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Abstract—The advancements In machine learning (ML)
opened a new opportunity to bring Intelligence to the
low-end Internet-of-Things (10T) nodes, such as microcon-
trollers. Comventlional ML deployment has high memory and
computes footprint hindering their direct deployment on
ultraresource-constrained microcontrollers. This article high-
lights the unigue requirements of enabling enboard ML for
microcontroller-class devices. Researchers use a specialized
madel development workflow for rescurce-limited applica-
tlons to ensure that the compute and latency budget ls
withim the device limits while still maintaining the desired

nce. We characterize a closed-loop Iy applicable
workilow of ML model development for micrecontroller-class
devices and show that several classes of applications adopt
a specific Instance of it. We present both qualitative and
numerical inslghts Into different stages of model development
by showcasing several use cases. Finally, we ldentity the
open research challenges and unsolved questions demand-
ing careful conslderations moving forward.
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. INTROCLGTION
OW-END Internet-of-Things (1oT) nodes, such ag micro-
controllers, are widely adopted in resowrce-limited
applications, such ag wildlife monitoring, oceanic health track-
ing. scarch and rescue, activity tracking, industrial machin-
cry debogging, onboard navigation, and serial robotics [1],
[2]. These applications limit the compute device payload
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capabilitics and necessitate the deployment of lightweight
hardware and inference pipelines. Traditionally, microcon-
trollers operated on low-dimensional structured sensor data
{e.g.. emperatore and hamidity )y wsing classical methods, mak-
ing simple infercnces at the edge. Recently, with the advent of
machine leaming (ML), considerable endeavors are underaay
to bring ML 1o the edge [3], [4].

Howewer, directly porting ML models designed for high-
end edge devices, such as mokile phones or single-board
computers, are not suitable for microcontrollers. A tvpical
microcontroller has 128-kB RAM and | MEB of flash, while
a mobile phone can have 4 GB of RAM and 64 GB of
storage [5]. The ultraresource limitations of microcontroller-
clazs IoT nodes demand the design of a systematic work-
flow and tools to guide onboard deployment of ML
pipelines.

This article presents the unique reguirements, challenges,
and oppomunitics presented when developing ML maodels
daing sensor information processing on micrecontrollers.
While prior survews [3), [4], [6]. [T] presemt a gualita-
tive review of the mode] development cycle for microcon-
trollers, they fail to provide guantitative comparisons across
alternative workflow choices and insights from application-
specific case studies. In conirast, we illustrate a closed-
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loop workflow of ML model development and deployment
for microcontroller-class IoT nodes with quantitative evala-
ation, numerical analysis, and benchmarks showing different
instances of proposed workfow across various applications.
Specifically, we discuss, in deail, workflow components while
making performance compansons and tradeotfs of the work-
flow adoptions in the existing literatare. Finally, we also
identify bottlenecks in the current mode]l development cycle
and propose open rescarch challenges going forward. Our
contributions are given as follows,
1y We illustrate a coherent and closed-loop ML model
development and deplovement workflow for microcon-
trollers. We delincate cach block in the workflow, pro-
viding both gualitative and memerical insights.
2y We provide application-dependent quantitative evalsa-
tion and comparison of proposed workflow adaptations.
3y We discuss several tradeoffs in the existing model-
development process for microcontrollers and showcase
oppertunitics and ideas in this workspace.
The rest of this article s organized as follows. Section 11
cutlines the TinyML workflow of model development and
deployment for miceocontrollers. Section I explores data
cigineering frameworks. Section [V shows feature projection
techpbgues. Section VW dizcusses mode]l compression meth-
ads. Section VI describes lightweight ML blocks suitable
for microcontrollers. Section VI discusses newral architecture
search (MAS) frameworks for microcontrollers. Section VIIT
cutlines several software suites available for porting developed
madels ente microcentrollers. Section 1X showeases TinyML
online leaming frameworks, Section X provides a quantitative
amd qualitative comparisen of workflow variations depending
an the application. Section X1 presents interrelative and guan-
titative analvsis of individual portions of the sorkflow theough
case studies. Section XIT illustrates open challenges and ideas
for future rescarch, Section X1 provides concluding remarks.

Il. TinvyML WoRKFLOW

We wse the term "TinyML” to refer to model compression,
machine-learning  blocks, AutobL frameworks, and hard-
ware and software suites designed to perform uliralow-power
(=1 mW), always-on, and onboard senser data analytics [4],
[6]. [7] on resource-constrained platforms. Typical TinyML
platforms, such as microcontrollers, have SRAM in the onder
of 10°-10° kB and fash in the order of 107 kB [6]. Table I
provides characteristica of these devices compared to cloud
servers and mobile phones. Given the widespread penetration
af microceniroller-based IoT platforms in our daily lives for
pervasive perceptien-processing-fecdback applications, there
15 a growing push toward embedding intelligence into these

frugal sman objects [3]. BEmbedded Al on microcontrollers
is motivated by apelicabiliny, hdependence from  nefwork
dnfrasrruciure, security and privacy, and Tow deplovment cost,

A Applicability

Meural networks have been shown to provide rich and com-
plex inferences over the first-principle approaches for sensor
data analytics without domain cxpentise. With the cmergence
of real-time ML for microcontrelless, it is possible to wm
IoT nodes from simple data harvesters or first-principles data
processors 1o leaming-enabled inference gencrators. TinybL
combines the lightweighimess of first-principle approaches
with the accuracy of large neural networks.

B Independance From Nebwork Infrastruciure via
Remole Deploymani

Traditionally, sensor data are offlcaded onto models rusning
on mobile devices o cloond seevers [19), [20]. This is mot
suitable for time-critical sense-compuic-actuation applications,
such as antonomous driving [21], [22]), reboet control [4], [23].
and indusirial control system. Moseover, reliable network
bandwidth or power may not be available for communicat-
ing with enline models, such as in wildlife monitoring [1]
of cnergy-harvesting intermitbent systems [24], [25]. [26]).
TinyML allows offline and onboard inference without requir-
ing data offloading or cloud-based inference.

L. Secunty and Privacy

Streaming private data onto third-party cloud servers yields
privacy concemns from end-users, while cybercriminals can
cupleit weakly protected data streams. Federated learning
{FL) [27], secure aggregation [28], and homormorphic encryp-
tion [29] allow privacy-prescrving and secure inference but
suffer from expensive network and compute requirement
Onboard inference constrainsg the source and destination of
private data within the loT node itself, reducing the probabilicy
of privacy leaks and attack surfaces.

Lr Low Deployrment Cosf

While graphica processing units {GPUs) have revolutionized
decp-learning [30], GPUs are energy-hungry and expensive to
maintain continually for inference using small models, leading
to long-term financial and environmental degeneration [5).
A Cortex M4 class microcontroller costs around 5-10 USD
and can run on A cein-cell battery for months, if not years [7).
TinyML allows these microcontrollers to be exploited for
ultralow-power and low-coat Al inference.

Achieving fow deploywient cosr without sacrificing per-
formanece padns requires a unigue workflow te port ML
models onte microcontrellers compared to traditional model
design. Fig. | illustrates the general “closed-loop™ workflow
for TinyML mode] development and deployment. For varous
parts of this workflow, specific technologics and variations
have emerged [6], [8], [31]. which we discuss in upcoming
sections, The workflow can be divided into two phases,
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Fig 1. Glsad-oopwarkhow of porting ML modals cnto microcanbrolliars,
Stap (3)-5tap (8] are rapaated until tha desired parfarmancs |5 achsvad
1] Data engnesning pararms acquisRon, anahdics, and storage of raw
sansoe siraams (sea Saction ). (2) Optional featura projection direcily
reduces dimansionality of iInput data (see Section V). (3) Modals are
chigsan fram a lightwsaighi ML zeo based on the applicaticon and hardwarg
spaciicatons (e Sactions Viand X}, (4] MAS strateqy bullds candidate
madels from tha saarch space lor fraining and evaluates tha medel basad
on cost unclion (sae Sacticn V). [5) Trined candidata modal 5 porad
ta A TingML softeara sulta, (6] TinghL softwara sulte performs inference
angne oplim@ations, desp comprassion, and code genarabion, I alse
provides approcdmata hardwans maincs (e, SAAM, fash, and latency|
{see Sectians W, VI, and VIII]. {7} Embedded C file system is ported
anta the microcantraller via cammand line inleface. [8) Microcantroler
aptionally reports neal runtime handwans medrcs back 1o tha NAS sirategy
{see Section VII). (9) Or-device Iraining o FL is used cocasionally o
ascoaunt far shifts in incaming data distribution (See Seclion 1X).

1) Model Development Phase: The phase begins by prepar-
ing a dataset from raw sensor sireams using data engineering
technigues (see Section I}, Data engineering frameworks ane
used to collect, amalvee, label, and clean sensory streams
to produce a dataset. Optionally, featore projection (sce
Section IV) is also performed at this stape. Feature projec-
tion reduces the dimensionality of the input data through
lincar methods, nonlinear methods, or domain-specific featurne
catraction. Mext, several models are chosen from a pool
af established liphtweight model zoo based on the appli-
cation and hardware constraints {sec Sections %1 and X).
The zoo containg optimized blocks for well-knoan machine-
learning primitives {c.g., convolutional neural networks, recar-
rent neural networks (RNMNa), decision trecs (DTs), k-neanest
neighbors (kNNs), convolutional-recusrent architectures, and
attention mechanisms). To achicve maximal accuracy within
microcontroller SEAM, fash, and latency targets, MAS or
hyperparameter funing is performed on candidate models
from the zeo (see Section VII). The hardware metrics ane
cither obtained through proxies {approximations) or real
MEARUTEIEALE.

2) Moagel Depiopment Phase: The deployment phase begins
by porting the best performing model to a TingML software
suite (oo Scction VIIT). These suites perform infercnee engineg
oplimizations, opefator optimizations, and model compres-
sion (see Section V), along with embedded code generation.
The embedded C file aystem is then fashed onte the micfocon-
troller for inference. The model can be periodically fine-taned
to account for data distribution shifts wsing online learning
{on-device training and FL) framewarks {see Section TX).

To measure and compare the performance of the tinyML
workflow for specific applications, Banbury et al. [9] proposed
the widely used MLPerf Tiny Benchmark Suoite, as illustrated
in Table 1. The benchmark contains four tasks representing
a wider array of applications expected from microcontroller-
class models. These inclode multiclass image recognition,
hinary image recognition, keyword spodting, and oatlier detec-
tion. The benchmark suite also embraces the usage of standard
datasets for cach task and provides quality target metrics
and model size that new workflows should aim o achieve.
Hardware metrics include the working memory requircments
{SRAM), model size (flazh), number of multiply and add
operations (MACs=), and latency. From Sections 111 o X,
wie discuss ecach block in the TinyML workflow, while,
in Section X, we provide quantitative evaluation of the entire
workflow based on applications in light of the benchmarks.
In Section X1 we break down the end-to-end workflow and
provide an analysis of individual aspects.

