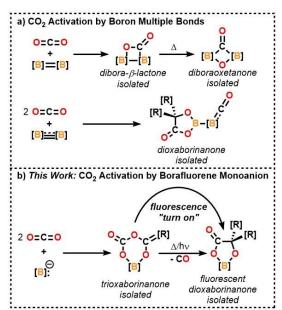
Activation of Carbon Dioxide by 9-Carbene-9-Borafluorene Monoanion: Carbon Monoxide-Releasing Transformation of Trioxaborinanone to Luminescent Dioxaborinanone


Kelsie E. Wentz, Andrew Molino, Lucas A. Freeman, Diane A. Dickie, David J. D. Wilson,* Robert J. Gilliard, Jr.*

ABSTRACT: The first structurally characterized example of a trioxaborinanone (2) is produced by the reaction of a 9-carbene-9-borafluorene monoanion and carbon dioxide. When compound 2 is heated or irradiated with UV light, one equivalent of carbon monoxide (CO) is released, and a luminescent dioxaborinanone (3) is formed. Notably, carbon monoxide-releasing molecules (CORMs) are of interest for their ability to deliver a specific amount of CO. Due to the turn-on fluorescence observed as a result of the conversion to 3, CORM 2 serves as a means to optically observe CO loss "by eye" under thermal or photochemical conditions.

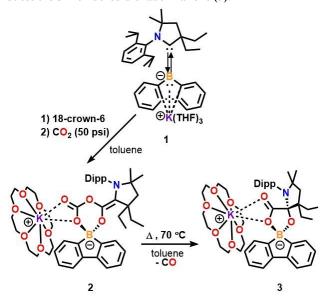
Given the overabundance of greenhouse gases such as carbon dioxide (CO₂) in the Earth's atmosphere, scientists have been interested in understanding the chemical transformations of these small molecules and their modification into higher-value chemical feedstocks.1 Although the complete conversion of CO2 into desirable materials is quite complex, a key first step is the activation of their inert chemical bonds. Because of the high thermodynamic stability of CO2, reactive species are often required to break their strong bonds. Transition metal complexes have been widely used for the activation of these small molecules, but some of these elements remain costly and susceptible to potential supply chain issues (e.g., precious metals).2 Therefore, researchers are interested in designing inexpensive main-group compounds that can activate inert gases. However, due to the inherent disposition of energetically accessible molecular orbitals, the synthesis of suitable main-group compounds that interact with small molecules remains an ongoing challenge.3

Owing to its ability to exist as both a strong electrophile or nucleophile, boron has been an element of choice for several small molecule activation studies. Most germane to this report, Braunschweig recently reported that nonpolar B=B double bonds can activate CO2 to form novel dibora- β -lactones and diboraoxetanones. In contrast, a diboracumulene with partial triple bond character reacts with CO2 to form a dioxaborinanone (Figure 1a). Although these examples represent significant strides in main-group chemistry, studies of boryl anions activating small molecules are still limited.

Due to the reduced, electron-rich nature of 9-carbene-9-borafluorene monoanions that were recently isolated by our laboratory, we hypothesized they would be a suitable platform for small molecule activation chemistry. Herein, we report the reaction of the 9-CAAC-9-borafluorene monoanion with CO₂ (CAAC = (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene)⁸ (Figure 1b). Notably, the activation of CO₂ produces the first example of a trioxaborinanone, which is air-stable in the solid-state. Thermolysis or photolysis of trioxaborinanone results in CO release to yield a luminescent

Figure 1. a) Activation of CO₂ by nonpolar double multiple bonds; b) *This Work*: synthesis of trioxaborinanone by borafluorene monoanion activation of CO₂, and elimination of CO to form the fluorescent dioxaborinanone.

dioxaborinanone, which is stable in open air in solution. Carbon monoxide is essential physiologically as a messenger for various neurological pathways, however, it is fatal if inhaled in high concentrations. Accordingly, materials that can deliver specific amounts of CO in a controlled manner [e.g., carbon monoxide-releasing molecules (CORMs)] have gained significant attention for anti-inflammatory therapies and other medicinal applications. Furthermore, the majority of CORMs are transition metal-based and acyclic, while metal-free heterocyclic CORMs remain exceptionally rare. Thus, the new trioxaborinanone-based CO-releasing process features a unique heterocycle to heterocycle transformation where CO loss can be optically observed.


We began our studies by pressurizing a THF solution of CAAC-borafluorene monoanion (1) to 50 psi with CO₂ and an immediate color change from deep red to yellow was observed. A crude ¹H NMR spectrum of the solid obtained from the reaction showed the formation of a complex mixture of intractable products. However, when 18-crown-6 was added to a solution of 1 before pressurizing with CO₂, the 6-membered trioxaborinanone (2) was cleanly isolated as a colorless solid in 71% yield (Scheme 1). Compound 2 was characterized by a distinct ¹¹B{¹H} NMR chemical shift at 8.0 ppm and a C=O stretching band at 1693 cm-¹ in the infrared spectrum.

