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Abstract—Although freight rail is one of the most energy-
efficient modes of freight transport, there is increasing pressure
to cut greenhouse gas (GHG) emissions in light of climate change.
Since catenary (i.e., overhead wire) electric locomotives are not
appealing in the U.S. due to the private ownership nature of
railways, this paper presents a tool to predict the sizing and cost
of deploying battery-electric freight rail fast charging stations,
which will integrate with a network train simulator to examine
various energy pathways to decarbonizing U.S. rail. Fast-charging
stations at the power level >1 MW require a demand buffer
between the grid and pulsed charging loads, especially in remote
rural areas. To mitigate grid demand while ensuring efficient
emission-free power sourcing, on-site BESS and renewable energy
sources are used. Steady-state models are developed for each
station subsystem, including multiple options for energy storage,
renewable sources, and power electronics. Charging station
behavior is simulated using realistic input data. The tool uses
the simulator to produce optimally-sized designs through multi-
objective optimization to facilitate trade-off comparisons between
the BESS and on-site renewables.

Index Terms—Freight rail, electric vehicles, trains, DC fast
charging station, DC microgrid, energy storage, solar PV, wind,
power electronics, sizing, load leveling, optimization

I. INTRODUCTION

In the U.S. in 2019, 24,597 Class I freight locomotives
consumed 3.4 billion gallons of diesel fuel and emitted 37.6
million metric tons of CO2 [1], [2]. Although it is considerably
more fuel-efficient to transport freight by rail than by freight
truck, there has been increasing demand to ship freight via
rail intermodal over the past several years [3]. Since the
current target of the U.S. government is to achieve net zero
emissions by 2050, greenhouse gas (GHG) emissions must
also be curbed in the freight rail sector [4]. The competing
freight truck sector is approaching this emissions reduction by
electrifying its fleet via battery-electric or hydrogen fuel cell,
and installing onboard carbon capture for existing freight truck
diesel engines. Since the lifetime of locomotives is long (>20
years), there is significant reluctance in the U.S. rail industry to
replace their existing diesel-electric locomotive fleet. Catenary
is another option in rail electrification, but is unappealing
due to its high installation and maintenance costs [5]. In the
near future, the freight rail industry expects to retrofit its
existing locomotives with compatible biodiesel and renewable
diesels to drive emissions down. However, far into the future,

full decarbonization is expected. This paper addresses the
sizing of fast charging stations (FCS) where battery-electric
locomotives and battery tenders will be recharged along freight
rail corridors and at railyards.

The design challenges surrounding freight rail FCSs are
similar to those encountered by road passenger electric vehicle
FCSs. However, the peak power delivered by the station is
much greater (e.g., 1 MW), the demand patterns differ, and
the charging locations may be more rural. The highly pulsed
load from freight rail FCSs will be detrimental to grid power
quality, and rural grids will be especially sensitive to this
additional intermittent loading. This can be mitigated by using
co-located renewable energy and energy storage [6].

For true locomotive decarbonization, the sourced power
must come from zero-emission sources. Local renewables can
ensure power is coming from a renewable source while also
reducing the burden on the local grid, which also reduces
power transmission losses. A battery energy storage system
(BESS) can improve the utilization of local renewable energy
generation while also significantly reducing electricity demand
cost and electrical service size from the AC grid.

With multiple energy systems operating simultaneously,
management of power flow between the systems requires a
microgrid. A DC microgrid is preferred for its fewer power
conversion stages (and higher efficiency) compared to AC, but
currently lacks maturity due to lack of standardization [7].
Since this paper focuses on the future electrification of rail,
the maturity of DC microgrid technology is expected.

To plan for a future with zero-emission locomotives, this
paper presents a tool used to predict the sizing/cost of locomo-
tive charging infrastructure. This will integrate with a network
train simulator that spans temporally and spatially to provide
an economic analysis on different pathways for decarbonizing
rail in the U.S. [8]. The tool sizes on-site renewable and
BESS capacities for a battery-electric freight rail FCS, using
realistic power loss models and resource data to represent the
temporally variable renewable power and pulsed charging load,
similar to the solar insolation and load profile data used in [9].
This presents itself as a multi-objective optimization problem,
since the sizing of the battery system affects the sizing of the
renewable system.

