.z) > a(ly,z) for z € [y, 1.

Proof. Consider the sequences a,, defined by (4.1) for {1 and lo. For x € [, 1],

l1 l2
ar(ln, @) = / k(e — y)dy < / k(o — y)dy = ar(la, @),
I

—lo

9



and

ar(l ) = [U k@ —y)glar(l,y))dy < [1 ke —y)g(ar(la,y))dy < [ k(z — y)g(ar(lz,y))dy
_a(l% )

Induction shows that for = € [—l1,11], an(l1,x) < ap(l2, z) for all n. This leads to the conclusion of this
lemma. The proof is complete. O

Lemma 4.3. Assume that Hypotheses 2.1 hold and k(x) is even, and fol [g(u) — u]du > 0. Then for
a(l,x) given by (4.2), a(l,x) Z 0 for sufficiently large I, and a(l,x) = 0 for sufficiently small .

Proof. Let ((s) be a differentiable decreasing function with the properties

_ , for s < 1/2,
C(s) = { 0, for s > 1.

For m > 0, let kp(z) = k(m){(%) Clearly kp(z)—k(z) and ly, = [7 kn(z)dz—1 as m—oo.
Consider

Qunlul(@) = [ Lngla() ™5y = [ gtuw)hnta = )iy
kL(x) is a probability density with fR kn(@) g = 1. For a sufficiently large m, Hypotheses 2.1 for
( ) show that ¢,,g(u(y)) has three equlhbrla 0, am,Bm with oy, > « and S, < 1. Furthermore
as m—»o0, amﬁa and fB,—1. Since fo — uldu > 0, we may assume that mg is so large that

fo émog(ﬁmo —u]du > 0. Tt is easily seen that ko (x) and E’"O%(M satisfy Hypotheses 2.1 with k(x)
mQ

Brmg

replaced by T(m) and g(u) replaced by % By Theorem 3.1 and Theorem 3.2, the rightward
mQ no

spreading speed ¢, | for Qg m,[u](z) has the property c;, . > 0. ¢y, . is also the rightward spreading

speed for QR m,-

Choose a positive number c¢ such that ¢y, > c. Let [ > 0 and choose o such that S, > 0 > am,.
By Theorem 3.1 (ii), there exists a positive number r, such that for vo(z) = o in [-7,/2,7,/2] and 0
elsewhere, v,, defined by the recursion v,11(x) = Qr m,[vn](x) satisfies

A5 i () = P
This, ¢ > 0, and f,,, > o show that there exists a positive integer ng such that
Ung () > vo(x) =0 on [—15/2,75/2]. (4.4)
Let .
Qunlul(@) = [ ol = tut))ds

Consider the interval [—ng(c + D) — r5/2,n9(c + D) + r,/2] where D is the length of the support of
kmo(x), and let g be half of the length of this interval. We therefore have that

Q) [ol(@) = QM [wo(x)],n = 1,2, ..., o,

10



where Qﬁ@no is the nth iteration of the operator Qg m,, and Ql(:)mo is the nth iteration of the operator
Ql(:)mo‘ It follows from this and (4.4) that

Q) [vo(@)] > vo(x).

This and monotonicity of Ql(:(;zzo imply
(¢no)
Qlo ’rSLO[ ( )] >UO(I‘), (= 1,2,.... (45)

Since Q,[u](x) > Quy,mo [u](x) for B, > u(x) > 0, (4.5) shows
QL [o(x)] > vo(z), £=1,2,... (4.6)

where Ql(fno) is the ¢noth iteration of Q.

We now consider the sequence a,(lp, ) defined by (4.1) with [ = ly. Since ag(lp,z) = 1 > vo(x),
Lemma 2.1 and (4.6) show that for any positive integer ¢, ag,,(lo, ) > ven,(z) > vo(x), which leads

to a(lp,x) > o for v € [-%, =] It follows from Lemma 4.2 that for any [ > lp and = € [lo, o],

a(l,z) > a(lp,z) > o for v € [-%, —%¢]. We have shown that for [ > ly, a(l,z) Z 0.