The mechanism for the formation of 2 was investigated using density functional theory. The addition of electronrich boron in **1** to the carbon center of CO₂ forms borylcarboxylate adduct Int1a (Figure 2). The nature of the formation of Int1a, described by TS1a, was further examined using energy decomposition analysis in conjunction with the natural orbitals for chemical valence method (EDA-NOCV). The boron center in TS1a adopts sp3 hybridization. The highest occupied fragment orbital describes a lone-pair centered at boron, with the complimentary π^* lowest occupied fragment orbital on bent CO₂. The resultant NOCV identifies charge-transfer from boron to the carbon atom of CO₂, indicating the initial adduct formation proceeds via nucleophilic addition (Figure 3). The CO2 adduct undergoes a concerted migration from boron to the carbene carbon, forming β -lactone intermediate **Int1b**. The concerted [2+2] cycloaddition of CO2 to the B-Ccarbene bond of 1 was found to be energetically inaccessible (ΔG^{\ddagger} =+216.4 kJ mol⁻¹). Dissociation of the B-Ccarbene bond in Int1b yields Int1c possessing a nucleophilic site at the singly coordinated oxygen. Int1c readily undergoes nucleophilic addition with CO2 (Int1d) and subsequent intramolecular cyclization to form 2 ($\Delta G_{rxn} = -68.2 \text{ kJ mol}^{-1}$ ¹).

Heating a solution of **2** in toluene to 70 °C for 18 hours results in CO release and the air-stable 5-membered dioxaborinanone (**3**) was obtained in 80% isolated yield (Scheme 1).

The azolium carboxylate (CAAC-CO2)¹³ also forms in minor amounts but can be easily separated from the mixture (mechanism, vide infra). Monitoring the reaction in C₆D₆ (70 °C) or THF-d₈ (60 °C) by ¹H NMR indicates that **2** completely converts to **3** in 2 hrs which was observable by the disappearance of methine environments at 3.61 and 3.36 ppm (**2**) and growth of new peaks at 4.16 and 3.89 ppm (**3**) (Figure S7-S8). Photolysis of **2** under UV light also promotes CO release to form **3** and CAAC-CO₂, albeit with additional unidentified species as side products. An ¹¹B{¹H} NMR chemical shift at 11.8 ppm, in addition to a C=O stretching band at 1690 cm-¹ in the infrared spectrum were consistent with compound **3**.

Scheme 1. Reaction of 1 with CO₂ yields the 6-membered trioxaborinanone (2). Heating a solution of 2 releases CO and produces the 5-membered dioxaborinanone (3).

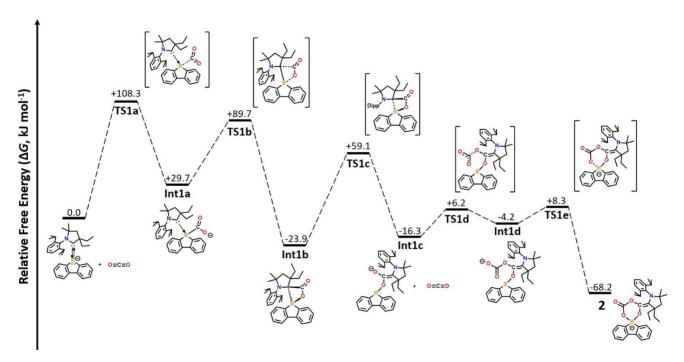
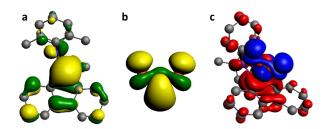
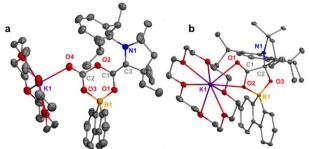



Figure 2. Calculated relative free energies (ΔG , kJ mol⁻¹) for the reaction of 1 with CO₂ to form 2 at the B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP (SMD, Toluene) level of theory. All thermochemical values computed at 298.15 K and 3.4 atm.

Figure 3. Plots of the reactant fragment orbitals for **TS1a** (a) and (b). Plot of the deformation density $\Delta p_{(1)}(c)$ indicating charge flow between NOCVs for **TS1a** and the associated contribution to the total orbital interaction, $\Delta E_{(1)} = -176$ kJ mol⁻¹, $\nu_{(1)} = \pm 0.849$. Eigenvalue $\nu_{(1)}$ quantifies the amount of transferred electron density (red: charge depletion, blue: charge accumulation), isosurface = 0.001. Hydrogen atoms and terminal methyl groups omitted for clarity.

Spirocyclic 2 can be considered among carbon monoxide-releasing molecules (CORMs) that are important for their ability to deliver specific amounts of CO, reducing the risk of CO poisoning. $^{10b,\,10c}$ To confirm the release of CO from 2, gas chromatography studies with a flame ionization detector (GC-FID) were performed with argon as the carrier gas. The GC instrument was first injected with pure CO gas and the retention time was determined to be 3.5 min, and subsequently with an aliquot of the reaction headspace to which a peak at t_r = 3.5 min was observed (Figure S12).


