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ABSTRACT: Methylammonium lead bromide perovskite magic-sized
clusters and quantum dots were synthesized using a new heated ligand
assisted reprecipitation (HLARP) technique using organic amines and
acids as capping ligands. The optical properties of these nanoparticles
were analyzed using UV−vis electronic absorption and photo-
luminescent spectroscopy. Varying the temperature of the precursor
solution while keeping the antisolvent temperature consistent allows
for tuning between perovskite magic-sized clusters (MSCs) and
quantum dots (PQDs) without the need to use excessive
concentrations of capping ligand. Higher precursor solution temper-
atures favor MSCs, while lower temperatures favor PQDs.
Furthermore, increasing the temperature of the system shifts the
original emission band from 436 to 453 nm, by increasing the size and
potentially through the introduction of surface defects. Low frequency Raman spectroscopy reveals that MSCs have vibrational
frequencies that are similar to those of bulk perovskite. Electrospray mass spectrometry and infrared spectroscopy were used to
probe the ligands on the surface of the MSCs, indicating that amine is the primary capping ligand and the surface is presumably
cation rich.

■ INTRODUCTION
Perovskite quantum dots (PQDs) have been studied
extensively for their unique properties, such as high photo-
luminescence (PL) quantum yield and tunable optical
properties.1 Their emission can be easily tuned over the entire
visible spectrum by controlling the crystal size,2,3 capping
ligand,4,5 and elemental composition.6,7 These distinctive
optoelectronic properties make them promising substrates for
applications in the fields of photovoltaics for light-emitting
devices,8,9 photodetectors,10,11 and sensing.12,13 The tunable
emission of PQDs stems from their quantum confinement and
high surface to volume (S/V) ratio.14,15 By comparison,
perovskite magic-sized clusters (MSCs) are smaller, more
monodispersed and have narrower, bluer optical absorption
bands.4,5,16−21 They are often described as kinetic products or
stable intermediaries of PQDs.22 Understanding the relation-
ship between PQDs and MSCs can aid in fundamental studies
of the growth mechanism of quantum dots and bulk
perovskite.
As MSCs have such a high S/V ratio, they are susceptible to

surface dangling bonds and defect sites leading to insta-
bility.23,24 Thus, MSCs are typically formed by increasing the

concentration of molecular capping ligands with appropriate
anchoring functional groups to increase surface protection. To
date, a significant amount of work has been dedicated to tuning
between MSCs and PQDs by varying ligand composition and
concentration.5,18,25,26 These syntheses typically employ
ligand-assisted reprecipitation (LARP) at room temperature.
For instance, Xu et al. demonstrated that an increase in
trivalent metal hydrated nitrate coordination complexes yields
monodispersed MSCs.4 Using a similar process, Li et al.
demonstrated that increasing the concentration of organic acid
and amine ligands also yields MSCs exclusively. Moreover,
increasing the concentration of organic amine alone also favors
the production of MSCs.5 It was determined that amine was
likely a strong capping ligand, which allowed it to more
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effectively passivate a smaller particle. However, nanocrystal
formation is dependent on a multitude of variables. By varying
the temperature, quantum dots have been synthesized using
the hot injection method.27 This requires high temperatures
(120−140 °C) and is typically performed in an air-free
environment, heating both precursor and antisolvent solutions,
but typically results in an increase of monodispersity and
particle stability.28,29 However, for MSCs, other variables have
barely been explored and little research has been done using
temperature for tuning.30 In the Gibbs−Thomson equation,
the temperature and critical radius are inversely proportional.
Thus, increasing the temperature results in smaller nano-

particles by imparting more energy to the surface, allowing
them to stabilize at smaller sizes.31 However, in the synthesis
presented herein, the solution is rapidly cooled from an
elevated temperature to around 20 °C. Rapid cooling during a
crystallization process decreases the size of crystal formation by
increasing the number of collisions and speeding up the
formation time scale.32 Moreover, rapid cooling increases the
number of nucleation sites, encouraging many particles to form
at the same time and more rapidly depleting available
resources, causing smaller particles to form.33 However, rapid
cooling can cause more defects in the crystal structure, as it
forms the kinetic, not thermodynamic, product.34 Defects can
lead to modifications in the Stokes shift, where emission occurs
at a longer wavelength than absorption does,35 and defect
engineering can be useful to tune the optical properties of
nanoparticles for different applications like solar cells or
photovoltaics.36

