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Abstract

Previous work involving integro-difference equations of a single species in a homoge-
nous environment has emphasized spreading behaviour in unbounded habitats. We show
that, under suitable conditions, a simple scalar integro-difference equation incorporating
a strong Allee effect and overcompensation can produce solutions where the population
persists in an essentially bounded domain without spread despite the homogeneity of the
environment. These solutions are robust in that they occupy a region of full measure in
parameter space. We develop orbit diagrams showing various patterns of nonspreading
solutions from stable equilibria, period-two, to higher periodicity. We show that from a rel-
atively uniform initial density with small stochastic perturbations, a population consisting
of multiple isolated patches can emerge. In ecological terms, this work suggests a novel
endogenous mechanism for the creation of patch boundaries.

Key words. Integro-difference equation, Allee effect, Overcompensation, Nonspreading solu-
tion.

AMS subject classification. 92D40, 92D25

Abbreviated title. Nonspreading Solutions in Integro-Difference Equation.

1 Introduction

As spatial ecology has developed, a great variety of mathematical modeling approaches have
been used to study questions at various levels of complexity. Integro-difference equations,
which feature a continuous space but discrete time formulation of population dynamics, have
proven especially useful for studying questions about population-level processes and species
interactions. For example, integro-difference models have been used to predict changes in gene
frequency [37, 38, 39, 52, 59], and characterize species’ spatial dynamics [22, 23, 24, 25, 28,
29, 30, 35, 46]. Because integro-difference equations often admit traveling wave solutions of
various kinds, a primary focus in many of these studies has been spatial spread (e.g., expan-
sion of a population or a favorable allele). Examples include scenarios in which population
fronts can expand spatially in an accelerating fashion [31] and cases where one or more species
can (or cannot) outrun the pace of environmental change [26, 34, 61]. The reader is referred
to the monograph by Lutscher [40] for a thorough review on integro-difference equations and
applications.

Here, we adopt a very different perspective in that we use an integro-difference formulation to
study nonspreading solutions. Roughly speaking, a nonspreading solution is a solution which
persists with virtually bounded extent for all generations in an unbounded domain. Such a
solution describes ‘invasion pinning’ that has been investigated for coupled ordinary differential
systems in a discrete (patch) environment (see Keitt et al. [27] and references therein). Similar
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results can emerge for partial differential equations when the focus is on gap-crossing ability
in heterogeneous landscapes, leading to ‘geographic range margins’ beyond which the species
cannot spread [16]. Related results for gap crossing in integro-difference equations can be found
in Musgrave et al. [43].

As we discuss below, the existence of nonspreading solutions in a homogeneous environment
hinges on the presence of an Allee effect and overcompensation. An Allee effect arises when
the per-capita birth rate increases as a function of population density when population density
is small. Allee effects may occur via a great many biological mechanisms [1, 2, 7, 8, 9, 12,
13, 14, 15, 21, 36, 42, 49, 53], and they have been studied in connection with integro-difference
equations in the context of spatial spread [32, 58]. A special kind of Allee effect, termed a strong
Allee effect, occurs when there is a critical population density below which extinction occurs.
Mating failure, which can arise through mechanisms like pollen limitation and reproductive
asynchrony [9, 21], has been linked to strong Allee effects in diverse biological systems. For
example, in evergreen bagworms (Thyridopteryx ephemeraeformis), the intensity of a strong
Allee effect arising from mating failure is a function of climate, and this spatial variation leads
to a hard geographic boundary for the species [41, 50].

Overcompensation in population biology refers to phenomena in which density-dependent pro-
cesses do not yield a smooth approach to carrying capacity, and overcrowding causes an overly
dense population to decrease below carrying capacity, sometimes dramatically, rather than slowly
declining to carrying capacity. Such imprecision in density dependence is often critical to the
formation of cycles or chaotic dynamics in population models, and there is particular attention
to the strength of overcompensation as a feature of the dynamics. One example of overcompen-
sation in an ecological system is work by Symonides et al. [56] who demonstrated that over-
compensation in germination success leads to cycles in the annual plant Erophila verna. Over-
compensatory population crashes have been widely studied in small mammal species, where
fast population growth rates, coupled with various combinations of parasitism, overexploitation
of resources, and increased predation, are linked to the emergence of population cycles (e.g.,
[3, 18]). Note that in studies of herbivory, overcompensation has a different definition that fo-
cuses on regrowth stimulated by herbivore feeding damage. That usage is not relevant here.

