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Abstract7

Previous work involving integro-difference equations of a single species in a homoge-8

nous environment has emphasized spreading behaviour in unbounded habitats. We show9

that, under suitable conditions, a simple scalar integro-difference equation incorporating10

a strong Allee effect and overcompensation can produce solutions where the population11

persists in an essentially bounded domain without spread despite the homogeneity of the12

environment. These solutions are robust in that they occupy a region of full measure in13

parameter space. We develop orbit diagrams showing various patterns of nonspreading14

solutions from stable equilibria, period-two, to higher periodicity. We show that from a rel-15

atively uniform initial density with small stochastic perturbations, a population consisting16

of multiple isolated patches can emerge. In ecological terms, this work suggests a novel17

endogenous mechanism for the creation of patch boundaries.18

Key words. Integro-difference equation, Allee effect, Overcompensation, Nonspreading solu-19

tion.20

AMS subject classification. 92D40, 92D2521

Abbreviated title. Nonspreading Solutions in Integro-Difference Equation.22

1 Introduction23

As spatial ecology has developed, a great variety of mathematical modeling approaches have24

been used to study questions at various levels of complexity. Integro-difference equations,25

which feature a continuous space but discrete time formulation of population dynamics, have26

proven especially useful for studying questions about population-level processes and species27

interactions. For example, integro-difference models have been used to predict changes in gene28

frequency [37, 38, 39, 52, 59], and characterize species’ spatial dynamics [22, 23, 24, 25, 28,29

29, 30, 35, 46]. Because integro-difference equations often admit traveling wave solutions of30

various kinds, a primary focus in many of these studies has been spatial spread (e.g., expan-31

sion of a population or a favorable allele). Examples include scenarios in which population32

fronts can expand spatially in an accelerating fashion [31] and cases where one or more species33

can (or cannot) outrun the pace of environmental change [26, 34, 61]. The reader is referred34

to the monograph by Lutscher [40] for a thorough review on integro-difference equations and35

applications.36

Here, we adopt a very different perspective in that we use an integro-difference formulation to37

study nonspreading solutions. Roughly speaking, a nonspreading solution is a solution which38

persists with virtually bounded extent for all generations in an unbounded domain. Such a39

solution describes ‘invasion pinning’ that has been investigated for coupled ordinary differential40

systems in a discrete (patch) environment (see Keitt et al. [27] and references therein). Similar41
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results can emerge for partial differential equations when the focus is on gap-crossing ability42

in heterogeneous landscapes, leading to ‘geographic range margins’ beyond which the species43

cannot spread [16]. Related results for gap crossing in integro-difference equations can be found44

in Musgrave et al. [43].45

As we discuss below, the existence of nonspreading solutions in a homogeneous environment46

hinges on the presence of an Allee effect and overcompensation. An Allee effect arises when47

the per-capita birth rate increases as a function of population density when population density48

is small. Allee effects may occur via a great many biological mechanisms [1, 2, 7, 8, 9, 12,49

13, 14, 15, 21, 36, 42, 49, 53], and they have been studied in connection with integro-difference50

equations in the context of spatial spread [32, 58]. A special kind of Allee effect, termed a strong51

Allee effect, occurs when there is a critical population density below which extinction occurs.52

Mating failure, which can arise through mechanisms like pollen limitation and reproductive53

asynchrony [9, 21], has been linked to strong Allee effects in diverse biological systems. For54

example, in evergreen bagworms (Thyridopteryx ephemeraeformis), the intensity of a strong55

Allee effect arising from mating failure is a function of climate, and this spatial variation leads56

to a hard geographic boundary for the species [41, 50].57

Overcompensation in population biology refers to phenomena in which density-dependent pro-58

cesses do not yield a smooth approach to carrying capacity, and overcrowding causes an overly59

dense population to decrease below carrying capacity, sometimes dramatically, rather than slowly60

declining to carrying capacity. Such imprecision in density dependence is often critical to the61

formation of cycles or chaotic dynamics in population models, and there is particular attention62

to the strength of overcompensation as a feature of the dynamics. One example of overcompen-63

sation in an ecological system is work by Symonides et al. [56] who demonstrated that over-64

compensation in germination success leads to cycles in the annual plant Erophila verna. Over-65

compensatory population crashes have been widely studied in small mammal species, where66

fast population growth rates, coupled with various combinations of parasitism, overexploitation67

of resources, and increased predation, are linked to the emergence of population cycles (e.g.,68

[3, 18]). Note that in studies of herbivory, overcompensation has a different definition that fo-69

cuses on regrowth stimulated by herbivore feeding damage. That usage is not relevant here.70