In this work, MSCs and PQDs are synthesized using a new
heated ligand assisted reprecipitation (HLARP) technique
using organic amines and acids as capping ligands. The optical
properties of these nanoparticles were analyzed using UV−vis
and photoluminescence spectroscopy. Higher precursor
solution temperatures favor MSCs, while lower temperatures
favor PQDs. Moreover, increasing the temperature of the
system allows the formation of stable states of MSCs to be
tuned from the original emission band of 436 to 453 nm. Low
frequency Raman spectroscopy was used to gain structural
insights. Electrospray mass spectrometry and infrared spec-
troscopy were used to determine that MSCs are primarily
capped with amine, indicating that the surface of the MSCs is
cation rich.

■ METHODS
Materials. Methylammonium bromide (MABr, 99.9%,

Greatcell Solar), PbBr2 (99.999%, Alfa Aesar), valeric acid
(99.0% Alfa Aesar), n-octanoic acid (98.0%, Tokyo Chemical
Industry), oleic acid (90%, Sigma-Aldrich), n-octylamine
(98.0%, Tokyo Chemical Industry), N,N-dimethylformamide

(DMF, 99.9%, Fisher Scientific), hydrobromic acid (HBr, 48%,
Honeywell), and toluene (99.9%, Fisher Scientific) were
commercially available. All chemicals were used as received
without any further purification.

Synthesis of MAPbBr3 PQDs and MSCs. In a modified
LARP synthesis process of PQDs and MSCs, MABr (0.080
mmol, 9.0 mg), PbBr2 (0.20 mmol, 73.0 mg), and 400 μL of
DMF were added to a borosilicate vial, and the solution was
sonicated in a water bath between 20 and 70 °C until all solid
dissolved. Next, organic acid (oleic, octyl, or valeric) of varying
amounts (0.15, 0.30, and 1.0 mmol) was added to the solution
and sonicated at this temperature for 30 s. Then, amine (oleyl
or octyl) of equimolar amounts was added to the solution and
sonicated for 30 s at temperature. One hundred microliters of
the precursor solution was injected at a fast rate into 5.0 mL of
toluene under vigorous stirring. Particles were washed through
centrifugation, first at 5000 rpm, retaining the supernatant, and
then twice at 10 000 rpm, keeping the pellet.
Control experiments were conducted by repeating this

process without the addition of oleic acid, doubling the
amount of oleic acid, or replacing oleic acid with an equimolar
amount of hydrobromic acid.

Spectroscopic Measurements. Ultraviolet−visible (UV−
vis) absorption spectra were measured with an Agilent
Technologies Cary 60 UV−vis spectrophotometer, and the
PL spectra were measured using a Cary Eclipse spectro-
fluorometer using a quartz 700 μL microcuvette at room
temperature and an excitation wavelength of 400 nm. FTIR
spectra were obtained with a PerkinElmer FTIR spectrometer
(Spectrum One, a spectral resolution of 4 cm−1), where the
samples were prepared by dropping the MAPbBr3 nanoparticle
solutions onto salt plates for analysis.

Mass Spectrometry. The washed particles with less than
10 mM concentration in 50% methanol were analyzed by
direct sample injection from a syringe needle with a 10 μL/min
flow rate on a Thermo Electron Finnigan LTQ mass
spectrometer in positive mode or negative mode over a full
scan range of m/z 50−1000. The voltage was set to 5.0 kV
with a capillary temperature of 275 °C. Data were analyzed by
using the XCalibur software.

■ RESULTS AND DISCUSSION
Tuning Between PQDs and MSCs. MAPbBr3 nano-

particles of varying sizes capped with 0.15 mmol of oleylamine
and oleic acid were synthesized using a new HLARP method.
The precursor solution was heated to 20, 40, 60, or 70 °C and
injected into room temperature antisolvent. Nanoparticles
formed at different precursor temperatures with 0.15 mmol of
capping ligand were subsequently labeled as MSC20A−
MSC70A. Their UV−vis absorption and PL spectra are

Figure 1. (left) Normalized UV−vis absorption and (right) normalized PL spectra of MAPbBr3 PQDs and MSCs capped with 0.15 mmol of
oleylamine and oleic acid with various precursor temperatures.
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shown in Figure 1. Three absorption bands are observed for
MSC20A and MSC40A at 430, 450, and 519 nm. In the case of
MSC60A and MSC70A, there is only one absorption band at
430 nm. According to previous studies, the range of 450−520
nm broader excitonic absorption peaks is attributed to
PQDs.5,37,38 while the single sharp excitonic absorption peak
at around 430 nm is assigned to MSCs.5,25,26,39