We consider the spatial-temporal dynamics of a population governed by the integro-difference
equation

(@) = [ k=) gn()) m

where u,(x) is the density of individuals at point x and time n, g(u) describes density dependent
fecundity, and k(x —y) is the dispersal function, which depends upon the distance |y — x| between
the location of birth y and the location of settlement x. Model (1) describes that individuals at
location y generate g(uy,(y)) offspring and then die and these offspring disperse to location x

3
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with the probability k(x —y). We will assume that g(1) = 1, so that the population has an
equilibrium at the carrying capacity u,(x) = 1, and that k(x) decays at least exponentially fast
near +oo so that the probability that an individual travels a very long distance is exponentially
small.

In the case that small populations grow (i.e., g'(0) > 1) and the reproduction function exhibits
no Allee effect (i.e., g(u) < g’(0)u), with and without overcompensation, the population will
spread at a constant asymptotic spreading speed that can be characterized as the slowest speed
of a class of traveling waves (Weinberger [60], Li et al. [33]). In this case, the wave is pulled
by the leading edge of invasion. When the reproduction function produces overcompensation,
oscillations are generated in the population density behind the wave front (Bourgeois et al. [4, 5],
Li et al. [33]). Constant spreading speed also occurs if g(u) exhibits a strong Allee effect (i.e.,
g'(0) < 1) and g(u) is increasing (i.e., there is no overcompensation). In this case, the spreading
speed is the unique speed of traveling waves connecting zero and the carrying capacity (Lui
[39]), and the sign of the wave speed is the same as that of fol [¢(u) — u]du (Wang et al [58]).
If fol [g(u) — u]du > 0, the traveling wave moves forward, if fol [g(u) — u]du < 0, the traveling
wave moves backward, and if fo] [¢(u) — u]du = O the traveling wave is stationary. The wave
speed depends on the forward pushing force developed by the high-density populations above
the Allee threshold behind wave front as well as the backward pulling force generated by the
lower-density populations below the Allee threshold along the leading edge of invasion.

Fluctuating invasion speeds can be generated by a strong Allee effect and strong overcompen-
sation (Sullivan et al. [55]). Strong overcompensation in general produces large spatiotemporal
variation in density behind the invasion front and thus, variation in the strength of the push,
leading to oscillating spreading speeds. As pointed out in [55], where the population density is
smaller than the Allee threshold along the leading edge of the invasion, the population declines
before the next time step. Populations above the Allee threshold will grow until a maximum
population is reached and overcompensation causes a reduction in growth. If overcompensation
is strong enough, they will return from a high level to a low level resulting in cyclical variability
in the pushing strength of the wave.

In this paper, we further study the effects of a combination of a strong Allee effect and strong
overcompensation. We will show that such a combination can produce biologically meaningful
nonspreading solutions that are robust in that they occur in solid regions of parameter space for
(1). We will demonstrate the existence of nonspreading solutions with a variety of spatiotempo-
ral patterns. One of our novel findings is the existence of nonspreading solutions that oscillate in
both density and spatial range. Here in the long run, the oscillating forward pushing force devel-
oped by overcompensation is balanced by the backward pulling force from populations below
the Allee threshold, leading to persisting nonspreading solutions. It should be pointed out that,
as discussed above, for the case of no overcompensation, there exists a traveling wave with zero
speed if fol [¢(u) — u]du = 0; however this condition is not robust and is not satisfied with a slight
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change of model parameters. It is interesting to note that simple scalar integro-difference equa-
tions produce biologically meaningful nonspreading solutions. This is a phenomenon that scalar
reaction-diffusion equations cannot produce. One consequence of the existence of nonspreading
solutions concentrated on effectively bounded domains is the formation of multiple population
‘patches’ separated from each other in space. This will be also explored in the present paper.

2 Model Formulation

We will model growth using the two parameter function presented by Vortcamp et al. [57]. In
this growth function, a represents the Allee threshold and r represents a parameter controlling
the strength of overcompensation. By an appropriate scaling of u the carrying capacity can be
assumed to be 1. The growth function used in model (1) is then

8ar(U) :=uexp (r(l—u) (g—l)) where 0<a<1,r>0.

