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Abstract — Heavy-duty commercial electric vehicle (HDEV)
charging stations, such as for freight trucks, must handle large
peak power demands. Installing on-site energy storage can reduce
the peak charging demand to avoid expensive and oversized utility-
managed distribution equipment. To ensure optimal design of
charging infrastructure, the trade-off between energy storage size
and grid equipment ratings should be considered. This paper
presents a bi-level multi-objective optimization framework to
discover Pareto optimal designs, under the constraint of optimally
sized power electronic converters and realistic power loss models.
Under these considerations, the bi-level approach can greatly
simplify the design process by breaking up charging station
optimization into a system-level problem and multiple converter-
level problems. Using industry-based HDEV arrival times and
charging conditions, this bi-level approach is demonstrated for a 9-
port charging station. The resulting Pareto front showcases
equipment sizing trade-offs that are necessary for informed
charging infrastructure development decisions. The bi-level
optimization Pareto front is compared the Pareto fronts of
traditional, fixed efficiency converter models.
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[. INTRODUCTION

The transition to heavy-duty commercial electric vehicles
(HDEV), such as Class 8 “18-wheeler” trucks, in the near future
requires major infrastructure development to ensure charging
demands are met. With battery sizes larger than 400 kWh, a
single HDEV will require charging rates of 400 kW to 1 MW+
[1]. For a multi-port charging station, the peak load can reach
well into the MW range. These large peak ratings may result in

expensive and oversized utility-managed distribution equipment.

An increasingly common solution to reduce grid infrastructure
investments is to offset the peak demands with an on-site energy
storage system (ESS), where the ESS is recharged at times of
low demand and discharged during high demand. It is therefore
beneficial to consider the trade-off between ESS size and grid
equipment ratings in the design of an HDEV charging station
(HDEVCS).

Energy storage sizing for light-duty electric vehicle
charging stations has been researched extensively in the
literature (see [2]-[7] for a few examples with varying
objectives), but there is a relative paucity of research focused on
HDEVCS design. Charging station topologies are expected to
be similar for light- and heavy-duty vehicles; on-site energy
storage and connection to a utility-managed grid require power
electronic converters to supply the charging power, regardless
of a DC or AC architecture [10],[11]. However, their charging
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loads are very different. An HDEV requires much larger
charging power and their arrival times tend to be densely
clustered within a few periods per day [1], resulting in a large
peak power demand and long periods of infrequent charging.
This increases the challenge of peak power shaving, where a
larger on-site energy storage is needed to achieve a comparable
peak power demand of a light-duty electric vehicle charging
station.

Another consideration where the existing literature neglects
for ESS sizing is power converter losses. While [5]-[7] do
account for some losses, only fixed or near-ideal efficiencies are
assumed. In an actual system, power converter efficiency is not
constant and operates with varying efficiencies dependent on the
load. Additionally, power losses are more apparent when
managing the high power levels of an HDEVCS, where
semiconductor device ratings and thermal management become
limiting factors to converter operation.

Considering realistic power losses requires detailed
modeling of the power electronics, and the extra details
significantly slow down the model-based simulation design
process. For a system level study where converter design or
performance details may be unknown at the time, abstracting to
anear-ideal charging station can greatly simplify the ESS sizing
procedure. However, this abstraction leads to the loss of
important design considerations in addition to inaccurate power
losses, such as optimizing the nominal DC bus voltage and ESS
voltage/current ratings. Ignoring these system design

considerations through idealized operation can result in
potentially undersized ESS or grid equipment.

In this paper, a bi-level multi-objective optimization
presented  for

framework is HDEVCS design that
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Fig. 1. Bi-level optimization interface between system-level (upper) and
converter-level (lower) problems.
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accommodates power conversion losses and additional station
design parameters. The optimization framework results in
Pareto optimal HDEVCS designs, capturing the trade-off
between ESS sizing and peak grid-side support under the
assumption of optimally sized power converters. A bi-level
hierarchy breaks down design into upper and lower levels with
simpler optimization problems, where the upper-level decisions
act as fixed system parameters for the lower-level [8], and the
lower-level converter optimal design then serves as a constraint
to the upper level (see Fig. 1). The bi-level hierarchy allows
detailed power electronic design decisions to stay at the lower-
level, without adding significant complexity to the upper-level.
By optimizing each power converter at the lower-level, the
upper-level optimization can focus on the design decisions of
the charging station as a whole. An overview of the HDEVCS
and models is first given in Section II. Then Section III presents
the bi-level optimization framework setup, objectives, and
constraints. Demonstration and discussion of charging station
optimization, including a comparison to simulations using fixed
efficiency power converters, are presented in Section IV.
Section V provides a conclusion and future research
considerations.