In the PL spectra, three emission peaks at 455, 473, and 528
nm were observed for MSC20A and MSC40A. Two emission
peaks were observed for MSC60A at 450 and 473 nm. Finally,
only one emission peak at 453 nm was observed for MSC70A.
The fwhm is 19 nm, indicating a narrow distribution of sizes.
The PL emission peak at 528 and 473 nm corresponds to
PQDs of differing sizes, while the strong and sharp excitonic
emission peak at 450 nm is assigned to MSCs. It should be
noted that MSCs synthesized with the HLARP method use
15% less capping ligand than that used in previously reported
LARP methods.5 HLARP MSCs formed with less capping
ligand with rapid cooling exhibited a Stokes shift of 23 nm,
compared to previous reports with a 6 nm shift produced with
the LARP method with excess octylamine and octanoic acid at
room temperature.5 Details of the UV−vis absorption and PL
emission peaks of MAPbBr3 PQDs and MSCs with various
ligands at differing temperatures are summarized in the
Supporting Information.

This synthesis is predicated on the principles that increasing
the temperature increases the surface free energy necessary to
decrease the critical radius31,40 of a nanoparticle and that rapid
cooling causes crystal formation to occur on a faster time
scale.41−43 Thus, increasing the temperature of the precursor
solution increases this free energy, allowing for the formation
of smaller particles. Moreover, increasing the temperature
increases the solubility of the capping ligands, allowing for
better nanoparticle/capping ligand interaction and leading to
more effective passivation, which helps with stabilization at a
smaller size.44 Additionally, by injecting heated precursor into
a room temperature antisolvent, the solution supersaturates
due to two factors, both solvent and temperature changes.45

Thus, the equilibrium is shifted toward crystallization on a
shorter time scale than those synthesized using the LARP
method. Rapid cooling also facilitates the production of more
nucleation sites, which decreases the concentration of
precursors, inhibits Ostwald ripening, and thus forms smaller
particles.33 Since MSCs synthesized using HLARP form more
rapidly, they are not the most thermodynamically stable
product but a stable intermediary.
The HLARP synthesis of MAPbBr3 PQDs and MSCs was

repeated using double the amount of oleic acid and oleylamine,
0.30 mmol, at a lower temperature range of 20−60 °C. Figure
2 shows UV−vis absorption and PL spectra with a similar
trend. Here there are fewer absorption bands compared to 0.15

Figure 2. (left) Normalized UV−vis absorption and (right) normalized PL spectra of MAPbBr3 PQDs and MSCs capped with 0.30 mmol of
oleylamine and oleic acid with various precursor temperatures.

Figure 3. Combined normalized UV−vis and PL data for (A) MSC70A, (B) MSC60B, and (C) MAPbBr3 oleylamine and oleic acid synthesized
using the original LARP method. (D) Normalized PL spectra of MSC70A, MSC60B, and LARP MSCs compared directly.
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mmol of capping ligand as shown in Figure 1. MSC20B-60B
produces one major absorption band around 427 nm. The
intensity of the shoulder from 470 to 510 nm, indicating
PQDs, diminishes with the increase in temperature of the
precursor solution. As expected, the increase in capping ligand
increases the production of MSCs. However, it also arrested
the production of the 450 nm absorbing particles. The growth
of MSCs is typically described as discrete, where there is a
thermodynamic barrier to the growth of a larger size.46 It is
possible that the addition of excess capping ligand is
preventing collisions that provide energy to overcome this
barrier and form a larger crystal.
In the PL spectra, there is one broad emission peak at 515

nm, attributed to PQDs, and one sharp peak ranging from 440
to 446 nm associated with MSCs. As the temperature
increased, the 515 nm peak disappeared and the 446 nm
peak blue-shifted to 440 nm. MSC60B showed one narrow
peak at 440 nm with a fwhm of 22 nm, indicating a
monodispersed population of particles. Increasing the capping
ligand concentration of the synthesis blue-shifted the MSCs,
which likely indicates a reduction in particle radius. Here
monodispersity is achieved at a lower temperature, thus
indicating that there is not a universal transition point to
overcome the activation energy to form MSCs. However, their
Stokes shift is 13 nm and thus still larger than those in many
reported LARP methods4,5,17 but smaller than the 23 nm shift
of MSC70A.
Tunability of MSCs. The monodispersed MSCs from