71

We consider the spatial-temporal dynamics of a population governed by the integro-difference
equation

un+1(x) =
∫

∞

−∞

k(x− y)g
(
un(y)

)
dy, (1)

where un(x) is the density of individuals at point x and time n, g(u) describes density dependent72

fecundity, and k(x−y) is the dispersal function, which depends upon the distance |y−x| between73

the location of birth y and the location of settlement x. Model (1) describes that individuals at74

location y generate g(un(y)) offspring and then die and these offspring disperse to location x75
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with the probability k(x− y). We will assume that g(1) = 1, so that the population has an76

equilibrium at the carrying capacity un(x) ≡ 1, and that k(x) decays at least exponentially fast77

near ±∞ so that the probability that an individual travels a very long distance is exponentially78

small.79

In the case that small populations grow (i.e., g′(0) > 1) and the reproduction function exhibits80

no Allee effect (i.e., g(u) ≤ g′(0)u), with and without overcompensation, the population will81

spread at a constant asymptotic spreading speed that can be characterized as the slowest speed82

of a class of traveling waves (Weinberger [60], Li et al. [33]). In this case, the wave is pulled83

by the leading edge of invasion. When the reproduction function produces overcompensation,84

oscillations are generated in the population density behind the wave front (Bourgeois et al. [4, 5],85

Li et al. [33]). Constant spreading speed also occurs if g(u) exhibits a strong Allee effect (i.e.,86

g′(0)< 1) and g(u) is increasing (i.e., there is no overcompensation). In this case, the spreading87

speed is the unique speed of traveling waves connecting zero and the carrying capacity (Lui88

[39]), and the sign of the wave speed is the same as that of
∫ 1

0 [g(u)− u]du (Wang et al [58]).89

If
∫ 1

0 [g(u)− u]du > 0, the traveling wave moves forward, if
∫ 1

0 [g(u)− u]du < 0, the traveling90

wave moves backward, and if
∫ 1

0 [g(u)− u]du = 0 the traveling wave is stationary. The wave91

speed depends on the forward pushing force developed by the high-density populations above92

the Allee threshold behind wave front as well as the backward pulling force generated by the93

lower-density populations below the Allee threshold along the leading edge of invasion.94

Fluctuating invasion speeds can be generated by a strong Allee effect and strong overcompen-95

sation (Sullivan et al. [55]). Strong overcompensation in general produces large spatiotemporal96

variation in density behind the invasion front and thus, variation in the strength of the push,97

leading to oscillating spreading speeds. As pointed out in [55], where the population density is98

smaller than the Allee threshold along the leading edge of the invasion, the population declines99

before the next time step. Populations above the Allee threshold will grow until a maximum100

population is reached and overcompensation causes a reduction in growth. If overcompensation101

is strong enough, they will return from a high level to a low level resulting in cyclical variability102

in the pushing strength of the wave.103

In this paper, we further study the effects of a combination of a strong Allee effect and strong104

overcompensation. We will show that such a combination can produce biologically meaningful105

nonspreading solutions that are robust in that they occur in solid regions of parameter space for106

(1). We will demonstrate the existence of nonspreading solutions with a variety of spatiotempo-107

ral patterns. One of our novel findings is the existence of nonspreading solutions that oscillate in108

both density and spatial range. Here in the long run, the oscillating forward pushing force devel-109

oped by overcompensation is balanced by the backward pulling force from populations below110

the Allee threshold, leading to persisting nonspreading solutions. It should be pointed out that,111

as discussed above, for the case of no overcompensation, there exists a traveling wave with zero112

speed if
∫ 1

0 [g(u)−u]du = 0; however this condition is not robust and is not satisfied with a slight113
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change of model parameters. It is interesting to note that simple scalar integro-difference equa-114

tions produce biologically meaningful nonspreading solutions. This is a phenomenon that scalar115

reaction-diffusion equations cannot produce. One consequence of the existence of nonspreading116

solutions concentrated on effectively bounded domains is the formation of multiple population117

‘patches’ separated from each other in space. This will be also explored in the present paper.118

2 Model Formulation119

We will model growth using the two parameter function presented by Vortcamp et al. [57]. In120

this growth function, a represents the Allee threshold and r represents a parameter controlling121

the strength of overcompensation. By an appropriate scaling of u the carrying capacity can be122

assumed to be 1. The growth function used in model (1) is then123

ga,r(u) := u exp
(

r (1−u)
(u

a
−1
))

where 0 < a < 1 , r > 0.

It can be shown that

g′a,r(a) = 1+ r(1−a) and g′a,r(1) = 1+ r
(

1− 1
a

)
.