The objectives are to minimize the renewable and BESS



system capacities. A multi-objective optimization approach is
applied to find all optimally sized FCS designs. Similar to
[10], the optimization is constrained by assuming the primary
load is always met. This is used to identify feasible designs
where the FCS is able to meet the load at any given time with-
out violating other optimization constraints. The optimization
results are presented as a Pareto front, showcasing the trade-
offs between the two sizing objectives, where the economic
benefits of each optimal design can be considered.

Since it is uncertain which renewable and BESS technolo-
gies in the future will be most cost-effective for a particular
FCS, this tool models two renewable sources and two BESS
technologies: 1) solar PV and wind, 2) lithium-ion and redox
flow, respectively. Renewable resources vary geographically,
so it is pertinent to present multiple renewable resources
options. The battery models can be easily adapted for different
chemistries, such as lead-acid, vanadium, or iron.

Fig. 1. Fast charging station architecture

II. FREIGHT RAIL CHARGING STATION MODELING

The freight rail FCS is represented by Fig. 1, a DC
microgrid consisting of renewable energy sources, BESS,
locomotive battery chargers, and an AC grid connection. Each
subsystem connects to a common DC bus through power
electronic converters. Power from the AC grid is rectified
through a solid-state transformer (SST) to the DC bus, while
dual-active bridge (DAB) converters handle the DC/DC power
conversion between the microgrid systems.

A. Battery Energy Storage System

The two energy storage mediums considered in this paper
are Lithium-ion batteries (LIB) and Vanadium redox flow
batteries (VRFB). Lithium-ion batteries are a popular choice
because of their high specific energy/power and declining cost
[11]. Redox flow batteries are attractive for large stationary
energy storage applications because the capacity is easily
scalable and exhibits long cycle life without deep cycling
penalty [12].

1) Lithium-Ion Battery: The LIB model is based on the
parametric battery model from [13]. The battery cell terminal
voltage VLi is determined using (1), where Voc is the open-
circuit voltage, iLi is the current, and Rser is the series

resistance of the cell. Since Rser and Voc are a function
of state of charge (SOC), the curve-fitting method in [13]
shown in (2) is used, where the coefficients ak are determined
from battery test measurements. The series resistance and
capacitance at various time frames (seconds, minutes, hours)
in (1) are neglected since the simulation is steady-state. To
model the entire array of battery cells within the BESS, VLi

and iLi are simply scaled by the number of cells in series
(NLIB,ser) and in parallel (NLIB,par), respectively, to obtain
the BESS terminal output voltage VLIB and current iLIB . This
leads to the calculation of total power drawn from the BESS
with (5).

VLi = Voc−iLi·(Rser+Rs∥
1

sCs
+Rm∥ 1

sCm
+Rh∥

1

sCh
) (1)

Voc, Rser = exp

[
6∑

k=0

ak lnk(SOC)

]
(2)

VLIB = NLIB,ser VLi (3)

iLIB = NLIB,par iLi (4)

PLIB = VLIB iLIB (5)

To determine the energy stored and SOC of the BESS
at the end of each simulation time interval, (7) and (8) are
used, where t1 and t2 are the previous and current time step.
ELIB,max is calculated in (6), using the average cell voltage
VLi and rated Amp-hours AhLi.

ELIB,max = NLIB,ser NLIB,par VLi AhLi (6)

ELIB = ELIB,max SOC(t1)−
∫ t2

t1

PLIB dt (7)

SOC(t2) = ELIB/ELIB,max (8)

2) Vanadium Redox Flow Battery: The VRFB consists of a
catholyte tank, anolyte tank, and several electrochemical cell
stack. The electrochemical cell terminal voltage VRF is found
using (9) from [12], where E0 is a reference cell voltage of
1.37 V at 0.5 SOC, R is the universal gas constant, and T is
the battery’s electrolyte absolute temperature.

VRF = E0 +
2R T

F
ln(

SOC
1− SOC

) (9)

To determine the flowrate required to continuously supply
sufficient ions to the electrochemical cells, (10) from [14] is
used, where istack is the current out of the electrochemical
cell stack, ne is the number of electrons transferred per mole
of Vanadium species consumed during electrolysis, c is the
Vanadium concentration in the electrolyte, and F is Faraday’s
Constant.