Figures 1 and 2 are compared directly in Figure 3 to the
original LARP synthesis and show the tunability of the MSCs
emission band. A characteristic feature of MSCs is their
discrete, monodispersed size.5,45 There is a 17 nm difference in
the emission position between the MSC70A and the MSCs
from the original LARP method (Figure 3D), which emit at
453 and 436 nm, respectively. The Stokes shift also increases
from 13 to 23 nm using the HLARP synthesis. The MSC60B
emission peak is red-shifted by 4 nm from the original LARP
MSCs, but both have a Stokes shift of 13 nm.
The optical properties of these nanoparticles are governed

by quantum confinement,14 and thus, changing their size will
affect their band gap. A size-dependent band gap can be made
with the Brus method,38,39,47

E
h
r m m

(MSCs) E (bulk)
8

1 1
gg
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2
e h

= + +
i
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where Eg(MSCs) is the band gap of MSCs, Eg is the band gap
of bulk perovskite, h is Planck’s constant, r is the radius, me is
the mass of the electron, and mh is the mass of the hole. From
previous reports, Eg (bulk) was previously determined to be

2.30 eV48 and ( )m m
1 1

e h
+ was determined to be 2.37 × 1030

kg−1.21

The sizes of MSCs LARP, MSC60B, and MSC70A were
calculated to be 3.05, 3.13, and 3.41 nm, respectively. As MSCs
have such a high S/V ratio, they are particularly vulnerable to
trap states formed through surface defects.49 By synthesizing
MSCs with less capping ligand, a higher temperature is
required to form monodispersed MSCs. Increasing the
temperature also introduces rapid cooling, which has been
shown to introduce more defects into the nanoparticle.34,36

The defects may affect radiative recombination and result in
the larger Stokes shift. By contrast, using a larger concentration

of capping ligand, a lower temperature was needed to
synthesize MSCs with a more blue-shifted emission for
MSC60B. The MSCs surface defects were more effectively
passivated, and crystal formation could occur on a slightly
larger time scale. As these crystals are likely more “perfect”,
they have less defects to create trap states. Thus, radiative
recombination occurs without as much electron−phonon
coupling.50 This would agree with the previously reported
MSCs synthesized with excess capping ligand forming at room
temperature. They are likely to have a decrease in defects or
trap states, resulting in a smaller Stokes shift. This tunability
allows them to be optimized for different applications. A larger
Stokes shift is desirable for solar cell applications to minimize
photon reabsorption,51,52 while a smaller Stokes shift is more
applicable for photovoltaics to achieve a higher power
conversion efficiency.52,53

Structural Properties. Figure 4 shows the low frequency
Raman of the MSCs in solution. The MSC vibrational modes

were compared to those of methylammonium lead bromide
bulk. The characteristic mode at 53 cm−1 indicates octahedra
distortion54 and the bending of lead halide bonds.55 The
modes at 69 and 94 cm−1 are due to lurching methylammo-
nium,54 and the mode at 107 cm−1 is due to methylammonium
libations.55 Comparing to theoretical spectra of MAPbBr3 in its
tetrahedral-1, tetrahedral-2, and orthorhombic phases, the 94
cm−1 is well accounted for in the tetrahedral-2 formation and
in the octahedral formation, not in the tetrahedral-1 formation.
All four modes of the nanocrystal are in good agreement with
bulk methylammonium lead bromide.54 This is somewhat
unexpected since, given their small size, one might expect
higher vibrational frequencies than those for bulk. Future
theoretical studies may help to provide some explanation or
new insight into this.