It can be shown that

1
go(a)=1+4r(1—a) and g, (1)=1+r <1 — —) :

a

The maximizer of g, ,(u) is given by

I+a+,/%+(1+a)?
Umax ‘= argmax g ,(u) = )

u>0 4

The resulting expression for g, ,(#max) does not simplify into a compact form. By noting the
signs of g}, .(a) and g, (1), we see a < umax < 1 if r > 2.

Increasing r for fixed a increases the maximum value of g, ,(u) , increases g, .(a) , and de-
creases gl .(1). Conversely, increasing a for fixed r, decreases the maximum value of g, ,(«),
decreases g, .(a) , and increases gj, .(1).

In this parametrization, the shape of g, ,(u) is more sensitive to the parameter a than r, at
least in range of parameters of interest to our study. As evidence for this, graphs of the partial
derivatives of g, r(umax) With respect to a and r are shown in Fig. 1. g, »(#max) is the maximum
value attained by g, ,(-). We see that % 8a.r(Umax) 18 approximately two orders of magnitude
greater than % 8a,r(Umax)-
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Figure 1: The sensitivity of the maximum value of g, ,(u) to the parameters a and r.

3¢« In Fig. 2 the effects on the graph of g, »(u) of increasing a and r from a base case are shown.
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Figure 2: The graph of g, () and y = u showing the effects of varying a and r.

Essential extinction occurs when severe overcompensation causes large populations to fall below
the Allee threshold. Mathematically this is equivalent to image of the maximum value of g, ,(u)
being less than the Allee threshold [51]. The region in parameter space producing essential
extinction is indicated in green in Fig. 13(a). As discussed in the introduction, for monotone
growth functions with an Allee effect the sign of wave speed is equal to the sign of fol (8a.r(u)—
u] du [58]. While this is not necessarily true for non-monotone functions, we can say the overall
growth is weak if the integral is negative. The region in parameter space with weak growth is
indicated in blue in Fig. 13(a).

It has long been known that the shape of the dispersal kernel, particularly its kurtosis, can have a
profound influence on the spreading dynamics in an integro-difference equation [31]. To model
dispersal with varying kurtosis, we will use the generalized Gaussian distribution [44] centered
at the origin with standard deviation 1. Spatial coordinates can trivially be rescaled to satisfy
that the standard deviation is 1 without altering the dynamics of the integro-difference equation.



s The kurtosis of the distribution is controlled by the parameter 1. While the distribution and all
e its moments are well defined if 1 > 0, it is only exponentially bounded if 7 > 1. The probability
150 density function used in model (1) for dispersal is then

151 and I'(+) refers to the gamma function.

152

153 Kurtosis, which is defined as the ratio of the fourth moment to the square of the second, gives a
15 measure of the “fatness" of the tail of the distribution. Leptokurtic distributions (0 < 1 < 2) can
155 be thought of as having most individuals disperse very small distances with a few individuals
156 dispersing extreme distances in such a way the standard deviation remains fixed. Conversely,
157 platykurtic distributions () > 2) can be thought of as most individuals dispersing about the
15 same distance. When 1 = 1, 2, and o , the commonly used Laplace, Gaussian and Uniform

150 distribution are recovered as is shown in Fig. 3.

o1

nN=oo

Figure 3: Generalized Gaussian distributions with standard deviation equal to one for various
values of 7.

The spatial model is specified by model (1) with the definitions of g, () and ky (x) previously
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outlined. We model a unimodal symmetric initial conditions with a width and height parameter
using

Po COS (Wlox) x| < =

0 otherwise,

up(x) =

where py is the maximum density and wy is the width of the support. The solution set {u,(x)}_,
is thus fully specified by the five parameters a, r, 7, po, wo.

To numerically generate the solution set, we uniformly discretize space using a step size 6 =
0.005 and use conv in Matlab to compute the accelerated convolution. We use the symmetry
of u,(x) about x = 0 to further accelerate calculations. Both the vector representing k(x) and
u,(x) are clipped where they fall below 10~*. The Matlab code can be viewed on https:
//github.com/glotto01/theoretical-ecology.git. Numerical experimentation showed
us that decreasing 0 or the clipping threshold did not alter results. For example, Fig. 8 , was
recreated using a clipping threshold of 10~ and § = 0.0025 with identical results.

