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1 Introduction

Janus solutions provide a holographic description of interface conformal field theories. Gen-
erally, the solutions are constructed by considering an AdSy slicing of a higher dimensional
space where the other fields depend non-trivially on the slicing coordinate(s). For example
the original Janus solution [2], deforms the AdS5 x S° vacuum of type IIB and is given by
an AdS, slicing where the dilation depends non-trivially on a single slicing coordinate and
approaches two different values on the two boundary components. The solution is dual to
an interface of N = 4 super Yang-Mills theory where the coupling gyy jumps across a co-
dimension one interface [3]. More general Janus solutions preserving supersymmetry were
constructed as AdSy x S% x S? space warped over a Riemann surface [4]. These solutions
are dual to supersymmetric interface theories in N =4 SYM [5-7]. For other Janus solu-
tions in ten and eleven dimensions, see e.g. [8-11]. In general, constructing such solutions



is quite difficult due to the fact that the supersymmetry variations, as well the equations
of motion, depend on more than one warping coordinate and the resulting equations are
nonlinear partial differential equations. A useful approach is to construct Janus solutions
in lower dimensional gauged supergravities (see for example [12-22]). Such solutions are
often easier to obtain, can be uplifted to ten or eleven dimensions or can be used to explore
qualitative features of Janus solution in a bottom-up approach.

In lower dimensional gauged supergravities it is often the case that in addition to
a maximally supersymmetric AdS vacuum there are extrema with a reduced amount of
supersymmetry. One of the aims of the present paper is to construct holographic Janus
solutions which correspond to RG interfaces [23], between different AdS vacua.! This paper
is a continuation of the work presented [1], which considered three-dimensional ' = 8
gauged supergravity with n = 4 vector multiplets, first discussed in [27]. This theory has
an AdS3 vacuum with maximal N' = (4,4) supersymmetry as well as two families of AdS3
vacua with A/ = (1,1) supersymmetry [28]. The gauged supergravity has a parameter o on
which the embedding tensor for the gauged supergravity depends. For this theory the dual
superconformal algebra of the N' = (4,4) vacuum is given by the “large” superconformal
algebra D'(2,1;a) x D'(2,1; @), and the three-dimensional supergravity is believed to be a
truncation of M-theory on AdS3 x 2 x §3 x S! [29-32]. In the previous paper we considered
the special case of o = 1 for which the explicit expressions become simpler. Here we will
analyze the case for general «, using both analytical and numerical methods.

The structure of this paper is as follows: in section 2 we review the three dimensional
gauged supergravity with n = 4 vector multiplets used here. We consider three truncations
where the gauge fields as well as some scalars can consistently be set to zero and fix the N' =
(1,1) vacua for general a.. In section 3 we derive the BPS flow equations for an AdSy sliced
Janus ansatz, this generalizes and streamlines the discussion of [1]. In section 4 we present
the flow equations for the three truncations and integrate them numerically for the three
truncations. For the second and third truncations where N/ = (1,1) AdS vacua exists we
present examples of RG-flow interfaces. In section 5 we use the solutions to calculate some
holographic observables. In particular we determine the masses of the fluctuating scalars
around the N/ = (1,1) vacua. The mass squared of the scalar fluctuations is positive and
quite large, which means that the scalar fluctuations around the fixed point are repulsive in
the UV. This implies that the initial conditions have to be fine tuned in order to reach the
fixed point. We discuss our results and possible directions for future research in section 6.

2 Three-dimensional N' = 8 gauged supergravity

In this section, we review the N' = 8 gauged supergravity first constructed in [27] mainly
following the conventions of [1]. The bosonic field content consists of a graviton g,,,,, Chern-
Simons gauge fields Bﬁ’l, and scalars fields living in a G/H = SO(8,n)/SO(8) x SO(n)
coset, which has 8n degrees of freedom before gauging. The scalar fields are parametrized
by a G-valued matrix L(x) in the vector representation, which transforms under H and

1See [24-26] for other examples of holographic RG-flow interfaces.



the gauge group Gy C G by right and left multiplication of group elements respectively.
L(z) — go(x) L(z)h ™" (x) (2.1)

for g9 € Gg and h € H. The Lagrangian is invariant under such transformations. In this
paper we use the following index conventions:

o I.J,...=1,2,...,8 for SO(8).
e 1,8,...=9,10,...,n+ 8 for SO(n).
o I.J,...=1,2,...,n+8 for SO(8,n).

o M,N,... for generators of SO(8,n).