Q =
istack

ne c F SOC
(10)



(11) uses flow rate Q from (10), hydraulic resistance Rhydr

(of the entire hydraulic system, assuming laminar flow), and
pump efficiency ηpump to calculate the electrical power re-
quired to operate the two pumps for the catholyte/anolyte
tanks.

Ppump =
2Q2 Rhydr

ηpump
(11)

The RFB Amp-hour capacity, in terms of Liters of elec-
trolyte L in each tank, is calculated using (12) before the
energy stored or SOC can be determined in (13).

AhRFB =
F

3600
c L (12)

ERFB,max = AhRFB NRFB,ser E0 (13)

To calculate the energy drawn from the RFB after each
simulation time interval, the power losses calculated in (14)
are summed with the RFB power output to find the total power
PRFB in (15). J is the current density at the cell electrodes,
and Rcell is the specific resistance of one cell. This power
is then integrated in (16) to find ERFB , where t1 and t2 are
the previous and current time step. Similar to the LIB battery
model, (17) calculates SOC(t2).

PRFB,loss = Nser J
2 Rcell + Ppump (14)

PRFB = NRFB,ser VRF istack + PRFB,loss (15)

ERFB = ERFB,max SOC(t1)−
∫ t2

t1

PRFB dt (16)

SOC(t2) = ERFB/ERFB,max (17)

B. Renewables

1) Solar PV Farm: The model developed assumes solar
irradiance and power output of the plant are directly pro-
portional. The power output of the solar farm is calculated
with (18) from [19]. ηpv is the efficiency of the power
electronics (assumed to be constant), Np is the number of
parallel cells/modules, Ns is the number of cells/modules in
series, Vo is the open-circuit cell/module voltage, Is is the
short-circuit cell/module current, FF is the fill factor, E is the
solar irradiance, and Eref is the reference irradiance where
Voc and Isc were tested at.

PPV (E) = ηpv Np Ns Vo Is FF
E

Eref
(18)

2) Wind Turbine Farm: The wind turbine farm model
assumes an array of horizontal-axis wind turbines (HAWT),
where the power output of the wind farm is proportional to
the cube of wind speed between the wind turbine cut-in wind
speed vcut in and rated wind speed vrated. Eq. (19) from [19]
calculates the available wind power, where Cp is the coefficient
of power, ρ is the air density, v is the wind speed at the
hub height, and A is the swept area of the rotor. Eq. (19)

is used in (21) as part of the piecewise function to determine
wind farm power output. Between vrated and vcut out, PW is
constant as described by (20). ηtb is a coefficient (assumed to
be constant) representing losses due to mechanical/electrical
energy conversion in the turbines. Ntb is the number of wind
turbines in the farm.

Pwind =
1

2
Cp ρ v

3 A (19)

Prated =
1

2
Cp ρ v

3
rated A (20)

PW (v) =


0 v ≤ vcut in

ηtb Ntb Pwind vcut in ≤ v ≤ vrated

ηtb Ntb Prated vrated ≤ v ≤ vcut out

0 v ≥ vcut out

(21)

C. Power Converter Modeling

Power losses can become significant given the magnitude
of energy managed by the charging station. Effective sizing
of the energy storage system and renewable energy assets
should then consider accurate power converter loss models.
This subsection outlines the steady-state power loss modeling
of the DAB DC/DC converters and SST AC/DC rectifier
used in the power conversion stages. Rather than considering
constant efficiency, utilizing these power loss models more
accurately captures the system efficiency under varying loads
and generation.

1) Dual-Active Bridge Converter: As the power converters
are not the focus of this paper, detailed discussion of their
functionality is not included, but readers are referred to [15]
and [16] for more information on the DAB. DAB power
losses at steady-state are calculated using the approach in [15].
For a properly designed and controlled DAB, the inherent
zero-voltage switching (ZVS) ability results in nearly zero
switching losses and is thus omitted from the model [16]. The
converter’s total conduction loss is given by (22), where RL

is the transformer winding resistance, nt is the secondary-
primary winding turns ratio, and Rp,on Rs,on are the primary
and secondary-side semiconductor drain-source on resistances,
respectively. The transformer RMS current is calculated with
(23) using the two peak transformer currents (24) and (25)
[15]. A secondary-side reference is assumed for IL,rms. In
(23)-(25), the primary-secondary phase shift duty ratio is
denoted as d, switching frequency as fsw, and transformer
leakage inductance is Lt.

