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Abstract
NLP has achieved great progress in the past
decade through the use of neural models and
large labeled datasets. The dependence on
abundant data prevents NLP models from be-
ing applied to low-resource settings or novel
tasks where significant time, money, or ex-
pertise is required to label massive amounts
of textual data. Recently, data augmentation
methods have been explored as a means
of improving data efficiency in NLP. To
date, there has been no systematic empiri-
cal overview of data augmentation for NLP
in the limited labeled data setting, making it
difficult to understand which methods work
in which settings. In this paper, we pro-
vide an empirical survey of recent progress
on data augmentation for NLP in the lim-
ited labeled data setting, summarizing the
landscape of methods (including token-level
augmentations, sentence-level augmentations,
adversarial augmentations, and hidden-space
augmentations) and carrying out experiments
on 11 datasets covering topics/news classifica-
tion, inference tasks, paraphrasing tasks, and
single-sentence tasks. Based on the results, we
draw several conclusions to help practitioners
choose appropriate augmentations in different
settings and discuss the current challenges and
future directions for limited data learning in
NLP.

1 Introduction

Deep learning methods have achieved strong per-
formance on a wide range of supervised learn-
ing tasks (Sutskever et al., 2014; Deng et al.,
2013; Minaee et al., 2021). Traditionally, these re-
sults were attained through the use of large, well-
labeled datasets. This make them challenging to
apply in settings where collecting a large amount
of high-quality labeled data for training is expen-
sive. Moreover, given the fast-changing nature of
real-world applications, it is infeasible to relabel
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every example whenever new data comes in. This
highlights a need for learning algorithms that can
be trained with a limited amount of labeled data.

There has been a substantial amount of research
towards learning with limited labeled data for
various tasks in the NLP community. One com-
mon approach for mitigating the need for labeled
data is data augmentation. Data augmentation
(Feng et al., 2021) generates new data by modi-
fying existing data points through transformations
that are designed based on prior knowledge about
the problem’s structure (Yang, 2015; Wei and
Zou, 2019). This augmented data can be generated
from labeled data, and then directly used in super-
vised learning (Wei and Zou, 2019), or in semi-
supervised learning for unlabeled data through
consistency regularization (Xie et al., 2020) (‘‘con-
sistency training’’). While various approaches
have been proposed to tackle learning with limited
labeled data—including unsupervised pre-training
(Peters et al., 2018; Devlin et al., 2019; Raffel
et al., 2020), multi-task learning (Glorot et al.,
2011; Liu et al., 2017; Augenstein et al., 2018),
semi-supervised learning (Zhu, 2005; Chapelle
et al., 2009; Miyato et al., 2017; Xie et al., 2020),
and few-shot learning (Deng et al., 2019)—in
this work, we focus on and compare different
data augmentation methods and their application
to supervised and semi-supervised learning.

In this empirical survey, we comprehensively
review and perform experiments on recent data
augmentation techniques developed for various
NLP tasks. Our contributions are three-fold: (1)
summarize and categorize recent methods in tex-
tual data augmentation; (2) compare different
data augmentation methods through experiments
with limited labeled data in supervised and semi-
supervised settings on 11 NLP tasks, and (3)
discuss current challenges and future directions
of data augmentation, as well as learning with
limited data in NLP more broadly.
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Our experimental results allow us to conclude
that:

• Token-level augmentations and specifically
word replacement and random swapping
consistently improve performance the most
for supervised learning while sentence-level
augmentation and specifically roundtrip
translation improve performance the most
for semi-supervised learning.

• Token-level augmentations improve perfor-
mance more for simpler classification tasks
and surprisingly hurt performance for harder
tasks where the baseline performance is
pretty low.

• Token-level augmentations and sentence-
level augmentations are generally more
reliable compared to hidden-level augmenta-
tions in both supervised and semi-supervised
settings.

• The best augmentation method depends on
the dataset and setting (either supervised or
semi-supervised).

Related Surveys. Recently, several surveys also
explore the data augmentation techniques for NLP
(Hedderich et al., 2020; Feng et al., 2021; Şahin,
2022). Hedderich et al. (2020) provide a broad
overview of techniques for NLP in low resource
scenarios and briefly cover data augmentation as
one of several techniques. In contrast, we focus
on data augmentation and provide a more com-
prehensive review on recent data augmentation
methods in this work. Şahin (2022) focuses on
syntax, token, and character level augmentations
for part-of-speech tagging, dependency parsing,
and semantic role labeling. While Feng et al.
(2021) also survey task-specific data augmenta-
tion approaches for NLP, our work summarizes
recent data augmentation methods in a more fine-
grained categorization. We also focus on their
application to learning from limited data by
providing an empirical study of over differ-
ent augmentation methods on various benchmark
datasets in both supervised and semi-supervised
settings, doing an empirical comparison of dif-
ferent types of augmentation methods on over 11
datasets covering various tasks. In doing so, we
hope to shed light on data augmentation selections
for future research.