Equation (4.1) shows that for « € [—1,l], ai(l,x) < 2IM where M is the maximum value of
k(z). Hypotheses 2.1 (v)-(iv) indicate that for # with @ defined to be ¢’(0) is bounded above
by a number A > 1 for u € [0,1]. We see that as(l,z) < 2AIM for x € [—I,1]. Induction shows
an(l,z) < A LQ2IM)™ < (2AIM)™ x € [-1,1]. If | is sufficiently small such that 2AIM < 1, then
an(l,x) converges to zero so that a(l,z) = 0 for z € [—[,1]. The proof is complete. O

We are now ready to define the critical patch size under the condition that fol [9(u) — uldu > 0.
Lemma 4.1- Lemma 4.3 show that the maximum value of a(l,x) for z € [—[,[] is nondecreasing in [,
and the maximum value is positive for sufficiently large [, and zero for sufficiently small /. Define

[* := inf{l : maximum value of a(l,z) > 0}.
1* is well defined and [* > 0. This definition is equivalent to

= inf{l : a(l,x) # 0}.

We have the following theorem regarding the existence of critical patch size.

Theorem 4.1. Assume that Hypotheses 2.1 hold and k(x) is even. Then the following statements hold:

i. Iffo u) — ul]du > 0, then

a. for 1 > I*, there is a positive equilibrium a(l,x) for Q; defined by (4.2) with a(l,x) even,
0<a(l,z) <1, and a(l,z) < 1 if o2 = 1, such that for a(l,z) < up(x) < 1, limy, o0 up(z) =
a(l,z) for x € [-1,1], and

b. for I < I*, there is no positive equilibrium for Q, and every solution unp(z) of upy1 =
Qiun](x) with 0 < up(x) < 1 converges to zero as n — oo.
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. If fol [g(u) —u|du < 0, for any l > 0, there is no positive equilibrium for Q;, and in this case every
solution un () of upt+1 = Qilun](x) with 0 < ug(z) < p where p < 1 converges to zero as n — .

Proof. Lemma 4.1-Lemma 4.3 and the definition [* show that for [ > [* the sequence a,(l,x) defined
by (4.2) with ag(l,z) = 1 converges to an even function a(l,z) # 0 with 0 < a(l,z) <1 and a(l,z) < 1
if oo = 1. For a(l,z) < wup(x) < ap(l,z) = 1, Lemma 4.1 and induction show a(l,z) < ug(z) < an(l,x)
for all n. Since lim, o0 an(l, ) = a(l, z), limy, o0 un(x) = a(l,z) for x € [—1,1]. A similar proof shows
that for | < [*, lim;,, o0 un(z) = a(l,z) = 0. This proves (i).

We now prove statement (ii). Let w(z—nc’ ) be a nonincreasing traveling wave solution of (1.1) with
w(—o00) = 1 and w(oco) = 0. Since fol [g(u)—u]du < 0, by Theorem 3.2, ¢ < 0. Since 0 < up(z) < p <1,
there exists a number h such that up(x) < w(z — h). We have that for z € [0,1],

uy () = Qifuo)(x) < Qrluo)(x) < Qr[w](z — h) = w(x — ¢ — h).

Induction shows u,(z) < w(x —mc} — h). As m—o0, w(x — mc} — h)—0 for x € [—/,[] and thus
Ung+m (2)—0 for z € [0,1] and there is no nonnegative nontrivial equilibrium. The proof is complete.

O

Let @ denote the maximum of a(l, z).

Proposition 4.1. Assume that Hypotheses 2.1 are satisfied, k(x) is even, and fol [g(u) — u]du > 0.
Then the following statements hold:

. Forl>01*, a<a<l,anda<1 ifos=1.
ii. If k(z) is nonincreasing for x > 0, then fa(l,z) <0 for x > 0.

144. fZ* k(x)dx > infocy<t Ti)'

Proof. Let I > I*. In view of Lemma 4.1, 0 < a(l,z) < 1, and a(l,z) < 1 if o9 = 1 for all x so that
0<a<l, anda < 1ifoy =1 If a < «, we derive a contradiction as follows. In this case, for

ng = Hlength oF S21l1pp01"t or7)] + 1 where [[-]] is the largest integer function, a(l, z) = Ql(no)[a](l, z) <«
for z € [—1,1], so that there exists & with 0 < & < «a such that a(l,z) < & for x € [-[,]]. Note
a(l,z) = Qia](l,z) < g(&). Induction shows that a(l,z) = Ql(m) la)(l,z) < g™ (&) which approaches
zero as m—o0, so that a(l,z) = 0, a contraction. We have proven statement (i).