Let the generators of G be {tM} = {tij} = {X!7 X" YI"} where YI" are the noncompact
generators. Explicitly, the generators of the vector representation are given by

(') =n""6] —n'%o] (2.2)

where n!7 = diag(++++++++—---) is an SO(8, n)-invariant tensor. These generators
satisfy the typical SO(8,n) commutation relations,

(17, ¢KE) — Q(Hi[ktilf _ nﬂkti]f) (2.3)

The gauging of the supergravity is characterized by an embedding tensor © yqar (which
has to satisfy various identities [33] in order to define a consistent theory) that determines
which isometries are gauged, the coupling to the Chern-Simons fields, and additional terms
in the supersymmetry transformations and action depending on the gauge coupling g. We
will look at the particular case in [28] where n > 4 and the gauged subgroup is the
Go = SO(4) x SO(4) subset of the SO(8) C SO(8,n). The embedding tensor has the non
vanishing entries,?

OEFFRT ifj, j,K,E S {1,2,3,4}
Or7kt = \erjkr i1, J,K,L€ {5678} (2.4)

0 otherwise

Note that the gauging depends on a real parameter . As discussed in [28], the maximally
supersymmetric AdS3 vacuum has an isometry group,

D'(2,1;a) x D'(2,1;a) (2.5)

which corresponds to the family of “large” superconformal algebras of the dual SCFT. In
this paper we generalize the analysis of [1] where the case a = 1 was considered to the case
of general a. Note that in the special case @ = 1 the super algebra becomes more familiar
DY(2,1;1) = OSp(4]2).

2We use the conventions 1234 = €567 = 1.



From the embedding tensor, the Gg-covariant currents can be obtained,
_ 1 1
L7 (0 + 9Opmn By V)L = S QXTI 4 S QX + PV (2.6)
It is convenient to define the VM 4 tensors,
1 1
LML = yM A = 5VMIJX” + §VMTSX”S + VM v (2.7)
and the T-tensor,
T = Opn VM W5 (2.8)

The T-tensor is used to construct the tensors A; o 3 which will appear in the scalar potential
and the supersymmetry transformations,

1
AB = —748F,[4Jé<LTIJ|KL
i 1
Apt = =P AE Toier
. 1 1
Afre = L TREIT, e+ ST Ty (2.9)

where A, B and A, B are SO(8)-spinor indices. Our conventions for the SO(8) Gamma
matrices are presented in appendix A.

Here we choose the spacetime signature n® = diag(+ — —) as mostly negative. The
bosonic Lagrangian and scalar potential are given by

— 1 1 r r 1 _ v 1
¢ Lnos = — TR+ [PUPIE LV — e e Pg0 v By (@Bﬁf + gg@;cng’Cp BEBZ’)
V=19 <A{‘BA{‘B — 2A§ATA§‘AT) (2.10)

The supersymmetry variations take the following form

ox A = 5@'1“2 AetPlr 4 gALATeA
1 1 :
MJ;? = <(9u5A + Z“Zb%b&?A + 4Q;€JF{4{953) +ig A7 P y,e” (2.11)

The Einstein equations of motion are
Ry — PP — 4V g, =0 (2.12)

and the gauge field equations of motion are

1

ePIT)\@QMVMIT :5/\,11»1/ <@QM8/‘LBIM+6

gB'BJ (@MN@KﬁfNLQ +20 0w PV @EQ)>
(2.13)



2.1 The n = 4 case

The smallest number of matter multiplets where multiple supersymmetric vacua exist is
n = 4. The symmetries of the theory are a local Gy = SO(4) x SO(4) and a global SO(n)
with n = 4. Consequently, the scalar potential only depends on 8 -4 — 3 -6 = 14 fields out
of the original 32. Moreover, a further consistent truncation outlined in [28] is performed
where the coset representative depends only on eight of the fourteen scalars.

cos A sin Acosh B sin Asinh B

L = | —sin A cos Acosh B cos Asinh B
0 sinh B cosh B
A = diag(p1,p2,p3,p4), B = diag(q1,q2,43,q) (2.14)

We will not display the general form of the tensors A; and As defined in (2.9) here. The

scalar potential has terms up to order a?.

1 1 1 1
TSI D W EE R ERNE ) EVRS | iERary

1<j<k
o1 1 2 1 229 Ly 2 9215
+a 2+4Zyz- 4Zyz-yjyk ZHyi (2.15)
i i<j<k i

where all indices run form 1 to 4 unless otherwise indicated and we used the following
definition of scalar fields

r; = cos p; sinh ¢; , y; = sin p; sinh ¢; (2.16)

The Q, and P, currents do not depend on «, excluding the gO 4 NBlj\AVN 4 term, they
are given by

0 0 0 0 coshq10,p1 0 0 0
0 0 0 0 0 coshq20,p2 0 0
0 0 0 0 0 0 coshqz 0, p3 0
Q]J _ 0 0 0 0 0 0 0 coshqs0,pa
#w — | —coshqiOup1 0 0 0 0 0 0 0
0 —coshq20,,p2 0 0 0 0 0 0
0 0 —coshqz0,,p3 0 0 0 0 0
0 0 0 —coshqy0,ps 0 0 0 0 IJ
rs
Q,°=0
sinhq1 9, p1 0 0 0
0 sinhq20,,p2 0 0
0 0 sinhqz 0, p3 0
Ir__ 0 0 0 sinhq4 0, pa
Pp« - Ouq1 0 0 0 (2 1 7)
0 Ouq2 0 0
0 0 0uq3 0
0 0 0 0uqa Ir