2 Data Augmentation for NLP

Data augmentation increases both the amount (the
number of data points) and the diversity (the va-
riety of data) of a given dataset (Cubuk et al.,
2019). Limited labeled data often leads to over-
fitting on the training set and data augmentation
works to alleviate this issue by manipulating data
either automatically or manually to create addi-
tional augmented data. Such techniques have been
widely explored in the computer vision field, with
methods like geometric/color space transforma-
tions (Simard et al., 2003; Krizhevsky et al., 2012;
Taylor and Nitschke, 2018), mixup (Zhang et al.,
2018), and random erasing (Zhong et al., 2020;
DeVries and Taylor, 2017). Although the discrete
nature of textual data and its complex syntactic and
semantic structures make finding label-preserving
transformation more difficult, there nevertheless
exists a wide range of methods for augmenting text
data that in practice preserve labels. In the follow-
ing subsections, we describe four broad classes of
data augmentation methods.

2.1 Token-Level Augmentation

Token-level augmentations manipulate words and
phrases in a sentence to generate augmented text
while ideally retaining the semantic meaning and
labels of the original text.

Designed Replacement. Intuitively, the seman-
tic meaning of a sentence remains unchanged if
some of its tokens are replaced with other tokens
that have the same meaning. A simple approach
is to fetch synonyms as words for substitutions
(Kolomiyets et al., 2011; Yang, 2015; Zhang et al.,
2015a; Wei and Zou, 2019; Miao et al., 2020). The
synonyms are discovered based on pre-defined
dictionaries such as WordNet (Kolomiyets et al.,
2011), or similarities in word embedding space
(Yang, 2015). However, improvements from this
technique are usually minimal (Kolomiyets et al.,
2011), and in some cases, performance may even
degrade (Zhang et al., 2015a). A major drawback
stems from the lack of contextual information
when fetching synonyms—especially for words
with multiple meanings and few synonyms. To re-
solve this, language models (LMs) have been used
to replace the sampled words given their context
(Kolomiyets et al., 2011; Fadaee et al., 2017;
Kobayashi, 2018; Kumar et al., 2020). Other work
preserves the labels of the text by conditioning
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on the label when generating the LMs’ predictions
(Kobayashi, 2018; Wu et al., 2019a). In addition,
different sampling strategies for word replacement
have been explored. For example, instead of sam-
pling one specific word from candidates by LMs,
Gao et al. (2019) propose to compute a weighted
average over embeddings of possible words pre-
dicted by LMs as the replaced input since the
averaged representations could augment text with
richer information.

Random Insertion, Replacement, Deletion, and
Swapping. While well-designed local modifi-
cations can preserve the syntax and semantic
meaning of a sentence (Niu and Bansal, 2018),
random local modifications such as deleting cer-
tain tokens (Iyyer et al., 2015; Wei and Zou,
2019; Miao et al., 2020), inserting random tokens
(Wei and Zou, 2019; Miao et al., 2020), replacing
non-important tokens with random tokens (Xie
et al., 2017, 2020; Niu and Bansal, 2018), or ran-
domly swapping tokens in one sentence (Artetxe
et al., 2018; Lample et al., 2018; Wei and Zou,
2019; Miao et al., 2020) can preserve the mean-
ing in practice. Different kinds of operations
can be further combined (Wei and Zou, 2019),
where each example is randomly augmented with
one of insertion, deletion, and swapping. These
noise-injection methods can efficiently be applied
to training, and show improvements when they
augment simple models trained on small train-
ing sets. However, the improvements might be
unstable due to the possibility that random per-
turbations change the meanings of sentences (Niu
and Bansal, 2018). Also, finetuning large pre-
trained models on specific tasks might attenuate
improvements due to preexisting generalization
abilities of the model (Shleifer, 2019).

Compositional Augmentation. To increase the
compositional generalization abilities of models,
recent efforts have also focused on compositional
augmentations (Jia and Liang, 2016; Andreas,
2020) where different fragments from different
sentences are re-combined to create augmented
examples. Compared with random swapping,
compositional augmentation often requires more
carefully designed rules such as lexical overlap
(Andreas, 2020), neural-symbolic stack machines
(Chen et al., 2020e), and neural program syn-
thesis (Nye et al., 2020). With the potential to
greatly improve the generalization abilities to

out-of-distribution data, compositional augmen-
tation has been utilized in sequence labeling (Guo
et al., 2020), semantic parsing (Andreas, 2020;
Nye et al., 2020; Furrer et al., 2020), language
modeling (Andreas, 2020; Shaw et al., 2021), and
text generation (Feng et al., 2020).

2.2 Sentence-Level Augmentation
Instead of modifying tokens, sentence-level aug-
mentation modifies the entire sentence at once.