I1l. DATA ENGINEERING

[rata engineering is the practice of building svstems for
acquisition, analytics, and storage of data at scale [37).
Drata engineering is well explored in production-scale kig
data systems, where robust and scalable analytics engines
{c.g.. Apache Spark, Apache Hadoop, Apache Hive, Apache
H2, Apache Flink, and DataBricks LakeHowse) ingest
real-time  sensory  data via  publish-subscrbe  paradigms
{e.g.. MOTT and Apache Kafka) [38]. Drata streaming systems
provide real-time data acguisition protocols for requirement
definitions and data gathering, while analytics engines provide
support for data provenance, refinement, and sustalnment.
Popular general-purpose exploratory data analysis tools used
in TinyML data analytics inclade MATLAB [39], Gicstio-
TDA [40], OpenCY [41]. Imgaug [42]). Pillow [43]. Scikit-
lzarn [44), and SciPy [45]. To suit the specific needs and goals
of data engineering for TinyML systems, several specialized
framewaorks have emerged, & ilostrated in Takle D11

A omajor challenge for enabling applications that wse ML
on microconirollers is preparing the data and learning tech-
niques that can awomatically generalize well on unseen
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scenarios [13). Thereby, most of these frameworks provide
common data angmentation and data cleaning technigues, such
as geometric transforms, spectral transforms, oversampling,
clazs kalancing, and noise additien. MSWC [33] and Plumerai
[rata [36] go one step funther, providing wnit tests and anomaly
detectors to identify problematic samples and evaluate the
quality of labeled data. Plumerai Data can also automatically
identify samples in the training set that iz likely to be edge
cases of problematic based en model performance on detected
problematic samples. Such test-doven development can help
users discover edge cases and outlicrs during mode] validation
stages, and allow users to apply targeted augmentation, over-
sampling. and label comrection. To reduce data collection bias,
labeling errors, and manual labeling effort, Edge Inpulse [12],
MEWC [313], SensiML DCL [34], and Plumerai Drata [36] pro-
vide Al DSP and heurstic-assisted awtomated labeling todels.
I particular, for large-scale keyword spotting dataset genera-
tion, MSWC can automatically estimate word boundaries from
awdic with franscription using forced alignmeent and extract
keywords based on user-defined hewristics in 50 languages.
MEWC alzo autorsatically ensures that the gencrated dataset
i5 balanced by gender and speaker diversity. Edge Impulse
provides automated labeling of object detection data using
YOLOvS and extraction of word boundarics from keyword
apoiting andio samples wsing DSP techniques. SensiML DCL
allows video-asaisted threshold-based semiautomated labeling
of sensor data. Overall, these frameworks cnsure that the data
being used for training are relevant in context, free from bias,
class-balamced, comectly labeled, contains edge cases, free
from shortcuts, and encompass sufficient diversity [36].

1. FEATURE PROJECTION
An optional step in the TinyML workflow is o dirsctly
reduce the dimensionality of the data. Models operating on
intrnsic dimenzions of the data are compuatationally tractable
amd mitigate the carse of dimensionality. Feature projection
can be divided into three types.

A. Linear Mathods
Linzar methods for dimensionality reduction commonly
used in large-scale data mining inclede matrix factorzation

and principal component analysis (PCA) techniques, such as
singular walue decomposition (SVD) [61), Battered comvo-
lutions [61]. non-negative matrix factorization (NMF) [62],
independent component amalysis (ICA} [63], and linear
discriminant analysiz [&4]. PCA is used to maximize the
preservation of wvamance of the data in the low-dimensional
manifold [65]). Among the popular lincar methods, NMF
is anitable for Gnding sparse, pari-based, and interpretable
represeniations of nonnegative data [62]. SVD is useful for
finding a kolistic yet deterministic representation of inpuat data
with a hierarchical and geometric basis ordered by cormrelation
among the most relevant variables. YD provides a deeper
factorization with lower information loss than NME ICA
is suitable for finding independent features (blind soumce
separation) from pon-Gaussian inpat data [63). ICA does
not maximize variance of muteal orhogonality among the
selected features. Mevertheless, lincar methods are unable o
miadel nonlinearities or preserve the global relationship among
features and struggle in presence of outliers, skewed data
distribution. and one-hot encoded variables.

B Nonbrmear Methods

MNonlinear methods minimize a distance metric {c.g.. fuzzy
cmbedding topology [66], Kollback-Leibler divergence [67],
local neighborhoods [68), and Evclidean norm [69]) between
the high-dimensional data and a low-dimensional latent rep-
resentation. Moenlinear methods to handle nonlinear sampling
aof low-dimensional manifolds by high-dimensional vectors
include locally lincar embedding (LLE) [68]. kernel PCA [69],
t-distributed stochastic neighbor embedding (-5ME) [70]. ani-
form manifold approximation and projection (UMAPF) [66],
and awtoencoders [T1]. Kemel PCA couples k-MM, Dijksira's
algorithm, and partial eigenvalue decomposition to maintain
peodesic distance in a low-dimensional space [69]. Similarly,
LLE can be thought of azs a PCA ecnsemble maintaining
local neighborhoods in the embedding space, decomposing the
latent space into several small lincar functions [68). However,
bath LLE and kernel PCA do not perform well with large and
complex datasets. -SNE optimizes KL-divergence between
student’s T distribution in the manifeld-space and Gaussian
joint probabilitics in the higher dimensional space [70).
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t-SME is able to reveal data stnactures at multiple scales, man-
ifiplds. and closters. Unfortunately, -5NE s computatiomally
capensive, lacks explicit global structure preservation, and
relies on random seeds. UMAP optimizes a low-dimensional
fuzzy cmbedding to be as topologically similar as the Cech
complex embedding [66). Compared to -SNE, UMAP pro-
vides a mose accurate global strocture representation while
also being faster dwe to the wse of graph approximations.
Monetheless, while linear methods have been ported to micro-
controllers [32], [72], noolinear metheds are not switable for
real-time execation on microcontrollers and are wsoally used
for visualizing high-dimensional handerafied featores.

C. Fealure Engineering

Feature cngineering uses domain expertise to exiract
tractable features from the raw data [73]. Typical featurcs
include speciral and statistical features. Domain-specific fiea-
ture extraction s gencrally more suited for microcontrollers
aver linear and nenlinear dimensionality redection techniques
due to their relative lightweightness, as well as the availakil-
ity of dedicated signal processors in commodity microcon-
trollers for spectral processing. Howewer, feature enginecring
requires human knowledge to design statistically significant
features. Feature selection can reduce the number of redun-
dant features further during model development [74]. Feature
selection methods inclede statistical tests, correlation mod-
cling, information-theoretic techniques, tree ensembles, and
mctabeoristic methods (e.g., wrappers, filicrs, and embedded
technbgues) [75].

W PAUNING, QUANTIZATION, AND ENGODING

Model compression aims to reduce the bitwidth and exploit
the redundancy and sparsity inhesent in neural networks to
reduce memory and latency. Han et al. [49] first showed the
concept of pruning, quantization, and Huffman coding jointly
in the context of pretrained deep neoral networks (DMNz).
Pruning [76] refers to masking redundant weights (ic., weights
Iving within a cerain activation interval) and representing
them in a row form. The network is then retrained to update the
weights for other connections. Quantization [77] accelerates
DM inference latency by rounding off weights to reduce bit
width while clustering similar ones for weight sharing. Encod-
ing {e.g.. Huffman encoding) represents common weights
with fewer bits, either through conversion of dense matrices
to sparse matrices [49] or smaller dense matrices theough
parameter redundancies [78]. Combining the theee techniques
can drastically redwce the size of state-of-the-art DNMs,
such as AlexMet (35=. 6.9 MB), LeNet-5 (39=, 44 EB),
LeMet-300- 108 {403, 27 kB), and VGG-16 (49=, 11.3 ME)
without losing accuracy [49].

A, Commaon Modsl Comprassion Techmigues

Table IV showcases and compares several frameworks for
miadel compression for microcontrollers. Among the different
frameworks, TensorFlow Lite [46] is available as pant of
the TensorFlow training framework [T9], while others ame
atandalone libraries that can be integraved with TensorFlow or

PyTorch. 88% of the frameworks provide various quantization
primitives, while 50% of the frameworks support several prun-
ing algorithms, Most of these techniques result in unstrectuned
of random sparse patbermns.

1) Quantization Schames: From Table IV, we can observe
that the most widely used guantization technigee for micro-
controllers is the fixed-precision uniform affine postiraining
quantizer, where a real number is mapped to a fised-point
represcntation via a scale factor and sero-point (offset)
after training [47), [80]. Varistions include guantization of
wieights, weights, and activations. and weights, activations,
and inputs [B1]). While posttraining quantization {with 4, 8,
and 16 bits) has been shown to reduce the model size by
4= amnd specd up inference by 2-3x, quantization-aware
training is recommended for microcontreller-clas models 1o
mitigate layverwise guantization error due to a large range of
weights across channels [47), [80). This is achicved through
the injection of simulated guantization operations, weight
clamping, and fusion of special lavers [51], allowing up
to 8x model size reduction for same of lower accuracy
drop. Howewer, care must be faken to ensure that the target
hardware supporis the ased bitwidth. To account for distinct
compute and memaery requirements of different layers, mixed-
precision guantization assigns different kitwidths for weights
and activation for each layer [82). For microcontrollers, the
network subgraph is represented as a guantized convolu-
tional layer with vectorized MAC unit, while special lavers
are folded into the activation function wvia integer channel
normalization [55], [B3). Mixed-precision quantization pro-
vides Tx memory redaction [55] kot is supported by lim-
ited models of microcontrollers. Recently, binarized neural
networks [24] have been ported onto microcontroller-class
hardware [52], where the weights and activations are gquantized
tir a single bit (—1 or +1). Binarized quantization can provide
8.5-19x specdup and 8 x memory reduction [53].

21 Pruning Afgorithmz: Among the different pruning algo-
rithms, welght pruning is the most common, providing
4= specdup and 5-10x memory redoction [48), [49]. Weight
pruning follows a schedule that specifies the type of layers to
consider, the sparsity distribution to follow during training of
fine-tuning, and the metric to follow when pruning (pruning
palicy). Common weight pruning evaluation metrics include
the level and norm of weights [54], [79]). For intermittent
computing systems with extremely limited power budgets,
the pruning policy usually includes the encrgy and memory
badget to maximize the collection of interesting events per unit
of energy [24). Pruning policies for intermittent computing
treal pruning as a hyvperparameter tuning problem, sweeping
through the memory, encrgy, and accuracy spaces to build a
Pareto fronticr. Some frameworks [51], [54] provide support
for structured pruning, allowing policies for channel and Alier
pruning rather than pruning weights in an iregular fashion.

B Struciured Sparsify

Although model compression improves specdup, elimi-
nates ineffective compuatations, and reduces storage and mem-
OTy access costs, unstroctured sparsity can indwee freegular
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processing and waste execution time. The bencfits of effi-
cient acceleration through sparsity reguire special hardware
amd software support for storage, extraction, communication,
computation, and lead balance of nonzero and trivial clements
amd imputs [B3]. Several technigues for exploiting structured
sparsity for microcontrollers have emerged. Bayesian com-
pression [85), [87] assumes hierarchical, sparsity-promoting
priors on chanmels (output activations for comvolutional layers
amd input featares for fully conmected lavers) wia variational
inference, approximating the weight posterior by a certain
distribution. For the zame accuracy, Bayesian compression
can reduce parameter count by B0x over unpruncd mod-
cls. Layerwise SIMD-aware weight pruning [S8] divides
the weights into groops equal to the SIMD widith of the
microcontraller for maximal SIMD unit wtilization and column
index sharing. Triwial weight groops are pruned based on
the root mean aquare of each group. SIMD-aware pruning
provides 3.54x speedup and 88% reduction in moedel size
compared to 190 speedup and 80% reduction in model
size provided by traditicnal weight pruning over unproned
miadels. Differentiable network pruning [39) performs strsc-
tured channel proning during training by applying channelwise
binary masks depending on channel salience. The size of cach
layer is learned through bilevel continoous gradient descent

relaxation through praning feedback and resource feedback
loszes without additional training overhead. Compared to
traditional pruning methods, differentiable pruning provides
ap o 1L.7x speedup while compressing anprumed models by
8. Doping [90], [91] improves the accuracy and compres-
sion factor of metworks compressed using stroctured matrices
[eg.. Kronecker products (KPs)) by adding an extremely
aparse matrix using comatrix regularization to redece comatriz
adaptation during training. Doped KP omatrices achieve a
2555 speedup and 1.3-2.4x higher compression factor
aver traditional compression techniques, beating weight pron-
ing and low-rank methods with 8% higher accaracy.