The maximizer of ga,r(u) is given by

umax := argmax
u>0

ga,r(u) =
1+a+

√
8a
r +(1+a)2

4
.

The resulting expression for ga,r(umax) does not simplify into a compact form. By noting the124

signs of g′a,r(a) and g′a,r(1), we see a < umax < 1 if r > a
1−a .125

Increasing r for fixed a increases the maximum value of ga,r(u) , increases g′a,r(a) , and de-126

creases g′a,r(1). Conversely, increasing a for fixed r, decreases the maximum value of ga,r(u),127

decreases g′a,r(a) , and increases g′a,r(1).128

In this parametrization, the shape of ga,r(u) is more sensitive to the parameter a than r, at129

least in range of parameters of interest to our study. As evidence for this, graphs of the partial130

derivatives of ga,r(umax) with respect to a and r are shown in Fig. 1. ga,r(umax) is the maximum131

value attained by ga,r(·). We see that ∂

∂aga,r(umax) is approximately two orders of magnitude132

greater than ∂

∂aga,r(umax).133
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(b) Partial derivative of the maximum value of ga,r(·)
with respect to r with a = 0.55.

Figure 1: The sensitivity of the maximum value of ga,r(u) to the parameters a and r.

In Fig. 2 the effects on the graph of ga,r(u) of increasing a and r from a base case are shown.134
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Figure 2: The graph of ga,r(u) and y = u showing the effects of varying a and r.

Essential extinction occurs when severe overcompensation causes large populations to fall below135

the Allee threshold. Mathematically this is equivalent to image of the maximum value of ga,r(u)136

being less than the Allee threshold [51]. The region in parameter space producing essential137

extinction is indicated in green in Fig. 13(a). As discussed in the introduction, for monotone138

growth functions with an Allee effect the sign of wave speed is equal to the sign of
∫ 1

0 [ga,r(u)−139

u]du [58]. While this is not necessarily true for non-monotone functions, we can say the overall140

growth is weak if the integral is negative. The region in parameter space with weak growth is141

indicated in blue in Fig. 13(a).142

It has long been known that the shape of the dispersal kernel, particularly its kurtosis, can have a143

profound influence on the spreading dynamics in an integro-difference equation [31]. To model144

dispersal with varying kurtosis, we will use the generalized Gaussian distribution [44] centered145

at the origin with standard deviation 1. Spatial coordinates can trivially be rescaled to satisfy146

that the standard deviation is 1 without altering the dynamics of the integro-difference equation.147
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The kurtosis of the distribution is controlled by the parameter η . While the distribution and all148

its moments are well defined if η > 0 , it is only exponentially bounded if η ≥ 1. The probability149

density function used in model (1) for dispersal is then150

kη(x) =C exp
(
−
∣∣∣x
S

∣∣∣η ) ,

where C =

√√√√√√ Γ

(
3+η

η

)
12 Γ

(
1+η

η

)3 ,

S =

√√√√√3 Γ

(
1+η

η

)
Γ

(
3+η

η

) ,

and Γ(·) refers to the gamma function.151

152

Kurtosis, which is defined as the ratio of the fourth moment to the square of the second, gives a153

measure of the “fatness" of the tail of the distribution. Leptokurtic distributions (0 < η < 2) can154

be thought of as having most individuals disperse very small distances with a few individuals155

dispersing extreme distances in such a way the standard deviation remains fixed. Conversely,156

platykurtic distributions (η > 2) can be thought of as most individuals dispersing about the157

same distance. When η = 1, 2, and ∞ , the commonly used Laplace, Gaussian and Uniform158

distribution are recovered as is shown in Fig. 3.159
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Figure 3: Generalized Gaussian distributions with standard deviation equal to one for various
values of η .

The spatial model is specified by model (1) with the definitions of ga,r(u) and kη(x) previously
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outlined. We model a unimodal symmetric initial conditions with a width and height parameter
using

u0(x) =

p0 cos
(

π

w0
x
)
|x|< w0

2

0 otherwise,

where p0 is the maximum density and w0 is the width of the support. The solution set {un(x)}∞

n=0160

is thus fully specified by the five parameters a, r, η , p0, w0.161

162

To numerically generate the solution set, we uniformly discretize space using a step size δ =163

0.005 and use conv in Matlab to compute the accelerated convolution. We use the symmetry164

of un(x) about x = 0 to further accelerate calculations. Both the vector representing k(x) and165

un(x) are clipped where they fall below 10−4. The Matlab code can be viewed on https:166

//github.com/glotto01/theoretical-ecology.git. Numerical experimentation showed167

us that decreasing δ or the clipping threshold did not alter results. For example, Fig. 8 , was168

recreated using a clipping threshold of 10−5 and δ = 0.0025 with identical results.169

