
Enabling Hyperparameter Tuning of Machine
Learning Classifiers in Production

Sandeep Singh Sandha†, Mohit Aggarwal‡, Swapnil Sayan Saha† and Mani Srivastava†
University of California, Los Angeles†; Arm Research, Austin‡

sandha@cs.ucla.edu, mohit.aggarwal@arm.com, swapnilsayan@g.ucla.edu, mbs@ucla.edu

Abstract—Machine learning (ML) classifiers are widely
adopted in the learning-enabled components of intelligent Cyber-
physical Systems (CPS) and tools used in designing integrated
circuits. Due to the impact of the choice of hyperparameters on
an ML classifier performance, hyperparameter tuning is a crucial
step for application success. However, the practical adoption
of existing hyperparameter tuning frameworks in production
is hindered due to several factors such as inflexible architec-
ture, limitations of search algorithms, software dependencies, or
closed source nature. To enable state-of-the-art hyperparameter
tuning in production, we propose the design of a lightweight
library (1) having a flexible architecture facilitating usage on
arbitrary systems, and (2) providing parallel optimization algo-
rithms supporting mixed parameters (continuous, integer, and
categorical), handling runtime failures, and allowing combined
classifier selection and hyperparameter tuning (CASH). We
present Mango, a black-box optimization library, to realize the
proposed design. Mango is currently used in production at Arm
for more than 25 months and is available open-source (https:
//github.com/ARM-software/mango). Our evaluation shows that
Mango outperforms other black-box optimization libraries in
tuning hyperparameters of ML classifiers having mixed param-
eter search spaces. We discuss two use cases of Mango deployed
in production at Arm, highlighting its flexible architecture and
ease of adoption. The first use case trains ML classifiers on
the Dask cluster using Mango to find bugs in Arm’s integrated
circuits designs. As a second use case, we introduce an AutoML
framework deployed on the Kubernetes cluster using Mango.
Finally, we present the third use-case of Mango in enabling neural
architecture search (NAS) to transfer deep neural networks
to TinyML platforms (microcontroller class devices) used by
CPS/IoT applications.

Index Terms—Hyperparameter tuning, Machine learning in
production, Parallel Bayesian optimization.

I. INTRODUCTION

Enabling Hyperparameter tuning at a production scale is
crucial to designing better performing ML classifiers em-
bedded in emerging CPS/IoT applications [1]. However, a
typical ML pipeline in production can be too specialized and
complex, demanding a trained team of human experts with
specific domain knowledge for classifier selection with opti-
mal hyperparameters. The combined classifier selection and
hyperparameter optimization in production face the following
challenges:
1. Complex deployments: The production ML pipelines are
complex and realized using a combination of arbitrary systems
(e.g., custom on-premise software, cluster frameworks, cloud
infrastructures) decided by several factors, including the nature
of application and developer preferences. Therefore, flexible

architecture with abstractions allowing usage on arbitrary
systems is needed.

2. High complexity of the hyperparameter search: Search
is becoming increasingly complex, with many choices for
classifiers and their rich parameter spaces. It is further exac-
erbated in production pipelines due to the recurrent nature of
tuning tasks triggered by data shifts or process changes. Con-
sequently, searching the space of several classifiers demands
combined algorithm/classifier selection and hyperparameter
optimization (CASH) [2]. Further, to speed up the search,
intelligent parallel algorithms utilizing parallel computing
with abstractions to handle runtime failures are needed.

Further, abstractions offering uniformity in local and clus-
ter usage, including syntax compatibility with the widely
used ML libraries like Scikit-learn [3], can reduce the effort
needed to integrate with existing deployments. While several
hyperparameter tuning software exists, their adoption in an
arbitrary production pipeline is hindered due to their depen-
dence on particular compute scheduling extensions [4]–[8],
closed source nature [9], search algorithm limitations [10],
[11] and significant overhead adopting the entire software
dependencies [12]–[15]. For example, the parallel search in
Hyperopt [4] is dependent on the MongoWorker processes or
Apache Spark [16].

To enable hyperparameters tuning in production, we present
Mango, a black-box optimization library. Mango is a research
project that provides hyperparameter tuning to ML pipelines at
Arm with more than 25 months of production usage. Mango
is open-sourced under Apache 2.0 license to contribute and
learn from the community. Mango provides the following core
features addressing the above challenges:

• Modular design that allows the user to schedule objective
function evaluations on arbitrary infrastructure. Further-
more, API provides a unique capability to handle runtime
failures crucial for production deployments.

• An efficient realization of Bayesian optimization using
the Gaussian process (GP). We incorporate optimal han-
dling of mixed parameters and intelligent batch sampling
for parallel search for practical adoption of GP.

• An algorithm to directly solve CASH problem using
multiple GP surrogates. To the best of our knowledge,
existing GP libraries don’t solve the CASH problem.

To highlight the flexible architecture enabling the adoption
of Mango in complex ML pipelines, we discuss two production

262

2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI)

978-1-6654-1621-4/21/$31.00 ©2021 IEEE
DOI 10.1109/CogMI52975.2021.00041

20
21

 IE
EE

 T
hi

rd
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
og

ni
tiv

e
M

ac
hi

ne
 In

te
lli

ge
nc

e
(C

og
M

I)
|

97
8-

1-
66

54
-1

62
1-

4/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CO

GM
I5

29
75

.2
02

1.
00

04
1

Authorized licensed use limited to: UCLA Library. Downloaded on May 08,2023 at 01:00:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A Bug Hunting Workflow [17] is part of the design
verification of integrated circuits at Arm. A machine learning
pipeline replaced the default pipeline to predict the preferred
input candidates. Mango is deployed on the Dask distributed
cluster to automate the hyperparameter tuning of ML models
used for design verification.

use cases (1) a bug hunting workflow deployed on the Dask
cluster [14] using ML classifiers to optimize the design verifi-
cation of Arm’s integrated circuits, (2) an AutoML framework
deployed on the Kubernetes cluster1. Figure 1 shows the first
use case doing design verification of integrated circuits at
Arm. We evaluate the implemented optimization algorithms in
Mango on a collection of benchmark functions and classifiers.
Finally, we present a third use case of Mango enabling NAS
for Cortex-M microcontrollers class devices found in resource
constrained IoT and CPS applications.