II. CHARGING STATION MODEL DEVELOPMENT

The charging station architecture designed in this paper can
be considered as a DC microgrid with a single connection to the
main grid, on-site ESS, and multiple charging ports connected
to a common voltage bus. A high-level diagram of the charging
station is shown in Fig. 2. Note that, while included in Fig. 2,
the grid-connected AC/DC converter is not explicitly modeled
in this analysis, as the focus is within the DC microgrid.

Simulation of the station begins with the HDEV charging
demands. A power management controller determines how
much power is supplied from both the ESS and the grid,
ensuring the rated power of each converter is not exceeded. The
power flow from the ESS to the HDEV goes through two
DC/DC converters, and their power losses are accounted for.

It should be noted that the bi-level optimization framework
is not dependent on the specific models presented in this section
although the models are required to demonstrate the
optimization. The framework can be used with varying model
types, charging profiles, arrival data, and controls.

A. HDEYV Arrival and Charging Model

The arrival time and initial state-of-charge (SOC) of the
HDEVs are modeled as random processes using probability
distributions presented in [1], which is derived from real-world
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Fig. 2. High-level diagram of heavy-duty electric vehicle charging station DC microgrid.

heavy-duty vehicle telemetry data. A Poisson random process
with a time-varying mean arrival rate determines when each
HDEV arrives. The initial SOC of each HDEV is generated
from a beta distribution with shape parameters ¢ = 1.1 and § =
3.2, fitted between 5% SOC and 100% SOC. The charging
voltage and current load profile is generated using a parametric
battery model [9], starting with a typical constant current rate
and limited to a maximum charging voltage and power (CCCV
charging). Five Monte Carlo samples were generated from these
distributions, where the normalized HDEV arrival times and
initial SOC distributions are shown in Fig. 3. Each Monte Carlo
charging load profile is used for optimization.

B. Power Management Controller

The power management controller’s two functions are to
average out the load power delivered by the grid while also
mediating the ESS SOC. The controller diagram is provided in
Fig. 4. The grid’s entire load consists of an averaged HDEV
charging power Pj,44(4), ESS SOC correction power Pgqc, and
bias constant power Pp;q;-

First, adjusting the length T,, of a moving time-window
average controls how aggressive the averaging is and is a design
variable. Averaging the total load power P,,4 over a specified
period T, acts as a low-pass filter, reducing the power variation
and peaks handled by the grid. Then the ESS SOC correction
regulates the charging power of the ESS, where a lower SOC
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Fig. 3. (a) HDEV arrival times and (b) initial SOC normalized from five Monte
Carlo samples generated from the probability distributions.
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Fig. 4. Power management controller diagram.
correlates to a larger charging power. The intensity of the SOC
correction is dependent on the total stored energy in the ESS
Wgs and a correction factor time constant tgo.. The time
constant is chosen to prevent the ESS SOC from exceeding the
max SOC while no HDEVs are charging (i.e., when Pj,qq4 = 0).
The last component of the grid’s load power controller is a bias
constant Pp;,s. Design of the station assumes the expected
number of HDEV’s per day is known, and therefore the
expected total energy. Pp;,s i set so that the expected total
energy is delivered throughout an entire day. For the Monte
Carlo samples generated from the distributions in Section II-A,
the actual total load energy will vary from the expected value.
Two saturation blocks are included within the power
management controller. The first prevents Pjyuq(gssy from
dropping below zero, which otherwise would induce additional
loading on the grid. The other saturation block constrains Pggg
to be within the ratings of the ESS DC/DC converter.

alls

t

C. Energy Storage Model

A Li-ion battery pack serves as the on-site energy storage.
The same battery model as the HDEV charging model is used
[9], where the electrochemical dynamics of the battery is
modeled through RC parallel networks. The battery pack
consists of battery modules in series Ny, and each module
contains Li-ion cells in parallel N,,. The battery pack voltage can
be adjusted by varying N while the total energy stored is the
product of N, Ny, and the cell capacity.