Paraphrasing. Paraphrasing has been widely
adopted as a data augmentation technique in
various NLP tasks (Yu et al., 2018; Xie et al.,
2020; Kumar et al., 2019; He et al., 2020; Chen
et al., 2020b,c; Cai et al., 2020), as it generally
provides more diverse augmented text with dif-
ferent word choices and sentence structures while
preserving the meaning of the original text. The
most popular is round-trip translation (Sennrich
et al., 2015; Edunov et al., 2018), a pipeline which
first translates sentences into certain intermediate
languages and then translates them back to gener-
ate paraphrases. Translating through intermediate
languages with different vocabulary and linguis-
tic structures can generate useful paraphrases. To
ensure the diversity of augmented data, sampling
and noisy beam search can also be adopted during
the decoding stage (Edunov et al., 2018). Other
work focuses on directly training end-to-end mod-
els to generate paraphrases (Prakash et al., 2016),
and further augments the decoding phase with
syntactic information (Iyyer et al., 2018; Chen
et al., 2019), latent variables (Gupta et al., 2017),
and sub-modular objectives (Kumar et al., 2019).

Conditional Generation. Conditional genera-
tion methods generate additional text from a
language model, conditioned on the label. Af-
ter training the model to generate the original text
given the label, the model can generate new text
(Anaby-Tavor et al., 2020; Zhang and Bansal,
2019; Kumar et al., 2020; Yang et al., 2020).
An extra filtering process is often used to en-
sure high-quality augmented data. For example,
in text classification, Anaby-Tavor et al. (2020)
first fine-tune GPT-2 (Radford et al., 2019) with
the original examples prepended with their labels,
and then generate augmented examples by feeding
the fine-tuned model certain labels. Only confi-
dent examples as judged by a baseline classifier
trained on the original data are kept. Similarly,
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new answers are generated on the basis of given
questions in question answering and are filtered
by customized metrics like question answering
probability (Zhang and Bansal, 2019) and n-gram
diversity (Yang et al., 2020). Given the recent suc-
cess of pre-trained language models, Ye et al.
(2022) and Wang et al. (2021) generate data
from zero-shot models. Generative models used in
this setting have been based on conditional VAE
(Bowman et al., 2016; Hu et al., 2017; Guu et al.,
2017; Malandrakis et al., 2019), GAN Iyyer et al.,
2018; (Xu et al., 2018), or pre-trained language
models like GPT-2 (Anaby-Tavor et al., 2020;
Kumar et al., 2020). Overall, these conditional
generation methods can create novel and diverse
data that might be unseen in the original dataset,
but require significant training effort.

2.3 Adversarial Data Augmentation

Adversarial methods create augmented examples
by adding adversarial perturbations to the origi-
nal data, which dramatically influences the mod-
el’s predictions and confidence without changing
human judgments. These adversarial examples
(Morris et al., 2020; Zeng et al., 2020) could
be leveraged in adversarial training (Goodfellow
et al., 2015) to increase neural models’ robust-
ness, and can also be utilized as data augmenta-
tion to increase the models’ generalization ability
(Miyato et al., 2017; Cheng et al., 2019).1

White-Box Methods. These rely on model ar-
chitecture and parameters being accessible and
create adversarial examples directly using a
model’s gradients. Unlike image pixel values that
are continuous, textual tokens are discrete and
cannot be directly modified based on gradients.
To this end, adversarial perturbations are added
directly to token embeddings or sentence hidden
representations (Miyato et al., 2017; Zhu et al.,
2020; Jiang et al., 2019; Chen et al., 2020d) which
creates ‘‘virtual adversarial examples’’. Other
approaches vectorize modification operations as
the difference of one-hot vectors (Ebrahimi et al.,
2018a,b), or find real word neighbors in a model’s
hidden representations via its gradients (Cheng
et al., 2019).

1For more detailed discussion on textual adversarial ex-
amples, please refer to recent comprehensive surveys (Zhang
et al., 2020b; Huq and Pervin, 2020; Goel et al., 2021).

Black-Box Methods. These are usually model-
agnostic since they do not require information
from a model or its parameters and usually focus
on task-specific heuristics for creating adver-
sarial examples. For example, by enumerating
feasible substitutions on the basis of word simi-
larity and language models, Ren et al. (2019) and
Garg and Ramakrishnan (2020) select adversar-
ial word replacements which severely influence
the predictions from the text classification model.
To attack reading comprehension systems, Jia
and Liang (2017) and Wang and Bansal (2018)
insert distracting but meaningless sentences at
different locations in paragraphs and Ribeiro
et al. (2018) leverage rule-based paraphrasing
to produce semantically equivalent adversarial
examples. Likewise, for multi-hop question an-
swering, Jiang and Bansal (2019) insert shortcut
reasoning sentences and Trivedi et al. (2020)
constructed disconnected reasoning example by
removing certain supporting facts. For NLI, Mitra
et al. (2020) use VerbNet and other Semantic Role
Labeling resources to generate pair of sentences
containing same set of words but have different
meaning. For machine translation, Belinkov and
Bisk (2017) attack character-based models by nat-
ural or synthesized typos and Tan et al. (2020)
further adopt subword morphology level attacks.
Similar attacks also help dialogue generation
(Niu and Bansal, 2019) and text summarization
(Cheng et al., 2020a; Fan et al., 2018). Other
methods do not rely in editing input text directly;
Iyyer et al. (2018) leverage round-trip translation
to generate paraphrases in given syntactic tem-
plates and Zhao et al. (2017) search for adversar-
ial examples in underlying semantic space with
GANs (Goodfellow et al., 2014). Some of these
heuristics could be further refined to obtain sim-
ple adversarial data augmentation approaches. For
example, McCoy et al. (2019) craft adversarial
examples for natural language inference using so-
phisticated templates which create lexical overlap
between the premise and the hypothesis to fool the
model. Min et al. (2020) propose two simple yet
effective adversarial transformations that reverse
the position of subject and object or the position
of premise and hypothesis.