II. BACKGROUND AND RELATED WORK

A. Hyperparameter Tuning Frameworks

The hyperparameter frameworks can be broadly categorized
into two groups (1) software built on distributed frameworks
to provide hyperparameter tuning as a feature [12]–[15] and
(2) optimization libraries with integrated scheduling exten-
sions [4]–[8]. However, adopting existing frameworks in pro-
duction ML pipelines faces hindrances primarily due to high
overhead in adoption for the former group and dependence on
custom-built parallel schedulers for the latter.

For example, Katib [13] and Polyaxon [15] are built on
top of Kubernetes. Tune [12] is a python library deployed
using the Ray framework [18]. Dask-ml2 provides hyperpa-
rameter tuning using the Dask framework. These systems
offer features like auto-scaling, failovers, and rich scheduling
abstractions. However, their integration into an arbitrary de-
ployment demands adopting the specific underlying framework
and additional software dependencies, creating development
and maintenance overhead. For example, using Katib requires

1https://kubernetes.io/
2https://ml.dask.org/

Kubernetes and adding components like database, API server,
and controller processes. These systems can be a good fit
if the application can benefit from other functionalities (a
web dashboard, for example) provided by these frameworks,
thereby justifying the integration overhead.

The second group includes optimization libraries with
custom-built scheduling mechanisms to run parallel work-
ers. The scheduling mechanisms in these libraries are not
as stable as production-grade frameworks like Kubernetes.
They lack critical features required in production systems like
auto-scaling, failover, and the ability to deploy on arbitrary
infrastructures. For example, parallel search in Hyperopt [4]
is dependent on MongoDB database or Apache Spark. Parallel
workers read and update the evaluation history from a shared
document. During performance evaluation, we encountered
repeated failures of workers due to communication loss with
the MongoDB database, and we had to restart the worker
after every failure manually. Spearmint [5] is also dependent
on MongoDB as a shared document store to enable parallel
evaluations. However, the Spearmint repository has not been
actively supported since 2015, so we did not evaluate it in our
experiments. Parallel search in SMAC [6] relies on a shared
file system for multiple workers to collaborate. Further, there is
no direct way to combine various workers’ results3. Optuna [7]
also requires a relational database like MySQL to communi-
cate between workers. Auto-sklearn [8] provides a wrapper
around the SMAC optimizer to enable hyperparameter tuning
of Scikit-learn’s ML models. Auto-sklearn’s parallel search is
dependent on setting up a Dask cluster framework [14] or
requires a shared file system.

To summarize, all these libraries use some form of shared
storage to communicate between parallel workers. However,
this is prone to failures due to communication loss, node
failures, and run-time errors. The libraries also do not pro-
vide mechanisms to recover when such failures occur. These
limitations offer critical hindrances towards adopting these
libraries in production deployment. It is important to note
that GPyOpt [10] and Skopt [11] expose the sampled batch
to be scheduled on an arbitrary framework. However, they
have limitations when applied to hyperparameter tuning of ML
classifiers, as discussed in the Section II-B.

Mango was borne out of the need to overcome the above
limitations. Mango is independent of a specific distributed
framework. Moreover, it does not mandate the use of any
additional software component like database, API server, or
shared file storage enabling classifier evaluations on arbitrary
systems.

B. Hyperparameter Tuning Algorithms

Bayesian optimization provides a state-of-the-art approach
to optimize expensive objective functions in a few evaluations.
Typical surrogate models used in Bayesian optimization li-
braries are GP (GPyOpt, Skopt, Spearmint), tree-structured
Parzen estimators (Hyperopt, Optuna), and random forest

3https://github.com/automl/SMAC3/issues/446

263

Authorized licensed use limited to: UCLA Library. Downloaded on May 08,2023 at 01:00:17 UTC from IEEE Xplore. Restrictions apply.

(SMAC, Skopt). GP surrogate is one of the preferred choices
due to its ability to provide a tractable assessment of prediction
uncertainty incorporating the effect of data scarcity [5], [19].
Further, GP is shown to outperform tree-structured Parzen
estimators (TPE) and random forest for functional bench-
marks [7]. However, when using GP for hyperparameter tun-
ing, libraries need to address the following shortcomings (1)
handling of categorical variables [20], (2) enabling conditional
parameter spaces and CASH [21], and (3) realizing parallel
search [6], [22], [23].

GpyOpt4, Skopt5, and Spearmint6 doesn’t support con-
ditional spaces, so they cannot be used to solve CASH7

problem. GpyOpt cannot handle non-numerical categorical
values8. Hyperopt and Optuna provide TPE surrogates. SMAC
uses a random forest surrogate. Hyperopt, Optuna, and SMAC
support conditional variables that can be applied to solve a
CASH problem. However, TPE is designed to be sequential
in nature [4], thus suffers performance loss in parallel search.
SMAC doesn’t support inbuilt parallel search and uses multi-
ple sequential runs to simulate parallel search.

The alternatives to Bayesian optimization are the multi-
fidelity optimization algorithms like successive having [24]
and Hyperband [25] exploiting partial training. Although these
approaches are cheaper to evaluate, they suffer from approxi-
mations errors in small-budget evaluations.

Mango algorithms use Bayesian optimization using GP and
address the GP’s shortcomings. The mixed numerical/cate-
gorical search spaces are handled using one-hot encoding
combined with Monte-Carlo sampling for acquisition function
optimization. For batch sampling to enable parallel search,
Mango provides a penalty approach and clustering search [26].
We present an algorithm using multiple GP surrogates moti-
vated by exploiting the structure of hyperparameter space [19],
[27] to solve the CASH problem.