Consider a,(l,z) defined by (4.2) with ag(l,z) = 1.

l -+
ar(l,z) = / Ko —y)dy = / k(y)dy,

—
For = > 0,
aj(l,z) = k(z+1) — k(z —1) <0,

because k(z) is even and nonincreasing for z > 0 and |z — | < |z + 1|

ay(l,w) = 4 [ k(y)ai(l, @ — y)dy
=k(z+Dar(l,=1) — k(x — l)a1(1,1) + fmjll k(y)ay(l,x —y)dy

T

= [k(z +1) — k(z — D]ar(l,)) + [" k(y)a) (1,2 — y)dy.

x
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For x > 0, k(x + 1) — k(x — 1) < 0. Furthermore for z > 0,
z+l1 l l
| kaie =y = [ k@ =ity = [ (k= 9) ~ ke + )l ody <o

since a}(l,z) <0 and |z — y| < |z + y| for y > 0. We therefore have a)(l,z) < 0 for x > 0. Induction
shows that a,(I,x) < 0 for all n. Consequently the limit function a(l, z) is even and nonincreasing in
x for £ > 0. The equation (4.3) shows %a(l, x) is continuous and thus d%a(l,x) < 0. We have proven
statement (ii).

For [ > I*, since a(l,x) f k(x —y)g(a(l,y))dy < g(a f k(z — y)dy, we have

l
a<9(@) [ Ko=)y

or

~

a
klx —y)dy > ——.
/—l ( ) g(a)
This and the fact that o < @ <1 show

/l k(z)dr > inf —.
0 (

a<u<l g u)

Since this is true for any [ > [*, statement (iii) is true. The proof is complete. O

Statements (i)-(ii) of this proposition discuss some properties of the nontrivial equilibrium a(l, x).
Statement (iii) provides a lower bound for the critical patch size.

We finally investigate how the critical patch size depends on the standard deviation of k. Let A be
the standard deviation of k. We use k(\, z) to denote k and write

1 =x

FO2) = 1p(3):

Theorem 4.2. Assume that Hypotheses 2.1 hold, k(\, ) is even in x, and fol [9(u) — u]du > 0. Then
for any fized I > 0, there is a \* > 0 such that

a. for X < X*, there is an even positive equilibrium b(A, z) with 0 < b(\,z) < 1, and b(\,z) < 1 if
o9 =1, such that for b(\,x) < up(x) < 1, limy, 00 un(x) = b(A\, z) for z € [—1,1], and

b. for A > X*, there is no positive equilibrium for @Q;, and every solution u,(x) of upt1 = Qlun)(x)
with 0 < up(x) <1 converges to zero as n — oo.

Proof. Let | be any fixed positive number. Consider

l _
beahe) = [ SpCDabuh )y, bo(ha) =1

Using y — £, we obtain

bpt1(A\, Az) = /_ p(x — y)g(bn (A, Ay))dy, bo(A, Azx) =



Consider the sequence

ania(yom) = [ bl = pglan(5 )y, aol) =1

>~

We see that by, (A, A2) = ant1(%, ) for all n and w € [-4, )\] The sequence an+1(i,x) is the same as
the sequence given by (4.3) with [ replaced by - 5. Clearly /\—>O as A—oo, and )\—>oo as A—0. The
conclusion of the this theorem follows from Lemma 4.1-Lemma 4.3 and Theorem 4.1. The proof is
complete. O

5 Laplace kernel

In this section, we study the critical patch size and positive equilibria for (1.1) when k(z) is a Laplace

kernel, i.e.,

1
k(z) = 5zxfl’lf'f‘, b>0, (5.7)

with the standard deviation v/2b. This is a commonly used kernel in integro-difference equations for
studying population dynamics [11, 14, 15, 17]. It satisfies Hypotheses 2.1 (i)-(iv). With this kernel
and a growth function g(u) satisfying Hypotheses 2.1 (v)-(ix), all the results obtained in Section 3 and
Section 4 are valid.

According to Proposition 4.1, a(l, z) defined by (4.3) is differentiable in z. This can be also verified
by directly taking derivatives on the equation (4.3) with k(z) given by (5.7). One can further take the
second order derivative to find that u(z) := a(l, z) satisfies the differential equation

u" = b*[u— g(u))].
Direct calculations lead to the boundary conditions
v/ (=1) = bu(=1), u'(1) = —bu(l).

We integrate orbits in the phase plane to obtain an expression for [*. This method was used in other
contexts (see Li et al. [17], Ludwig et al. [18], and Pouchol et al. [26]). We follow the work in [17] to
find I* under the condition fol [g(u) — u]du > 0. Letting v = v/, we have

U

b[ —g(u)], (5.8)
( 1) = bu(=1), w'(1) = —bu(l).