2.4 Hidden-Space Augmentation

This line of work generates augmented data by
manipulating the hidden representations through

194

D
ow

nloaded from
 http://direct.m

it.edu/tacl/article-pdf/doi/10.1162/tacl_a_00542/2074871/tacl_a_00542.pdf by guest on 08 M
ay 2023



perturbations such as adding noise or perform-
ing interpolations with other data points. Hidden-
space perturbations augment existing data by
adding perturbations to the hidden representa-
tions of tokens (Miyato et al., 2017; Zhu et al.,
2020; Jiang et al., 2019; Chen et al., 2020d;
Shen et al., 2020; Chen et al., 2021) or sentences
(Hsu et al., 2017, 2018; Wu et al., 2019b;
Malandrakis et al., 2019).

Interpolation-Based Methods. Interpolation-
based methods create new examples and labels by
linear combinations of existing data-label pairs.
Given two data-label pairs, virtual data-label pairs
are created through linear interpolations of the
pair of data points. Such interpolation-based meth-
ods can generate infinite augmented data in the
‘‘virtual vicinity’’ of the original data space,
thus improving the generalization performance
of models. Interpolation-based methods were first
explored in computer vision (Zhang et al., 2018),
and have more recently been generalized to the
text domain (Miao et al., 2020; Chen et al., 2020c;
Cheng et al., 2020b; Chen et al., 2020a) by per-
forming interpolation between original data and
token-level augmented data in the output space
(Miao et al., 2020), between original data and ad-
versarial data in embedding space (Cheng et al.,
2020b), or between different training examples in
general hidden space (Chen et al., 2020c). Differ-
ent strategies to select samples to mix have also
been explored (Chen et al., 2020a; Guo et al., 2020;
Zhang et al., 2020a) such as k-nearest-neighbors
(Chen et al., 2020a) or sentence composition
(Guo et al., 2020).

We summarize the preceding overview of re-
cent widely used data augmentation methods in
Table 1, characterizing them with respect to aug-
mentation levels, the diversity of generated data,
and their applicable tasks.

3 Consistency Training with DA

While data augmentation (DA) can be applied
in the supervised setting to produce better results
when only a small labeled training dataset is avail-
able, data augmentation is also commonly used in
semi-supervised learning (SSL). SSL is an alter-
native approach for learning from limited data that
provides a framework for taking advantage of un-
labeled data. Specifically, SSL assumes that our
training set comprises labeled examples in addi-

tion to unlabeled examples drawn from the same
distribution. Currently, one of the most com-
mon methods for performing SSL with deep
neural networks is ‘‘consistency regularization’’
(Bachman et al., 2014; Tarvainen and Valpola,
2017). Consistency regularization-based SSL (or
‘‘consistency training’’ for short) regularizes a
model by enforcing that its output doesn’t change
significantly when the input is perturbed. In prac-
tice, the input is perturbed by applying data
augmentation, and consistency is enforced through
a loss term that measures the difference between
the model’s predictions on a clean input and a
corresponding perturbed version of the same input.

Formally, let fθ be a model with parameters θ,
fθ̂ be a fixed copy of the model where no gradients
are allowed to flow, xl be a labeled datapoint with
label y, xu be an unlabeled datapoint, and α(x) be
a data augmentation method. Then, a typical loss
function for consistency training is

CE(fθ(xl), y) + λuCE(fθ̂(xu), fθ(α(xu)))

where CE is the cross entropy loss and λu is
a tunable hyperparameter that determines the
weight of the consistency regularization term. In
practice, various other measures have been used
to minimize the difference between fθ̂(xu) and
fθ(α(xu)), such as the KL divergence (Miyato
et al., 2018; Xie et al., 2020) and the mean-squared
error (Tarvainen and Valpola, 2017; Laine and
Aila 2017; Berthelot et al., 2019). Because gra-
dients are not allowed to flow through the model
when it was fed the clean unlabeled input xu, this
objective can be viewed as using the clean unla-
beled datapoint to generate a synthetic target dis-
tribution for the augmented unlabeled datapoint.