3 Nonspreading Solutions170

In contrast to integro-difference equations with Allee or overcompensation effects considered171

separately [33, 39, 58], we are able to find solid regions of parameter space with solutions where172

the population persists but is effectively confined to a limited region of space. For example, in173

Fig. 4 we see a solution converging to a stable equilibrium where the population is effectively174

limited to−4≤ x≤ 4. More complex behavior such as period-two and non-periodic nonspread-175

ing solutions can be observed as well (Fig. 5, 6). These unimodal nonspreading solutions can176

act as basis for solutions consisting of multiple patches, as is shown in Fig. 7. Throughout this177

paper, we define the spatial extent of generation t to be the distance from the left most point178

where ut(x) = a to the rightmost point where ut(x) = a.179

180

In the following sections we will explore how nonspreading behavior depends on parameters181

and initial conditions, how two nonspreading solutions interact when superimposed, and finally182

how isolated patch like solutions can emerge from a noisy but nearly uniform initial density.183
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Figure 4: Solution with parameters a = 0.62, r = 8, η = 5, p0 = 0.9, w0 = 4. In part (a) the
blue curve is u0(x), and the gray curves are the transients u1 through u15 and the black is u16

through u100. In (b) we see the spatial extent converging to that of the stable equilibrium.
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Figure 5: Solution with parameters a = 0.585, r = 8, η = 5, p0 = 0.9, w0 = 4. In part (a) the
blue curve is u0(x), the gray curves are the transients u1 through u16, the red are the odd indexed
iterations u17 through u99, and the black are the even indexed iterations u18 through u100. In (b)
we see the spatial extent oscillating with period of length two.
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Figure 6: Solution with parameters a = 0.57865, r = 8, η = 5, p0 = 0.9, w0 = 4. In (a) the blue
curve is u0(x), the multicolored curves are u100 through u200. In (b) we see aperiodic oscillations
in the spatial extent.
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Figure 7: The population density curves for a solution forming "two" patches. Blue is the initial
density, gray are the transients, and black is the apparent steady state. Parameters used are
a = 0.61, r = 8, η = 5, p0 = 0.8, w0 = 25

3.1 Bifurcations for Nonspreading Solutions184

The Matlab functions used can be found in the one_parameter_orbit folder in https://github.185

com/glotto01/theoretical-ecology.git.186

187

In Fig. 8-12 we present orbit diagrams with respect to each of the parameters. With the exception188

of the parameter being varied, the other parameters are held at a = 0.61, r = 8, η = 5, p0 =189

1, w0 = 6 . The bifurcations around this set of parameters are typical of those made for other190

choices based on our extensive simulations. The x-axis is the bifurcation parameter, and the191

y-axis is the spatial extent of the density curves un(x) for 800 ≤ n ≤ 1000. 3000 uniformly192

spaced sample points in the bifurcation parameter are used to create the plot (Since η is half-log193

plot the actual sample points are geometrically spaced). As can be seen in Fig. 4-6, typical time194

scales for transients are on the order of tens of generations but this can increase dramatically195

for parameters near bifurcation points (e.g. near a = 0.58 in Fig. 8). To insure the choice of196

800-1000 was sufficient we computed the orbit diagram in Fig. 8 using 1600-1800 and found it197

to look identical to that presented here.198

In Fig. 8 we see a period doubling bifurcation in the parameter a. For values of a between199

0.603 and 0.64, we see a single period 1 solution emerge; for values between 0.58 and 0.603,200

a period-two solution emerges; and for values approximately between 0.575 and 0.58 higher201

order periodicities occur. Extinction occurs for small and large values of a, and it can be seen202

that regions of extinction are intermingled with nonspreading solutions for a between 0.58 and203

0.6. While in the figure it appears that regions of extinction and survival overlap, that is an204

artifact of the point size used in plotting.205

11



In Fig. 9 we show the orbit diagram for the parameter r. We see a period one nonspreading206

solution transition to a period-two, followed by extinction. In Fig. 10 we show the bifurcation207

behaviour for η , which is the parameter controlling the kurtosis of dispersal. We see that extinc-208

tion occurs for leptokurtic dispersal (η < 2), period-two solutions occur for η slightly higher209

than 2 and less than 4, and a period 1 equilibrium for highly platykurtic dispersal when η > 4.210

In the orbit diagrams for initial conditions, p0 and w0 (Fig. 11, 12), we see the solution is either211

attracted only to the period one orbit associated with that parameter set or to extinction. The212

basin of attraction for the period one orbit is fairly insensitive to w0, with widths ranging from213

4 to 8 all producing the stable nonspreading solution. It should be noted that w0 differs from214

spatial extent, as spatial extent measures the distance between where the population equals the215

Allee threshold whereas w0 measures the support of the initial condition.216
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Figure 8: Orbit diagram for parameter a with a = 0.61, η = 5, p0 = 1, w0 = 6.