There are three equilibria: (0,0) (saddle), («,0) (source), and (1,0) (saddle). It follows from (5.8) that

do Pl g(w)]

du )

(5.9)

The following two trajectories in the v — v plane play important roles in studying equilibrium solutions:

To: v? =202 fou(T —g(r))dr, u=0=v=0,
Ty : v? =202 ful(g(r) —7)dr, u=1=v=0.
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To and T; are obtained by integrating (5.9). Ty is the heteroclinic loop describing the stable and

unstable manifold of (0,0) with w > 0. By is the positive number such that fOBO [g(u) — uldu = 0.
a < By < 1. T represents the stable manifold and unstable manifold of (1,0) with 0 < wu < 1. Ty and
Ty are symmetric about the u-axis and T and 77 do not intersect (see Li et al. [17]). The equation for
Ty shows v? < 2b? fou rdr = b%u® so that T lies between v = bu and v = —bu. From Hypotheses 2.1
(viii), we see that Tp is given by v = £bu for 0 < u < o7. T} intersects with the v-axis at the number
202 fol (9(u) —w)du > 0. We use 5 to denote the u-coordinate of the point where 77 and v = au intersect.
5 is the positive solution of the equation

W = 2/:(9(7) — )ar.

An equilibrium of the boundary value problem (5.8) corresponds to an orbit 7' that starts at the line
v = bu, lies between Tj and 71, and ends on the line v = —bu. Let (s,bs) with 01 < s < § be a point
on v = bu at which T starts. T is given by

v? = 2b2/ (u — g(u))du + b*s>.

This is obtained by integrating (5.9). We use B(s) to denote the number at which 7" intersects with
the u-axis. B(s) is the solution of the equation

2/u(7' —g(7))dr + s* = 0.

See Figure 2 for a graphical demonstration.

\'

v = bu

v=-bu

Figure 1: Graphical demonstration of an equilibrium solution 7" (dash curve).

In view of the first equation of (5.8) and symmetry of T, for s < u < B(s) and —I < z < 0 in the

first quadrant 7" is governed by
d u
dz B b\/2/s (r = g(m)dr + 5"
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Integration leads to

/ o d (5.10)
N Y e '

Here [ is defined as a function of s for o1 < s < 3.

As s — 5, B(s) — 1. On the other hand the definition of T} shows

1
2/ (1 —g(7))dr + 5 = 0.

Furthermore,
d “ _
a2 [ = glrdr + ) = u - g(w)

which is 0 when u = 1. It follows that the order of zero of 2 [*(7 — g(7))dT + s* for s = 5§ and
u= B(5) =1 is at least 2, and thus as s—3, [(s)—00.

Ifoq = O a similar argument shows that as s—0, I(s)—oo. However for o1 > 0, the function
2 f ))d7 + 012 # 0 for u = o1, and thus I(o7) is a finite number. We conclude that

1
I* = inf

/B(S)
01<s<8 s b\/zf T_ dT+32

is always well-defined, and that if oy = 0 for [ > [* the equation (5.10) has at least two different
corresponding values for s. This implies that if o; = 0 for [ > [* there are at least two different equi-
librium solutions. Since the trajectories do not intersect, the phase diagram shows multiple equilibria
are ordered and there are a largest equilibrium and a smallest equilibrium. The largest equilibrium is
always the positive equilibrium given by (4.3).

du, (5.11)

We conduct numerical simulations for k(x) given by (5.7) with b = % and the growth function

(1+ a)u?
a4+ u?

g(u) =

with the Allee threshold a and carrying capacity 1. This kind of growth function is used in [30]. It
should be noted that with this choice of growth function, ¢* := ¢} = ¢* = 0 when a = 0.436.

We first numerically integrate (5.11) to determine the graph of I(s) (see Figure 2), which indicates
that [* = 2.676 and when [ > [* there are two equilibria. In this case 01 = 0 and § = 0.268. Figure 3 and
Figure 4 depict ¢* vs a and [* vs a, respectively. We see that the wave speed ¢* is a decreasing function
of a, and the critical patch size is an increasing function of a. Figure 5 shows the direct connection
between ¢* and [*, and as ¢* increases [* decreases. Figure 6 indicates that the log-log plot of I* in terms
of ¢* is not linear, so that the dependence of [* on ¢* is not a simple power relation. This is in contrast
to a reaction diffusion equation without Allee effect where the two quantities are inversely proportional
for a fixed diffusion coefficient. It is well known that for a reaction diffusion equation with diffusion
coefficient d and intrinsic growth rate r, the spreading speed is ¢* = 2v/rd and the critical patch size for

zero value boundary condition is [* = W\/g , so that ¢*I* = 2dw.  To numerically determine c¢* vs. a
and [* vs. a we used a first order uniform mesh spatial discretization with FFT accelerated convolution
using Mathematica. For ¢* iterations were left shifted by ¢, so u,+1(0 — ¢,) = 0.5 and iterated until a
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Figure 2: [ vs. s as determined by (5.11).
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Figure 3: ¢* vs. a.