A short paper introducing Mango with its early production
usage is available [28]. This paper discusses the challenges in
enabling hyperparameter tuning in production, Mango features
addressing these challenges, hindrances in adopting existing
frameworks, implemented algorithms, and the learning expe-
riences from deployed use cases.

III. MANGO

Mango has a functional-based API to integrate with a model
training pipeline. The four abstractions in Mango are (1)
Parameter Space Definer, (2) Objective Specifier, (3) Tuner,
and (4) MetaTuner. The modular architecture enables the
integration of new functionality and the ease of production
maintenance.

Parameter Space Definer provides python constructs to
easily specify complex search spaces, including mixed numeri-
cal/categorical values. The design of Objective Specifier allows

4https://github.com/SheffieldML/GPyOpt/issues/241
5https://github.com/scikit-optimize/scikit-optimize/issues/770
6https://github.com/HIPS/Spearmint/issues/54
7A library needs to allow classifier type as meta-hyperparameter to support

CASH, requiring conditional spaces or a specialized approach.
8https://github.com/SheffieldML/GPyOpt/issues/161

from mango import Tuner, scheduler
from scipy.stats import uniform
from xgboost import XGBClassifier
...
param_space = {’learning_rate’: uniform(0, 1),

’gamma’: uniform(0, 5),
’max_depth’: range(1, 21),
’n_estimators’: range(1, 11),
’booster’:[’gbtree’,’gblinear’,
’dart’]}

@scheduler.parallel(n_jobs=4)
def objective(**params):

...
clf = XGBClassifier(**params)
accuracy = ...
return accuracy

tuner = Tuner(param_dict, objective)
Study = tuner.maximize()

Fig. 2: An example of Mango to tune the hyperparameters
of XGBClassifier from the Xgboost library using a parallel
scheduler on the local machine. Parameter space consists of
distribution, range, and categorical variables.

classifiers’ training on local machines using an integrated
scheduler and arbitrary systems (e.g., custom-local software,
cluster frameworks) by exposing sampled batches. Tuner ex-
poses implemented algorithms for serial and parallel search.
MetaTuner solves a CASH problem. We show the skeleton
codes from production use cases to highlight these features.
Figure 2 shows an example of Mango for hyperparameter
tuning of XGBClassifier on a local machine using the inte-
grated parallel scheduler. The default optimization algorithm
and configurations can be modified.

A. Mango Abstractions

Parameter Space Definer: Mango uses Python constructs
(range and list) to define search spaces with mixed numer-
ical/categorical values. As shown in Figure 2, param space
is defined as a python dictionary. Continuous variables use
distributions from Scipy9. All the 60+ distributions from Scipy
are supported, allowing the flexibility to specify preferred
regions in the search space. Mango supports user-defined
parameter distributions. The parameter space definitions are
compatible with the Scikit-learn, allowing replacement for
existing applications using Scikit-learn.
Objective Specifier: The objective specifications are available
to train the classifier using a local machine or any arbitrary
system. The objective function training classifier uses an
integrated parallel scheduler on the local machine is shown
in the Figure 2. Here, the input to the objective() function is
a dictionary (params) with a single sampled point suggested
for evaluation by Mango. The @scheduler decorator specifies
the number of parallel jobs.

For deployments on arbitrary systems, a more general
skeleton of Objective Specifier is available, as shown in
Figure 3. It exposes the sampled batch directly to the user-
defined objective function to evaluate an application-specific

9http://www.scipy.org/

264

Authorized licensed use limited to: UCLA Library. Downloaded on May 08,2023 at 01:00:17 UTC from IEEE Xplore. Restrictions apply.

from kubernetes import client
...
param_space = ...
def objective(params_batch):

train on cluster using the sampled parameters
jobs = [client.create_job(params, ...)

for params in params_batch]
poll for job completion
results = []
while not timeout or not all_done:

results = [job.result() for job in jobs
if job.complete()]

return results
control the max number of iterations, batch size,
conf = {’num_iteration’:100, ’initial_random’:5,
’batch_size’:4, ’parallel’:’clustering’}
tuner = Tuner(objective, param_space,conf)
Study = tuner.maximize()

Fig. 3: Skeleton code of Mango on Kubernetes cluster that
is deployed as part of the AutoML framework at Arm. Partial
results are returned by the objective function based on timeout.
The conf data structure modifies the default behavior of Tuner.

scheduler. This scheduler’s nature is decided based on the
deployment framework. We allows the user-defined objective
function to discard the failed evaluations as shown in objective
function in the Figure 3 to make progress even with runtime
failures. The specific technique (e.g., timeout in Figure 3) to
identify a failure is kept outside of the Mango, as it may
depend on the underlying compute platform and tuning task.

The skeleton code shown in Figure 3 is part of an AutoML
framework (see Section IV-C) deployed on the Kubernetes
cluster at Arm. The objective function can return the result
as a list of values specifying the successful evaluations and
their respective hyperparameters without waiting for all the
evaluations to complete. The batch objective function skeleton
is kept independent of the underlying compute infrastructure,
with no dependency on the additional databases or a shared
file system, enabling its adoption across applications.

Tuner: A parameter space definition and the specified ob-
jective function are used by Tuner to search optimal hy-
perparameters. The config parameter (Figure 3) is optional.
It controls the maximum number of iterations, the initial
random iterations, the batch size for parallel search, and the
optimization algorithm. Tuner exposes sequential and parallel
search algorithms.

MetaTuner: MetaTuner is designed to solve a CASH problem.
The skeleton code of MetaTuner deployed in production on a
Dask distributed framework [14] is shown in Figure 4. This
code is part of the Bug Hunting Workflow shown in Figure 1.
The param space data structure is a list of search spaces for
individual classifiers identified by their type during scheduling.