VI, LIGHTWEIGHT MACHINE LEARNING BLOCKS

Ta reduce the memory footprint and latency while retaining
the performance of ML models running on micrecontrollers,
several ulira-lightweight ML blocks have been proposed,
as illustrated in Fig. 2. 'We describe some of these blocks in
this section.
A Sparse Projechion

When the input feature space 15 high-dimensional, sparsely

projecting input features onto a low-dimensional linear man-
ifold, called prototypes, can reduce the parameter count and
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Fig 2. Exampla of lightwaight ML blocks, () Sparse projaction onto low-gimaensional linear manifold yelds lightaaight OTs and kN clessifiars,
(k] Fire module containing botllerack [paintaise] and excitation (poinbwise and depthwise) carolutional lapers. (o) Inverted residual connection
betyean squesze layers instead af sacilafion layen reduces memory and campule. (d) Growp carsalulion with dhannel shuffle mproses cross-

channel relations. (&) Adding a

paled residual connestiaon and enfarcing RMN matrices to be low rank, sparse, and quantized yields siable and

lighitweaighd FMM. () TCMs exiract spatictemparal represeniations using causal and dialed carolutian kernels. () Depfwise spparable canvolution
yields 7-%= memary savings cver vanila cormolution kemel (ligure adapied fram [2]h

improve compute efficiency of models. The projection matrix
can be leamed as part of the model fraining process using
stochastic gradient descent and Sterative hard thresholding to
mitigate accurscy loss. Bonsai [57) is a nonlinsar, shallew, and
sparse DT that can make inferences on prototypes. Similarly,
ProtoMM [58] is a lightweight kNN classifier that operates on
Protolypes.

B. Lighlweigh! Spatial Convalulion

SgueczeMNet [92] brought on several microarchitectural
cohancements to AlexNet [93). These include replacing
3 = 3 kernels with pointwise filters, decreasing input channel
count using pointwise filters as a lincar bottbeneck, and late
downsampling to enhance feature maps. The resulting network
consists of stacked “fire modules.” with each module contain-
ing a bottleneck layer (layer with pointwise filters) and an
cxcitation layer (mix of pointwise and 3 = 3 filters). Using
pruning, quantization, and encoding, SqueczeMNet reduced the
size of AlexMet by 510x (<05 MBE). MobileMetsV1 [12]
introduced depthwise scparable comvolution [11] (channel-
wiae convolution followed by bottlencck layer), and width
amd resolution muoltipliers to control layer widih and input
reaolution of AlexMNet Depthwise separable comvolution is
93 cheaper and induces T-9= memory savings over 3 = 3 ker-
nels. MobileMNetY2 [94] introduced the concepts of imnvented
residuals and linear bottleneck, where a residoal connection
cxists botween bottlencck layers rather than excitation layers,
amd a linear output is enforced at the last comwelution of

a residual block. To reduce channel count, the depthwise sepa-
rable convolution laver can be enclosed between the pointwise
group comvelation layer with channel shuffle, thereby improv-
ing the semantic relation between input and ooatput channels
across all the groups through the uwse of wide activation
maps [95]. Instead of having residual connections across two
layers, the gradient highway can act as a medium to feed cach
layer activation maps of all preceding lavers. This is known
as channelwise feature concatenation [%%] and encourages
rense and stronger propagation of low-complexity diversified
feature maps and gradients while drastically reducing network
parameter count.

C. Lightweight Multiscale Spatial Convelution

For scalable, efficient, and real-time object detection across
scalea, EfficientDer [97] imtroduced a bidirectional featwre
pyramid network (FPN) to aggregate featwres at different reso-
lutions with a two-way information flow. The feature network
topology is optimized through NAS via hearistic compownd
scaling of weight, depih, and resolution. EfficientDet is 4-9=
amaller, uses 13-42 = fewer FLOPz, and outperforma (in terms
of latency and mean average precision) YOLOw3, RetinalMet,
AmaebaMet, Reanet, and DeeplabVl. Scaled-YOLOwd [98]
comveris portions of FPY of YOLOwd [99] to cross-stage
partial networks [100], which saves up to 30% computational
badget over vanilla CHNN backbones, Removal or fusion of
batch normalization layers and downscaling input resolution
can specd up muoltiresolation inference by 1688 = [10]1] over
vanilla YOLO [102] or MobileMetsW 1 [12).
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0 Low-Rank, Stabiized, and Quantized
Recurrant Models

Although BMMN= are lightweight by design, they soffer
from ecxploding and vanishing gradient problem (EVGF) for
long time-serics sequences. Widely used solutions o EVIGE,
namely, long shont-tenm memory (LSTM) [103), gated recur-
rent units [L04], and wnitary BBMN [103], either cause a
loss in accuracy of increase memory and cormpute overhead.
FastRMN [59] solves EVGPE by adding a weighted residoal
connection with two scalars between RMNN layers to stabilize
gradients during training withowt adding significant compute
overhead. The scalars control the hidden state wpdate extent
based on inputs. FastGRENMN [59] then corveris the residoal
connection to a gate while enforcing the BEMN matrices to
be low-rank, sparse, and quantized. The resulting RMM is
35 smaller than gated or unitary RNM. Kronecker recursent
units [90], [106] wse KPs to stabilize RNM training and
decompose large RNM matrices into rank-preserving smaller
matrices with fewer parameters, compresaing BNM by 16-50x
withouat significant accuracy loss. Doping, comatrix adaptation,
and comatrin regolarization can further compress Kronecker
pecwrrent units by 1.3-24x [91]. Legendre memory units
(LMUs) [107], derved to orthogonalize it contimous-time
history, have 10000« more capacity while being 100 smaller
than LETM.

E. Tempoval Cormeiutional Nelworks

Temporal convolutional networks (TCMs) [1O&], [10%] can
jointly handle spatial and temporal features hierarchically
without the explosion of parameter count, memory fostprint,
layer count, or overfitting. TCM convolves only on current
amd past clements from earlier layers but not future inputs,
therehy maintaining temporal ordering without requiring recuar-
rent connections. Dilated kemels allow the petwork to dis-
cover semantic connections in long temporal seguences while
increasing network capacity and receptive field size with fewer
parameters of lavers over vanilla BMMN. Two TCHN layers
are fused through a gated residual connection for expressive
nonlincarty and temporal correlation modeling. A time-serics
TCHM can be 100= smaller over a CNMN-LSTM [L10], [111].
TCM also supports parallel and owt-of-order training.

£ Alterfion Mechanisms, Transformers,
and Auloancoders

Attention mechanisms allow neoral networks to focus on
and extract impontant featwres from long temporal sequences.
Multihead self-attention forms the central component in trans-
formers, extracting domain-invariant long-term dependencics
from scquences without recusrent units while being efficient
amnd parallelizable [112). Attention condensers are lightweight,
self-contained, and standalone attention mechanisms indepen-
dent of lecal context convelation kernels that learn condensed
cmbeddings of the semantics of both local and cross-channel
activations [113). BEach module contains an encoder—decoder
architecture coupled with a sclf-attention mechanizm. Coupled
with machine design exploration, attention condensers have
been used for image classification (4,17 = fewer parameters

than MobileMetaV1)y [114], keyword spotting (up to 507Tx
fewer parameters over previows work) [113], and semantic
segmentation (72x  fewer parameters over RefineMet and
EdgeSegMet) [115] at the edge. Long-short range atiention
{LSRA) uses two heads (convolution and attention} to capturn:
both local and global contexts, expanding the bottlemeck
while using condensed embeddings o reduce computation
cost [116]). Combined with pruning and quantization, LSREA
transformers can be 8= smaller than the vanilla transformes
architeciure. MobileViT combines the bepefits of convolu-
tional networks and transformers by replacing local processing
in convolution with global processing, allowing lightweight
and low-latency transformers to be implemented wsing comvo-
lation [LLT). Instead of using special attention and transformes
blocks, transformer knowledge distillation teaches a small
transformer to mimic the behavior of a larger transformer,
allowing up to 7.5x smaller and 9.4= faster inference over
hidirectional encoder representations from transformers [118).
Customized data layout and loop reordering of each atten-
tion kernel, coupled with guantizaticn, have allowed porting
transformers onto microcontrollers [119) by minimizing com-
putationally intensive data marshaling operations. The use of
depthwise and pointwise convolution has been shown to yield
autoencoder architecturcs as small as 2.7 kB for anomaly
detection [130].

VII. NEURAL ARCHITEGCTURE SEARGH

MAS is the automated process of finding the most opti-
mal meoral network within a mewural network search space
given target architecture and network architecture constraints,
achicving a balance between accuracy, latency, and encrgy
usage [L25], [126], [127]. Table V' compares several MAS
frameworks developed for microcontrollers. There are theee
key clements in a hardwarc-aware NAS pipeline, namely, the
search space formulation (sec Section YII-A), scarch sirategy
{see Section VII-B), and cost function (see Section YII-C).

A Search Space Formulabion

The scarch space provides a set of ML operators, valid
conmection rules, and possible parameter values for the search
algorithm to explore. The newral network scarch space can be
represented as layerwise, cellwise, or hierarchical [125].

1) Laysnwize: In layerwise search spaces, the entire model
is generated from a collection of serialized or sequential neural
operators. The macroarchitecture (e.g., number of layers and
dimensions of cach layer), initial, and terminal layers of the
network are Axed, while the remaining layers are optimized.
The strocture and connectivity among various operators ans
specified wsing variable-length strings, encoded in the action
apace of the scarch strategy [126]. Although such search
apaccs are cxpressive, layerwise scarch spaces arc computa-
tionally expensive, reguire hardeoding associations among dif-
ferent operators and parameters, and are nod gradient friendly.

21 Calwise: For cellwise (or templatewise) scarch spaces,
the network is constructed by stacking repeating fixed blocks
of modifs called cells. A cell is a directed acyclic graph
constructed from a collection of neural operators, representing
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some feature transformation, The search srategy finds the
most optimal set of operators (o construct the cell recursively
in stages by treating the output of past hidden layers as hidden
states to apply a predefined set of ML operations on [128].
Cell-based search spaces are more time-efficient compared to
layerwise approaches and casily transferable across datasets
bt are less flexible for hardware specialization. In addition,
the global architecture of the network is fixed.

3 Higrarchical: In tree-based search spaces. bigger blocks
crcompassing specific cells are created and optimized after
cellwise optimization, Primitive templates that are known to
perform well are wsed to construct larger network graphs
amd higher lewel motifs recursively, with feature maps of
low-level motifs being fed inte high-level motifs. Factorized
hicrarchical search spaces allow cach layer to have different
Elocks without increasing the search cost while allowing for
hardware specialization [129).

For applications with extreme memory and energy bad-
get (e.g., intermittent computing systems), the search space
gocs down fo the execotion level to inclede operator and
inference optimizations (e.g.. loop transformations, data rewse,
amd choice of in-place operators) rather than optimizing the
micdel at the architectural level, iNAS [124]) uses reinforcement
leaming (RL) to optimize the tile dimensions per layer, loop
order in cach layer, and the nomber of tile owiputs to preserve
in a power ovele for convolutional moedels, When combined
with appropriate power-cycle encrgy, memaory, and latency
constraints, iMAS reduced intermittent inference latency by
G0 compared to NAS frameworks operating at the architec-
tural level with a 7% increase in search overbead. Likewise,
micro-TWh [130) wses a learning-cnabled schedule explorer
to perform automated operator and infercnce optimizations
at the execution level. We discuss some of these optimiza-
tions in Section VII-A and operation of micro-TYM in
Section VIII-B.

B. Search Sirategy

The search strategy inwolves sampling, training, and cval-
uating candidate models from the scarch space with the
goal of fnding the best performing model. This is done
using RL, one-shot gradient-doven MNAS, evolutionary algo-
rithms (with weight sharing), or Bavesian optimization [134].
Recent technigques, known & raining-free NAS, aim to per-
form MAS without the costly inner loop training [135].