12



5 6 7 8 9 10 11 12

0

1

2

3

4

r

sp
at
ia
l
ex
te
nt

Figure 9: Orbit diagram for parameter r with a = 0.61, η = 5, p0 = 1, w0 = 6.
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Figure 10: Orbit diagram for parameter η with a = 0.61, r = 8, p0 = 1, w0 = 6. Note that the
scale on the x-axis is logarithmic.
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Figure 11: Orbit diagram for parameter p0 with a = 0.61, r = 8, η = 5, w0 = 6.
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Figure 12: Orbit diagram for parameter w0 with a = 0.61, r = 8, η = 5, p0 = 1.
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3.2 Two Parameter Bifurcations217

The Matlab codes used in this section can be found in the folder 2parameter_bifurc on https:218

//github.com/glotto01/theoretical-ecology.git.219

220

The nonspreading solutions exist along a fairly narrow band in parameter space centered around221

the curve where
∫ 1

0 [ga,r(u)− u]du = 0 (see Fig. 13). As was shown in Fig. 1, the maximum222

value of ga,r(u) is more sensitive to the parameter a than r and the narrowness can be considered223

an artifact of this parametrization.224

To identify regions in parameter space with different qualitative behavior, we divided the region225

of the a− r plane depicted in Fig. 13(b) into a 100× 100 grid. For the values of a, r on the226

grid, iterations are computed using η = 5, p0 = 1, w0 = 6. The following are used as criteria227

for classification:228

• If for some n, the maximum value of un(x) is less than a the solution is classified as229

extinction (gray).230

• If periodicity is detected the solution is classified as nonspreading (blue). We will discuss231

how periodicity is detected below.232

• If periodicity is not detected within 500 generations then it will be classified as spreading233

(yellow) if the ratio of the spatial extent for u500(x) to that of u250(x) is greater than234

1.5, otherwise it will be classified as nonspreading. The justification for this threshold is235

discussed in Appendix A.236
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(b) A two parameter bifurcation diagram in a,r parameter space. The blue regions are nonspreading
solutions, yellow regions are spreading solutions and grey region are where extinction occurs. The
solid red curve is where

∫ 1
0 (g(u)−u)du = 0.

Figure 13: In sub-figure (a) the region in the black dashed box is shown in detail in sub-figure
(b). The other parameter values used in (b) are η = 5, p0 = 1, w0 = 6.

To detect periodicity, the past values of the spatial extent are scanned for repeats. If a repeated237

value of spatial extent (to a tolerance of 10−5) is detected, the density curve of the corresponding238

generation is compared to the present density curve. If the maximum absolute difference of the239

two density curves is less than 10−5 it is classified as periodic.240

241
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Next we examine the dependence on initial conditions by varying the parameters w0 and p0242

in model (1) for fixed a and r. Here we present the case where a = .61, r = 8, η = 5 but243

the results are qualitatively representative of what is seen for other parameter choices that have244

nonspreading solutions based on our extensive simulations. Three phenomena are seen to oc-245

cur: extinction, the formation of a single unimodal population "patch", or the formation of two246

spatially disjoint unimodal "patches" of population. If a unimodal equilibrium occurs, its shape247

is independent of initial conditions and it appears similar to that in Fig. 4.248

249

The phenomena of two patches forming is shown in Fig. 7. We see initially the density near250

x = 0 experiences high growth, overcompensation causes this to subsequently fall below the251

Allee threshold, thus effectively separating the left and right sides of the population.252

In Fig. 14 we show a bifurcation diagram for p0 and w0. Blue is used for a single unimodal patch,253

grey for extinction, and red for the formation of two unimodal patches. Predictably extinction254

occurs if the support of the initial domain is too small (small w0) , or if the initial density is too255

small (small p0). For values of p0 which correspond to high growth (roughly 0.8 ≤ p0 ≤ 1.2)256

and a length of support comparable to the spatial extent of the unimodal equilibrium (roughly257

3 ≤ w0 ≤ 7) we see a single patch emerge. For larger values of w0 we see two-patch solutions258

emerge.259

To create Fig. 14 we iterated until a fixed point condition was met, namely that the maximum260

absolute difference between subsequent density curves was less than 10−5. Once the fixed point261

condition was reached, the type of equilibrium was determined by integrating the population262

density. We found that the total population was very nearly an integer multiple of the total263

population of the unimodal equilibrium which is 3.695. Only multiples of 0, 1, or 2 where264

observed.265
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Figure 14: Initial condition parameters resulting in a single patch are shown in blue. Red repre-
sents parameters giving rise to two patches. Gray represents parameters resulting in extinction.
Values used for other parameters are a = .61, r = 8, η = 5.