B. Optimization Algorithms in Mango

Mango algorithms are based on Bayesian optimization.
Here, we summarize the sequential search, handling of the
categorical variables, batch sampling to enable parallel search,
and the CASH algorithm.

from dask.distributed import Client
...
dask_client = Client()

param_clf_nn = {’type’: ’clf_nn’,...}
param_clf_svm = {’type’: ’clf_svm’,...}
param_spaces = [param_clf_nn, param_clf_svm]

def objective(params_batch):
futures = []
Submit Jobs to the Dask cluster
for params in params_batch:

#schedule classifier based on type
clf = params.pop(’type’)
future = dask_client.submit(fit_and_score,

clf, **params)
futures.append(future)

Job completion or wait for timeout
results = [future.result(timeout) for future in
futures]
return results

metatuner = MetaTuner(objective, param_spaces)
Study = metatuner.maximize()

Fig. 4: Skeleton code deploying MetaTuner algorithm on the
Dask cluster, which is part of the bug hunting application used
for design verification of Arm integrated circuits designs.

Sequential search: The sequential search uses Bayesian opti-
mization with GP as the surrogate model. We use the Matern
kernel function and the upper confidence bound (UCB) as the
acquisition function [29]. The next sampled hyperparameter is
selected based on the predicted mean (exploitation) and the
corresponding variance (exploration). The exploration factor
is used to decide a trade-off between exploitation and explo-
ration. The exploration factor in Mango is fixed by default to
2.0; however, for expert users, we allow adaptive exploration
proposed by Srinivas et al. [29], where the exploration factor
is heuristically decided based on the complexity of the search
space (domain size) and the current iteration count. The idea is
to allow more exploration when the classifier’s search space is
huge. We do the Monte Carlo optimization of the acquisition
function by sampling the parameter space and then selecting
the next point to evaluate based on the acquisition function.
The total number of samples drawn is decided based on the the
complexity of the search space inferred using the definition.
Handling categorical values: The naive GP assumes con-
tinuous input variables. Thus, handling categorical and integer
values requires careful consideration. We use one-hot encoding
for the categorical values. However, naively rounding off the
categories or integers during evaluations can result in poor
performance as the actual point of objective evaluation may
differ from the proposed point [20]. Our approach is motivated
by the solution proposed by Garrido-Merchán et al. [20].
We optimize the acquisition function by sampling only the
valid points from the search space; thus, there is no mismatch
between the proposed and actual evaluation.
Parallel search: Conventionally, Bayesian optimization using
GP is a sequential search since new information must update
the acquisition function. The challenge in selecting a batch of
values is to ensure exploration diversity in the batch. A simple

265

Authorized licensed use limited to: UCLA Library. Downloaded on May 08,2023 at 01:00:17 UTC from IEEE Xplore. Restrictions apply.

technique to enforce diversity is that no choice is selected
twice in the batch. It can be done by ranking the choices
according to the UCB and then selecting top picks until new
feedback is available. However, this naive approach has limited
exploration [23], demanding intelligent parallel strategies. We
provide two algorithms to sample a batch of values in Mango.

The first algorithm, Clustering search used by default, is
motivated by selecting peaks [26], [30] of acquisition function
within a batch. It has the following two steps: (1) First, we
select a set of promising domain samples (top 25% by default)
based on the acquisition function. (2) Next, these domain
samples are clustered based on their distance in the search
domain space. We select the hyperparameter choice from each
cluster with the highest acquisition function value and add it
to the batch. We use K-Means clustering.

The second algorithm is hallucination search which is based
on the idea of applying penalty [22], [23] to sample a batch
using the acquisition function.

Algorithm 1: MetaTuner algorithm.
input : list of parameter spaces PList, objective

function obj fxn, and configuration Conf
output: type of classifier Ctype, optimal parameters

Opar

1 metaxpl ← 1.0, minxpl ← exp value;
2 decayrate ← decay value, accmax = 0;
3 Ctype← None, Opar← None;
4 for i← 1 to Conf[max iterations] do
5 Currclf ← None, Currpar ← None;
6 rand ← random();
7 if rand<metaxpl then
8 Currclf ← randINT(1,no of clf)
9 Currpar, ←

get gp acq(PList[Currclf],Conf);
10 metaxpl ← max(metaxpl ∗ decayrate,

minxpl);
11 else
12 for i← 1 to Size(PList) do
13 X[i], Y [i] ← get gp acq(PList[i],Conf);
14 end
15 Currclf ← argmax(Y [i]);
16 Currpar ← X[Currclf];
17 end
18 curr evaluation ← obj fxn ([Currclf ,Currpar]);
19 update gp([Currclf ,Currpar,curr evaluation]);
20 update gp exp([Currclf]);
21 if curr evaluation>accmax then
22 accmax ← curr evaluation;
23 Ctype ←Currclf , Opar ←Currpar;
24 end
25 end
26 return Ctype, Opar

MetaTuner algorithm to solve CASH: Direct addition of
an extra algorithm selection parameter in GP assumes that

information is shared between the hyperparameters of different
classifiers. A regular GP would make an invalid credit assign-
ment in these settings [21], [27]. To address this, we train
multiple GP surrogates for each classifier independently. Our
approach is motivated by the idea of exploiting the structure
of the optimization problem proposed by Bergstra et al. [19]
and Jenatton et al. [27]. Algorithm 1 is the serial version of
MetaTuner algorithm.

Some classifiers can have an exploration bias occurring
from the evaluation of good accuracy regions early on. To
avoid these issues, we use random exploration (metaxpl) with
a decay rate (decayrate) along with a minimum exploration
(minxpl) across classifier. Lines[7-10] do random exploration
across classifiers using metaxpl. Function get gp acq sug-
gests the parameter and the respective acquisition function
value using the parameter space definition and configuration
of the used classifier. Lines[12-16] select a classifier and
hyperparameter to evaluate based on its acquisition value. The
objective function evaluation for the selected classifier and the
Gaussian process surrogate update is done in Lines[18-19].
Line-20 updates the surrogate’s exploration for the classifier
that is evaluated. The idea is to favor other classifiers for
future evaluations by using more exploration factors if they
have high uncertainty due to their large search space. Finally
the best performing classifier and optimal parameter is main-
tained in the Lines[21-23]. The default values (decayrate=0.9,
minxpl=0.1) available in MetaTuner are the same that are used
for experiments.