fixed point condition for both w,1(x) and ¢, were met. To determine {*, an upper and lower bound
for I* were identified and solutions were iterated until a fixed point condition for u,(z) was met, or
until the maximum value of w,(x) became less than a. Bisection was then used to narrow the upper
and lower bounds until an accuracy tolerance was reached. The results of this method were in excellent
agreement with those from (5.11).

It is worth noting that figures similar to 3-6 were created for the case when k(z) is the Gaussian
kernel, with qualitatively similar results.

17



min. domain size

min. domain size

0.0 0.5 1.0 1.5 2.0 2.5

*

c

Figure 5: minimum domain size (2{*) vs. c¢*.

6 Discussion

In this paper, we studied the wave speed and critical patch size for (1.1) with a strong Allee effect.
For Q = (—o0,00), we provided a set of simplified hypotheses on k(x) and g(u) for the existence of
spreading speed and traveling waves, and positivity of wave speed. These hypotheses are satisfied by
a variety of dispersal kernels and growth functions. Particularly, we showed that the sign of the wave
speed is the same as that of fol [9(u) — u]du without any additional hypotheses other than those for the
existence of spreading speeds and traveling waves. We have dropped one strong hypothesis made in
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Figure 6: log-log plot of minimum domain size (21*) vs. a.

Lui [21] and substantially improved the main theoretical result in Wang et al. [31]. Our results can be
easily applied to spatial population models described by (1.1).

For (1.1) with Q = [—[,I] and k(z) even, we proved that if fol [g(u) — uldu > 0 there is a critical
patch size [* such that for [ > [* there exists a positive equilibrium and for [ < [* all the solution
approaches zero, and if fol [g(u) — u]du < 0 for any [ > 0 all the solutions approach zero. In the latter
case the population cannot persist in space although the corresponding non-spatial model may predict
positive equilibrium dynamics. It is interesting to see the direct connection between the positivity of
traveling wave speed and existence of critical patch size and positive equilibrium in a bounded habitat.
Our analysis showed that the equilibrium obtained by (4.3) for [ > [* attracts solutions from above.
Consequently there exists a large class of initial distributions for which the solutions persist in space.
We provided Theorem 4.2 about bifurcations of critical patch size (or positive equilibrium) as the
standard deviation of k varies under the condition fol [9(u) — u]du > 0. It should be pointed out that if

fol [g(u) — u]du < 0, no matter how small the deviation is, there is no positive equilibrium. Our study
for the Laplace kernel in Section 5 indicates the existence of ordered multiple positive equilibria when
fol [g(u) —u]du > 0 and [ > [*. We conjecture that this is true for other biologically meaningful kernels.
We further conjecture that in general the smallest equilibrium is a repeller and the largest one is an
attractor. Some new techniques may be needed to address these conjectures.

The methods developed for establishing the critical patch size for populations with a strong Allee
effect are also useful in studying populations with a weak Allee effect or no Allee effect. In these
two cases if growth occurs (i.e., ¢’(0) > 1) and k(z) is even, the spreading speed is positive (see
Weinberger [33]), and the analysis presented in Section 3 shows the existence of a critical patch size so
that the population can persist. This particularly provides an alternative approach to investigate the
critical patch size for integro-difference equations without Allee effect. In the case that there is a weak
Allee effect and a Laplace kernel is used, one can follow the work in Section 4.5 and derive a similar
integration formula for determining the critical patch size.
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This paper assumes the growth function to be monotone. It is possible that a growth function is non-
monotone, i.e., there exists overcompensation in population growth [8, 14]. It would be of interest to
analytically study the spread and persistence for models with a strong Allee effect and a non-monotone
growth function. Integro-difference equations with moving bounded or unbounded habitats in response
to climate change have been studied for growth functions with no Allee affect [13, 15, 16, 36]. It is
worth investigating the dynamics of populations with Allee effects in moving habitats. We leave these
problems for future investigations.
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