D. DC/DC Converter Model

Dual active bridge (DAB) DC/DC converters are used for
all power conversion stages in the charging station. DAB
converters are often used in DC microgrids as they provide
galvanic isolation, high efficiency under heavy loads, and high
power density [10]. A steady-state power loss model is
developed based on [12]-[14]. DAB conduction losses are
calculated using (1), where I} (-n5) is the rms current through the
transformer leakage inductor, R, is the transformer resistance,
and n; is the transformer windings secondary to primary ratio.
Rypon) and Rg(ony are the SiC MOSFET drain-source on-
resistances of the primary and secondary H-bridges. The
inductor rms current is calculated using (2), where the peak

inductor currents /; and /, are found with (3) and (4), f o 18 the

converter switching frequency, and d is the duty ratio
representing the phase shift between the primary and secondary

waveforms [14]. Note that /) (,) is the leakage inductance

current referred to the secondary side and is why R,(,y) is

scaled by n, in (1).

1
Pioss = I?(rms) : [RL + vz (4ngRP(on) + 4‘Rs(on))] (D

Lms) = HVAE + (A = DU + LT + 1)) @)
1 Vo
L= m(Vzn +oo(2d - 1)> 3)
1 [V,
L= = (24 Vin(2d - D) )

The high efficiency operation of a DAB converter is largely
attributed to their zero-voltage switching (ZVS) capabilities that
cause switching losses to be negligible under certain load
conditions. To achieve ZVS conditions, the phase shift d
between the primary and secondary waveforms is constrained
by (5) and (6), respectively [14]. Where Cp(oss) and C (o) are
the output capacitances of the primary and secondary switches,
and M =V, /n.V;,. These ZVS conditions act as constraints to
the DAB design optimization and therefore switching losses are
assumed to be zero. The large power ratings required by
converters in a HDEVCS can be realized by combining multiple
DAB converters in parallel, denoted by Np,p. The power
demand of the DAB is then divided equally among the Nj 45
converters.

d > M-1 + ZfSW\/Lth(oss) (5)
2M M
1-M

d= I + Zfstnt\/ LtCs(oss) (6)

III. BI-LEVEL OPTIMIZATION FRAMEWORK

Finding Pareto optimal designs under power converter
constraints is broken into an upper or system-level problem, and
multiple lower or converter-level problems. The nested bi-level
method is applied [8], where converter-level optimization is
completed for every system-level design candidate. Prior to
evaluating a system-level design, the design variables are sent
to the converter-level and serve as design specifications that the
converters are optimized for. Once the optimal converter
designs are found, the converter parameters are shared with the
system-level where the entire charging station is simulated (see
Fig. 1). This process repeats for every design candidate picked
by the system-level during optimization.

In a bi-level framework, it is possible that a certain set of
upper-level design variables results in an infeasible lower-level
design. To circumvent this, system-level design bounds are
selected to avoid converter infeasibility from exceeding device
ratings, and the parallelization of power converters allows for
any power rating to be achieved.

A.  System-Level Optimization

The objectives at the system-level are to minimize required
ESS power capacity Wgg and minimize peak grid power Py,
which relates to the utility infrastructure requirement. These two
objectives are inherently conflicting as a larger ESS can allow
more smoothing of power from the grid. This results in a Pareto



front showing the trade-off of the two objectives. The design
constraints are minimum and maximum bounds on the ESS
SOC, SOCp;p, and SO Cyyygy, and terminal voltage, Vggsomin) and
VEss(max)- The design variables for this level should be limited
to high-level details that affect the overall performance of the
system. Therefore, the design variables are ESS battery pack
modules in series N, cells per module N, DC bus voltage Vj,s,
and the controller time-average window size T,,. To simplify
notation, system design parameters are grouped into a vector x;.
The system-level problem is formally defined as (7). It is subject
to the optimal design parameters of both converter-level
problems, represented by the last two rows of (7).
min { Pg(pk)' WES}

Xs:Xc1.Xc2
s.t. SOCuin < SOC < S0Chax
Vessmin) < Viss < Vess(max) @)
X, € argmin{eq.(11)}
X, € argmin{eq.(12)}

B. Converter-Level Optimization

For nested bi-level optimization, the lower-level problem
can contain either a single or multiple objectives. However,
seeking multiple objectives at the converter-level would result
in multiple converter design options that the system-level must
choose from, requiring further system design evaluations. For
this demonstration, the converter design problem is formulated
in a way to avoid multiple objectives. Converters are often
optimized for an objective of maximum efficiency in practice,
where a conflicting objective or limiting constraint would be
necessary to avoid simply oversizing the converter. Such
conflicting objectives could be to minimize cost or weight.
However, weight is of little concern for a stationary power
converter. To avoid introducing a cost metric into the design
problem, minimizing the number of converters in parallel Np 45
serves as a representative to minimizing cost. As power loss is
still a primary concern, a minimum efficiency 1,,;, serves as a
design constraint. The efficiency constraint considers the
maximum output voltage and power, so in application the
operating efficiency may be slightly lower.