Using these matrices, we can check that the combination P/{TV‘] K 7 vanishes whenever the
indices J, K € {1,2,3,4} or J,K € {5,6,7,8}. This implies that there is no source for Bl/fl
in the gauge field equation of motion (2.13), so it is consistent to set Bﬁ”‘ = 0. We will
make this choice from now on.



The kinetic term for the scalars in the action (2.10) can be expressed in terms of the
x; and y; using the relations (2.16) and takes the form

1 1 1
Z’p}{’”'p”ﬂ = —1 Z m((l—i—yf)(8#8”xi—2xiy,;8#xi8’”yl’-+(l—i—m?)ﬁyi@“yi) (2.18)
=1 ? ?

This expression will be needed for determining masses of the fluctuations of the scalar fields
around the supersymmetric vacua.

2.2 Truncations and supersymmetric AdS3s vacua

In order to make our analysis more tractable, we make further truncations to reduce the
number of independent scalar fields. Below we consider three consistent truncations, which
together explore the AdSs vacua with N' = (4,4) and N' = (1,1) supersymmetry. All of
the results are generalizations of the o« = 1 case discussed in [1].

2.2.1 Truncation 1

The first truncation is given by denoting q; = ¢, p1 = p and setting all remaining ¢; = p; = 0
for ¢ = 2,3,4. The scalar potential is
2

V= gz (2(1 + a?) + 4a cosh g + (cos® p + a? sin? p) sinh? q) (2.19)
The N = (4,4) vacuum is given by setting ¢ = 0 and the vacuum potential is Vj =
%92(1 + a)?. In the z,y coordinates the N = (4,4) vacuum is given by z; = y; = 0. This
is the only supersymmetric vacuum for this truncation. We note that for the choice o = 1
the potential is independent of the scalar field p. We note we will chose g = 1/(1 4+ «) in
order to set the potential at the N/ = (4,4) vacuum to be Vj = %, which corresponds to a
unit radius AdSs.

2.2.2 Truncation 2

The second truncation is given by setting all the ¢ and p equal, i.e. ¢; = q, p; = p for
1 =1,2,3,4. The scalar potential becomes

2
V= %{(1 — cos? psinh? ¢)(1 4 cos?® psinh? ¢)3 + (1 — sin? psinh? ¢)(1 + sin? psinh? ¢)?

+ (2 + 4sinh? ¢ 4+ 2sinh? ¢ — 2sin p cos? psinh® q)} (2.20)

or in terms of the x,y fields, the potential will take the following form

V= 922{(xQ—l)(x2+1)3+a2<y2—1)(y2+1)3+2a(2w2<1+y2>+(1+y2>2—$4(y4—1>)} (2.21)

As before the N' = (4,4) vacuum is given by ¢ = 0 or z = y = 0. There are N' = (1,1)
vacua which are located at

1
( 120 23Y3 (Y +202(—3+8q)) 2éy§(Y+2a(18+a(15+8a)))> 2
J— a p— J—

1
=+
! 6v/3cx (3+2a) (3+2a)?
1 25V 423(3+2a)\?
y=+-(—-1+ + : (2.22)
3 (6% Y3
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Figure 1. Ratios of central charges for the A’ = (1,1) and N = (4,4) vacua.

where Y is given by

Y = 3ia? /96 + 3a(61 + 32) — a?(9 + 160) (2.23)

The central charge of the dual CFT is related to the AdS radius and the value of the
potential Vj at its minimum

o 3RAqs 3 1
 2GN V2V 2Gy

(2.24)

Choosing g = 1/(1+ «) sets the AdS radius of the N' = (4,4) vacuum to one and the ratio
of the central charge of the A" = (4,4) to the N' = (1, 1) vacuum as a function of & becomes

CN=(1,1) 1

CN'=(4,4) - 2‘/0]\7:(171) (a)

(2.25)

The expressions derived in (2.22) are not very illuminating and we present a plot of the
ratio of the central charges for the two vacua in the figure 1. It is interesting to note that
the ratio of central charges is minimized for the special value a = 1.

2.2.3 Truncation 3

The third truncation is given by setting the first three ¢ and p equal, i.e. ¢; = ¢, p; = p for
1 =1,2,3, and setting the remaining g4 = p4 = 0. The scalar potential is

2

V= gz (2—1—3 cos? psinh? g—cos® psinh® g+4a cosh?® g+a? (243 sin? p sinh? g—sin® p sinh® q))
(2.26)
or in the x,y variables
9 3
V== (24327 — 2 + da(l + 2% + )2 + a*(2+ 3y — 1)) (2.27)
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Figure 2. Ration of central charges for the A" = (1,1) and N = (4,4) vacua.