3 Nonspreading Solutions

In contrast to integro-difference equations with Allee or overcompensation effects considered
separately [33, 39, 58], we are able to find solid regions of parameter space with solutions where
the population persists but is effectively confined to a limited region of space. For example, in
Fig. 4 we see a solution converging to a stable equilibrium where the population is effectively
limited to —4 < x < 4. More complex behavior such as period-two and non-periodic nonspread-
ing solutions can be observed as well (Fig. 5, 6). These unimodal nonspreading solutions can
act as basis for solutions consisting of multiple patches, as is shown in Fig. 7. Throughout this
paper, we define the spatial extent of generation ¢ to be the distance from the left most point
where u;(x) = a to the rightmost point where u;(x) = a.

In the following sections we will explore how nonspreading behavior depends on parameters
and initial conditions, how two nonspreading solutions interact when superimposed, and finally
how isolated patch like solutions can emerge from a noisy but nearly uniform initial density.
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Figure 4: Solution with parameters a = 0.62, r =8, 1 =15, po = 0.9, wo = 4. In part (a) the
blue curve is up(x), and the gray curves are the transients u; through u;s and the black is u¢
through u1g9. In (b) we see the spatial extent converging to that of the stable equilibrium.
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Figure 5: Solution with parameters a = 0.585, r =8, n =5, po = 0.9, wg = 4. In part (a) the
blue curve is ug(x), the gray curves are the transients u; through u;¢, the red are the odd indexed
iterations u7 through ugg, and the black are the even indexed iterations ug through u;gg. In (b)
we see the spatial extent oscillating with period of length two.
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Figure 6: Solution with parameters a = 0.57865, r =8, n =5, pgo=0.9, wy =4. In (a) the blue

curve is ug(x), the multicolored curves are uoo through usgo. In (b) we see aperiodic oscillations
in the spatial extent.
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3.1 Bifurcations for Nonspreading Solutions

The Matlab functions used can be found in the one_parameter_orbit folder inhttps://github.
com/glotto01/theoretical-ecology.git.

In Fig. 8-12 we present orbit diagrams with respect to each of the parameters. With the exception
of the parameter being varied, the other parameters are held at a =0.61, r =8, n =35, pg =
1, wo = 6 . The bifurcations around this set of parameters are typical of those made for other
choices based on our extensive simulations. The x-axis is the bifurcation parameter, and the
y-axis is the spatial extent of the density curves u,(x) for 800 < n < 1000. 3000 uniformly
spaced sample points in the bifurcation parameter are used to create the plot (Since 1 is half-log
plot the actual sample points are geometrically spaced). As can be seen in Fig. 4-6, typical time
scales for transients are on the order of tens of generations but this can increase dramatically
for parameters near bifurcation points (e.g. near a = 0.58 in Fig. 8). To insure the choice of
800-1000 was sufficient we computed the orbit diagram in Fig. 8 using 1600-1800 and found it
to look identical to that presented here.

In Fig. 8 we see a period doubling bifurcation in the parameter a. For values of a between
0.603 and 0.64, we see a single period 1 solution emerge; for values between 0.58 and 0.603,
a period-two solution emerges; and for values approximately between 0.575 and 0.58 higher
order periodicities occur. Extinction occurs for small and large values of a, and it can be seen
that regions of extinction are intermingled with nonspreading solutions for a between 0.58 and
0.6. While in the figure it appears that regions of extinction and survival overlap, that is an
artifact of the point size used in plotting.

11
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In Fig. 9 we show the orbit diagram for the parameter r. We see a period one nonspreading
solution transition to a period-two, followed by extinction. In Fig. 10 we show the bifurcation
behaviour for 1, which is the parameter controlling the kurtosis of dispersal. We see that extinc-
tion occurs for leptokurtic dispersal (1 < 2), period-two solutions occur for 7 slightly higher
than 2 and less than 4, and a period 1 equilibrium for highly platykurtic dispersal when n > 4.