Xie et al. (2020) showed that consistency train-
ing can be effectively applied to semi-supervised
learning for NLP. To achieve stronger results,
they introduce several other tricks including confi-
dence thresholding, training signal annealing, and
entropy minimization. Confidence thresholding
applies the unsupervised loss only when the model
assigns a class probability above a pre-defined
threshold. Training signal annealing prevents the
model from overfitting on easy examples by ap-
plying the supervised loss only when the model
is less confident about predictions. Entropy min-
imization trains the model to output low-entropy
(highly-confident) predictions when fed unlabeled
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Methods Level Diversity Tasks Related Work

Synonym
replacement Token Low Text classification

Sequence labeling

Kolomiyets et al. (2011), Zhang et al. (2015a),
Yang (2015), Miao et al. (2020),
Wei and Zou (2019)

Word replacement
via LM Token Medium

Text classification Kolomiyets et al. (2011), Gao et al. (2019)
Sequence labeling Kobayashi (2018), Wu et al. (2019a)
Machine translation Fadaee et al. (2017)

Random insertion,
deletion, swapping Token Low

Text classification Iyyer et al. (2015), Xie et al. (2017)
Artetxe et al. (2018), Lample et al. (2018)
Xie et al. (2020), Wei and Zou (2019)

Sequence labeling
Machine translation
Dialogue generation

Compositional
augmentation Token High

Semantic Parsing Jia and Liang (2016), Andreas (2020)
Nye et al. (2020), Feng et al. (2020)
Furrer et al. (2020), Guo et al. (2020)

Sequence labeling
Language modeling
Text generation

Paraphrasing Sentence High

Text classification Yu et al. (2018), Xie et al. (2020)
Chen et al. (2019), He et al. (2020)
Chen et al. (2020c), Cai et al. (2020)

Machine translation
Question answering
Dialogue generation
Text summarization

Conditional
generation Sentence High

Text classification Anaby-Tavor et al. (2020), Kumar et al. (2020)
Question answering Zhang and Bansal (2019), Yang et al. (2020)

White-box
attack

Token or
Sentence Medium

Text classification Miyato et al. (2017), Ebrahimi et al. (2018b)
Sequence labeling Ebrahimi et al. (2018a), Cheng et al. (2019),
Machine translation Chen et al. (2020d)

Black-box
attack

Token or
Sentence Medium

Text classification
Jia and Liang (2017)
Belinkov and Bisk (2017), Zhao et al. (2017)
Ribeiro et al. (2018), McCoy et al. (2019)
Min et al. (2020), Tan et al. (2020)

Sequence labeling
Machine translation
Textual entailment
Dialogue generation
Text Summarization

Hidden-space
perturbation

Token or
Sentence High

Text classification Hsu et al. (2017), Hsu et al. (2018)
Sequence labeling Wu et al. (2019b), Chen et al. (2021)
Speech recognition Malandrakis et al. (2019), Shen et al. (2020)

Interpolation Token High
Text classification Miao et al. (2020), Chen et al. (2020c)
Sequence labeling Cheng et al. (2020b), Chen et al. (2020a)
Machine translation Guo et al. (2020)

Table 1: Overview of different data augmentation techniques in NLP. Diversity refers to the difference
of augmented data from existing data and the amount of different augmented data could be generated.

data. We refer the reader to Xie et al. (2020) for
more details on these tricks.

4 Empirical Experiments

4.1 Datasets and Experiment Setup

To provide a quantitative comparison of the DA
methods we have surveyed, we experiment with
10 of the most commonly used and model-agnostic
augmentation techniques from different levels in
Table 1, including: (i) Token-level augmentation:
Synonym Replacement (SR) (Kolomiyets et al.,

2011; Yang, 2015), Word Replacement based on
Language Model (LM) (Kumar et al., 2020),
Random Insertion (RI) (Wei and Zou, 2019;
Miao et al., 2020), Random Deletion (RD)
(Wei and Zou, 2019), Random Swapping (RS)
(Wei and Zou, 2019), and Word Replacement
(WR) based on TF-IDF in Vocabulary Set (Xie
et al., 2020); (ii) Sentence-level augmentation:
Roundtrip Translation (RT) (Xie et al., 2020;
Chen et al., 2020c), Generation from Few-shot
Models (GF) (Ye et al., 2022; Wang et al., 2021);
and (iii) Hidden-space augmentation: Adversarial
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training (ADV) (Goodfellow et al., 2015), Cutoff
(Shen et al., 2020), and Mixup in the embedding
space (Zhang et al., 2018). Most aforementioned
techniques are not label-dependent (except mixup
and Generation from Few-shot), thus can be ap-
plied directly to unlabeled data. For generation
from few-shot models, we use in-context learning
with a few examples and a given label to generate
the input, following Wang et al. (2021). Since
we use BERT-base as our main model, we use
a similar size model for in-context learning and
choose GPT2.

We test them on different types of benchmark
datasets including: (i) news classification tasks
including AG News (Zhang et al., 2015b) and 20
Newsgroup (Joachims, 1997); (ii) topic classifica-
tion tasks including Yahoo Answers (Chang et al.,
2008) and PubMed news classification (Zhang et al.,
2015b); (iii) inference tasks including MNLI,
QNLI, and RTE (Wang et al., 2018); (iv) similarity
and paraphrase tasks including QQP and MRPC
(Wang et al., 2018); and (v) single-sentence tasks
including SST-2 and CoLA (Wang et al., 2018).