The N = (4,4) vacuum is given by ¢ = 0 or x = y = 0 as before, and N' = (1, 1) vacua can
be determined by finding the extrema for the potential (2.27) away from the origin.

I 4 2X3 4 2X3 2(a? — 4)
=+ 5 1+€(Oé) 1—714-7-1— 2+71— +

1 3 2 1 3 2 1
o e i e g
X3

r==+ (O‘Z(y4 —Dt-1- y2> ’ (2.28)

4

where we used the abbreviation

X =30%(9 — 902 + /81 — 13802 + 81a4) (2.29)

The e(«) is a sign which selects a branch of the solutions which gives real z,y depending
on a and we have e(a) = +1 for o < 2 and €(a) = —1 for & > 2. We can plot the ratio
of the central charges which is given by (2.25), determined from the potential (2.27). We
note that the qualitative behavior of the ratio for truncation 2 and 3 is very similar, in
particular the central charge for the A" = (1,1) vacuum is minimized at o = 1.

3 Janus flow equations

In this section we will derive the BPS flow equations, expanding on the construction in our
previous paper [1]. The Janus ansatz for the bosonic fields is give by

u dt? — dz2
052 = 2B ><) Cd?, g=g),  pi=pia) (3.1)

22

The Chern-Simons gauge fields is set to zero Bl/fl = 0. We will check that the source term
on the right hand side of the gauge field equation of motion (2.13) is zero for the solutions

considered in this paper.



The gravitino supersymmetry variation &ﬁ;‘ =0is

1
0=0e+—0 (fyl — BleByy+ 2igeBA1)5
2z
1
0=0,¢e+ s (—B/erg + 2igeBA1)£
1
0= 0.+ 195’1“”5 +igyAie (3.2)
where we have suppressed the SO(8)-spinor indices of e4 and A{‘B. The spin—% variation
AT =01is
(-erpjwﬁgAg) eA=0, r=29,10,...,84n (3.3)
2 AA
The matrix A; defined in (2.9) has eigenvectors

A2 0B — Lyt i=1,2,3,4 (3.4)

For a supersymmetric AdS3 vacuum the eigenvalue w; is related to the value of the potential
evaluated at the vacuum via

Wyac = (3.5)

and the associated eigenvectors ni) determine the supersymmetries of the vacuum. For the
N = (4,4) vacuum the w;,i = 1,- - -4 all satisfy (3.5) and hence the vacuum preserves eight
supersymmetries. For the N' = (1,1) vacuum only one of the four ng? and w; satisfies (3.5).
In the following we drop the index ) to denote the supersymmetric eigenvalue w and the
eigenvector nf:

The general ansatz for unbroken supersymmetry ¢4 for the Janus solution is given by
et = (fynfd + fon)Ch + (gant + g n?)C (3.6)
where (1 are Killing spinors for a unit radius AdSs
DGy = i2m,C —t2, 5=+l (3.7)
J2ay] 27}14 no» 2 [ ad} n .

3.1 Gravitino variation

The ¢,z components of the gravitino variation can be expressed as follows by using the
properties of the AdSs Killing spinors,

0=i{(finf+ fn?)¢s — (gnf +g_n?)c (3.8)
+ z’B’eBi'yg{(ernjﬁ + fonM e+ (gonf + g,nf‘)C_}
+ 2igwe{ (fond — fon)Ch + (gnd — g_n?)¢-} (3.9)



Using i72(; = (-5 and the linear independence of the ny and (4, one obtains a set of
equations,

fr+B'ePg +2gwe” f, =0
—gr + BB fy +2gwePg =0
f-+BeBg_ —2gwePf_ =0
—g_+B'eBf_ —2gwePg_ =0 (3.10)

It is convenient to define the following expressions

6_2B €_B
v(u) R V1 —72(u) g0 (3.11)

The equations (3.10) can then be solved by

VIi=2 -1 _\/1—72+1g

=2l § (3.12)
8 Y
if the integrability condition
B' = £\/4¢g%2w? — e 28
= +2gwry (3.13)

is satisfied. This equation provides us with a differential equation for the metric factor B.

3.2 Spin % variation
1

The spin-3 variation (3.3) takes the following form of a projector

(M"4B iy 4 645)P =0 (3.14)
where
(r) _ _i Iplr( gr\—1 T
Mis =3, (TPl (as) )AB (3.15)

Note that there is a projector for each r, which all have to be satisfied and the resulting
flow equations are mutually consistent for a supersymmetric Janus solution to exist. This

analysis will be performed for the particular truncations presented in section 2.2.