Ploss = I2L,rms

[
RL + (4n2

tRp,on + 4Rs,on)/
√
2
]

(22)

IL,rms =
1√
3

√
dI21 + (1− d)(I21 + I1I2 + I22 ) (23)

I1 =
1

fswLt

(
Vin +

Vo

nt
(2d− 1)

)
(24)



I2 =
1

fswLt

(
Vo

nt
+ Vin(2d− 1)

)
(25)

Converter design details are simplified by connecting mod-
ular, lower rated DAB converters in parallel. To achieve the
desired DAB power rating, the number of DAB converters in
parallel Ndcdc is adjusted.

2) Solid-State Transformer: A thorough overview of SST
configuration and operation can be found in [17]. The
SST consists of a rectification stage and a voltage conver-
sion/galvanic isolation stage and is often implemented using an
H-bridge AC/DC converter and a DAB. Grid-connected SSTs
in the literature are constructed by cascading multiple, modular
H-bridge/DAB stages together to meet the necessary voltage
and power ratings. Similar to the DAB converter, H-bridge
conduction losses are given with (26), where Isw,rms is the
RMS current experienced by each switch, and Ron,sw is the
drain-source on resistances. The RMS current is found using
the input DC current of the DAB stage Isw,rms = πIdc/2,
derived from the steady-state conditions. ZVS cannot be
achieved in the H-bridge stage of an SST without additional
circuit complexity and thus a switching loss model is needed.
The averaged switching losses are calculated using (27) [18].
Under steady-state operating conditions, the DC link voltage
between the H-bridge and DAB modules, Vdc in (27), can
be assumed constant. The turn-on and turn-off commutation
time tcom is obtained from the semiconductor’s datasheet. The
commutation parameter is often approximated as acom = 2
when inductive loads (or sources) are switched, but can
be adjusted depending on the inductive commutation of the
converter [18].

Pcon = 4I2sw,rmsRon,sw (26)

Psw =
2VdcIdctcomfsw

acom
(27)

To avoid exceeding semiconductor max-voltage and dv/dt
ratings when connected to high-voltage distribution networks,
modular SST units are often cascaded together [17]. For
NSST,s SST units serially cascaded together and the grid line-
neutral phase voltage Vl−n, each unit experiences an input
voltage differential of Vl−n/NSST,s. The SST power rating
can be further increased by adjusting the number of SST units
in parallel NSST,p, and should be a multiple of 3 for a 3-phase
input.

D. Energy Management System

The energy management system (EMS) in this FCS uses
the load leveling approach to enforce a grid input power limit,
using the BESS as a power buffer to reduce peak grid input
power, significantly reducing demand charges and the size of
the electrical service. If the locomotive charging load exceeds
the grid power limit (determined from the average load power),
the deficit is supplied by the on-site renewable and BESS,
shown by the red area in Fig. 2. When the charging load is
lower than the grid power limit, the surplus grid power charges

the BESS, shown by the blue area in Fig. 2. This FCS cannot
transfer power generated by the on-site renewable to the grid,
so the on-site renewable is only used to charge the BESS or
to satisfy the load. The EMS also enforces SOC limits for the
BESS to prevent under or overcharging.

Fig. 2. Fast charging station load profile

III. INFRASTRUCTURE SIMULATION AND SIZING

Fig. 3. Solar irradiance time series

Fig. 4. Wind speed time series

A. Simulation Setup

Two week-long MATLAB simulations were performed to
demonstrate the capabilities of the tool for sizing. To simulate
all of the subsystems mentioned in Section II, one simulation
has a RFB BESS and a solar PV farm, and the other has a
LIB BESS and a wind turbine farm. The simulation time step
is set to 1 minute to reduce simulation runtime for longer
periods, such as months to years. Recalling the overview of
the FCS shown in Fig. 1, the DC bus is 1500 V and the
BESS nominal voltage is ∼800 V. The FCS is connected
to a 12.47 kV three-phase AC grid, rectified by the SST to
the DC bus. This FCS has two DAB converters to enable



Fig. 5. Sizing process

Fig. 6. RFB/PV feasible system designs

simultaneous and independent charging of two locomotive
packs. The locomotive battery packs’ maximum voltage is
∼1500 V.