Surface Ligand Binding. Figure 5 compares the IR
spectra of oleic acid, oleylamine, and MSCs emitting at 453
nm. Oleylamine shows characteristic modes of oleyl groups.
The peaks at 2851−2853 and 2922−2925 cm−1 are due to the
symmetric and asymmetric CH2 stretching modes, respectively,
and peaks at 3003−3006 cm−1 are assigned to the ν(C−H)
mode of the C−H bond adjacent to the C�C bond. It also
shows C−H bending modes at 1468 cm−1. The spectrum is
distinguished by the sharpness of the modes at 2922−2925
cm−1 and 2851−2853 cm−1.56

Oleic acid similarly shows the characteristic modes of oleyl
groups at 2851−2853, 2922−2925, 3003−3006, and 1468
cm−1. However, it has characteristic modes of the carboxylic
acid group. The ν(C�O) mode is observed as a sharp, strong
peak at 1707 cm−1, an additional C−H bending mode at 1450

Figure 4. Low frequency Raman spectrum of MAPbBr3 MSCs in
solution measured with a 785 nm laser.
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cm−1, and a broad shoulder in the region between 3100 and
3500 cm−1, which could be assigned to dimers of oleic acid in a
bilayer structure.56

The FTIR spectrum of MSCs shows all the oleyl group
modes. It also shows a peak at 1707 cm−1 that can be
attributed to the carbonyl group of oleic acid. The low

Figure 5. IR spectra of oleylamine (red), oleic acid (black), and MSCs (blue).

Figure 6. (A) Potential cationic surface dangling bonds capped by oleylamine and oleyl ammonium on the surface of MSCs. (B) Description of the
growth mechanism to tune between MSCs and PQDs using temperature, capping ligand concentration, and rapid cooling. (C) Comparison of size
of MSCs, defects, and band gap of a PNC-perovskite nanocrystal.
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intensity of the peak indicates a low concentration. The
spectrum also shows the characteristic sharp peaks at 2923 and
2852 cm−1, characteristic of oleylamine, suggesting both amine
and acid ligands are present on the surface.57 Moreover, a
combination of the protonated and deprotonated form of each
capping ligand is likely to interact due to a proton transfer
reaction between the two. However, the protonated and
deprotonated forms of these compounds are difficult to
distinguish using IR. Moreover, IR spectroscopy alone is
insufficient to quantify the molar ratio of ligands on the
surface; thus, mass spectrometry was employed to gain
insight.56

Figure S3 shows the positive ion mass spectrum of MSCs
emitting at 453 nm. Washed particles were injected directly
into an ESI mass spectrometer and positive and negative ion
spectra were obtained. The positive ion spectrum shows a
characteristic peak at 268 m/z, indicating ionized oleylamine
or oleyl ammonium (Figure S3). As equimolar amounts of
oleylamine and oleic acid were used in the synthesis of these
MSCs, an oleic acid or oleate peak would be expected.
However, the requisite 281 m/z peak is not present (Figure
S4). This is intriguing as common passivation theories of metal
halide perovskites accept the cocktail approach, using many
types of capping ligands to passivate different defects.24 While
oleic acid is still present on the surface, as shown by the IR
spectrum, oleylamine or oleyl ammonium is the predominant
capping ligand. To confirm these findings, MSCs were
synthesized with exclusively oleylamine and oleyl ammonium
as capping ligands (Figure S4). Oleylamine alone could
effectively result in the generation of MSCs. Two control
experiments were conducted using oleyl ammonium, which
was generated from oleylamine using an excess of oleic acid
and with an equimolar amount of hydrobromic acid. The
acidified mixtures yielded a mixture of MSCs and PQDs. Thus,
acidification of oleylamine does not yield monodispersed
MSCs. Since oleylamine by itself does yield MSCs, it is likely
the primary capping ligand.
These results are consistent with Liu et al.’s findings that

increased oleylamine yields more MSCs.5 However, here we
confirm that oleylamine is the primary capping ligand bound
on the surface of the MSCs. Since capping ligands are used to
passivate surface defects, we can infer a significant amount
about the surface chemistry based on which capping ligand is
on the surface. The FTIR spectra confirm the presence of
oleylamine and a small amount of oleic acid. The presence of
oleic acid is shown in the FTIR spectra, but nothing about its
binding to the surface is known. As oleylamine and oleic acid
interact via an acid−base neutralization to form oleyl
ammonium and oleate,5 we likely have oleyl ammonium and
oleate present on the surface as well. As is consistent with the
literature, the combination of these ligands will effectively
passivate several anionic and cationic defects more effectively
than one ligand alone.24 However, with such a large, confirmed
presence of oleylamine present on the surface, the MSC
surface is likely cation rich as oleylamine acts as an electron
donator.49