The remaining constraints are the rated power minimum
Prated(miny @nd maximum Py.4teq(max)> @and the ZVS conditions
given in (5)-(6). These constraints are selected to achieve
realistic efficiency and proper sizing of the converter. The
converter design variables are transformer leakage inductance
L¢, winding turns ratio n;, switching frequency f;,,, and the
number of converters in parallel Np,p . Converter design
parameters are aggregated into a vector x., for the ESS tied
DAB converter, and x, for the charging port DAB converters.

The DAB converters power rating is defined as the
maximum possible power output of the converter given an
output voltage V,, and calculated using (8). The average output
current is equivalent to the average inductor current /;, found
with  (9) for positive power flow [13], where
R=R;+ anRp(on) + 2Rs0m) > and 6 = R/4f,,L; . The
maximum inductor current I} ;45 Occurs at the maximum duty

ratio dqx, given in (10). d,,4, 1s found by solving for d in
dl,/od = 0.

Pratea = NDABVOIL(max) (®)
_ nVin—Vo ﬁ
I, = — ton tanh(6) 0

NeVin (4 _ _ 0-26d
+or (1 260d — sech(9) e )

In(2)-In (1+e~29)
gy = 2 (10)

For the ESS tied DAB converter, the optimization problem
is formally defined as

min{Np,g}
Xc1

s.t. Nmin < Npas
P‘rated(min) < P‘rated < Prated(max) (1 1)

ZVS eq. (5)

ZVS eq.(6)

and is dependent on the system-level parameters V¢, Ng, and
N,,. The system-level parameters influence the converters input
and output voltages, and the minimum rated power. To ensure
the ESS can supply the rated power at all voltage levels, (9) is
evaluated using Vi, = Vggg(min)- Similarly, the ZVS conditions
of (5)-(6) are evaluated at Pygreq(min) and Vess(min)-

The charging port DAB converters are all sized identically
and based on system-level parameter V},;, HDEV charging
voltage minimum Vepeminy and maximum Vi,oney) , and
maximum charging power Pey(mayx). The optimization problem
is formally defined as (12). The converter power rating
constraint uses Vepmin) and Pepmax)-

min{Np,g}
Xc2

S.t. Nmin = Npap
Prated(min) < Prated < Prated(max) (12)

ZVS eq.(5)

ZVS eq.(6)

IV. OPTIMIZATION DEMONSTRATION

In this section, the bi-level optimization framework is
demonstrated for a HDEVCS with nine charging ports rated for
400 kW each. The charging station simulation is developed in
MATLAB/Simulink. System-level optimization uses a multi-
objective genetic algorithm (GA) and converter-level
optimization is performed using a single-objective GA, both
provided in the MATLAB Global Optimization Toolbox. The
system-level GA was configured with a population of 75
designs and had a maximum generation count of 150, which
equates to approximately 7% of the entire design space. The
converter-level GA was configured with a population of 10,000
designs, with a maximum generation count of 500. However,
optimization was typically completed with fewer than 200
generations. System-level and converter-level design variable
bounds and constraints are listed in Table I. For discussion on



Table I. Design variable ranges and constraint limits for system-level and converter-level optimization.

System-level (x,)

Converter-level (ESS DAB) (x.1)

Converter-level (CP DAB) (x.2)

Design Parameter Range Design Parameter Range Design Parameter Range
Vius (V) [800:1600] Ly (nH) [1:1e6] Ly (nH) [1:1e6]

T, (hours) [1:24] n; (#) [0.1:10] n; (#) [0.1:10]

Ng (#) [200:400] fow (kHZ) [100:500] fow (kHZ) [100:500]
N, (#) [1000:10,000] Npap (#) [30:80] Npap (#) [5:20]

Constraint Limits

Constraint Limits

Constraint Limits

20% < S0C <£95%

95% < npap

95% < nNpap

3.0V < Vpgs <42V

NpNsPcell < Prated < 1-5NpNsPcell

400 kW < Prgreq < 600 kW

how the design variables impact the charging station operation,
refer to Section II. The ESS DAB converter P04 constraint
uses the maximum power rating of a battery cell P,
approximated as the max C rating current times the nominal
voltage.