TABELE VI
CoMPARISON OF DIFFERENT MAS SEARCH STRATERIES [B], [131]

Swans b Sy (=TT Lairms kel A D s | s rwrsh Loml
[ e ) e H o
Rrwbacemes Lrowng © | 2098 T e | 7P | e W T
e ™
F T FLE] T =t AL RS B L T
A it TFe s | ek | CEBISAN | TR ek, | &
[Tk 741 B0 [ LS
Tamr= 1O F= Dwve siaml BHSAT T Lo e ey ek oimes

s g Pl | el (v n M o iy il i K wbe b Bl vmakebi md T il [
" Tl i Bt o P i Bt isad b el ool W s mLadCh Bl oomd Wbl w il wach
T AN e 178 ] amed MMAEN [EOTL T Y S (10T

Table W1 compares the performance of different NAS search
strategics on the ImageMet dataset for MBMetv3 [133]) back-
bone. We distill the insights from Table VI

1) Reinforcement Learming: BL technigues, swch as MAS-
Met [128] and MMNASNet [132], model NAS as a Markov
Drecision Process on a proxy dataset fo reduce scarch fime.
RL controllers {e.g., RMNNs traired via proximal policy opti-
mization (PPO). decp deterministic policy gradient (DDPG),
and C-leaming) are used (o find the optimal combination of
newral metwork cells from a predefined set recursively. The
network graph can cither consist of a series of repeatable and
identical blecks (e.g., comvolutional cells) whose structurcs
are found via the controller or represented in a factorized
hicrarchical fashion via a layerwise stochastic supernetwork.
Device constraimts are incluoded in the reward function to
formulate a multiokjective optimization problem. Amoeng the
different RL controllers, O-leaming-based algorithms work
for simple search space (e, discrete and finite with tens
of parameters) [136] created through expert knowledge. PPO
and DDPG are useful when the search space s complex
{ie., contimeous with thousands of parameters) [137]. PPO-
based on-policy algorithms are more stable than DDPG but
demand more samples to converge than DDPG [ 138]. Owverall,
RL processes are slow to converge, preventing fast exploration
af the scarch space. In addition, fine-tuning candidate networks
increases scarch costs.

2 Gradient-Oriven NAS: Differentiable NAS using contin-
uwous gradient descent relazation can reduce the scarch and
training cost further on the target dataset over RL-based
technigues. The goal is o leam the weights and architec-
tural encodings through a nested bilevel optimization problem
with the gradients obtained approximately. The optimization
problem can be efficiently handled uwsing path binarization,
where the weights and encodings of an overpararetrized
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network are alternatively frozen during gradicst wpdate wsing
binarized gates, The final subnetwork is obtained wsing path-
level pruning. Hardware metrics are converted 1o a gradient-
fricndly continuons model before being used in the optimiza-
tion function. The search space can consist of static blocks
af directed acyclic graphs containing network weights, edge
aperations, activations, and hyperparameters of a factorized
hicrarchical supemetwork, Examples of gradient-driven NAS
inclode DARTS [139], FBNet [140], ProxylesMAS [129],
amd MicroNets [B]. Drawbacks include high GPU memony
consumption and training fime due o large supernctwork
parameter count and imability o generalize across a broad
spectmam of the target hardware, requiring the MAS process
to be repeated for mew hardware.

3) Evolutionary Saarch With Weight Sharng: To eliminate
the need for performing MAS for different hardware plat-
forms separately and redece the fraining fime of candidate
netwaorks, several weight-sharing mechanisms (WS-MAS) have
cmerged [5]. [31). [121], [143]), [144]). WE-MAS decouples
training from search by training a “once-for-all” supemetwork
consisting of several subnetworks, which fits the constraints of
celectic target platforms. Evelutionary search 15 used during
the search phase, where the best performing subnetworks
are selected from the supemetwork, crossed, and mutated
to produce the mext gencration of candidate subnetworks.
Progressive shrinking and knowledge distillation ensure all
the subnetworks are jointly fine-tuned without interfering
with large subnetworks. Evolutionary search can also be
applied to RL scarch spaces [145] for faster conwergence of
applied on several candidate architectures not part of a super-
network [122). Mevenheless, evolutionary W3-MAS suffers
from ecxcessive computation and fime requirements due to
supemetwork training, exacerbated by fine-tuning of candidate
networks and slow convergence of evolutionary algorithms.

4) Bayesian Optimizafion: When training infrastrectune is
wieak, the scarch space and hardware metrics are discon-
tinuous, and the training cost per model is high, Bavesian
MAS is uwsed as a black-box optimizer. Given their problem-
independent nature, Bayesian NAS can be applied across
different datasets and heterogenons architectures without being
constrained o one specific type of network (e.g, CNM or
RNM), provided support for conditional search. The perfor-
mance of the optimizer 15 highly dependent on the surrogate
moadel [146]. The moest widely adopted surrogate model is
the Gaussian process, which allows uncertainty metrics to
propagate forward while looking for a Parcto-optimal fronticr
amd i known to outperform other choices, such as random
forest or tree of Parzen estimators [146]. The acquisition
function decides the next set of parameters from the search
apace to sample from, kalancing exploration and exploitation.
The loss function is modeled as a constrained single-ohbjective
af scalarized multiobjective optimization problem. Examples
include SpArSe [86), Vizier [147), and THIN-Bayes [123].
Unfortunately, Bayesian MAS docs not perform well in high-
dimensional search spaces {e.g., performance degrades beyonmd
a dozen parameters [148]). Moreover, Bayesian optimizers ane
tvpically wsed to optimize hyperparameters for fived network
architectures instead of muoltiple architectures as the Gaussian

process docs not directly sopport conditional search across
architectures. Only THIM-Bayes can sample scross different
architecturcs thanks to suppost for conditional search via
miualtiple Gaussian surrogates [123].

5 Training-Free MAS: Training-free MAS estimates the
accuracy of a neural metwork cither by using proxies developed
from architectural hewristics of well-known network archi-
tectures [115] o by using a graph neural network (GRNG
to predict the accuracy of models generated from a known
search space [149], [150]. Examples of gradient-based accuo-
racy proxics include the cosrelation of Rellll activations
{Tacobkian covariance) between minikatch datapoints at CMN
initialization [151], the som of the gradient BEuclidean norms
after training with a single minibatch datapoints [152], change
in loss due to layer-level proning afier training with a sin-
gle minibatch datapoint (Fisher) [152], change in loss due
to paramcter pruning after training with a single minibatch
datapoint (Snip) [153], change in gradient norm due to para-
meter pruning afier training with a single minibatch datapoint
{Grasp) [154], the product of all network parameters (synaptic
flow) [155], the spectrum of the neural tangent kernel [ 156],
and the number of linear regions in the search space [156).
Gradient-based proxies stll reguire the use of a GPU for gra-
dient calculation. Recently, Li et al. [115] proposed a gradient-
free accuracy proxy, namely, the sum of the average degree
aof cach building block in a CHN from a network topology
perapective, Unfortunately, both proxics and GNMN suffer from
the lack of generalizability across different dataseis, model
architecturcs, and design spaces, while the latter also suffers
from the training cost of the accurscy prediction network itself.

L Cost Funchion

The cost function provides numerical feedback to the search
strategy about the performance of a candidate nerwork. Com-
mon paramctess in the cost function include petwork accuracy,
SEAM usage, flash usage, latency, and energy usage. The goal
of MAS is to find a candidate network that finds the extrema
of the cost function, L., the cost function can be thought of as
secking a Pareto-optimal configuration of nevwork parameters.

L Cost Funclion Formuwiation

The cost function can be formulated as either & singles
of multiobjective optimization problem. Single-objective opti-
mization problems only optimize for model accuracy. To take
hardware constraints into account, single-objective optimiza-
tion problems are usually treated as constrained optimization
problems with hardware costs acting as regularizers [123).
Multiohjective cost fumctions are usually transformed fmto
a single-objective optimization problem via weighted-sum
of scalarization techniques [B6]) of solved using genetic
algorithma.

E. Hardware Frofiling

Hardwarc-aware NAS employs hardware-specific cost fumc-
tions of scarch beuristica via hardware profiling. The target
hardware can be profiled in real time by munning sampled
models on the acal warget device (hardware-in-the-loog),
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catimated wsing lookop tables, prediction models, and silicon-
accurate cmulators [157] or analytically estimated using archi-
tectural hewrstics. Common hardware profiling techniques
are shown in Table VI Hardware-in-the-loop is slowest but
most accurate during MAS runtiree, while analytical estima-
tion is fastest but least accurate [125], [134). Examples of
amalvtical models for microcontrollers include wsing FLOPs
as a proxy for latency (8], [122) and standard BAM usage
miode] [86] for working memory estimation, Recently, latency
prediction models have been made more accurate through
kemel (execution unit) detection and adaptive sampling [158].
For intermitient computing systems, the latency is the time
required for progress preservation (writing progress indicators
and computed tile cutpois to flash at the end of a power
cycle), progress recovery (system rebood, loading progress
indicators, and tiked outputs into SEAM), battery recharge, and
running inference (cost of computing multiple tiles per energy
cycle) [124). The SEAM usage in such aystems is the swm
of memory consumed by the input feature map, weights, and
cutpat feature map, dependent upon the tile dimensions, leop
arder, and preservation batch size in the scarch space [124].

VI TiMyhML SOFTWARE SLITES

After the best model is constmacted from lighvweight ML
blocks through NAS, the model needs o be prepared for
deployment onto micrecontrollers. This I8 performed by
TinyML software suites that gencrate embedded code and
perform operater and inference engine optimizations, some of
which are shown in Fig. 3 and discussed in Section VII-A.
I addition, some of these frameworks also provide inference
cngines for resource management and model execution during
deployment. We  discuss featares of notable TinyML software
suitea in Section VII-B.

A. Operalor and Infarence Oplimizalions

All TinyML software suites perform several operator and
inference engine optimizations to improve data locality, mem-
ary usage, and spatictemporal execution [ 162]. Commaon tech-
niques inclede the wse of fused or in-place operators [1340],
loop tranaformations [161], and data rense (outpat sharing o
valae sharing) [163].

Fig. 3. Example cparatar optimizatons parformed by TingML satbvars
suftes. |a) Usa of tused and in-place activated oparators reducas memony
access oosl and improves inference spead [158], [189]. (b} Canverting
depthwise comalulion o in-place depiivaise convalufion reduces peak
memory usage by 1.6:=by allowing e it channel autput activation
{sborsd in & bufer) b5 overwnita the previcus shannals inpul acivatian
until wrilten bad b the laslt channels npul activation [31]. () Loeop
unrelling alminses branch ingruction ovechead [31] [d) Laep lilmg
ancouragas reuse of aray elemants within each like by partiioning e
leap’s ierative spacs inta blecks [180], whils laop recedaring (with tiling]
improves spatisbemparal execution and locality of relerence within device
remory sarstrains [181], [162].

idi

1) In-Fiace and Fused Operators: Operator fusion or folding
combines several ML operators into a specialized kemel
without saving the intermediate featore representations in
memery (known as in-place activation) [130]. The softwarne
suites follow waer-defined rules for operator fusion depending
on graph operator type (e.g. injective, reduction, complex-
out fusable, and opague) [130]. The wse of fused and in-
place operators has been shown o reduce memory usage by
L= [31) and improve speedap by 1.2-2w [130].

2) Loop Transformatons; Loop wansforrmations  aim o
improve spatictemporal execution and inference specd by
reducing loop everheads [161]. Common loog transformations
include loop reordering, loop reversal, loop fusion, loop dis-
tribution, loop unrolling, and loop tiling [1&0). [161], [162].
Loop reordering (and reversal) finds the loop permutation that
maximizes data rense and spatictemporal locality. Loop fusion
combines different loop nests into one, thereby improving
temporal locality, and increasing data locality and reuse by cre-
ating perfect loop nests from imperfect loop mests. To cnable
loop permutation for loop nests that are ot permutable, loop
distribution breaks a single leop into multiple loops [L61].
Loop unrolling helps climinate branch penaltics and helps
hide memory access latencies [130]. Loop tiling improves data
rense by diving the loops inte blocks while considering the size
of cach level of memory hicrarchy [160].