In the orbit diagrams for initial conditions, pg and wg (Fig. 11, 12), we see the solution is either
attracted only to the period one orbit associated with that parameter set or to extinction. The
basin of attraction for the period one orbit is fairly insensitive to wg, with widths ranging from
4 to 8 all producing the stable nonspreading solution. It should be noted that wy differs from
spatial extent, as spatial extent measures the distance between where the population equals the
Allee threshold whereas wy measures the support of the initial condition.
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Figure 8: Orbit diagram for parameter a witha =0.61, 1 =5, po =1, wyo = 6.

12



spatial extent

Figure 9: Orbit diagram for parameter r witha =0.61, 1 =5, po =1, wyo = 6.
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Figure 10: Orbit diagram for parameter 1 with a = 0.61, r =8, pg = 1, wy = 6. Note that the
scale on the x-axis is logarithmic.
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3.2 Two Parameter Bifurcations

The Matlab codes used in this section can be found in the folder 2parameter_bifurc on https:
//github.com/glotto01/theoretical-ecology.git.

The nonspreading solutions exist along a fairly narrow band in parameter space centered around
the curve where [ [ga, (1) — u]du = O (see Fig. 13). As was shown in Fig. 1, the maximum
value of g, ,(u) is more sensitive to the parameter a than r and the narrowness can be considered
an artifact of this parametrization.

To identify regions in parameter space with different qualitative behavior, we divided the region
of the a — r plane depicted in Fig. 13(b) into a 100 x 100 grid. For the values of a, r on the
grid, iterations are computed using 1 =5, pg = 1, wo = 6. The following are used as criteria
for classification:

* If for some n, the maximum value of u,(x) is less than a the solution is classified as
extinction (gray).

* If periodicity is detected the solution is classified as nonspreading (blue). We will discuss
how periodicity is detected below.

* If periodicity is not detected within 500 generations then it will be classified as spreading
(yellow) if the ratio of the spatial extent for usoy(x) to that of upso(x) is greater than
1.5, otherwise it will be classified as nonspreading. The justification for this threshold is
discussed in Appendix A.

15
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(b) A two parameter bifurcation diagram in a, r parameter space. The blue regions are nonspreading
solutions, yellow regions are spreading solutions and grey region are where extinction occurs. The
solid red curve is where [, (g(u) — u)du = 0.

Figure 13: In sub-figure (a) the region in the black dashed box is shown in detail in sub-figure
(b). The other parameter values used in (b) are n =5, po =1, wg = 6.

To detect periodicity, the past values of the spatial extent are scanned for repeats. If a repeated
value of spatial extent (to a tolerance of 107°) is detected, the density curve of the corresponding
generation is compared to the present density curve. If the maximum absolute difference of the

240
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two density curves is less than 1077 it is classified as periodic.
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Next we examine the dependence on initial conditions by varying the parameters wgy and pq
in model (1) for fixed a and r. Here we present the case where a = .61, r =8, 1 =5 but
the results are qualitatively representative of what is seen for other parameter choices that have
nonspreading solutions based on our extensive simulations. Three phenomena are seen to oc-
cur: extinction, the formation of a single unimodal population "patch", or the formation of two
spatially disjoint unimodal "patches" of population. If a unimodal equilibrium occurs, its shape
is independent of initial conditions and it appears similar to that in Fig. 4.

The phenomena of two patches forming is shown in Fig. 7. We see initially the density near
x = 0 experiences high growth, overcompensation causes this to subsequently fall below the
Allee threshold, thus effectively separating the left and right sides of the population.

In Fig. 14 we show a bifurcation diagram for pg and wq. Blue is used for a single unimodal patch,
grey for extinction, and red for the formation of two unimodal patches. Predictably extinction
occurs if the support of the initial domain is too small (small wg) , or if the initial density is too
small (small pg). For values of po which correspond to high growth (roughly 0.8 < py < 1.2)
and a length of support comparable to the spatial extent of the unimodal equilibrium (roughly
3 <wp <7) we see a single patch emerge. For larger values of wy we see two-patch solutions
emerge.

To create Fig. 14 we iterated until a fixed point condition was met, namely that the maximum
absolute difference between subsequent density curves was less than 10~>. Once the fixed point
condition was reached, the type of equilibrium was determined by integrating the population
density. We found that the total population was very nearly an integer multiple of the total
population of the unimodal equilibrium which is 3.695. Only multiples of O, 1, or 2 where
observed.
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Figure 14: Initial condition parameters resulting in a single patch are shown in blue. Red repre-
sents parameters giving rise to two patches. Gray represents parameters resulting in extinction.
Values used for other parameters are a = .61, r =8, n = 5.