For all datasets, we experiment with 10 labeled
data points per class2 in a supervised setup, and
an additional 5000 unlabeled data points per class
in the semi-supervised setup. We use BERT base

(Devlin et al., 2019) as the base language model
and use the same hyperparameters across all
datasets/methods. We utilize accuracy as the eval-
uation metric for all datasets except for CoLA
(which uses Matthews correlation) and PubMed
(which uses accuracy and Macro-F1 score). Be-
cause the performance can be heavily dependent
on the specific datapoints chosen (Sohn et al.,
2020), for each dataset, we sample labeled data
from the original dataset with 3 different seeds to
form different training sets, and report the average
result. For every setup, we fine-tune the model
with the same seed as the dataset seed (in con-
trast to many works which report the max across
different seeds).

We train our models on NVIDIA 2080ti and
NVIDIA V-100 GPUs. Supervised experiments
take 20 minutes, and semi-supervised experi-
ments take two hours. The BERT-base model
has 100M parameters. We use the same hyperpa-
rameter across all datasets, and so only use the
validation set to find the best model checkpoint.

2We also did experiments with 100 labeled examples per
class and found the results consistent.

We use a learning rate of 2e−5, batch size of
16, ratio of unlabeled to labeled data of 3, and
dropout ratio of 0.1 for different augmentation
methods.

4.2 Results with 10 Labeled Examples
Per Class

News/Topic Classification Tasks. The results
are shown in Table 2. We observe that in su-
pervised settings, token-level augmentations work
the best. Specifically, word replacement works
well, getting the highest or second highest score
every time. On the other hand, Generating from
Few-shot models performs very poorly. This is not
surprising since the model used for in-context
learning is GPT2, which is not that good at in-
context learning and the inputs necessary for
news/topic classification is much more compli-
cated. In the semi-supervised settings, sentence
level augmentations (round-trip translation) work
the best, getting the highest or second highest score
every time. This makes sense since for many clas-
sification tasks, multiple words indicate the label,
and so dropping several words will not affect the
label.

Inference Tasks. As shown in Table 3, we ob-
serve that token-level augmentations work the best
overall (e.g., random insertion, random deletion,
and word replacement) for both supervised and
semi-supervised settings. This is a bit surprising
since the inference tasks usually heavily depend
on several words, and changing these words can
easily change the label for inferene tasks.

Similarity and Paraphrase Tasks. From
Table 3, in the supervised settings, we observe that
token-level augmentations (random swapping)
achieve the best performances, while hidden space
augmentations work well in semi-supervised
settings, with cutoff performing the best on
average. This makes sense since for paraphrasing
tasks, augmenting the text usually consists of
paraphrases, and so can easily change whether
two texts are paraphrases of each other.

Single Sentence Tasks. Based on the single-
sentence tasks results in Table 3, hidden space
augmentations (cutoff) provides the biggest boost
in performance in supervised settings, while in
semi-supervised settings, sentence level augmen-
tations (roundtrip translation) work best. We note
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Methods Types News Classification Topic Classification

AG News 20 Newsgroup Yahoo Answers PubMed

None – 78.8(8.9) 65.2(4.8) 56.6(9.4) 63.7(6.1)/49.3(3.9)

SR 79.4(5.9) 66.1(2.5) 56.0(10.1) 62.4(5.7)/48.3(3.9)
LM

Token

76.8(5.1) 60.0(14.4) 56.2(8.4) 60.9(3.0)/47.4(2.5)

Su
pe

rv
is

ed RI 79.5(4.9) 66.6(0.6) 57.3(12.0) 63.7(4.2)/49.4(2.1)
RD 79.6(5.0) 66.8(3.0) 58.0(8.3) 63.4(5.0)/49.3(1.5)
RS 79.5(5.3) 64.8(10.8) 57.1(10.3) 63.8(7.4)/49.5(3.3)
WR 79.7(2.0) 67.5(4.2) 59.3(8.9) 64.9(4.9)/49.4(2.5)

RT Sentence 80.1(4.3) 65.1(7.9) 57.1(9.6) 60.2(5.1)/46.3(6.4)
GF Sentence 25.3(0.7) 5.2(0.1) 27.4(3.5) 33.0(0.0)/9.9(0.0)

ADV
Hidden

78.2(5.3) 65.5(1.6) 53.8(4.89) 37.4(2.6)/19.9(10.6)
Cutoff 79.3(5.0) 66.6(1.4) 57.3(9.3) 60.5(8.3)/46.6(9.4)
Mixup 80.0(6.52) 65.9(3.1) 57.8(4.19) 51.4(19.3)/39.8(3.2)

SR

Token

69.6(29.3) 65.7(1.8) 51.4(9.4) 59.3(5.9)/43.1(11.9)

Se
m

iS
up

er
vi

se
d LM 68.5(13.7) 68.3(2.1) 53.2(6.3) 61.5(6.6)/46.4(4.4)

RI 65.8(5.5) 66.7(1.1) 50.5(3.2) 61.4(11.3)/44.4(17.4)
RD 73.2(14.0) 66.1(3.3) 51.5(7.5) 59.3(7.1)/46.0(3.8)
RS 71.6(16.6) 65.0(2.0) 51.1(7.1) 64.2(12.1)/46.7(11.5)
WR 74.1(12.3) 69.3(2.5) 55.6(5.9) 60.4(7.5)/43.7(14.2)