A batch version of this algorithm is implemented in Mango,
where we initially select a batch |B| of values from individual
surrogates (get gp acq) using parallel search, and then rank
these (N ∗ |B|) values, where N is the number of classifiers,
to select |B| points to evaluate in parallel. Note that a mix of
classifiers may be evaluated in batch based on their acquisition
function.

IV. EVALUATION AND CASE STUDIES

A. Optimization Performance Evaluation

We compare Mango with several black-box optimization
libraries using the multiple criteria methodology proposed by
Dewancker et al. [31], also used by Akiba et al. [7]. Specif-
ically, we measure performance by the solution’s proximity
to the optimal point (accuracy) and the number of iterations
required to reach the optima (speed). We performed experi-
ments across two classes of optimization tasks: (1) Synthetic
test functions and (2) ML classifiers. Each optimization task
uses 80 iterations and is repeated 30 times to account for
the algorithm’s stochastic nature [31]. Results are statistically
compared for accuracy and speed criteria using paired Mann-
Whitney U test with α = 0.01 [31]. Libraries to compare
against are chosen to represent different flavors of Bayesian
optimization: Hyperopt with TPE surrogate, Optuna with a
mixture of TPE and CMA-ES, SMAC with random forest
surrogate. GPyOpt with Gaussian process surrogate, and lastly,
random search serves as the baseline.

266

Authorized licensed use limited to: UCLA Library. Downloaded on May 08,2023 at 01:00:17 UTC from IEEE Xplore. Restrictions apply.

1) Synthetic test functions: We used a collection of 53
functions having continuous search spaces from a benchmark
suite of test functions [31]. Figure 5a shows the results
where the objective function is evaluated sequentially. Mango
is worse than Optuna in 5/53 tests and Hyperopt in 2/53
tests. This is expected because the GP surrogate provides a
more accurate representation of the objective function than
TPE [7]. Mango performs worse than SMAC in 12/53 tests.
The performance of Mango is competitive when compared to
the other GP-based optimizer GPyOpt (worse in 22/53, tied in
10/53 tests).

Figure 5b shows the results for parallel search where the
objective function is evaluated using four workers. Mango’s
clustering parallel search performance is compared with GPy-
Opt’s local penalization approach, Optuna’s random sampling,
and random search. Mango performs worse than Optuna in
the 17/53 test and worse than GPyOpt in the 32/53 tests.
Hyperopt and SMAC also provide distributed optimization
using custom-built scheduling frameworks. However, we could
not complete the experiments for them due to repeated failures
of their custom scheduling framework.

GPyOpt internally uses a gradient-based method to optimize
the acquisition function, while Mango uses Monte Carlo sam-
pling. The gradient-based method provides a slight advantage
to GPyOpt in continuous search spaces, which is the case for
these test functions. However, Mango’s sampling approach is
more suitable for heterogeneous search spaces that include
categorical and integer parameters, which is the case for
hyperparameter tuning of ML classifiers, as discussed in the
next section.

2) Tuning ML classifiers: We compared the performance
for hyperparameter tuning of three ML classifiers: Xgboost,
K-Nearest Neighbor (KNN), Support Vector Machines (SVM)
to maximize the 3-way cross-validation accuracy for the iris
plants dataset, wine recognition dataset, and breast cancer Wis-
consin (diagnostic) dataset taken from Scikit-learn, i.e., a total
of 9 tuning tasks (three classifiers trained using three datasets).
The search space includes continuous, integer, and categorical
parameters with the exact definitions available [32]. The
experiment setup is the same as before, having 80 iterations
and 30 repeated runs. Results are shown in Figure 6. As seen
in Figure 6a, Mango performs better than all other libraries
in 6 or more tasks out of 9. Figure 6b shows the results for
parallel hyperparameter tuning with four workers.’ As seen, the
clustering search algorithm of Mango outperforms GPyOpt’s
local penalization approach and Optuna’s random sampling.

3) Hyperparameter Tuning across Classifiers: We com-
pare the performance of MetaTuner to solve the CASH
problem with Optuna’s TPE+CMA-ES surrogate, Hyperopt’s
TPE surrogate, SMAC’s random forest surrogate, and naive
random search. GPyOpt is not included in this evaluation as
it doesn’t allow conditional search spaces. Sampling for the
naive random search is done by uniformly choosing a classifier
followed by randomly sampling a hyperparameter from the
corresponding search space. The optimization objective is to
find the best classifier and corresponding hyperparameters

(a) Sequential optimization

(b) Parallel optimization with 4 workers

Fig. 5: Comparison of Mango to optimize functions.

(a) Sequential optimization

(b) Parallel optimization with 4 workers

Fig. 6: Comparison of Mango to tune hyperparameters.

from the neural network, Xgboost, KNN, SVM, and decision
tree. Experiments are done for three datasets taken from Scikit-
learn: iris plants dataset, wine recognition dataset, and breast
cancer Wisconsin (diagnostic) dataset. The exact parameter
search spaces for all the classifiers are listed online [32].

Figure 7 shows the results for 150 serial iterations and an
average of 30 runs. Optuna performs better than MetaTuner on
iris dataset and breast cancer Wisconsin (diagnostic) dataset.
MetaTuner performs better than Optuna on the wine recog-
nition dataset. MetaTuner performs better than the Hyperopt
and SMAC on all three datasets The results show that the
MetaTuner algorithm performs comparably with TPE and
random forest surrogates that directly support conditional
search spaces.