3.3 Interaction of Two Patches

The Matlab codes used in this section can be found in the folder two_patch on https://
github.com/glotto01/theoretical-ecology.git.

In this section we will refer to a single unimodal equilibrium as a parch. We will use u,(x)
to refer to a single patch centered at the origin. We focus on the parameters a = 0.61, r =
8, n = 5 but the results for these parameters are qualitatively similar to that of other parameters
possessing a single non-periodic patch solution based on our extensive simulations. We did not
systematically investigate patch interaction for periodic solutions.

It’s worth mentioning that for other parameters possessing a patch equilibrium, the shape,
height, and width is similar to that in Fig. 4. Recall the dispersal kernel is scaled so the standard
deviation is 1, this means it is impossible for the width of an equilibrium to be less than several
units, due to taking a convolution with a probability function with a width of several units. The
reason that equilibria with a width much larger than a few units do not occur, is because the
growth parameters in the range that we are discussing exhibit essential extinction. Since the
non-spatial model with essential extinction goes extinct almost surely [51], it is reasonable to
assume that large spatially uniform densities would be unstable.

To investigate how two such patches interact with each other, we consider initial data in the
form ug(x) = u, (x—|— %) +up (x — %) , where d is the parameter controlling the separation of the
patches. We find, to the limits we are able to effectively explore with a desktop simulation, that
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the population goes extinct for all values of d less than about 8. The time to extinction increases
extremely rapidly with the parameter d as can be seen in Fig. 15. We terminated at d = 7.866
as the population did not go extinct in 500,000 generations and computational time became pro-
hibitive. Here we are defining the time of extinction as the generation when the maximum value
of the density falls below the Allee threshold.

We are not able to determine if mathematically stable equilibria exist for d > 8 or if they
are just extraordinarily long lived transients. Since the dispersal kernel ky(x) falls off super-
exponentially (nonspreading solutions are not known to occur for n < 1), the overlap of the
two patches presumably falls off super-exponentially in d. This would explain why the time to
extinction increases so rapidly in d. Biologically the distinction between a true mathematical
equilibrium, and an extremely long lived transient may not be as important of a distinction.
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Figure 15: The time to extinction versus the separation parameter d. Note the vertical scale is
logarithmic.

3.4 Patch Formation with a Stochastic Initial Condition

The Matlab codes used in this section can be found in the folder stochastic_initial on https:
//github.com/glotto01l/theoretical-ecology.git.

We wish to simulate a spatially stochastic initial condition with spatial correlation length of
Lgcate- Lscale can be considered as the length at which statistical correlations in density diminish
to insignificant levels. The purpose of this is to examine the possibility of pattern emergence
from a perturbed uniform initial density.

To accomplish this we generate N random numbers, yi,y»,:--,yy, uniformly distributed on
[0.8,1.2]. N is chosen so that (N — 1) L is the desired domain size. The initial density is then the
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linear interpolation of the points ((l — 1)L, yi) fori=1,2,---,N.

We limit our study to the parameter values a = .61, r =8, n = 5. The results are qualita-
tively similar to that of other parameters producing only a non-periodic nonspreading solution.
We did not systematically investigate the case for parameters producing periodic nonspreading
solutions.

To study the effects of Ly, on patch formation we:

* Used a domain of length 500 initiated as described above.
« Iterated until the maximum absolute difference of successive density curves is less 107°.

* Counted the number of patches formed by integrating the total population and dividing by
the population of a single patch. The population of a single unimodal patch is [ u,(x)dx =
3.695.

* For values of Ls.,. = 0.01, 0.05, ---, 50, 100 , twenty trials were completed for each
value.

* 90% confidence intervals are computed using the assumption of normality (Student T dis-
tribution). It should be noted that the sample standard deviation for patch formation was
about 3 patches independent of Lyye.