Inserting €2 given by (3.6) into the spin % projector gives

0= (find + fon) ¢y + (gond +g_n?)
+ MABivg{(f+nf + fonB) ¢ + (gunf + g_n?)@} (3.16)

We have dropped the index r for notational convenience. Using the fact that the two dimen-
sional Killing spinors are orthogonal we can project (3.16) onto the ny and (1 components.

~10 -



This produces four equations

fini 4+ Myigy +My_g- =0
geni + My fr + My f =0
font 4+ My g +M__g =0
gen2 + My fr+M__f =0 (3.17)

where we denoted n3 = n{n4{ and we define

My =nfMABn2  M__=n2MABnB M, =M_ =ntMAERB (3.18)

If there is more than one ni (as in truncation 1) one has to choose linear combinations
for which M4+, M1+ take the same form for all ngz), which is a consistency condition.

Using (3.12) it can be shown that equations (3.17) can only be satisfied if we have

My =n?, M__ = —yn?%, Mi_=M_4 =4/1—~%/n%n% (3.19)

In all cases we consider, the M__ equation is automatically satisfied if the M, equation
is satisfied. Hence (3.19) provides two independent equations. It follows from (3.15) that
these equations are linear in the first derivatives of the scalar fields and provide the BPS
flow equations for the scalars. The complete set of flow equations is given by these equations
and the flow equation for the metric factor (3.13), coming from the gravitino variation.

4 Janus and RG-flow solutions

In this section we obtain the flow equations and solve them numerically for the three
truncations considered in this paper. Since the first truncation does not have N/ = (1,1)
vacua the BPS flows will correspond to Janus solutions interpolating between N = (4,4)
vacua. For the two other truncations we find Janus as well as RG-flow interface solutions.

4.1 Truncation 1

The matrix Ay for this truncation is given by

00 0 a 0 O0DbO
00 —a 0 0O O0O0©D
0—a 0 0 b 000
A = a 0 0 0 0 =000 (4.1)
00 =60 0 00O0-—-a
00 0 -0 0a6oO
b0 0 0 0 a 00
0b 0 0 —a 000

- 11 -



where

1 1
a=g cosp(a+coshq), b= 5 sinp(1 + « cosh q) (4.2)

The eigenvalue of Ay are +wg which is given by

1
wo = VaZz+ b= 5\/0052 p(a + cosh q)2 + sin? p(1 + a cosh q)2 (4.3)

The eigenvectors are given by

0 0 —a:li:wo a:tbwo

a:l:bwo —a:li):wo 0 0

—a}b wo —a%wo 0 0
0 0 aFwg atwg

ng) = ) ng) = ) nf) = b , ,ngf) = b , (4.4)

1 -1 0 0
0 1 -1
0 0 1 1
1 1 0 0

The matrix M“4P defined in (3.15) takes the following form for the truncation 1

0 0 0 m 0 0 —mg O
0 0O —m; O 0 0 0 —mo
0 -mg 0 0 mg O O 0
vyl ™ 0 0 0 0 0 m 0 (4.5)
0 0O mg O O O O —my
0 0 0 mg 0 0 my O
-my 0 0 0 0 my 0 O
0 —-mg 0 0 —myg O 0 0
with
my =% sinp p’ + cospeschq ¢ my = S0P p' —asinpeschq ¢’ (4.6)

g(cos? p + a? sin? p) g(cos? p + a? sin? p)

Using the definitions (4.2) and (4.3) the flow equations (3.19) for the scalars p, ¢ and
the metric function B (3.13) can be written relatively compactly

/ g .
-9 —by/1—42)sinp — (by + ay/1 — A2
P o <a(a7 ~v?)sinp — (by + a v )cosp>
, gsinhgq .
- by + ay/1 — 2 —by/1— 2
q ” (a(’y—Fa %) sinp + (ay fy)cosp)
B' = +1/4¢g*u} — e 2B (4.7)

- 12 —



Figure 3. (a)-(c) plots of ¢,p, B respectively, (d) parametric plot of the Janus flow in the z,y
variables. The initial conditions are ¢(0) = 1.0 and p(0) = 1.5 and a = 2.3.

This system of ordinary differential equations can only be integrated numerically. We will
choose the coordinate u such that the turning point of the metric function where B'(u) = 0
is located at u = 0. We then use the BPS equations (4.7) to determine p’(0), ¢’(0) and
B(0) for a given ¢(0) and p(0). We then integrate the equations of motion following from
the variation of the Lagrangian (2.10). This means that all our solutions depend on two
initial conditions ¢(0) and p(0). We have given an illustrative example of the flows we can
obtain in figure 3.