) Dats Asuwse; Data rewse aims to improve data lecal-
ity and reduce memory access costa. While data reuse is
moatly achicved through loop transformations, several other
technigues have also been proposed. CMSIS-NN provides

special pooling and muliplication operations 0 promeds
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Miciesfl Caognilive  Toolka,
Lasagne, Cosvnels

Manobdpe Al Sjudis ARR Cortn- 15 TRl 03 semes) Lhnsupervissd kearmng . £ A
IETMicreclectronicsi [173

EloquentML [12] ARAT Caren- WM, Tapressil ESPLL | MR DT, S0, BI. Koo, WE. | Temsoarblow, Scikil-Learn

Espressif ESPE266, AVE RISC EVM. SEFR dfeature exiraction
through PCAG
Sklemm Poiner [ 174) M CNILF), T3, 5WN, RE, Sciki-Leam o I
AdlaBowea, B

EmbML [175] ARRT Contua-S AWE el5e R (MLE, 151, 598, repnessors | Scikil-Leam, Weka v v
EAD P e BMCL [ 106] ABRM Cones- M. PLULP Pelb EmBM o s
SONIC, TAILS™ [22) T MSP40 Pl TersarF liow + 4

T lmderence IMumewnrk far IEerminent compuling sysiens.

data rewse [164). TE-Net [163] proposed the use of direct
buffer comvolution on Cortex-M microcontrollers to redwce
mnput unpacking overhead, which reuses inputs in the current
window unpacked in a buffer space for all weight filters.
Inpui rewse redoces SEAM usage by 257w and provides
2 gpeedup. Similarly, for GAPS processors, the PULP-NM
library provides a rewsable im2ool buffer (height-widih—
channel data lavout) to seduce im2eol creation overhead
[165], [16&], providing partial spatial data rease. PULP-NM
also  features register-level data rewse, achieving 204
speedap over CAMSIS-NM and 1.9 improvement over native
GAPR-MM libraries.

B. Motabla TingL Soffware Suwiles

Motable open-source TinyML frameworks and infercmce
cngines inclede TensorFlow Lite Micro (TFLM) [446]. [167],
uTensor [168], uTYM [130], Microsoft EdgebL [57].
(58], [59]. [60], [169]), [170). [171]. CMSIS-NM [164],
EloquentML [72], Sklearn Porter [174], EmbML [175],
and FANMN-on-MCU [176]). Closed-source TinvML frame-
wiorks and inference engines include STMWM3IZCube Al [172],
ManoBEdge Al Studio [173], Edge Impulse EON Compiler [32],
TinyEngine [31] [121), Qeexo AutobL [35], Deeplite MNeu-
tring [177), Imagimob AL [178], Meuton TinyML [179], Real-
ity Al [180), and SensibL Analviics Studio and Enowledge
Pack [34]. Table VIII compares the features of some of these
framewaorks.

1) TensorFiow Lite Micro: TELM [46], [167] is a specialized
version of TFLite aimed toward optimizing TF models for
Cortex-M and ESP32 MCU. TFLite Micro cmbraces sev-
cral embedded runtime design philosophics. TFLM drops
uncommaon featares, data types, and operations for ponabilivy.

TEfET A | RS Py e

W%E@

T Ea
g wiaar
[
g A
. i §
Coprr wias W [

re——
L L
Jas-d JEH

Fig. 4.  Opeation of TFLM, an inlerpreter-based inference angine.
{a] Traming graph is frazen, apfimized, and convested ba a Natbuffer
sanalized model schema, suilable for daployment in embedded devices.
k] TFLM rundtime APl preallocales & partion al memary in the SRAM
jcalled arena] and pardorme bin-packing dwing runtime o oplimize
rmemony usage {ipure adapled taam [167]).

e i

It also avoids specialized librarics, operating aystems, or build-
syatem dependencies for beterogenecous hardwarne support and
memary efficiency. TFLM avoids dynamic memory allocation
to mitigate memory fragmentation. TEFLM interprets the neural
network graph at runtime rather than generating C++ code
to support casy pathways for opgradability, muoliitenancy,
multithreading, and mode] replacement while sacrificing finite
savinga in memory. Fig, 4 summarizes the operation of TELM.
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TFLM congists of three primary components. First, the oper-
ator resolver links only ecssential operations o the model
binary file. Second, TFLM preallocates a contiguous memony
stack called the arena for initialization and storng runtime
variables. TFLM wses a bwo-stack allocation strategy o discard
initialization variables after their lifetime, thereby minimizing
memary consumption. The space between the two stacks
15 used for temporary allocations during memory planning,
where TFLM uses bin-packing to encourage memory reuase
and yield optimal compacted memmory layouts during mantime.
Finally, TFLM uses an interpreter to resolve the metwork
graph at mntieee, allocate the arena, and perform runtime
calculations. TFLM was shown to provide 2 2= speedup and
1.08 % memory and flash savings over CMSIS-MM for image
recagnition [31].

21 wlensar: uTensor [168) generates C++ files from TF
models for Mbed-enabled boands, aiming to generate models
af <2 kB in size. It is subdivided into owo paris. The aTensor
core provides a set of optimized rontime data structures
and interfaces under computing constraints. The oTensor
library provides default error handlers, allocators, contexis,
ML operations, and tensors built on the core. Basic data
tvpes include imtegral tvpe, uTensor strings, fensor shape,
and quantization primitives borrowed from TFLite. Interfaces
include the memory allocator interface, tensor interface, tensor
maps, and operator interface. For memory allecation, uTensor
uses the concept of arena borrowed from TFLM. In addition,
uTensor boasts a series of optimized (built 1o un CMSIS-
NN under the hood), kegacy, and guantized ML operators
consisting of activation functions, convolution operators, fully
conmected layers, and pooling.

3w Miceo-TWM [130] extends the TYM compiler
stack to ron moedels on hare-metal loT devices without the
necd for operating systems, virtual memory, o advanced
programming languages. Micro-T%M first generates a high-
level and quantized computational graph (with support for
complex data struectures) from the model using the relay
metedule. The functional representation iz then fed into the
T%M intermediate representation module, which generates
C-code by performing operator and loop optimizations via
AutoTYM and Metascheduales, procedural optimizations, and
graph-level modeling for whole program memory planning.
AutoTYM consists of an antomatic schedule explorer to gen-
crate promising and valid operator and inference optimization
configurations for a specific microcontroller and an XGBoost
miodel to predict the performance of each configuration based
an featares of the lowered loop program. The developer can
cither specify the configuration parameters to cxplore using
a schedule template specification APL or possible parameters
can be extracted from the hardware computation description
writben in the tensor cxpression language. AutoTVM has
lower data and exploration costs than black-box optimizers
(c.g.. ATLAS [181]y and provides more accurate modeling
than polyhedral metheds [182] without mreeding a hardware-
dependent cost model. The generated code is integrated
alongside the TVM C runtime, built, and flashed onto the
device. The inference is made on the device using a graph
cxtractor. AuroTVM was shown (o generate code that is only

1.2x slower compared to handerafied CMSIS-NN-based code
for image recogrition.

4) Microsoft EdgaMl: EdgeML provides a collection of
lightweight ML algorithms, operators, and tools aimed toward
deployment on Class O devices, written in PyTorch and
TE Included algorithms include Bonsai [57), ProtoMM [58],
FastRMN [59], FastGRENM [59], ShallowBRMNN [169], EMI-
BMM [170]), BMNFPool [60], and DROCC [171). EMI-ENM
exploits the fact that only a small, tight portion of a ime-serics
plot for a cemain class contributes to the final classification,
while other portions are common among all classes, Shallosw-
BMM i3 a hicrarchical RMN architecture that divides the time-
series signal imto varions blocks and feeds them in parallel
to several BNMs with shared weights and activation maps.
BMMNPool i a noalincar pooling operator that can perform
“pooling” on intermediate layers of a CNN by a downsam-
pling factor much larger than 2 (4—8 =) withouot losing accu-
racy while reducing memory usage and decreasing cormpute.
A deep robust one-class classifier (DROCC) is an OCC under
limnited negatives and anomaly detector without reguiring
domain hearistics or handerafied features. The framework also
includes a quantization tool called SecDot [56].

S CMSIS-NN: Comex Microcontroller Software Interface
Standard-WM [164] was designed to transform TF, PyTosch,
and Caffe models for Cortex-M series MCU. It generates
C++ files from the model, which can be included in the
main program file and compiled. [t consists of a collection
aof optimized neural petwork functions with fixed-point guan-
tization, including fully connected layers, depthwise separable
comvalation, partial image-to-column convolution, in sitn split
-y pooling, and activation functions (RellJ, sigmoid, and
tanh, with the latter two implemented via lockup tables). It also
features a collection of support functions including data type
conversion and activation function tables (for sigmoid and
tanh). CMEIS-NMN provides 4.6= speedup and 4.9x energy
savings over nonoplimized convolutional models.

&) Edgs Impuize EON Compilsr Edge Impulae [32] provides
a complete end-to-end model deploy ment solution for Tiny ML
devices, starting with data collection using IoT devices,
extracting featwres, training the models, and then deployment
and optimization of moedels for TinyML devices. It oses
the interpreter-less edge optimized meural (EON) compiler
for model deployment while also supporting TFLM. EON
compiler directly compiles the network to C4++ source code,
climinating the need to store ML operators that are not in use
{at the cost of portability). An EOMN compiler was shown to
run the same network with 25%-35% less SRAM and 35%
less Aash than TFLM.

71 STM32Cube. Al and NanoEdgs Al Studlo: X-Cube-Al
from STMicroelectronics [172] generates 3TM32 compatible
C code from a wide variety of decp-leaming frameworks
{e.g.. PyTorch, TensorFlow, Keras, Caffe, MATLAB,
Microsoft Cognitive Toolkit, Lasagne, and Convnet]S).
It allows quantization (min—max)y, operator fusion, and the
use of external flash or SEAM to store activation maps of
wieights. The tool also features functions to measure gystem
performance and deplovment accuracy and suggests a list of
compatible STM32 platforms based on model complexicy.
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X-Cube-Al was shown to provide 1.3x memory reduction
and 2.2x speedup over TFLM for gesture recognition and
keyword spotting [189]. ManoEdge Al Studic [173] is another
AutoML framework from STMicroclectronics for prototyvping
anpmaly  detection, outlier detection, classification, and
regression problems for STM32 platforms, including an
cmbedded emulator,

8 Eloquent MicrofL and TingldLl: MicroMLgen ports DTx,
suppont vector machines (linear, polynomial, radial kermels,
ar one-class), random forests, XGboost, Maive Bayes, relevant
viector machines, and SEFR (a variant of 5%V from Sciki-
Learn to Arduino-style C code, with the mode] entities gtored
on flash. It also supports onbeard feature projection theough
PCA. TinyMLgen ports TFLite models o optimized C code
uging TFLite s code gencrator [T2].

Q) Skigarn Porter; Sklearn Porter [174] generates C, Jawa,
PHF, Ruby, GO, and Javascript code from Scikit-Leam mod-
cls. It supports the comversion of support vector machines,
DTz, random forests, AdaBoost, ENNs, Maive Bayes, and
multilayer perceplrons.

10) EmbML: Embedded ML [175] converts bogistic regres-
aors, DTs, multilayer perceptrons, and suppon vector machine
(linear, polynomial, or radial kernels) models generated by
Weka or Scikit-Leam o C4++ code native to embedded
hardware. It gencrates initialization variables, stroctures, and
functions for classification, storing the classifier data on flash
to avodd high memory usage, and supports the guantization of
floating-point cndities. EmbML was shown to reduce memory
ugage by 31% and latency by 92% over Skleam Porter.

1) FANN-on-MEL: FANNMN-on-MCU [176] ports multilayer
perceptrons gencrated by fast artificial neural network (FARNNG
library to Cortex-M series processors. It allows model quanti-
zation and prodeces an independent callable C function based
om the specific instruction set of the MCUL It takes the memory
af the target architccture into account and stores metwork
parameters in cither RAM or flash depending upon whichever

does not overflow and 15 closer to the processor (e.g., BRAM
i3 closer than flash).

12] SOMIC and TAILS: Softwars-only neuwral intermitient
computing (SONIC) and tile-accelerated intermittent low-
encrpy accelerator (LEA) support (TAILS) [24] are inference
cngines for intermittent computing systems. SONIC eliminates
redo-logging, task tramsitions, and wasted work associated
with moving data between SEAM and Aash by introducing
loop continuation, which allows loop index modification
directly on the fash without expensive saving and restoring.
To ensure idermpotence, SONIC wses loop ordered buffer-
ing (loop reordering and double buffering partial featwre
maps te climinate commits in a loop iterations) and sparse
undo-logging (buffer reuse to ensure idempotence for sparse
ML operators). SOMIC introduces a latency overhead of
only 25%-75% aver nonintermmittent nearal network execation
{compared to 10 overhead from baseline interrmittent model
cnecution frameworks), reducing inference cnergy by 6.9x
over competing basclines, TAILS exploits LEA in MEP430
microcontrollers to maximize throwghput vsing dirsct-memory
acceas and parallelism. LEA supports the scceleration of finite-
impulse-response  discrete-time convolution. TAILS  further
reduces inference energy by 1222 over competing baselines.