3.3 Interaction of Two Patches266

The Matlab codes used in this section can be found in the folder two_patch on https://267

github.com/glotto01/theoretical-ecology.git.268

In this section we will refer to a single unimodal equilibrium as a patch. We will use up(x)269

to refer to a single patch centered at the origin. We focus on the parameters a = 0.61, r =270

8, η = 5 but the results for these parameters are qualitatively similar to that of other parameters271

possessing a single non-periodic patch solution based on our extensive simulations. We did not272

systematically investigate patch interaction for periodic solutions.273

It’s worth mentioning that for other parameters possessing a patch equilibrium, the shape,274

height, and width is similar to that in Fig. 4. Recall the dispersal kernel is scaled so the standard275

deviation is 1, this means it is impossible for the width of an equilibrium to be less than several276

units, due to taking a convolution with a probability function with a width of several units. The277

reason that equilibria with a width much larger than a few units do not occur, is because the278

growth parameters in the range that we are discussing exhibit essential extinction. Since the279

non-spatial model with essential extinction goes extinct almost surely [51], it is reasonable to280

assume that large spatially uniform densities would be unstable.281

To investigate how two such patches interact with each other, we consider initial data in the282

form u0(x) = up
(
x+ d

2

)
+up

(
x− d

2

)
, where d is the parameter controlling the separation of the283

patches. We find, to the limits we are able to effectively explore with a desktop simulation, that284
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the population goes extinct for all values of d less than about 8. The time to extinction increases285

extremely rapidly with the parameter d as can be seen in Fig. 15. We terminated at d = 7.866286

as the population did not go extinct in 500,000 generations and computational time became pro-287

hibitive. Here we are defining the time of extinction as the generation when the maximum value288

of the density falls below the Allee threshold.289

We are not able to determine if mathematically stable equilibria exist for d > 8 or if they290

are just extraordinarily long lived transients. Since the dispersal kernel kη(x) falls off super-291

exponentially (nonspreading solutions are not known to occur for η < 1), the overlap of the292

two patches presumably falls off super-exponentially in d. This would explain why the time to293

extinction increases so rapidly in d. Biologically the distinction between a true mathematical294

equilibrium, and an extremely long lived transient may not be as important of a distinction.295
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Figure 15: The time to extinction versus the separation parameter d. Note the vertical scale is
logarithmic.

3.4 Patch Formation with a Stochastic Initial Condition296

The Matlab codes used in this section can be found in the folder stochastic_initial on https:297

//github.com/glotto01/theoretical-ecology.git.298

We wish to simulate a spatially stochastic initial condition with spatial correlation length of299

Lscale. Lscale can be considered as the length at which statistical correlations in density diminish300

to insignificant levels. The purpose of this is to examine the possibility of pattern emergence301

from a perturbed uniform initial density.302

To accomplish this we generate N random numbers, y1,y2, · · · ,yN , uniformly distributed on303

[0.8,1.2]. N is chosen so that (N−1)L is the desired domain size. The initial density is then the304
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linear interpolation of the points
(
(i−1)L, yi

)
for i = 1,2, · · · ,N.305

We limit our study to the parameter values a = .61, r = 8, η = 5. The results are qualita-306

tively similar to that of other parameters producing only a non-periodic nonspreading solution.307

We did not systematically investigate the case for parameters producing periodic nonspreading308

solutions.309

To study the effects of Lscale on patch formation we:310

• Used a domain of length 500 initiated as described above.311

• Iterated until the maximum absolute difference of successive density curves is less 10−5.312

• Counted the number of patches formed by integrating the total population and dividing by313

the population of a single patch. The population of a single unimodal patch is
∫

up(x)dx =314

3.695.315

• For values of Lscale = 0.01, 0.05, · · · , 50, 100 , twenty trials were completed for each316

value.317

• 90% confidence intervals are computed using the assumption of normality (Student T dis-318

tribution). It should be noted that the sample standard deviation for patch formation was319

about 3 patches independent of Lscale.320

321

The length scale of a single patch is ∼ 8 (similar to that in Fig. 4). As was discussed in section322