4.2 Truncation 2

The matrix Ay for this truncation is given by

0 0 0 %< 0 0 0 O
0 -5 =2t 0 b 0 0 b
0 =4 - 0 —-b 0 0 -—b
“<c 0 0 0 0 0 0 0
A= 1 (4.8)
0o b —-b 0 § 0 0 =4
00 0 0 0 0 % 0
0 0 0 0 0 %0 0
0 b —b 0 =4 0 0 %

~13 -



where

a = 2cos* p(avcosh? ¢) + 2sin® p(1 + a cosh? ¢)
b = sin p cos p cosh ¢( cos? p(a + cosh? ¢) — sin® p(1 + o cosh? q))
¢ = (1+ a)cosh? ¢sin® 2p (4.9)

(1)
+

supersymmetries are given by

The eigenvectors nY.’ of A; with eigenvalues +wq corresponding to the unbroken N = (1,1)

a—3ct+4wog

__a—3ct4wg
8b

1
— = 2 _ g2
, wo = 4\/64b + (3¢ —a) (4.10)

= o O = O

We have checked that the extremum (2.22) does satisfy the supersymmetry condi-
tion (3.5) for the wy defined above and hence corresponds to an AdS vacuum with AV = (1,1)
supersymmetry. The rest of the eigenvectors of A; do not have eigenvalues which satisfy the
supersymmetry condition (3.5) for the N' = (1,1) vacuum. We chose the initial conditions
the same way as in section 4.1.

In figure 4 we display examples of solutions to the flow equations representing Janus
flows between N' = (4,4) vacua, N' = (1,1) vacua and RG-flow Janus solutions between
N = (4,4) and N = (1,1) vacua. We note that the flows involving the N' = (1,1)
vacua are a new feature of the truncation. As discussed in section 5.1 the N' = (1,1) is
a repulsive fixed point of the flow and to obtain the numerical solutions one has to fine
tune the initial conditions at the turning point to approach the N' = (1,1) vacuum. This
implies that choosing an initial p(0), the initial ¢(0) for which an RG-flow solution exists, is
fixed. A third kind of flow solution corresponds to a Janus solution interpolating between
N = (1,1) vacua, since both vacua are repulsive such solutions only exist for a discrete set
of initial conditions. Note that the asymptotic value of p when the N' = (4,4) vacuum is
obtained can take any value and determines the angle with which the point (z,y) = (0,0)
is approached in the parametric x,y plot.
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Figure 4. Truncation 2: (a)-(c) plots of p, ¢, B respectively, (d) parametric plot of the Janus flow
in the x, y variables, the N' = (4,4) vacuum is at the origin and the dots denote the locations of the
N = (1,1) vacua. Blue: Janus between N' = (4,4) vacua, red: Janus between N = (1,1) vacua,
green: RG-Janus between N' = (4,4) and N = (1,1). We have set o = 1.2 for these examples.

4.3 Truncation 3

The matrix Ay for this truncation is given by

0o 0 o0 Ye o < o0 0

0 —c =& 0 =22 0 0 d

0 %< — 0 —-d 0 0 2

4 - bre 900 0 0 0 =24 0 (4.11)

0 %< —a4 0 ¢ 0 0 =bt
od o 0 0 0 0 W o0

0 0 0 =24 o Y 0 0

0 d %3¢ bt 0 0 ¢

where

a = sin® p(1 + a cosh? q)

b = cos® p(a + cosh? ¢)

¢ = sin® p cos p cosh q(1 + acosh q)

d = cos® psin p cosh g(a + cosh q) (4.12)

(1)

The eigenvectors nil of Ay with eigenvalues fwq corresponding to the unbroken N =
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Figure 5. Truncation 3: (a)-(c) plots of p, g, B respectively, (d) parametric plot of the Janus flow
in the z,y variables, the N = (4,4) vacuum is at the origin and the dots denote the locations of the
N = (1,1) vacua. Blue: Janus between N = (4,4) vacua, red: Janus between N = (1,1) vacua,
green: RG-Janus between N = (4,4) and N = (1,1). We have set a = 1.2 for these examples.

(1,1) supersymmetries are given by

0

_ b=3ct2wg
a—3d
b—3c+2wq
a—3d

0 1
) — . wo=5y/(a—3d)2 + (b 30)? (4.13)

_ o O =

The rest of the eigenvectors of A1 do not have eigenvalues which satisfy the supersymmetry
condition (3.5) for the N/ = (1,1) vacuum. Note that all of them reduce to the ones of
truncation 1 for the N' = (4, 4) vacuum.

In figure 5 we display a sample of solutions to the flow equations representing Janus
flows between N' = (4,4) vacua, N' = (1,1) vacua and RG-flow Janus solutions between
an N = (4,4) and N = (1,1) vacuum. We note that the solutions behave qualitatively
similar to the ones displayed for truncation 2.