RT Sentence 82.1(8.2) 68.8(2.4) 59.8(3.9) 64.3(1.2)/49.8(1.9)
ADV

Hidden
82.3(2.33) 66.8(5.9) 55.9(3.89) 62.2(10.8)/46.2(9.8)

Cutoff 79.9(5.5) 67.9(0.8) 60.1(1.0) 62.7(9.0)/48.1(3.2)

Table 2: Topic Classification and News Classification results with 10 examples. We report the average
results across 3 different random seeds with the 95% confidence interval and bold the best results. For
PubMed, we report the accuracy and F1 score.

most augmentation methods hurt performance on
CoLA, a task for judging grammatical acceptabil-
ity. This could be caused by the fact that most of
the augmentation methods try to preserve meaning
and not grammatical correctness.

Token Level Methods Overall, we see that
word replacement works the best for news and
topic classification tasks and random swapping
perform the best among token level methods for
inference, paraphrase, and single sentence tasks.

4.3 Summary of Findings

Based on the results on 10 labeled examples we
conclude that:

• Overall, the best augmentation method de-
pends on the dataset and whether we have
unlabeled data or not.

• In general, word replacement and random
swapping work the best for supervised learn-
ing while roundtrip translation works the
best for semi-supervised learning.

• Token-level augmentation methods work
better for easier classification tasks and sur-
prisingly hurt performance for harder tasks
when the baseline performance is low.

• Token-level and sentence-level augmenta-
tions are most robust than hidden-level
augmentation in the supervised and semi-
supervised settings.

5 Other Limited Data Learning Methods

This work mainly focuses on data augmentation
and semi-supervised learning (consistency reg-
ularization) in NLP; However, there are other
orthogonal directions for tackling the problem of
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Methods Types Inference Paraphrase Single Sentence

MNLI QNLI RTE QQP MRPC SST-2 CoLA

None – 35.2(0.7) 51.8(7.0) 49.8(3.1) 63.9(9.1) 61.8(21.2) 60.5(13.1) 12.9(6.32)

SR

Token

35.1(2.3) 51.4(7.2) 51.5(3.4) 61.3(9.7) 59.7(26.3) 62.1(17.4) 7.2(11.6)
LM 35.3(0.8) 51.0(8.0) 49.0(1.4) 62.4(11) 61.0(24.3) 62.8(9.8) 6.8(15.8)

Su
pe

rv
is

ed

RI 34.9(2.6) 51.5(8.4) 51.5(1.4) 60.6(10.9) 60.6(25.0) 63.3(12.2) 7.8(7.42)
RD 35.5(2.1) 51.1(8.4) 50.9(2.4) 62.4(11.3) 61.2(22.0) 59.7(18.4) 7.1(16.6)
RS 35.1(1.1) 51.5(7.0) 50.9(5.0) 62.6(6.7) 63.2(22.5) 61.2(10.8) 5.2(17.0)
WR 34.5(2.6) 52.0(3.8) 50.0(0.9) 60.6(10.2) 61.0(25.3) 61.8(12.5) 7.0(10.6)

RT Sentence 35.3(0.5) 51.1(9.6) 50.8(4.4) 60.5(17.8) 61.8(23.7) 62.0(1.99) 8.37(8.35)
GF Sentence 33.8(1.7) 50.5(2.3) 47.6(3.2) 59.4(6.6) 56.6(1.7) 53.5(4.1) 3.89 (7.2)

ADV
Hidden

33.3(4.7) 49.7(1.8) 48.3(12.1) 57.5(24.7) 61.5(21.5) 53.3(13.07) 1.37(4.66)
Cutoff 35.1(2.3) 51.4(8.3) 52.2(3.6) 62.6(8.8) 61.0(21.2) 63.5(8.45) 12.4(9.58)
Mixup 32.6(3.5) 49.9(1.4) 49.8(9.2) 63.0(0.3) 62.1(19.8) 62.3(12.3) 4.03(8.68)

SR

Token

35.6(1.0) 52.1(4.5) 52.9(5.4) 53.5(10.7) 68.1(4.0) 61.8(37.9) 6.65(5.69)

Se
m

i-S
up

er
vi

se
d LM 35.0(3.3) 52.5(4.2) 50.2(6.5) 47.9(34.1) 68.4(3.8) 57.3(14.2) 6.38(6.3)

RI 35.8(1.7) 52.1(4.1) 50.7(1.4) 59.6(5.1) 64.9(8.9) 58.3(14.8) 6.55(0.91)
RD 35.2(0.5) 52.1(5.2) 52.6(4.9) 56.1(16.0) 62.4(30.6) 55.7(16.4) 4.33(10.9)
RS 34.6(2.5) 52.1(6.2) 51.5(3.7) 49.8(7.9) 63.2(22.5) 55.2(15.3) 7.77(11.77)
WR 34.8(2.5) 52.1(4.1) 50.9(1.8) 51.8(16.0) 63.1(23.5) 54.8(13.8) 5.43(17.8)