The length scale of a single patch is ~ 8 (similar to that in Fig. 4). As was discussed in section
3.3, overlapping patches quickly annihilate, so the maximum possible number of patches that
could form would have to be less than 5_(50 ~ 60. In Fig.16 we show the average number of
patches formed as a function of Ly.,.. We see that for about 3 orders of magnitude, 0.1 < Lgcy1e <
10, the number of patches formed is about 18, (around 25% of the maximum possible number).
For large values of Ly, fewer patches form, presumably due to the mild gradients causing the
dynamics to be similar to the spatially uniform case where essential-extinction results. Finally,
for Lecale much less than the scale of the dispersal distance (6> = 1) we also see fewer patches
form. This can be attributed to the convolution process smoothing out the fine scaled spatial
features of g(up(x)), in effect leaving an almost uniform spatial density. Experimenting with
increasing the fixed point threshold to 107® or for example running a fixed number of 100

iterations, did not seem to appreciably alter the number of patches formed.
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Figure 17: Typical plots of initial conditions (blue) and resulting patch formation (red) at short,
intermediate, and long length scales.

4 Discussion

In this paper, we studied nonspreading solutions for the integro-difference equation (1) where
the growth function g(u) exhibits a strong Allee effect and overcompensation. The nonspreading
solutions take forms of stable equilibrium solutions vanishing at oo and solutions oscillating
in densities and spatial ranges. Such nonspreading solutions exist in a solid region in parameter
space. In a large habitat, patch formation can occur with each patch essentially formed by a
nonspreading solution. Our results show that single species model (1) with constant parameters
can have very rich nonspreading population dynamics.
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Both a strong Allee effect and overcompensation in population growth are necessary to produce
biologically meaningful nonspreading solutions in a homogenous environment. Population den-
sities above the Allee threshold generate a forward pushing force. Overcompensation tempers
the strength of the pushing force from regions with a high population density. Likewise, a
backward pulling force is created from regions where the density is below the Allee threshold.
Nonspreading solutions emerge when there is a balance between the forward pushing and back-
wards pulling forces in the long run. In the absence of overcompensation, model (1) with a
strong Allee effect can have a nonspreading solution if and only if [ [g(u) — uldu = 0, so that
such a nonspreading solution exists only in a region with measure zero in the parameter space,
and thus it is not robust. However, as indicated in the bifurcation diagram Fig. 13, with both
a strong Allee effect and overcompensation, there is a solid parameter region (blue) in which
nonspreading solutions exist. In this region, fol [g(u) — u]du can have any sign. The bifurcation
diagram Fig. 8 shows various patterns of nonspreading solutions from steady states, period-two,
and several levels of period doubling when a varies while other parameters are fixed.

It should be noted that 1, the kurtosis of the dispersal kernel, and initial data also play important
roles in developing nonspreading solutions. In Fig. 10, there are no nontrivial nonspreading
solutions for 11 < 2, period-two nontrivial solutions exits on a relatively small interval near
N = 2 and for relatively large 7 there is a stable nonspreading equilibrium. In Fig. 11 and 12,
the formation of nonspreading solutions depend on the amplitude and support of initial data. In
addition to the growth function used within this paper, the PhD Thesis of Otto [48] demonstrates
that nonspreading solutions can form with a variety of other forms of growth functions.

To examine the interaction between nonspreading patch like solutions we considered initial data
in the form uo(x) = up (x+ %) +up (x— %) where u,(x) is a single patch. In Fig. 15 we were
able to show that with sufficient separation these two patch solutions are able to persist for
biologically meaningful lengths of time. For example, with d = 8 the population persists for
more than 500,000 generations with the parameter values used.

Nonspreading solutions provide a basis for the development of patch formation. For a large
habitat, separate patches can emerge from perturbations in a relatively constant population, with
each patch basically a nonspreading solution as is demonstrated in Fig. 17. Patch formation is
weakly sensitive to the length scale of correlations in the initial distribution as shown in Fig. 16,
with patch formation being favored by length scales on the order of the dispersal distance. Cor-
relation lengths much larger or smaller than the dispersal distance result in less patch formation.