267

Authorized licensed use limited to: UCLA Library. Downloaded on May 08,2023 at 01:00:17 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 7: The comparison of Mango’s MetaTuner for combined classifier selection and hyperparameter optimization problem with
other libraries. The evaluation uses five different classifiers (Xgboost, k-nearest neighbor, Support Vector Machines, decision
tree, and neural network). Sub-figure (a) is for the Breast cancer dataset, sub-figure (b) the Iris plants dataset, and sub-figure
(c) the Wine recognition dataset. Mango performs better than Hyperopt and SMAC and is competitive with Optuna.

4) Optimizer sampling time: One disadvantage of GP sur-
rogate is that it is computationally expensive due to the cubic
complexity in the number of samples evaluated. Compara-
tively, TPE surrogate used in Hyperopt and Optuna is very
inexpensive. In Mango, we have reduced the computational
complexity by using Monte Carlo optimization of acquisition
function instead of commonly used gradient-based methods
like L-BFGS. We evaluate this feature by comparing various
optimizers’ sampling times in sequential, parallel, and CASH
settings. Results are shown in Table I. We did 30 runs of 80
iterations to calculate the average time taken per iteration. The
sampling time depends on the complexity of the parameter
space. For serial and parallel, we use the Xgboost’s parameter
space definition [32]. The CASH sampling time is shown
for the Xgboost parameter space definition [32]. As expected
TPE based optimizers are the fastest; however, Mango (GP)
is significantly faster than the GPyOpt (GP) and SMAC
(Random-forest). It is important to note that this comparison
is inconsequential for hyperparameter tuning because the time
taken to train ML models would dwarf the optimizer sampling
time.
Summary: Mango outperforms other libraries in hyperparam-
eter tuning for classifiers with mixed parameter (continuous,
integer, and categorical) spaces. When evaluated for CASH
problems, Mango’s is competitive in performance to Optuna.
In the case of functional benchmarks, Mango is competitive
with the GpyOpt. However, Optuna performs poorly for func-
tional benchmarks and tuning parameters for a single classifier.
Further, GpyOpt performs poorly when tuning ML classifiers.
Overall, Mango offers state-of-the-art algorithms having better
or at par performance across settings.

B. Case Study: ML Classifiers doing Bug Hunting in Design
Verification of Integrated Circuits

The goal of design verification of integrated circuits (ICs)
is to test the functionality correctness by generating input
signals and evaluating the resulting output against the expected
values. Modern ICs may contain billions of devices, so manual
design verification is no longer feasible to verify all possible
functionality. Standard practice in design verification is to

TABLE I: Wall clock time (sec) taken by optimizers to sample
next evaluation in sequential, parallel, and CASH settings.

Optimizer
(Surrogate)

Sequential Parallel CASH

Hyperopt (TPE) 0.001± 0.005 na 0.02± 0.001

Optuna (TPE) 0.07± 0.035 0.02± 0.006 0.02± 0.001

Mango (GP) 0.16± 0.008 0.12± 0.021 0.11± 0.002

GPyOpt (GP) 0.37± 0.051 1.76± 0.223 na

SMAC
(Random forest) 0.70± 0.046 na 0.94± 0.037

generate the test signal candidates using constrained-random
stimulus [33]. The random input generation is controlled to
allow a rich and diverse set covering the desired functionality.
These inputs are simulated and monitored for bugs in the
design. The bugs are then analyzed, fixed, and the entire
process is repeated to verify the updated design. The input
space for design verification is astronomically large, using a lot
of computing using the random search. It is evident from the
fact that the verification process accounts for a large fraction (
50 %) of the total compute budget during development [33].

At Arm, we are using ML to increase design verification
efficiency. ML models are trained to classify test candidates
likely to find bugs. The test candidates are then passed through
the ML filter to select the tests with a high probability of
failure. This process, called bug hunting ML flow, has been
deployed in production and has been shown to increase the
efficiency, measured as compute cycles used to find the same
number of bugs by 40 %. The overall workflow is shown in
Figure 1. The bug hunting workflow requires ML models to be
frequently re-trained as the design is updated or the test bench
that generates the test candidates is modified. We also prefer
training ML classifiers on the entire dataset to avoid partial
training errors when comparing the hyperparameters. Overall
our goal is to ensure that the compute budget for training
ML models does not grow and eat into the gains made in

268

Authorized licensed use limited to: UCLA Library. Downloaded on May 08,2023 at 01:00:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Workflow of the AutoML framework using Mango for
hyperparameter tuning on the Kubernetes (K8s) cluster.

the verification process. Hence our inclination for Bayesian
optimization to reduce training iterations. Besides, we required
the following features in the tuning library:

Deployment dependencies: The bug hunting workflow is
implemented on a computing cluster using Dask distributed
framework. Therefore, ideally, the hyperparameter tuning li-
brary should have the capability of being integrated with Dask
without significant external dependencies. Furthermore, the
library’s compatibility with Scikit-learn’s estimator interface
would ease the integration due to the existing usage of a
similar interface.

Runtime failures: Due to a cluster deployment, it is required
that the library should expose abstractions to discarding the
failed evaluations due to failed jobs, communication issues,
or incorrect parameter values. This is critical to reducing the
manual maintenance/debugging time in deployment.

CASH Problem Multiple ML classifiers are re-trained every
time the training event is triggered, and the best model is
chosen based on a custom metric.

The RandomizedSearchCV from Dask-ML partially sup-
ported these features and was used in the past ML production
pipeline. However, the key missing features were efficient
search and CASH. Mango provided all the required features
with flexible, lightweight architecture, allowing scheduling on
Dask without additional dependencies. Mango was integrated
into the production ML pipeline to tune the ML models used
for Arm’s ICs designs’ verification process. An extensive
evaluation using Mango on six proprietary design verification
benchmark datasets (3 test benches for 2 different designs)
in comparison to the RandomizedSearchCV from Dask-ML
showed that Mango reduces the model training iterations by an
average of 45% across all experiments, with the range being
23% - 69%.

C. Case Study: AutoML Framework

At Arm, an AutoML platform was developed to provide
a simple interface for non-data scientists to train and deploy
ML models. The platform is deployed on a Kubernetes cluster.