3.3, overlapping patches quickly annihilate, so the maximum possible number of patches that323

could form would have to be less than 500
8 ≈ 60. In Fig.16 we show the average number of324

patches formed as a function of Lscale. We see that for about 3 orders of magnitude, 0.1< Lscale <325

10, the number of patches formed is about 18, (around 25% of the maximum possible number).326

For large values of Lscale fewer patches form, presumably due to the mild gradients causing the327

dynamics to be similar to the spatially uniform case where essential-extinction results. Finally,328

for Lscale much less than the scale of the dispersal distance (σ2 = 1) we also see fewer patches329

form. This can be attributed to the convolution process smoothing out the fine scaled spatial330

features of g(u0(x)), in effect leaving an almost uniform spatial density. Experimenting with331

increasing the fixed point threshold to 10−6 or for example running a fixed number of 100332

iterations, did not seem to appreciably alter the number of patches formed.333
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Figure 16: The mean number of patches formed as a function of the correlation length scale
of the stochastic initial condition. The black bars are the 90% confidence intervals. Note the
x-scale is logarithmic.
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(a) Lscale = 0.01

(b) Lscale = 1

(c) Lscale = 100

Figure 17: Typical plots of initial conditions (blue) and resulting patch formation (red) at short,
intermediate, and long length scales.

4 Discussion334

In this paper, we studied nonspreading solutions for the integro-difference equation (1) where335

the growth function g(u) exhibits a strong Allee effect and overcompensation. The nonspreading336

solutions take forms of stable equilibrium solutions vanishing at ±∞ and solutions oscillating337

in densities and spatial ranges. Such nonspreading solutions exist in a solid region in parameter338

space. In a large habitat, patch formation can occur with each patch essentially formed by a339

nonspreading solution. Our results show that single species model (1) with constant parameters340

can have very rich nonspreading population dynamics.341
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Both a strong Allee effect and overcompensation in population growth are necessary to produce342

biologically meaningful nonspreading solutions in a homogenous environment. Population den-343

sities above the Allee threshold generate a forward pushing force. Overcompensation tempers344

the strength of the pushing force from regions with a high population density. Likewise, a345

backward pulling force is created from regions where the density is below the Allee threshold.346

Nonspreading solutions emerge when there is a balance between the forward pushing and back-347

wards pulling forces in the long run. In the absence of overcompensation, model (1) with a348

strong Allee effect can have a nonspreading solution if and only if
∫ 1

0 [g(u)− u]du = 0, so that349

such a nonspreading solution exists only in a region with measure zero in the parameter space,350

and thus it is not robust. However, as indicated in the bifurcation diagram Fig. 13, with both351

a strong Allee effect and overcompensation, there is a solid parameter region (blue) in which352

nonspreading solutions exist. In this region,
∫ 1

0 [g(u)−u]du can have any sign. The bifurcation353

diagram Fig. 8 shows various patterns of nonspreading solutions from steady states, period-two,354

and several levels of period doubling when a varies while other parameters are fixed.355

It should be noted that η , the kurtosis of the dispersal kernel, and initial data also play important356

roles in developing nonspreading solutions. In Fig. 10, there are no nontrivial nonspreading357

solutions for η < 2, period-two nontrivial solutions exits on a relatively small interval near358

η = 2 and for relatively large η there is a stable nonspreading equilibrium. In Fig. 11 and 12,359

the formation of nonspreading solutions depend on the amplitude and support of initial data. In360

addition to the growth function used within this paper, the PhD Thesis of Otto [48] demonstrates361

that nonspreading solutions can form with a variety of other forms of growth functions.362

To examine the interaction between nonspreading patch like solutions we considered initial data363

in the form u0(x) = up
(
x+ d

2

)
+ up

(
x− d

2

)
where up(x) is a single patch. In Fig. 15 we were364

able to show that with sufficient separation these two patch solutions are able to persist for365

biologically meaningful lengths of time. For example, with d = 8 the population persists for366

more than 500,000 generations with the parameter values used.367

Nonspreading solutions provide a basis for the development of patch formation. For a large368

habitat, separate patches can emerge from perturbations in a relatively constant population, with369

each patch basically a nonspreading solution as is demonstrated in Fig. 17. Patch formation is370

weakly sensitive to the length scale of correlations in the initial distribution as shown in Fig. 16,371

with patch formation being favored by length scales on the order of the dispersal distance. Cor-372

relation lengths much larger or smaller than the dispersal distance result in less patch formation.373