To accurately represent the temporal variability of the on-
site renewables, high resolution solar irradiance from [20] and
wind speed time series data from [21] is received by the
simulation as an input to their respective renewable system
models, shown in Fig. 3 and 4. The charging load time series,
which represents the power demanded by the output of the
two locomotive battery chargers, is shown in Fig. 2 for one
of seven days. The peak power charging events peak at ∼1.25
MW and last ∼1 hour.

B. Sizing and Optimization

A multi-objective optimization approach is used to size the
assets of the FCS, where the two objectives are to minimize the
BESS energy capacity EBESS and renewable plant capacity
Prenewable, shown in Fig. 5. An exhaustive search is used
to the find the optimal designs. The tool simulates a range
of possible design variable combinations while verifying the
design feasibility. For the RFB BESS scenario, design variable
EBESS is adjusted by the tool in terms of liters of electrolyte,
proportional to energy capacity. The solar PV plant design
variable Prenewable is adjusted by the number of parallel solar
modules/panels. The various power electronic voltage/current

Fig. 7. LIB/Wind feasible system designs

Fig. 8. RFB power output

ratings are governed by the chosen voltage ranges for the
BESS and renewable systems.

A design is considered feasible if the following constraints
are satisfied, where ts is the set of all simulation time steps:

min(BESSSOC(ts)) > SOClimit,lower (28)

max(Pgrid(ts)) ≤ Pgrid,max (29)

The BESS SOC upper limit SOClimit,upper is managed by
the EMS described in Section II-D, but exceeding the lower
limit SOClimit,lower will result in a failed design, since that
implies the BESS is no longer providing sufficient energy to
the FCS. The grid power limit is technically a constraint but
is enforced by the EMS. Since the power converter ratings are
determined based on the max power of each subsystem (BESS,
renewable, grid connection, battery chargers), such constraints
would be inactive.

C. Results Discussion

With the two simulations performed, the sizing results from
both scenarios are presented in Fig. 6 and 7. The blue circles
indicate the feasible designs the tool found during sizing.
The tool successfully discovered the Pareto front (or Pareto-
efficient solutions) of the sizing problem at the boundary
between the blue circles and white space. When comparing
the two design spaces, the LIB/Wind combination has a
narrower Pareto front than the RFB/PV combination. This
can be explained by the lower capacity factor of solar PV,
which increases the uncertainty of energy generated at any
given time. When combined with the network train simulator,
feasible FCS designs will determine the most cost-effective



Fig. 9. LIB state of charge

BESS and on-site renewable combinations, which will be
unique to each FCS site due to different constraints and costs.

Fig. 8 and 9 show the RFB power output and LIB SOC,
respectively, during one of many simulations performed by
the tool. The RFB power output is continuously switching
directions due to the highly pulsed load profile, and is more
negatively biased around solar noon during the first day of the
week-long simulation because of the peak power delivered
by the solar PV farm. Although not included in this paper,
the LIB/Wind combination yielded a more predictable BESS
power output since wind power is more consistent than solar
power. Fig. 9 demonstrates the SOC variation throughout a
simulation, which never exceeds the prescribed SOC limits.

IV. CONCLUSION

This paper describes an approach for simulating the behav-
ior of a battery-electric freight rail fast charging station to
find the multi-objective trade-offs between the on-site BESS
and renewable energy source sizes, based on realistic resource
data describing the pulsed nature of the charging loads and
temporally variable renewable power. An approach to mod-
eling the charging station subsystems has been presented,
which includes the power electronics, BESS, and renewables.
The integration of these subsystems to simulate two FCSs
is demonstrated in this paper, with results indicating Pareto
optimal designs that can be used by a higher-level network
train simulator to drive economic modeling of charging in-
frastructure to discover feasible pathways to decarbonizing
freight rail in the U.S. or other parts of the world where
applicable. The FCS simulation in this paper was one week
long, but could be extended to one year for a more accurate
representation of seasonal variations in renewable power and
locomotive refueling activity.
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