The AutoML framework uses the Kubernetes Jobs API to
orchestrate distributed hyperparameter tuning. The hindrances
in adopting Katib and Polyaxon hyperparameter tuning frame-
works built on top of Kubernetes is their dependencies on
components like API server, database, and persistent storage
volumes increasing the maintenance and development over-
head substantially. Mango provided a lightweight and robust
alternative with efficient search algorithms.

Figure 8 shows the process flow of AutoML platform.
The process is initiated by a POST request to the RESTful
API server with the training task’s configuration data. The
configuration data includes the dataset reference from S3,
training type (classification, forecasting, regression), target
column, performance metric, etc. The API server authenticates
the request, fetches the relevant metadata from the database,
and starts a master AutoML process using the Kubernetes
Jobs API (Step 2). The master AutoML process is responsible
for orchestrating the training task and invoking Mango for
hyperparameter tuning. Mango’s flexible scheduler interface is
used to create parallel ML training tasks using the Kubernetes
Jobs API (Step 3). Once tuning is complete, the master
AutoML process saves the best model deployed as a Docker
image in a container registry (Step 4). The pseudo-code of
Mango used by the AutoML framework is shown in Figure
3. We use a timeout and return the partial results to make
progress on the search.

D. Case Study: Network Architecture Search for TinyML Plat-
forms used in CPS/IoT Applications

Modern CPS/IoT applications are bringing ML classifiers to
microcontroller class devices. These devices, dubbed TinyML
devices, have stringent hardware constraints. As a result, the
neural architecture search (NAS) needs to be optimized by
target hardware specifications [1] to balance accuracy and
efficiency via hardware-aware NAS.

We show the use case of Mango to model the search
for limited flash and RAM requirements. The search space
Ω consists of neural network weights w, hyperparameters
θ, network structure denoted as a directed acyclic graph
(DAG) g with edges E and vertices V representing activation
maps and common ML operations v (e.g., convolution, batch
normalization, pooling, etc.) respectively, which act on V . The
goal is to find a neural network that maximizes the hardware
SRAM and flash usage within the device capabilities while
minimizing the error metric.

fopt = λ1ferror(Ω) + λ2fflash(Ω) + λ3fSRAM(Ω) (1)

where

ferror(Ω) = Ltest(Ω),Ω = {{V,E}, w, θ, v} (2)

fflash(Ω) =

{
− ||hFB(w,{V,E})||0

flashmax
∨ −HIL information

flashmax

∞, fflash(Ω) > flashmax

(3)

fSRAM(Ω) =

{
−maxl∈[1,L]{||xl||0+||al||0}

SRAMmax
∨ −HIL information

SRAMmax

∞, fSRAM(Ω) > SRAMmax

(4)

269

Authorized licensed use limited to: UCLA Library. Downloaded on May 08,2023 at 01:00:17 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d)
Fig. 9: Performance of Mango for hardware-aware NAS for OxIOD and RoNIN datasets. Subgraphs (a) and (b) illustrate how
Mango maximizes resource usage with looser compute and memory constraints to improve error metrics for three different
hardware models. Subgraph (c) shows the difference in model size and error metric with and without hardware-in-the-loop
(HIL) for the RoNIN dataset on three different hardware models. Subgraph (d) shows the relation between FLOPS and latency
for the RoNIN dataset and the difference in error metric with and without HIL.

a = w ∨ y, y =
K∑

k=1

vkgk(x,wk)

Error metric (e.g. RMSE or accuracy) serves as a proxy for
the error characteristics ferror(Ω) of the model candidate. When
real hardware is absent, we use the size of the flatbuffer model
schema hFB(·) [34] as a proxy for flash usage. Moreover, we
use the standard RAM usage model as a proxy for SRAM
usage fSRAM(Ω), with intermediate layer-wise activation maps
and tensors being stored in SRAM [1]. When hardware-
in-the-loop (HIL) is available, we obtain the SRAM and
flash parameters directly from the target compiler and real-
time operating system (RTOS). All hardware parameters are
normalized by device capacity or target metrics.

Evaluation We evaluate our NAS formulation on three ARM
Cortex-M microcontrollers with different compute and mem-
ory constraints. The task is to learn the velocity regres-
sion on the Oxford Inertial Odometry (OxIOD) [35] and
RoNIN datasets [36] using a temporal convolutional network
(TCN) having the parameter search space definition available
here [32]. The performance of a classifier is measured by av-
erage test root-mean-square error (RMSE). Figure 9 illustrates
the performance of Mango in finding optimal TCN networks
on the two datasets. From Figure 9a and Figure 9b, it is evident
that Mango attempts to exploit the full device capabilities

within the resource constraints to minimize the error metric
rather than choosing the smallest model every time. Thus,
as compute capability improves, the network size for the
target hardware also increases. In addition, we compare the
performance between using HIL and using proxies to model
device constraints and error metric in Figure 9c and Figure 9d.
We observe that there is a constant offset between HIL
and proxies in SRAM usage, stemming from model runtime
interpreter and RTOS overhead on target hardware. However,
the error metric can be optimized further through HIL than
proxies as compute constraints relax. The evaluation of latency
in Figure 9d shows latency is proportional to FLOPS, thereby
FLOPS servers a good latency proxy for microcontroller class
devices.

V. CONCLUSION

We presented the limitations of existing hyperparameter
tuning frameworks hindering their adoption in production.
Mango, a black-box optimization library with flexible architec-
ture and state-of-the-art algorithms, was designed to address
these limitations. Mango is evaluated on a set of functions and
classifier tuning tasks to benchmark its superior performance.
Finally, case studies are examined to highlight the adoption of
Mango in production ML pipelines at Arm.