As shown in Figure 6A, we propose that the surface of MSCs
is primarily capped with oleylamine and a small amount of
oleyl ammonium. Different defects are usually anticipated for
perovskite nanocrystals, such as MSCs and PQDs, in relation
to different components, MA+, Pb2+, or Br−.49 When both
oleylamine and oleic acid are used as ligands, they react to
form oleyl ammonium and oleate. Thus, oleylamine, oleyl

ammonium, oleate, and oleic acid are all expected to play some
role in passivating or binding to the cationic and anion defects
on the surface on the nanocrystal, as observed in PQDs.24 It is
expected that these ligands passivate with similar molar
amounts, as observed in the mass spectrum of CsPbI3
PQDs.58 However, Liu et al. showed that MSC formation
occurs with an increase in amine concentration, and the mass
spectrum presented herein, along with control experiments
(Figure S5), shows that MSCs are predominantly capped using
oleylamine in its deprotonated form. Amines donate a lone pair
of electrons that datively coordinates positively charged surface
atoms.59 Thus, the surface seems cation rich, with likely
methylammonium and lead defects dominating over halide
anions. There are likely a small percentage of Br− defects on
the surface that are passivated by oleyl ammonium. Li et al.
proposed that amines could act as a stronger capping ligand5

and long chain primary amines provide excellent surface
coverage, leading to more effective passivation and smaller
particle size.60 This suggests a correlation between smaller
particles and cationic surface environments.
Figure 6B illustrates the tuning effects of temperature and

capping ligand concentration on MSCs and PQDs. In this
work, we see the equilibrium shift to MSCs from PQDs by
increasing the capping ligand concentration and the temper-
ature of the precursor solution. Using an excessive amount of
capping ligand usually leads to better passivation and reduced
particle size.4,5 Capping ligands help lower the surface free
energy and stabilize particles at a smaller critical radius.33,42,43

Meanwhile, increasing the temperature helps to overcome the
energy barriers for formation and results in the stabilization of
smaller particles.33,42,43 It also facilitates the formation of
nucleation sites and increases the solubility of capping ligands,
both of which favor smaller particles.61 Moreover, the
nanocrystals also undergo rapid cooling during formation,
which inhibits Ostwald ripening, similarly lowering the critical
radius.33 Both of these variables used in conjunction allow not
only for the tuning between MSCs and PQDs but also for
varying the size of MSCs.
As quantum size confinement affects both MSCs and PQDs,

tuning their size has significant implications on their band gaps
(Figure 6C).62 While the tunability of PQDs has been well
established,1,63−71 the tunability of MSCs is less explored since
they are often described as discrete.45,72 In this work, MSCs
show a tunable emission from 436 to 453 nm. This emission
band shift may also be due to a change in band edge defect
states (Figure 6C). In addition to the size difference, there is
also an increase in the magnitude of the Stokes shift when
switching from smaller particles, like MSC LARP and
MSC60B, to larger particles, like MSC70A.35 MSC70A was
formed using a 50 °C temperature differential from rapid
cooling. Rapid cooling results in smaller particles and causes
crystal formation to occur on a shorter time scale. This can also
lead to more defects often responsible for trap state emission.34

Thus, the kinetic barrier is overcome, but there is no time to
reach thermodynamic equilibrium. By increasing the temper-
ature in conjunction with increasing capping ligand concen-
tration, MSCs exhibit tunable emission bands through both
potential defect introduction and size variability.

■ CONCLUSIONS
Methylammonium lead bromide magic-sized clusters and
quantum dots are synthesized using a new heated ligand
assisted reprecipitation technique using organic amines and
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acids as capping ligands. UV−vis and PL spectroscopy were
used to confirm the changes between PQDs and MSCs by
varying the temperature of the precursor solution while
keeping the antisolvent temperature consistent, without the
need to use an excessive concentration of capping ligand. It
was found that higher precursor solution temperatures favor
MSCs while lower temperatures favor PQDs. Moreover,
increasing the temperature of the system allows the emission
band of MSCs to be tuned from 436 to 453 nm along with an
increased Stokes shift from 13 to 23 nm potentially through
the introduction of surface defects. Low frequency Raman
results agree with that of bulk MAPbBr3, suggesting that the
core of the MSCs has a very similar crystal or unit cell structure
as that of bulk, which is interesting because, given their small
size, one may expect higher vibrational frequencies than those
for bulk. Since the HLARP synthesis utilizes less capping
ligand, IR spectroscopy and mass spectrometry could be used
to determine that amine was the primary capping ligand bound
on the surface of the MSCs. This indicates that the surface of
the MSCs is cation rich.
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