We also found that growth parameters giving rise to essential extinction in the non-spatial model,374

can actually experience population spread and population growth in the spatial model. This is375

consistent with Vortkamp et al. [57], who using a spatially discrete 2-patch model, demonstrated376

that essential extinction could be stabilized by an out of phase rescue effect. We will save further377

investigation of this phenomena for future work.378
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Our result on nonspreading solutions contrasts with that of Sullivan et al. [55]. Working on (1)379

with a truncated Ricker’s function for population growth, they found that fluctuating spreading380

speeds can occur as a result of a combination of a strong Allee effect and overcompensation.381

The scaled growth function g(u) given by (1) with the carrying capacity 1 has two parameters382

describing the Allee threshold and strength of overcompensation, respectively. If the carrying383

capacity of the truncated Ricker’s function is scaled to 1, there is no parameter controlling the384

strength of overcompensation. Therefore the growth function used in this paper is more flexible385

than the truncated Ricker’s function considered in [55]. Observe that in Figure 13, there also386

exists a solid region (yellow) where spreading solutions exist. Depending on the parameters,387

model (1) possesses spreading and nonspreading dynamics as well as extinction.388

The fact that a single mathematical equation can admit such qualitatively divergent output as389

spreading solutions, nonspreading solutions, and extinction is intriguing. The possibility of390

nonspreading solutions is particularly interesting because it suggests a new way to connect the391

widely employed modeling framework of integro-difference equations to a completely differ-392

ent purpose: the origin and maintenance of ecological boundaries. The factors influencing the393

location and maintenance of species’ spatial distributions, whether patch boundaries on small394

scales or geographic range boundaries on larger scales, have been the subject of intense inter-395

est by ecologists for decades [6, 20, 54]. The specific biological mechanisms leading to the396

existence of such boundaries are diverse, but often reflect an interplay between local popula-397

tion dynamics and dispersal. Such dynamics could be related to the oscillating wave fronts398

observed with this model (see Fig. 4, 5, and [55]). For example, repeated processes of inva-399

sion and extinction appear to be important for the maintenance of species’ patch boundaries in400

mixed conifer-hardwood forests [19]. Likewise, Allee effects can contribute to the existence of401

geographic range boundaries in some insect systems with short dispersal distances [41, 50].402

Identifying the existence of nonspreading solutions in integro-difference equations opens up403

several additional lines of inquiry for this modeling framework. One such possibility would404

involve investigations of how large contiguous populations collapse into small patches, either405

on evolutionary timescales [45] or in connection with the persistence of relictual populations in406

conservation biology [10, 11]. Likewise, future research could examine nonspreading solutions407

for integro-difference equations operating on a landscape gradient (e.g., temperature, rainfall)408

that influences population growth rate. Such studies would provide a vehicle for investigating409

the interplay between biological and environmental processes that can jointly influence the ori-410

gin and maintenance of geographic range boundaries [20], including the possibility of patchy411

population structure at geographic range margins [6, 17]. Overall, the existence of nonspread-412

ing solutions in integro-difference equations suggests the emergence of a welcome new tool for413

studying diverse phenomena in spatial ecology.414
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6 Appendix A418

Determining an efficient and accurate rule, to code in Matlab, for distinguishing spreading so-
lutions from nonspreading for the model studied here is not a trivial matter. As was shown
by Sullivan et al. [55] spreading speeds can fluctuate when Allee and overcompensation are
simultaneously present. It is however observed that over a sufficient number of generations
the average spread speed will converge to a fixed constant. For spreading solutions we would
therefore expect that

lim
n→∞

spatial extent(u2n(x))
spatial extent(un(x))

= 2 .

For the 100 by 100 grid of a and r parameter values scanned in Fig. 13 (a total of 10,000 data419

points) we see three distinct populations if we look at the ratio of spatial extent(u500(x))
spatial extent(u250(x))

. Namely, the420

extinct populations, populations where the ratio is clustered around 1, and populations clustered421

near 2. For extinct populations, we treat 0/0 as 0. The histogram showing this can be seen in422

Fig. 18.423

The spatial extent of u500(x) for the populations with extent ratios near 1 and those with a ratio424

near 2 differ noticeably. For the population whose extent ratio was between 0.5 and 1.5, we see425

in Fig. 19 the maximum spatial extent is 4.6. For the population whose extent ratio was greater426

than 1.5 we see the minimum value of the spatial extent is 6 extending all the way to about427

250. This justifies the use of the size extent ratio of 1.5 being used as a threshold to classifying428

solutions which reach 500 iterations without periodicity being detected.429
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Figure 18: Histogram of the ratio of the spatial extent for u500 to that of u250 for the parameters
scanned in Fig. 13. Extinct populations are binned in x = 0.
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(b) Spatial extent for u500 for parameters whose
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Figure 19: Histogram showing the spatial extent for u500 for parameters with different ratios of
(generation 500 generation 250).
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