[¥. OMLUNE LEARNING

After deplovesent, the on-device mode]l needs to be peri-
adically uwpdated to account for shifis in feature distribution
in the wild [183]). While models trained on new data on a
server could be sent out to the microcontroller once in a
while, limited communication bandwidth and privacy concems
can prevent offloading the training to a server. Howewer, the
conventional training memory and encegy footprint are much
larger than the inference memory and encegy footprint, render-
ing traditional GPU-based training technigues unsuwitable for
microcontrellers [ 19). Thus, several on-device training and FL
frameworks have emerged for microcontrollers, as summarized
in Tables IX and X,
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A On-Davice Trairming

Omn-device training frameworks generally divide the learning
process into three paris. Fiesr, the training framework muost
be able to detect when a significant shift has happened in
the input dataset (when to learm). This can be done by
calculating the per-owtput covariate distribution divergence
on principal feature components [183], running mean and
variance of streaming input [184), or confidence score of
predictions [186]). Second, the on-device training framewaork
must perform model adaptation within device constraints and
limited training samples (how to learn). Three key techniques
have been proposcd for on-device model adaptation.

1) Last Layer Tranafar Learming: The last layer of the net-
wiork is fine-tuned through stochastic gradient descent one
sample at a time [184) or reusing the outputs of feedforward
crecution without backpropagation [183] for batch gradient
descent. Due to limited capacity and catastrophic forgetting,
thiz approach results in poor performance when the distrab-
ution of new data is significantly different from the original
training set [1%].

2) Traln Specialized Operatorz: TinyTL [19] proposed the
uae of litg residual learning modoles for sefining the oot-
put feature maps when updating just the bias instead of
wieights during on-device training o recoup performance
loss, ML-MCU [185] proposed a lightweight one-versus-ons
(0% bimary classifier for molticlass classification, which
trains only those base classifiers that have a significant
impact on fnal accuracy. This approach wyields significamt
aecuracy improvement over transfer learning {eg., 3. 1%
higher than last laver transfer learning by TinyTL) withowt
additional memary overhead bat limits the application space
due to constraimed network types. Furthermore, TinyTL is
not suitable for extremely resource-limited microcontrollers
(e.g.. Cortex-M).

3) Special Leaming Techniguwes: (uantized continual leam-
ing prevents catastrophic forgeiting by storing activation maps
from past training data in the guantized form in a latent
intermediate layer as replay data [IE8]. This allows learmning
from non-110 data. Incremental training wses constrained opti-
mization to uwpdate the weights one sample at a time [1EG].
Both approaches suffer from limited application space due
to limited supported network types. In addition, continual
learning has high compute cost [ 188].

Third, the training framework muest be able to select the
samples to pick for training w maximize the learning effect,

cspecially to prevent catastrophic forgetting for transfer leam-
ing approaches (what to learn). Common technigues include
selecting samples based on their gradient norm, oversam-
pling minerity classes, and using weighted replay or sample
imporance weighing [183], [1E7]. Unfortunately, none of the
on-device training frameworks is directly compatible with
popular TinyML software soites, as none of the software
suites 15 capable of unfreezing the frozen model graph on
board. Moreover, all on-device training frameworks only work
with networks having simple and limited architectaral choices
to prevent resource overflow. Thereby, additional memony
constraints need o be injected into NAS frameworks o limit
the mode] complexity,

B Fedgraled Leaarning

FL extends on-device training to a distributed and non-
D setting, where the edge devices update parameters of a
shared model on board, send the local versions of the updated
madel to a server, and receive a common and robust aggregated
madel, withont the data ever leaving the edge devices [ 190].
We compare different FL frameworks switable for TinyML
listed in Table X weing five distinguishing propertices.

1) FL Strategqy: The FL strategy refers o the selection of FL
algorithma that the frameworks provide. Most FL framewaorks
provide a vanilla federated averaging (FedAwg) algorithm,
where the local model weighis are apgregated at the server
instead of the gradients for commonication efficiency [ 198].
Sewveral enhancements to FedAvg have emerged to handle
heterogeneity and resource constraings of Al-loT devices.
These include variants that have the following properties:

1} robust to laggards of client disconmections [1940);

2} achieves similar sccuracy across all devices [190];

3y includes device-specific model pruning to Improve com-
munication and training cost [192], [194];

4} uses transfer leaming or fine-tuning for local model
updates  to save memory  and  build  personalized
madels [195]), [197];

53 uses knowledge distillation to aggregate class probabil-
ities instead of weights [197].

W et al. [197) showed that transfer learning and knowledge
distillation wariants provide 5%—11% accuracy improvement
over vanilla Feddwg for homan action recognition while
providing 10-5000x peduction in  commuonication cosl
Pang et al [19%] proposed the wse of RL for model
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aggregation, obtaining 14%-2.7% higher accuracy ower
FedAwg for image recognition.

2) Communication Stack: FL requires a robost and efficiemt
communication stack between the server and edge devices.
Most FL frameworks relv on the robustness and efficiency
guarantecs provided by FedAwg and other FL strategices, such
as the wse of pruning or knowledge distillation over class
probabilities [192], [194], [197]. Flower [ 190] and DIoT [193]
provide bidirectional gRPC and WebSocket protocols to pro-
vide low-latency, concurrent, and asynchionous comimsmnica-
tion between server and clients. Both protocols are language,
sefialization, and communication agnostic.

3) Secalabiify and Heteroganaity: FL frameworks must be
able to run workloads on hardware with different compute
and communication budgets in a scalable fashion. Fiess, the
frameworks muost be able o detect and track resource and
task completion measures. Flower [19))] includes a virioal
client engine for scheduling and resowrce managerment. Fed-
PARL [192] provides a resource and trust value trackes to
monitor resource availability, bandwidth, task completion, task
delay, and mode] integrity. DIoT [193] uses an unsupervised
leaming method to identify device state and tvpe based on
network traffic. Second, the frameworks should have a course
af action for optimal workload distribution among these clients
based on detected measures. The proposed techaigues include
partial work (average mode]l weights based on gradient update
sample count instead of timeout thresheld) [190], [192],
imporance sampling (improve client selection probability of
least-contributing clients) [190), adaptive pruning [194], and
RL-based automated collabosation scheme discovery [196].
Third, the proposed technigues must generalize to a large
namber of clients. Among the different FL TinyML framse-
wiorks, Flower [190] has been shown to scale to 15M clients
(1) concurrent clients).

4) Provacy: FL frameworks must ensure that the local o
global models cannot be reverse-cngineered to uncover client
data. Most FL frameworks for TinyML rely on the assumption
that weight updates cannot be reverse-enginecred to uncoves
local data. Howeves, membership inference [203] and model
imversion attacks [204] are successful against vanilla FedAvg.
As a resalt, Flower [19)) proposed wsing secure aggregation
in their framework instead of vanilla model ageregation. The
proposced semihonest protocel is robust against client dropouts,
uses & multipanty computation protocol that doees ot requine
trusted hardware, and has low compute and communication
averhead [205].

5 Client Hardware and Supported Languages: Finally, the
FL frameworks must support a wide varety of clients with
different processors amd operating languages. Among the
different frameworks, Flower [1%0), PruneFL [194], and
TinyFedTL [195] were tested on microcontrollers, supporting
Python, Java, and C++.

X, KEY APPLICATIONS
Depending on the application, seweral warants of the
TinyML workflow are wsed. In this section, we provide
application-specific numerical insights from these workflows.

TABLE X
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A Image Recognilion and VWsual Wake Wards

Since the inception of AlexMNet in 20012 [93), DNMs have
boen extensively wsed for wisual understanding, swch as
image classification, objoct detection, handwriting recognition,
visual wake words' detection, and sermantic segmentation
[14], [206]. The trend has trickled into the Tiny ML community
as well, as evident in Tables X1 and XII. Image recogni-
tion on the CIFAR-10 dataset and person detection on the
“isual Wake Words dataset are two inference benchmarks in
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the MLPerf Tiny w05 [9). Among the technigues shown in
Tahle X1, NAS on residual convolutional architectures (e.g.,
MOUMetW2 [121], wNAS [122], and SpArSe [86]). rapid
downsampling (2.2, RNMPool [60]). sparse projection {e.g.,
Bongai [57] and ProwMN [58]), and deep compression (e.g.,
Compressed LeMet [49) and SqueezeMet [92]) are the most
common. Models that operate on multiclass datasets are swit-
able for Cortex M class architectures, while models that oper-
ate on binary datasets have been shown to be deplovable on
AVE RISC microcontrollers. In Table X1, MCUMetv2 [12]1]
amd Attend™etz [114] achieved the state-of-the-am top 1%
aocuracy (TXH-TY%) on ImageMet for microcontrollers.
MCUMetv? uses once-for-all MAS on convolutional opera-
tors, combined with patch-by-patch inference and receptive
field redistribution during montime [121]. AtendNets use a
standalone visual attention condenser, which improves spatial-
channel selective attention [114]. MCUMetv2 [121] {with
a YOLOv3 backbone) and AttendSeg [115] (with attention
condensers) achieved state-of-the-ant performance for semantic
segmentation on the Pascal YOO and CamVid datasets, respec-
tively. uMNAS CHM achieved state-of-the-am performance on
CIFAR-I0 and MNIST [122]. Two interesting applications
that deviate from traditional machine vision datasets include
American sign language prediction [200] and detecting face
masks in light of COVID-19 [201].

Dretecting visual wake words (Le., person detection) is a
apecial case of image recognition. Table X101 lists some of the
models proposed for performing wake words” detection on
the visual wake words dataset [14]. Among all the proposed
miodels, RaScalet [202] achicves the best balance of accuracy
amnd resource usage. RaScaMNet extracts features from an image
patch using comvolational blocks and then sequentially learns
the latent representation of the entire image using recurment
Elocks, The network also includes both spatial attention and
channel attention o focus on spatially distinct and molihead
discriminative feature representations.

B Audio Keyword Spolling and Spaach Racognition
Vodce I8 a core component in homan—computer interaction.
Audio keyword spotting or wake word detection is used
in voice assistamts o identify waking kevwords (e.g., “Hey
Google," "Hey Siri.'" or “Alexa’™). The assistanis must
continuweusly listen for the keyword in witerances without being
power- or resource-hungry [9). Table XIIT lists some keyword
apotting, speech enhancement, and wake words” detection
models geared toward microcontrollers. The use of lightweight
depthwise-separable convolution, attention condensers, and
recurrent units has generated models that are in the order of
10" kB. Some of the models (e.g.. FastGRNN, ShallowRNN,
and ULP RMN) can even un on AVE RISC microcontrollers
with 2-kB SREAM, while others are suitable for deployment
on Cortex M class microcontrollers. The models typically
operate on log Mel-spectrograms, which are short-time Fowrier
transforms transferred to the Mel scale [210] and available
on the CMSIS-DSP library for embedded implementation.
Most models use the Google Speech Commands dataset for

U Trademarked.
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training, which has 35 words with 105829 uberances from
2618 speakera [10].

C. Anomaly Deleclion

Ancmaly detection or one-class classification detects out-
lices or dewiations in the inpuwt data stream fo indicate
malfunctions [120] in an unsupervised fashion. Included in
MLPerf Tiny w5 benchmark, applications of anomaly detec-
tion include diagnosis of industrial machinery [8], [9], [120],
physiological disorders (c.g., heart attacks and seizures) [171],
and climate conditions [211]. The two most common petwork
architecturcs for micrecontroller-based aromaly detection are
fully connected antoencoders (FC-AEs) and depthwise CHN.
Table X1V lists some of the anomaly detectoss developed for
microcontrellers. Among the different techniques, DROCC can
operate directly on raw audio, sensor data, and images [171]
withouat feature extraction, DROOC  assumes that normal
points lic on a bow-dimensional lincar manifold, while points
surrounding the normal points outside a threshold radius are
outlicrs, which can be augmented in a generative adversarial
maner into the waining set. Other audio-based anomaly detec-
tors gencrally operate on mel-specirograms [8], [9), [120].