We also found that growth parameters giving rise to essential extinction in the non-spatial model,
can actually experience population spread and population growth in the spatial model. This is
consistent with Vortkamp et al. [57], who using a spatially discrete 2-patch model, demonstrated
that essential extinction could be stabilized by an out of phase rescue effect. We will save further
investigation of this phenomena for future work.
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Our result on nonspreading solutions contrasts with that of Sullivan et al. [55]. Working on (1)
with a truncated Ricker’s function for population growth, they found that fluctuating spreading
speeds can occur as a result of a combination of a strong Allee effect and overcompensation.
The scaled growth function g(u) given by (1) with the carrying capacity 1 has two parameters
describing the Allee threshold and strength of overcompensation, respectively. If the carrying
capacity of the truncated Ricker’s function is scaled to 1, there is no parameter controlling the
strength of overcompensation. Therefore the growth function used in this paper is more flexible
than the truncated Ricker’s function considered in [55]. Observe that in Figure 13, there also
exists a solid region (yellow) where spreading solutions exist. Depending on the parameters,
model (1) possesses spreading and nonspreading dynamics as well as extinction.

The fact that a single mathematical equation can admit such qualitatively divergent output as
spreading solutions, nonspreading solutions, and extinction is intriguing. The possibility of
nonspreading solutions is particularly interesting because it suggests a new way to connect the
widely employed modeling framework of integro-difference equations to a completely differ-
ent purpose: the origin and maintenance of ecological boundaries. The factors influencing the
location and maintenance of species’ spatial distributions, whether patch boundaries on small
scales or geographic range boundaries on larger scales, have been the subject of intense inter-
est by ecologists for decades [6, 20, 54]. The specific biological mechanisms leading to the
existence of such boundaries are diverse, but often reflect an interplay between local popula-
tion dynamics and dispersal. Such dynamics could be related to the oscillating wave fronts
observed with this model (see Fig. 4, 5, and [55]). For example, repeated processes of inva-
sion and extinction appear to be important for the maintenance of species’ patch boundaries in
mixed conifer-hardwood forests [19]. Likewise, Allee effects can contribute to the existence of
geographic range boundaries in some insect systems with short dispersal distances [41, 50].

Identifying the existence of nonspreading solutions in integro-difference equations opens up
several additional lines of inquiry for this modeling framework. One such possibility would
involve investigations of how large contiguous populations collapse into small patches, either
on evolutionary timescales [45] or in connection with the persistence of relictual populations in
conservation biology [10, 11]. Likewise, future research could examine nonspreading solutions
for integro-difference equations operating on a landscape gradient (e.g., temperature, rainfall)
that influences population growth rate. Such studies would provide a vehicle for investigating
the interplay between biological and environmental processes that can jointly influence the ori-
gin and maintenance of geographic range boundaries [20], including the possibility of patchy
population structure at geographic range margins [6, 17]. Overall, the existence of nonspread-
ing solutions in integro-difference equations suggests the emergence of a welcome new tool for
studying diverse phenomena in spatial ecology.
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6 Appendix A

Determining an efficient and accurate rule, to code in Matlab, for distinguishing spreading so-
lutions from nonspreading for the model studied here is not a trivial matter. As was shown
by Sullivan et al. [55] spreading speeds can fluctuate when Allee and overcompensation are
simultaneously present. It is however observed that over a sufficient number of generations
the average spread speed will converge to a fixed constant. For spreading solutions we would

therefore expect that
spatial extent(u,(x))

n—eo spatial extent(u,(x))
For the 100 by 100 grid of a and r parameter values scanned in Fig. 13 (a total of 10,000 data

spatial extent(us00(x))
spatial extent(uas0(x))
extinct populations, populations where the ratio is clustered around 1, and populations clustered

=2.

points) we see three distinct populations if we look at the ratio of

. Namely, the

near 2. For extinct populations, we treat 0/0 as 0. The histogram showing this can be seen in
Fig. 18.

The spatial extent of usgg(x) for the populations with extent ratios near 1 and those with a ratio
near 2 differ noticeably. For the population whose extent ratio was between 0.5 and 1.5, we see
in Fig. 19 the maximum spatial extent is 4.6. For the population whose extent ratio was greater
than 1.5 we see the minimum value of the spatial extent is 6 extending all the way to about
250. This justifies the use of the size extent ratio of 1.5 being used as a threshold to classifying
solutions which reach 500 iterations without periodicity being detected.

T T T T T T

7000f
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Figure 18: Histogram of the ratio of the spatial extent for usgg to that of uy5o for the parameters
scanned in Fig. 13. Extinct populations are binned in x = 0.
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