Each candidate design is evaluated by simulating the
charging station for all five Monte Carlo samples (discussed in
Section I1-B), each of a 24-hour duration. The constraints of (7)
are evaluated for all five simulations, while the maximum
Py is used as the objective. An example charging load and
the power delivered by the ESS and grid, along with the ESS
SOC, is shown in Fig. 5. In this case, a 12-hour T,, is used,
yielding a peak grid power of 2 MW.

The resulting Pareto front for the two objectives, minimum
Wgs and Py, is shown in Fig. 6, where the expected trend of
increasing W causing a corresponding decrease in Py(yy) is
observed. The bias constant Py;,, of the grid power controller
causes the absolute minimum Py, to be 1 MW (assuming no
power losses and the average number of EV arrivals), where the
ESS would mitigate all load changes. Aside from this minimum,
any peak grid power can be achieved with sufficient W .
However, reducing the peak grid power to Py;,s Will require a
very large ESS investment due to the nonlinear relation between
Wgs and Py(pi). In other words, to reduce Py by 0.5 MW
near its lower limit requires two times as much Wgs. While all
designs on the Pareto front are technically optimal solutions, the
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Fig. 5. Charging station power demand, (a) ES/grid load distribution, and (b)
ES SOC for a 24-hour simulation.

achieved reduction in Py, clearly diminishes with an ESS
size greater than 15 MWh. This design scenario suggests that
additional ESS capacity beyond 15 MWh would not be
economical.

Fig. 6 also includes the alternative Pareto fronts if the
converter power losses were modeled with fixed efficiency
values, which were used mostly in other literature but are
replaced by actual efficiency numbers in this paper. Since
efficiency numbers vary between sources found in the literature,
three fixed efficiencies will be compared to the bi-level
framework. Instead of running a new optimization procedure for
each approach, the Pareto optimal designs found from the bi-
level framework are simulated again under the same charging
station load conditions, this time with fixed efficiency. This
method of comparison is chosen instead of performing a whole
new optimization procedure to ensure the variations in the
Pareto front are clear. If a whole new optimization procedure
was executed for each fixed efficiency station model, there
would be no guarantee that each Pareto front would be
comparable due to the randomness within the GA and the
absence of ESS voltage constraints.

The new Pareto fronts using 7 = 95%, n = 97%, and n =
100% converter efficiencies are shown in Fig. 6. To avoid
altering the power management controls, Wy for the fixed
efficiency charging station simulations are configured the same
as the bi-level simulation. The alternative ESS sizes shown in
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Fig. 6. System-level Pareto fronts for the bi-level framework that uses power
loss models, and an ideal charging station model.



Fig. 6 represent the equivalent ESS size, provided each
approach had an equivalent ESS depth of discharge. In other
words, the alternative ESS sizes in Fig. 6 are the required energy
capacity using an ideal ESS and fixed efficiency power
electronic converters.

For all Pareto optimal designs, n = 97% and n = 100%
result in an underestimate of the required Wgg, while n = 95%
results in an overestimate. Similarly, Py, are universally
lower than the Py values for n =97% and n = 100%
compared to the bi-level approach. From Fig. 6, it can also be
concluded that the changes in objective values between the bi-
level and fixed efficiency approaches cannot simply be
represented by linear scaling, as the deviation from the bi-level
Pareto front is not constant. This can be attributed to the power
loss models used in the bi-level approach that result in non-
constant efficiencies. This comparison to charging station
simulations using fixed efficiency components demonstrates the
improvements in optimization and sizing accuracy provided by
the bi-level framework.

V. CONCLUSION AND FUTURE WORK

To independently supply the high peak power demand of

HDEVCS, grid infrastructure may be subject to much higher
loads, greatly increasing the investment cost. This peak power
can be mitigated through on-site ESS that offsets the energy
during peak hours. Considering the trade-off between ESS size
and the peak power experienced by the grid is key to charging
station design. To analyze this trade-off, Pareto optimal designs
are found using a bi-level optimization framework that
considers the design and impact of power electronic converters
within the station. The bi-level hierarchy separates the problem
of ESS size and peak power minimization from the problem of
converter design. By incorporating converter design and power
loss models within the sizing problem can lead to more informed
design decisions.
Future work to improve the optimization approach includes
increasing the number of Monte Carlo simulations, or finding
an alternative, approximate approach to capturing the variability
in charging station loads. Converter design can be enhanced by
including thermal management constraints. A battery lifetime
constraint can also be added to the system level design problem,
ensuring the ESS lasts for the desired amount of time.
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