5 Holographic calculations

In this section we will perform some holographic calculations for the solutions obtained in
the section 4. In particular we will calculate the masses for the fluctuations of the scalar
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N = (4,4) m2 A+ A_

S _ 142« 14+2a 1
¢ (1+a)? 14+a 1+a

S _a(2+0) 2+a a
Yi (14a)? 1+a 1+a

Table 1. Mass and conformal dimensions of scalar fluctuations for the N' = (4,4) vacuum.

fields around the N' = (4,4) and N = (1, 1) vacua. This will allow us to identify the dimen-
sions of the dual operators which are turned on in the flows. One of the results is that for
truncation 2 and 3 the mass squared of the fluctuations are positive, corresponding to oper-
ators with scaling dimensions A > 2. Since the behavior near the AdS vacuum is given by

2—A

lim ¢ ~ ¢ + c16™ + coe?™ 2 + -+ (5.1)
e—0

where € — 0 corresponds to approaching the AdS boundary, the initial conditions have

to be fine tuned in order to make the repulsive term coe?~ 2

very small. In addition we
consider the entanglement entropy of a symmetric region around the defect [34-38] and

give a prescription to obtain the defect entropy (or g-factor) [39].

5.1 Operator spectrum

The N = (4,4) vacuum has ¢; = 0,7 = 1,2, 3,4. Since the kinetic terms for p; are vanishing
the x;, y; defined in (2.16) are better suited to analyze the fluctuations. Expanding around
the x; = y; = 0 vacuum one finds for the quadratic term of the fluctuations,

1 1 92 2 2
- . S S Jc A A

Loy= 1 Z (002062 + 0,09:0" 5y ) + . Z ((1+20)002 + a(a+2)dy?)  (5.2)
from which we can read off the masses of the scalar fluctuations. Then the masses determine
the conformal scaling dimensions

Ay =141+ m2R2 (5.3)

where R is the AdS radius of the vacuum. Setting g. = 1/(1 + «) to obtain a unit
radius AdSs for the N' = (4,4) vacuum and the standard AdS/CFT relation the conformal
dimensions of the dual operators are displayed in table 1. Note that A, gives the scaling
dimension of the dual operator in the standard quantization which takes values between
1 < Ay < 2 for a > 0, whereas A_ corresponds to the alternative quantization and
0 < A_ <1 for @ > 0. Supersymmetric flows are related to the standard quantization
which we will adapt in the following [40]. We note that the NV = (4,4) vacuum is attractive
since both x and y are dual to operators with A < 2 and the initial conditions do not have
to be fine tuned for (5.1) to approach the vacuum value.

For truncations 2 and 3 we can determine the scaling dimensions of the operators at the
N = (1,1) vacuum by expanding the scalar action around the vacuum to second order and
diagonalizing the resulting scalar Lagrangian. The resulting expressions are quite unwieldy
and we present the plots of the scaling dimensions of the two modes as a function of « in
figure 6. We note that the scaling dimensions are larger than 2 and hence the V' = (1,1)
corresponds to a repulsive fixed point and the initial conditions have to be fine-tuned.
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Figure 6. (a) Conformal dimension of operator dual to scalar fluctuations around the N = (1,1)
vacuum for truncation 2, (b) same for truncation 3.

5.2 Holographic entanglement entropy
The Ryu-Takayanagi prescription [41] relates holographic entanglement entropy to the

area of a minimal surface in the bulk which when approaching the AdS boundary ends
at the border of the entangling surface. For a three dimensional static bulk spacetime
this corresponds to a geodesic in the bulk which terminates at the ends of the entangling
interval on the boundary. For the AdSs sliced metric (3.1) and an entangling surface which
is symmetric about the defect and of length 2L, such a geodesic is simply parameterized
by w and constant z = L. The entanglement entropy is then given by

1 U 1

U—oco
where u4~ will be related to an UV Fefferman-Graham cutoff in the following. We will
generalize the derivation of [34, 35] to the case of an RG-flow interface where the AdS
radius and hence the central charge take different values on both sides of the interface. The
asymptotic behavior of the metric is determined by the metric function B(u) as u — +o00

1
lim B(u) = + % 4 Ar —In2+o0 () (5.5)
Ry U

u—rFoo

In the two asymptotic regions we can define a Fefferman-Graham coordinate system by
defining a new coordinates i+

1
u — +00 : u:RifLiqZRiln/\i—i—O(u) (5.6)
and then the coordinates (+,n
) 20, _ 1 3 4 1¢3 4
U — +00: e :Z?—FO(JF), z=1 1+§¥ +0o(¢Y)
. 1¢ 1¢3
U — —00 : el = 45;; +o(¢Y), z= —17<1 + 22;) +o(¢t) (5.7)

This expansion is valid for 1 > (4, i.e. if we consider an entanglement interval which is far
away from the interface. In this limit the metric becomes

—d¢2 — dn? + dt?
& 277 >+0(1)
&1

G0 as =Ry (5.8)
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Figure 7. (a) Plot of boundary entropy for RG-flow interface for truncation 2, as a function of
initial condition pg at the turning point for a = 1.4. (b) Illustration of RG-flows for some initial
values of pg.