0 Activily and Geslure Tracking

Acctivity and gesture tracking form the central oracle for
many applications, incloding health monitoring, behavioral
amalvsis, context detection, augmented reality, and speech
recognition [2]. Table XV showcases some activity detec-
tion framework gearcd toward microcontrolless. The commaon
theme is to use lightweight models or use conventional models
with a lower number of layers or polynomial complexity.
Most models achieve accuracies of 20% of more for simple
macregestures (e.g., discrete fist gestures) of macroactivities
{e.g.. walking, running, standing, twrming, and jomping} while
being 10" or 10" kB order of size. The models are mostly
hand-tuned due to the innate lightweight nature of the chosen
madels with a few aotomated using MAS.
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E. Odomalry and Navigalion

Cdometry s the fusion of onboard sensors for indirect
cetimation of an ohject’s position and attitude in the absence
af conjunction with infrastructure-dependent localization ser-
vices [218]. TinyOdom [1] exploits THIM-Bayes, TCH back-
bone, 4 magnetomaeter, physics, and velocity-ceniric sequence
learning formulation to yield newral inertial odometry models
that are 11-134 x smaller than existing nearal inertial odomme-
try masdels, suitable for deplovment on Conex-M architectures.
Vehicle neural metworks (WHNg) [21] wse a modified and
quantized LeMet-5 a5 an aotonomous controller on a car
under stochastic lighting conditions. The network leverages
imitation leaming via a classical compuater vision teacher
algorithm for training. WRNNs have 7.5-1635 EMACs:, and
the PULP implementation on GAPE SoC reduces latency
and encrgy consumpiion by 13= {0.2-1.2 m5) and 3.2=
(39189 u] per infercwce), respectively, over Contex-M archi-
tectures, achicving 97% sccwracy. A class of residual networks
intended for standard-UAY navigation without SLAM called
DrolMets [219] have been ported on nano-UAVS retrofitted with
a PULP GAPS 50C shield [2X)). By using tiling, guantization,
parallelization, and signal processing on the PULP chip, the
platform achicved 6—18 FPS within a 64-mW power envelope,
covering |13 m unseen indoor trajectory in the real world at

ing and archythmia detection theough BECG measurcments
[UT1], [222), epileptic seimare recognition from EEG sen-
sofs [171), and fall detection using carable incrtial sensors [2).
Most TinyML mHealth applications are variants of anomaly
detection, indicating the presence or the absence of a health
condition, thereby allowing the wse of altralightweight models
in the order of 10°-10' kB. Example models for mHealth
include Bonsai [2], embedded GRU [221]), 1-D CNN [222],
FC-AE [171], and two-layer CNMNALSTM [223].

G. Facial Biomelncs

Facial kiomeirics has been a prominent authentication tech-
nique in civilian and military applications [226]. Existing face
detectors use deep leaming to awtomate the feature represen-
tation pipeline while approaching human performance [226).
Table XVIT illustrates some face detectors for microcon-
trollers. A common recipe for porting deep face detectors
onto micrecontrollers includes the use of lightweight spatial
comvolution coupled with MAS, guantization, and infercmce
cngine optimizations. Typical neural blocks include sgueese
and cxcitation modales [224], coupling depthwise with point-
wiae convolution [225], and noalincar pooling between con-
virlutional lavers [60]. Successive and rapid downsampling
helps cut out redundant metwork layers further [60], [225]
while ensuring scale-equitable face detection. Inference engine
optimizations inclede patch-based inference scheduling [121],
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receptive Oeld redistrbution [121]. and dual-memory man- speting
agement [224). Patch-by-patch inference allows operation on
anly a tiny region of the activation map, while receptive field
redistribution shifts receptive field and FLOPs to later stages
to mitigate peak memory usage and overlapping patches [121].
Drual-memory management swaps variables between flash and E:P—'mm
RAM whenever required [224). “
X, DiscUssIoM AMD CASE STUDIES

In this section, we break down the end-to-end workflow
and provide guantitative analysis of individual aspects of the
wiorkflow based on select examples from Sections IV o X,
We discuss how individeal aspects contribwie to the overall
cuecution and also describe qualitatively how individual tech-
niques for one aspect impact the choices for other aspects.

A. Fealure Projechion Varsus No Fealure Projection
Feature projection allows a domain expert @0 retain data
variance while reducing data dimensionality [2]. Intwitively,
thiz reduces the moedel complexity needed to capture the var-
ations in input data, ie., feature projection is useful for sim-
plifying the architecture of non-TinyML models. Consider the
gesture recognition example in Table XV Both CHN and
MLP achieve the same accuracy. However, the MLP pipeline,
aperating on spectral features, requires 2.5x less flash, muns
2.2x faster, and requires 18x less SRAM than the CMN
pipeline, which operates on raw data, By leveraging domain
knowledge, simpler models can achieve the same sccuracy yet
save memory and inference costs over complex models. Well-
designed features (e.g.. audic MFCC, spectrograms, and signal
power) are also able o cxploit DSP functions (e.g., CMSIS-
[¥5F) and accelerators embedded in most microcontrollers [6].
Howewer, if the extracted features are not sufficiently discrim-
inatory due to a lack of domain knowledge, then the per-
formance of models will degrade [227]. Consider the human
activity recognition example in Table XVII. Bonsai operates
an five statistical features surrounding the signal amplitode,
which are unable o sofficiently distinguish among activity
primitives that are statistically similar (e.g., sitting and sleep-
ing}). Thus, Bonsai suffers a 17% accoracy drop while being
sirmilar in size to FastGRNM, To achicve the performance of
complex models that de not operate on features while having
the computational effickency of simple models operating on
handerafied features, oliralightweight ML blocks are uwsed.
These blocks can often be much more efficient and accurane
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than models tied to a feature extraction pipeline, as poorly
designed features can yield significant compuate overhead [2).
For example, in Table XV, DROCC outperforms one-class
SWM for anomaly detection not enly in accuracy (+209% gain}
bat also in model size (1600= reduction). Unfortunately,
the problem with lightweight models is twofold. Fier, most
aof these models do not have enough paramcters to model
globally significant features, failing to generalize to new data
distributions in the ficld [2]. Second, most NAS frameworks,
TinyML software swites, intermittent computing tools, and
online leaming frameworks lack support for deploving some
aof these models on commedity microcontrollers. Therefore,
adopting feature extraction requires a carcful understanding
af the application constraints, striking a balance between the
availability of domain knowledge, feasible model architectre
sets, feature acceleration support, and support from model
optimization and architecture search tools.

B. Compression Varsus No Compression

Exploiting sparsity and reducing bitwidth of models depend
on three key factors.

1) Lange Sparse Versus Smad Dense: Large-sparse maodels
{compressed and vanilla models) are known te outperform
small-dense models (uncompressed and lightweight models)
for a broad range of network architectures [48] in terms
of compression ratic for comparable accoracy. This is evi-
dent from the speech commands and MMIST-10 cxamples
in Takle XTX. LSTM-Prone and LSTM-KP outperform Fast-
GEMNN and Bonsal, providing on average 12x model size
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reduction with only 2.3% accuracy loss. Moreover, on aver-
age. all wncompressed and vanilla models provided a 13 5%
reduction in mode]l size when pruned comparsd to 2.1 for
lightweight models (FastGRNMN). Therefore, sparsification is
uscful when working with vanilla models rather than light-
weight ML blocks.

2 Pruning and Quantization Gains: Unstroctured pruning
and postiraining quantization offer performance gain in dif-
ferent dimensions. Generally, both pruning and quantization
are applicd jointly [49].

1y Flash Savings: Pruning is more aggressive in reducing
the model size than quantization [49]. In Table XITX,
on average, pruning provides 13.6x compression factor
compared to 3.9 compress factor provided by quanti-
zation. Proning combined with guantization provides a
16 redection in model size on average.

2} SRAM Sawings: Pruning is less likely to reduce working
memory footprint than quantization. Afier proning. the
microconiraller still has to perform moltiplication in the
original foating-point bitwidth, whereas, In quantiza-
tion, the bitwidth of the multiplication decreases.

3) Intwitively, pruning is less likely fo reduce the inference
latency compared to integer quantization in microcon-
trollers. The gains from the loss of redundant weights are
lower than the gaing from the integer matrix muliplica-
tion. Moreover, unstructured pruning can add processing
and execution time overhead [B5].

4) Accwracy Less: Praning often causes higher accuracy
loss than quantization. In Table XIX, on  average,
pruning redoced accuracy by 4.9%. cormpared 0.4%
from guantization. This iz due o a higher degree of
information loss in pruning as in quantization only the
bitwidth s reduced.

3 Support From HRYSKHE Not all microcontrolless and
TinyML software suites support of can reap the benefits of
quantization of intermediate or sub-byte bitwidth [81]. For
crample. TFLM docs not support arbitrary bitwidth of weights
and activations [55]. Most microcontrollers are limited by their
SIMD bitwidih, unable to cxploit low precision representation
of newral networks fully [81]. Therefore, care must be taken to
cusure that the chosen quantization scheme is compatible with
the choice of microcontoller and TinyML software suibes,

C. Lighlwaigh! Mogels Versus Vamilla Models

Most mode] compression technigues cannot redwce the size
af pretrained models withoot significamt loss i accuracy
(c.g.. praning and quantization result in 9= reduction in
model size on oaverage in Table XIX). In some cases, the
pretrained model is too big to apply mode] compression fieasi-
bly for a micrecontroller {eg.. im Table XIX, AlexMNet can be
reduced to 6.9 MB from 240 MB), or the prefrained mode] may
not even be a neural network (e.g., in Table XX, 5%M, Coarse
DT, AdaBoost, and kKNM are nonneoral models). In such
cases, lightweight ML blocks are adopted to reduce the model
aize and inference latency while maintaining or excecding the
accuracy of vanilla models. In fact, from Table XX, we soe
that lightweight ML blocks are commonly adopted when
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out-of-memory errors are encountered on the microcontreller.
For the human activity recognition (AURITUS) and image
recognition {(MNIST-10 and ImageMet) use cases, the vanilla
madels (SWM, MLP, Coarse DT, AdaBoost, and AlexMNet)
wiere simply too big to run on commadity micrecontrollers,
forcing the adoption of lightweight ML operators (Bonsai,
ProgolM, TCH, AttendMets, and SqueczeMet). In some cases,
lightweight models are adopted to improve the accuracy
and latency {c.g., FastGRMNMN has higher sccuracy and lower
latency than RMM). However, special attention must be paid to
the specific compute budget when adopting these lightweight
models. First, some of these models might improve the metrics
in one dimension and degrade other dimensions. For example,
in Tables XIX and XX, SqueczeMet has lower model size
but higher latency (and energy usage) than AlexMNet [230].
Second, as discussed carlier in the feature projection case
study, some lightweight models overfit the training set and
fail to generalize to unseen data. For example, in Table XX,
TCM has a 5% reduction in test accuracy over SV, MLE,
coarse DT, and AdaBoost. In fact, for activity detection,
Saha et al. [2] showed that lighvweight ML blocks have an
accuracy drop of 11.8% for the same test set distribation shifi
over vanilla models. Thind, not all aspects of the TinyML
workflow suppor every lightweight ML block. For example,
aMAS [122], MicroMets [8], and SpArSe [86] assume a
CMN backbone, while Sklearn Porer [174) only supporns
porting MLE o microcontrollers, Moreover, most on-device
learning frameworks only support CNM backbones, Thus, the
choice of lightweight ML blocks is limited by what the other
comporents in the TinyML workflow suppor.

L Ulsing NAS Versus Handerafled Models
MAS is used when one or more model performance met-
rics {e.z., latency, SEAM usage, and energv) need to be
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constrained to suit the deployment scenario. MAS is pamic-
ularly useful in three cases.

1) Metncs Form Competing Obfectves: The most common
motivation behind NAS is (o increase the mode]l accuracy
while decreasing the flash, SEAM, latency, and encegy usage.
These metrics form competing objectives under search space
amnd device constraints. For example, a larger model is likely to
provide higher accuracy but consume moge flash and SEAM.
A certain architecture (e.g., SgueezeNet) is likely to redece
flash unsage but can have higher latency than a larger model
(e.g.. AlexMet), The model might have to follow cerain
bounds or rules (e.g., cannot wse a specific operator type).
In Table XX1. the goal is to find the best performing models
that reach the desired objectives within the specified con-
atraints. In all cases, the NAS strategy consistently ouwtperforms
handerafied models in terms of providing the most accurate
madel within the device constraints.