270

Authorized licensed use limited to: UCLA Library. Downloaded on May 08,2023 at 01:00:17 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENTS

The research reported in this paper was supported by a
summer internship at Arm. All the UCLA authors would also
like to acknowledge the support of their research from the
CONIX Research Center, one of six centers in JUMP, a Semi-
conductor Research Corporation (SRC) program sponsored by
DARPA. The material reported in Section IV-D is based
on UCLA authors’ research as part of the the IoBT REIGN
Collaborative Research Alliance funded by the Army Research
Laboratory (ARL) under Cooperative Agreement W911NF-
17-2-0196. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the funding agencies.

REFERENCES

[1] I. Fedorov, R. P. Adams, M. Mattina, and P. N. Whatmough, “Sparse:
Sparse architecture search for cnns on resource-constrained microcon-
trollers,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[2] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Combined selection and hyperparameter optimization of classification
algorithms,” in Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2013, pp.
847–855.

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[4] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,” in
Proceedings of the 12th Python in science conference. Citeseer, 2013,
pp. 13–20.

[5] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, pp. 2951–2959, 2012.

[6] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in International
conference on learning and intelligent optimization. Springer, 2011,
pp. 507–523.

[7] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019, pp. 2623–2631.

[8] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Advances in neural information processing systems, 2015, pp. 2962–
2970.

[9] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in Proceedings
of the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, 2017, pp. 1487–1495.

[10] T. G. authors, “GPyOpt: A bayesian optimization framework in python,”
http://github.com/SheffieldML/GPyOpt, 2016.

[11] T. S. authors, “Skopt: scikit-optimize,” https://scikit-optimize.github.io/,
2016.

[12] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,
“Tune: A research platform for distributed model selection and training,”
arXiv preprint arXiv:1807.05118, 2018.

[13] J. Zhou, A. Velichkevich, K. Prosvirov, A. Garg, Y. Oshima, and
D. Dutta, “Katib: A distributed general automl platform on kubernetes,”
in 2019 {USENIX} Conference on Operational Machine Learning
(OpML 19), 2019, pp. 55–57.

[14] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th python in science confer-
ence, vol. 126. Citeseer, 2015.

[15] M. Mourafiq, “Polyaxon: Cloud native machine learning automation
platform,” Web page, 2017. [Online]. Available: https://github.com/
polyaxon/polyaxon

[16] Hyperopt, “hyperopt-mongo-worker,” https://hyperopt.github.io/
hyperopt/, 2019, accessed: 2021-1-29.

[17] H. Shin, “Exploiting while exploring: Effective bug discovery in unit-
level verification via supervised learning,” http://www2.dac.com/events/
eventdetails.aspx?id=295-48, 2020.

[18] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging {AI} applications,” in 13th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 18),
2018, pp. 561–577.

[19] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Advances in neural information processing
systems, vol. 24, pp. 2546–2554, 2011.

[20] E. C. Garrido-Merchán and D. Hernández-Lobato, “Dealing with cat-
egorical and integer-valued variables in bayesian optimization with
gaussian processes,” Neurocomputing, vol. 380, pp. 20–35, 2020.

[21] J.-C. Lévesque, A. Durand, C. Gagné, and R. Sabourin, “Bayesian opti-
mization for conditional hyperparameter spaces,” in 2017 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2017, pp. 286–
293.

[22] J. González, Z. Dai, P. Hennig, and N. Lawrence, “Batch bayesian opti-
mization via local penalization,” in Artificial intelligence and statistics,
2016, pp. 648–657.

[23] T. Desautels, A. Krause, and J. W. Burdick, “Parallelizing exploration-
exploitation tradeoffs in gaussian process bandit optimization,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 3873–3923,
2014.

[24] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification
and hyperparameter optimization,” in Artificial Intelligence and Statis-
tics, 2016, pp. 240–248.

[25] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6765–6816, 2017.

[26] M. Groves and E. O. Pyzer-Knapp, “Efficient and scalable batch
bayesian optimization using k-means,” arXiv preprint arXiv:1806.01159,
2018.

[27] R. Jenatton, C. Archambeau, J. González, and M. Seeger, “Bayesian
optimization with tree-structured dependencies,” in International Con-
ference on Machine Learning. PMLR, 2017, pp. 1655–1664.

[28] S. S. Sandha, M. Aggarwal, I. Fedorov, and M. Srivastava, “Mango:
A python library for parallel hyperparameter tuning,” in ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2020, pp. 3987–3991.

[29] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
arXiv preprint arXiv:0912.3995, 2009.

[30] V. Nguyen, S. Rana, S. K. Gupta, C. Li, and S. Venkatesh, “Budgeted
batch bayesian optimization,” in 2016 IEEE 16th International Confer-
ence on Data Mining (ICDM). IEEE, 2016, pp. 1107–1112.

[31] I. Dewancker, M. McCourt, S. Clark, P. Hayes, A. Johnson, and G. Ke,
“A strategy for ranking optimization methods using multiple criteria,” in
Workshop on Automatic Machine Learning. PMLR, 2016, pp. 11–20.

[32] A. Research, “Parameter search spaces use to evaluate mango
on classifiers,” https://github.com/ARM-software/mango/blob/master/
benchmarking/Parameter Spaces Evaluated.ipynb, 2021.

[33] A. B. Mehta, “Constrained random verification (crv),” in ASIC/SoC
Functional Design Verification. Springer, 2018, pp. 65–74.

[34] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, T. Wang et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning
and Systems, vol. 3, 2021.

[35] C. Chen, P. Zhao, C. X. Lu, W. Wang, A. Markham, and N. Trigoni,
“Deep-learning-based pedestrian inertial navigation: Methods, data set,
and on-device inference,” IEEE Internet of Things Journal, vol. 7, no. 5,
pp. 4431–4441, 2020.

[36] S. Herath, H. Yan, and Y. Furukawa, “Ronin: Robust neural inertial
navigation in the wild: Benchmark, evaluations, & new methods,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 3146–3152.

271

Authorized licensed use limited to: UCLA Library. Downloaded on May 08,2023 at 01:00:17 UTC from IEEE Xplore. Restrictions apply.