It follows that Ry defined in (5.5), corresponds to the asymptotic AdS radius and the
left and right side of the interface respectively and a Fefferman-Graham cutoff is given by
setting (+ = e. For the entanglement region located at z = L in follows from (5.8) that
the FG cutoff is related to the u4+ cutoff as follows

1
us = FRyooIn (22) FRyIn\. (5.9)
Plugging this into (5.4) gives the entanglement entropy

1 L
SpE = <(R+ +R_)ln2—8 —Ryln\y —R_ ln)\_>

4G N
ct+c_ . L ¢y c—
=——Ih———1 ——InA_ 1
G no- % n\; G nA_+o(e) (5.10)

the constant term gives the boundary entropy
Cyt C_
=——InA;y — —1Ini_ 5.11
g 6 DAL 6 n ( )

Where cy is the central charge for the two CFTs on either side of the RG interface. The
g-factor is given by the second and third term in (5.10). For a Janus interface we have
¢4 = c— = ¢, whereas the central charges differ on both sides of the interface for a RG-
flow interface. It is straightforward to determine the Ry and In Ay by numerically fitting
the metric functions (see plot (c¢) in figures 4 and 5) to determine the slope and the in-
tercept (5.5) in the limit of large |u|. We will give an example of numerical results by
presenting the g-factors as for the RG-interface between the NV = (4,4) vacuum and a
N = (1,1) vacuum in truncation 2. As discussed in section 4.2 there exists a unique RG-
flow interface for a choice on initial condition pg. In figure 7 we present the g-factor as a
function of the initial condition for a particular value of o = 1.4.

6 Discussion

In this paper we found holographic interface solutions in three dimensional gauged super-
gravity theories. An important feature of these theories is that they have AdS vacua which
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preserve N' = (1, 1) supersymmetry in addition to the N" = (4,4) AdS vacuum. This feature
allows us to find solutions which correspond to interfaces between two N' = (4, 4) vacua on
both side, A" = (1,1) on both sides, as well as RG-flow interfaces which have a N = (4,4)
on one side and N = (1, 1) vacuum on the other. We derived BPS flow equations which are
three first order nonlinear differential equations for the two scalars p, ¢ which are non zero
in the truncations as well as the warp factor B of the AdSs slicing. By using the freedom to
shift the warping coordinate u by a constant we can choose the initial conditions for the flow
as the value of p and ¢ at the turning point of the warp factor, where B’ = 0. In fact we use
the BPS equations to determine the initial conditions for the second order equation motion
following from the variation of the action. The numerical accuracy of the solution is tested
by checking the BPS equations away from the point where the initial conditions were fixed.

The N' = (1,1) extrema are repulsive fixed points of the flow and hence the initial
condition have to be fine tuned using a shooting method. This is possible by fixing one
scalar initial condition and varying the other in order to come closer and closer to the
N = (1,1) vacuum in the flow. Our results indicate that the qualitative behavior of the
solutions for general « is quite similar to the behavior of the @ = 1 solutions obtained
in [1]. In addition we have considered the entanglement entropy for the Janus and RG-flow
solutions. Since for the RG-flow solutions the central charges and hence AdS radii are
different on both sides of the interface one has to carefully consider the UV cut-off. It is
possible to determine the g-function or interface entropy from the numerical solution by a
linear fit of the warp factor B.

We have considered truncations of the scalars to two nonzero scalars ¢ and p (or x and
y), it would be interesting to generalize this since it would then be possible to consider
more complicated flows between different N' = (1, 1) vacua. It would also be interesting to
investigate the solutions we have found can be lifted and have a representation in AdSs3 x
S3 x 83 x 81 holography. It would also be interesting to see whether the prescription for
the interface entropy can be applied to other examples of RG-flow interfaces. We leave
these interesting questions for future work.
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A SO(8) Gamma matrices

The formulation of the N = 8 three dimensional gauged supergravity utilizes with 8 x 8

Gamma matrices 1“1]4 A and their transposes Fg " they satisfy the Clifford algebra,

I J J I _ IJ
Dyallip +Tyalip =207 0aB (A1)
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Explicitly, we use the basis as given in Green-Schwarz-Witten [42],

rfi=1011, I, = ioy ®ioy ®ioy

Ii=1®0 ®ioy, I, =1®03®ioy
FjA:m@iUg@l, FiA:O'L‘?,@iO'Q@].

I, =in®lxor, I =i ®1®03 (A.2)

The matrices F%B, I’%? and similar are defined as antisymmetrized products of I's with
the appropriate indices contracted. For example,

1

1J _— I J J I

FAB:i(FAAFAB*FAAFAB) (A.3)
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