RT Sentence 35.3(2.7) 52.7(4.8) 51.6(4.1) 63.9(7.5) 62.2(12.5) 61.9(20.8) 11.6(14.5)

ADV
Hidden

36.2(8.9) 50.6(1.9) 50.9(6.8) 59.1(14.7) 63.9(9.1) 53.1(5.0) 7.64(25.1)
Cutoff 35.3(2.8) 52.5(4.3) 51.7(6.5) 62.9(9.9) 68.6(4.4) 54.3(9.8) 4.11(11.8)

Table 3: GLUE results with 10 labeled examples per class. We report the average results across 3
different random seeds with the 95% confidence interval and bold the best results.

learning with limited data. For completeness, we
summarize this related work below.

Low-Resourced Languages. Most languages
lack large monolingual or parallel corpora, or
sufficient manually crafted linguistic resources
for building statistical NLP applications (Garrette
and Baldridge, 2013). Researchers have therefore
developed a variety of methods for improving
performance on low-resource languages, includ-
ing cross-lingual transfer learning, which trans-
fers models from resource-rich to resource-poor
languages (Do and Gaspers, 2019; Lee and Lee,
2019; Schuster et al., 2019), few/zero-shot learn-
ing (Johnson et al., 2017; Blissett and Ji, 2019;
Pham et al., 2019; Abad et al., 2020), which uses
only a few examples from the low-resource do-
main to adapt models trained in another domain,
and polyglot learning (Cotterell and Heigold,
2017; Tsvetkov et al., 2016; Mulcaire et al., 2019;
Lample and Conneau, 2019), which combines
resource-rich and resource-poor learning using an
universal language representation.

Other Methods for Semi-Supervised Learning.
Semi-supervised learning methods further reduce

the dependency on labeled data and enhance the
models when there is only limited labeled data
available. These methods use large amounts of
unlabeled data in the training process, as unla-
beled data is usually cheap and easy to obtain
compared to labeled data. In this paper, we fo-
cus on consistency regularization, while there are
also other widely used methods for NLP including
self-training (Yarowsky, 1995; Zhang and Zong,
2016; He et al., 2020; Lin et al., 2020), genera-
tive methods (Xu et al., 2017; Yang et al., 2017;
Kingma et al., 2014; Cheng et al., 2016), and co-
training (Blum and Mitchell, 1998; Clark et al.,
2018; Cai and Lapata, 2019).

Few-shot Learning. Few-shot learning is a
broad technique for dealing with tasks with less
labeled data based on prior knowledge. Compared
to semi-supervised learning, which utilizes un-
labeled data as additional information, few-shot
learning leverages various kinds of prior knowl-
edge such as pre-trained models or supervised
data from other domains and modalities (Wang
et al., 2020). While most work on few-shot fo-
cuses on computer vision, few-shot learning has
recently seen increasing adoption in NLP (Han
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et al., 2018; Rios and Kavuluru, 2018; Hu et al.,
2018; Herbelot and Baroni, 2017). To better lever-
age pre-trained models, PET (Schick and Schütze,
2021a,b) converts the text and label in an exam-
ple into a fluent sentence, and then uses the prob-
ability of generating the label text as the class
logit, outperforming GPT3 for few shot learning
(Brown et al., 2020). How to better model and
incorporate prior knowledge to handle few-shot
learning for NLP remains an open challenge and
has the potential to significantly improve model
performance with less labeled data.

6 Discussion and Future Directions

In this work, we empirically surveyed data aug-
mentation methods for limited-data learning in
NLP and compared them on 11 different NLP
tasks. Despite the success, there are still certain
challenges that need to be tackled to improve
their performance. This section highlights some
of these challenges and discusses future research
directions.

Theoretical Guarantees and Data Distribution
Shift. Current data augmentation methods for
text typically assume that they are label-preserving
and will not change the data distribution. However,
these assumptions are often not true in practice,
which can result in noisy labels or a shift in the data
distribution and consequently a decrease in per-
formance or generalization (e.g., QQP in Table 3).
Thus, providing theoretical guarantees that aug-
mentations are label- and distribution-preserving
under certain conditions would ensure the qual-
ity of augmented data and further accelerate the
progress of this field.

Automatic Data Augmentation. Despite being
effective, current data augmentation methods are
generally manually designed. Methods for auto-
matically selecting the appropriate types of data
augmentation still remain under-investigated. Al-
though certain augmentation techniques have been
shown effective for a particular task or dataset,
they often do not transfer well to other datasets
or tasks (Cubuk et al., 2019), as shown in Table 3.
For example, paraphrasing works well for general
text classification tasks, but may fail for some
subtle scenarios like classifying bias because para-
phrasing might change the label in this setting.
Automatically learning data augmentation strate-
gies or searching for an optimal augmentation

policy for given datasets/tasks/models could en-
hance the generalizability of data augmentation
techniques (Maharana and Bansal, 2020; Hu et al.,
2019).
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