2 Optimize High-Oémenslonsl Search Spacs for Multiple
Target Hardware: Mewral network search spaces can grow
intractable quickly. For example, the search space of a CMN
can contain the mumber of layers, the number of kemels in
cach layer, the size of the kemel in cach layer, the stride in
cach layer, the size of kemels in the pooling laver, and a0
an [122). The scarch space might even contain paramecters
for different model architectores. Furthermore, the network
might have to be optimized for multiple microcontrollers with
distinet compute and memory badget [5]. To save human time
amd effort, MAS algorithms can automatically perform model
architectural adaption to fully exploit the target capakilitics
af different hardware. In the inertial odometry example in
Table XX1, TinyOdom [1] prodweces four different models
that provide a competitive resolution within the memory con-
atraints of four different microcontrollers, providing a 1.6-30x
reduction in mode] size while suffering a resolution deop
af 1.2x compared to handcrafied moedels. Similarly, in the
keyword spotting example in Table XX1, MicroMNets [B] gen-
crates three different DS-CMMs that are suitable for three dif-
ferent microcontroller models, cutperforming the handerafied
DE-CHN by 3.3-4.5%.

3 Prior Wisdom Doss Not Suit Deployment Nesds: In some
deployment scenarios, cxpent knowledge may mot suit the
deployment needs. For example, in the inertial odometry case
in Table XXI, TinyOdom [1] was the first framework allow-
ing the deployment of inertial odometry models on micro-
controllers. In the case of Image recognition, xNAS [122]

LT e s T
W Soprer pim e WO B g Peed B e S has

attempted to deploy the models on AVE RISC mictocon-
trollers, which kave a much tighter resource budget than Cor-
tes B microcontrollers used by Bonsai [57] and SpArse [B6].
Similarly, SpArSe [86] attiempted to run DNz on microcon-
trollers and pot nonnewral models o broaden the application
spectum of Al-ToT. Under wnexplored circumstances, MAS
can bring valuable insights during model diseovery on achiev-
able performance and optimal architectural choices.

E. Using Auatime Optimizations VYarsus
N Optimizations

The use of TinyML software suites to generate cade and per-
form operatorfinference engine optimizations is a mandatory
step in the TinyML workflow, often necded to guarantee the
execution of a trained model on the microcontroller. Consider
the CIFAR-10 image recognition example in Table XXIL The
uwse of partial fseeol in CMSIS allows the CWM to have a
working memory of 133 kB instead of 332 kKB, in which case
the CHN would overflow the Cortex-MT7 SRAM [164]. The
optimized operator set also redwees the inference latency by
A6x and decreases encrgy usage by 49w [164). Similarly,
MCUMetv2 [121] achicved record ImageMet and Paseal ViOC
accuracy on microcontrollers by optimizing a large MBMNetv2
that normally overflows the SEAM using patch-by-patch infer-
ence and receptive feld redistribution. However, to pick the
appropriate software suite, other guestions must be asked.

1y Which microcontrollers are suitable for my application?

2) What are the memory, latency, and encrgy reguirements?

3) Which ML blocks are suitable for my application?

4) Which training frameworks can [ uze?

5) Do I need support for intermittent computing?

&) Do I need support for online leamning?

7y Do I need an automated schedule explorer?

8) Iz dynamic memory management necessaryT

9y How many models need to run on the same platfornm?

10} Do I peed to share the same model across platforms®

11} Do I peed to sparsify or quantize any model?
Congider the haman activity recognition and keyword spotting
use case in Table XXIL TFLM uscs an intcepreter-based
approach to realize the model graph during runtime [ 167).
TFLM supports dynamic memaery management {7)}, mal-
tibcnancy {83}, amd uopdating the model binarics rather
than the ecntire codebase for fast prototyping and porta-
hility across platforma {9} Howewer, {T1}—{9] come at
1.3% increase in flash usage and 26 increase in latency
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(lagging on |23}) compared o STM32Cube AL, which
cmbeds operator function calls inte native © code [172].
STMA2Cube Al on the other hand, only supports STM32
series of Cortex-BM microcontrollers {lagging on {13},
while TFLM provides muoch broader platform  support.
However, STM32Cube Al aleo supports nonneural model
deployment (e g., k-means, SWM, RE, kNN, and DT), while
TFLM only supports newral network deployment (lagging
on {33} Likewise, {51} can only be realized throwgh SONIC
and TAILE [24], and [7)] is provided by only micro-
TW%M [134]. Both guantitative and qualitative tradeotfs similar
to the case study here must be perfformed to pick the appro-
priate software suite.

£ Using Oniing Learming Versus Siatic Models

Omling learning improves the performance of the model by
adapting the model on board without sensitive data leaving the
device. Consider the case studics on online learning shown
in Table XX, The performance of models improves by
34% when on-device fraining is used to adapt to dataset
shifis. For TinyOL, the latency overhead fo include online
learning is 10%, While the performance gains are somewhat
transparcnt, the major barrer in on-device leamning is the
lack of suppont from other aspects of the workflow. For
cxample, most on-device leaming frameworks assume the use
af CHM or binary classifiers and also use a custom code
gencrator for the model doe to a lack of online learming support
from existing TinyML software soites. Moreover, it is mot
clear how NAS should account for the training memory and
inference overheads when on-device learning is used. The lack
af comprehensive studies of on-device learning also limits the
adoption of FL in TingML. Particulagly, while the TinyML
wiorkflow was designed for a single noncollaborative model,
FL requires the distribution of a global model to be enhanced
via local model updates. While existing FL frameworks have
tools to distribute resources heterogencously, it is unclear how
MAS, model compression, of lightweight ML blocks affect the
real-world setting, as none of the FL frameworks have studied
these effects. Therehy, online learning constrains the user o a
very specific choice of models and custom software suites.,

X, CHALLEMGES AND DPPORTUNITIES
The first-gencration efforts in TinyML focused on the engi-
necring and mechanics of squeczing ML models within the

limnited memory, compute, and power bounds of a micfocon-
troller. Both academia and industry have cstablished several
TinyML software frameworks to streamline the deployment
af ML models for microcontrollers, Many of the issues raised
by prior sarvevs [3], [4], [$] have been addeessed. However,
the following new challenges are emerging that requine further
rescarch.

A Applicabion Specific Salely and Heurislic
Hegquiramenis

Real-world IoT applications operate within certain bounds,
correlations, and heuristic rales set forth by the operating
domain and svstem physics. For example, a UAY canmot
cxceed a cemain bank angle without compromising stakil-
ity [231]. In complex event processing, specific granalar action
primitives (e.g., cooking a dish) muost abwayvs precede other
primitives {e.g., chopping vegetables) [234]. Neural networks
cannod assure that the leamed distribotions obey all the
laws [235]. As a result, recent neural network pipelines are
being injected with trainable neurosymbelic reasoning [236),
[237], signal terporal logic [235], and physics-aware embed-
dings [238]. [23%], [240], [24]1] for robust complex event
processing within the laws and booands of physics. For making
rich and complex inferences beyond binary classification, the
TinyML workflow requires rescarch 1o combine data and
human knowledge by including logical reasoning modules
within the micrecontroller's compate and mermory bounds,

B Dala Qually and Uncerlainly Awarenass

Sensor data in the wild suffer from missing data, cross-
channel timestamp misalignment. and window jitter [227],
[242]. These oncertaintics may stem from scheduling and
tirning atack delavs, svstem clock imperfections, sensor mal-
function, memory averflow, or power constraints [243], [244].
Sensing uncertainty can reduce the performance of ML models
when training for complex cvent processing [227]. Tiny ML
models need o be injected with uncertainty awareness by
incorporating appropriate waining frameworks [227]. [242] in
the workflow or use onboard clocks and hardware enhanee-
ments for precise time synchronization [245].

C. On-Davice Fing-Tuning

Models in the wild meed to be fine-tuned periodically
to cnsure robusiness across demain shifts in incoming data
distribution [183]. Fiest, while several on-deviee learning
frameworks have been proposed for edge devices [246], they
cither work on high-end edge devices {e.g.. Raspberry Pi)
[19], [247] or can wpdate weights of a few layers on micro-
controllers [183). Software-centric resource constraints, con-
strained learning theories, and static resource budget prevent
on-device learning from being a vishle altermative to clowd-
based training for microcontrellers [246). Second, an altcrnate
line of work suggests low-latency compressive offloading omto
the clowd [20] but has pondeterminisiic compression ratios
and offloading points. Firally, the models themselves can be
made more rebuast o domain shifis through representation
learning [248] or domain-adversarial training [249], buat the
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resulting models do not Gt on microcontrollers. More work
needs to be done in striking an optimal balanee between on-
device fine-tuning and over-the-air model updates, and whether

unsupervised embeddings can be ported onto micrecontrollers.

[ Backward Compalibilily

The changes in behavios when deploying an upstream model
(e.g.. a model on the cloud) to microcontrolless through the
TinyML workflow cannot be measured in isolation using only
the aggregate performance measwures (such as accuracy) [250].
Even when a TinyML model (downstream model) and the
upstream mode]l have the same accuracy, they may not be
funcrionally eguivalent and may have samplewise inconsis-
tencies [251] resulting in new failures impacting high-stake
domains, such as healthcare, This notion of functional sguiv-
alence berween an upstream and a downstream model is
known as backward compatibility, When previously unscen
crreors ane observed in the downstream model, the downstream
madel is said 1o be backward incompatible [252] and has Low
fidelity [253] and high perceived regreasion [251] with respect
to the uwpstream model, As a result, to have robust inference,
the TinyML moedel must have both high sccuracy and high
fidelity with its upstream counterpan. The proposed solutions,
such as positive congmaent iraining [251] and backward com-
patible leaming [254], are yet to be integrated and optirmized
for the TinyML workfow.

E. Naw Securily and Privacy Thraals

While constraining private data within the IoT node reduces
the chance of privacy and secwrity leaks associated with cloud-
based infercnce, the attack surface on TinyML platforms
is wide open. Compressed models are prone o adversar-
fal attacks and false data imjection with a higher suceess
rate than larger models [255], [256], [257]). At the sensing
layer, microarchitectural and physical side channels can leak
information from microcontroller chips theough cache leaks,
power analvsis, and clectromagnetic analysiz [258). Direct
attzcks on loT devices include malware injection, model
cutraction, access control, man-in-the-middle, fooding, and
routing [258]. Therefore, the MAS optimization function in
the TinyML workflow should inclede adversarial robusiness
goals o provide not only the smallest models but also the
madels most eobust o adversanal attacks [256], [257), [259].
The workfow should also include attack sorface analysis and
tools to defend the inference pipeline against attacks.

£ HardwaraSoflware Coaxplorabion

Much of the development in TingML has been software-
driven, with the hardware platform being  static. While
IoT platforms hosting microcenirollers are shrinking due to
Moore's law, the workload and the complexity of neural
networks have skyrocketed [7), [260]. The proposed hard-
wiare innovations include the use of a systolic array, stochas-
tic computing, In-memory computing, near-data processing,
apiking nearal hardware, and non-von Meomann architec-
tures [7], [260], [261]. However, such architeciune innovations
are largely disjoint from the TinyML software communitics.
Developments in TingML software need o be performed

hand-in-hand with atention-directed hardware deaign with the
platform and model being optimized jointly [262], [263].

XM, CoMCLUSION

It is desirable o enable onboard ML on microcontrollers,
tarning thern from simple data harvesters o leaming-enabled
inference gencrators. To that end, we introduced a widely
applicable workflow of ML model development and deploy-
ment on microcontroller-class devices. Several applications
are showcased to highlight the tradeoffs in different instances
of this workflow adoption. Although the corrent efforis can
transition the state-of-the-art ML models to oltraresoorce-
constrained environments, we consider them as the first gen-
cration of TinyML and present new opporbunities. Through
this review, we envision a need for the next generation of
TinyML frameworks to address the discussed challenges that
heve received limited explorations.
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