Theoretical methods were used to gain insight into the decarbonylation mechanism of 2 (Scheme 2). In order to avoid any mechanism bias, a systematic investigation was conducted with relaxed scans for the heterolytic dissociation of each bond in the central carbonate ring (Figure S15). These calculations indicated that dissociation of B1-O1 (Int2a) was most favored energetically ($\Delta G = +115 \text{ kJ mol}^{-1}$). Acyclic **Int2a** features an sp2 hybridized boron and a weak electrostatic interaction with the carbonyl oxygen (B1-04, 2.71 Å). A subsequent transition state was located for the dissociation of **Int2a** (ΔG^{\ddagger} = +28 kJ mol⁻¹) forming reactive intermediate complex **Int2b** (ΔG = +74 kJ mol⁻¹), composed of zwitterionic CAAC-CO₂ and a bora- α -lactone anion. This step is consistent with the experimentally observed CAAC-CO2 intermediate. Intrinsic reaction coordinate calculations reveal the bora- α -lactone intermediate is formed via the inversion of boron-oxygen bond B1-03 with the carbonyl oxygen (04). Nucleophilic addition of the endocyclic oxygen of bora- α -lactone to the electron-deficient carbon center of CAAC-CO₂ via **TS2c** (ΔG^{\ddagger} = +27 kJ mol⁻¹)

Scheme 2. Proposed mechanism for the thermal decarbonylation of 2.

releases CO in a concerted step, forming epoxide Int2c. The strained epoxide intermediate is relieved through intramolecular cyclization to form the 5-membered dioxaborinanone 3 $(\Delta G_{rxn} = -33 \text{ kJ mol}^{-1})$. While decarbonylation reactions are common across the chemical literature, most examples describe exocyclic CO release from transition metal complexes, 11c, 11d main-group compounds,3c, 14 or unsaturated cyclic hydrocarbons. 12a In the case of thermal decarbonylation, the mechanism for CO release is exclusively cheletropic elimination, while photolytic decarbonylation proceeds via a Norrish Type I reaction.15 Rare examples of heterocyclic decarbonylation, and more specifically CO extrusion from cyclic esters, typically require high temperature thermolytic fragmentation pathways.¹⁶ Thus, compound 2 is a rare example, or perhaps even the first example, of a metal-free spirocyclic CORM that releases endocyclic-CO under relatively mild conditions.

It is noteworthy that dioxaborinanone ${\bf 3}$ emits blue light under UV excitation. Therefore, compound ${\bf 2}$ is an especially unique CORM with the ability to deliver CO under both thermal or photochemical conditions with a simultaneous optical response (i.e., fluorescence turn-on due to the formation of 3). The lowest energy transition for 3 in THF was observed at 318 nm, with a red-shifted emission maximum at 352 nm (Figure S11). In order to quantify luminescence, an absolute quantum yield was determined for 3 (Φ _{solution} = 21%). Theoretical modelling of the electronic excitations for 3 at the CAM-B3LYP-D3(BJ)/def2-TZVP(-f) (CPCM, THF) level of theory identifies the lowest energy transition to be a mixed HOMO→LUMO (44%) and HOMO-1→LUMO (34%) configuration. These transitions describe $\pi \rightarrow \pi^*$ transitions centered on the borafluorene moiety with minor charge-transfer character from CAAC to borafluorene (Figure S17).

In the solid state, both ${\bf 2}$ and ${\bf 3}$ feature unique structures with spirocyclic cores containing boron and oxygen heteroatoms (Figure 4). Although spirocyclic molecules have received great attention in drug discovery for their three-dimensionality, spirocycles featuring heteroatoms have historically been less explored. Remarkably, compound ${\bf 3}$ possesses two spiro-centers bound to the same heterocycle moiety. In addition, ${\bf 3}$ adopts an unusual structure by which the oxidized carbene carbon forms a spirocycle, representing one of only a few examples. ${\bf 6}$, ${\bf 18}$

Figure 4. Molecular structures of **2** (a) and **3** (b). Hydrogen atoms omitted for clarity and thermal ellipsoids shown at 50% probability. Selected bond lengths [Å]: **2**: B1–O1 1.478(4), B1–O3 1.535(3), C1–O1 1.350(3), C1–O2 1.410(3), C2–O2 1.351(3), C2–O3 1.298(3), C2–O4 1.210(3), C1–C3 1.340(4); **3**: B1–O2 1.5429(18), B1–O3 1.4746(17), C1–O1 1.2223(17), C1–O2 1.3113(16), C1–C2 1.5517(18), C2–O3 1.3945(16).

The 5-membered ring of **3** is planar, while the 6-membered ring of **2** is puckered. The B1–O1 and B1–O3 bond lengths of **2** are 1.478(4) Å and 1.535(3) Å respectively and are close to the sum of the covalent radii $(R(B-O) = 1.50 \text{ Å})^{19}$ for a single bond. In the 6-membered ring of **2** the endocyclic C–O

bond lengths range from 1.298(3) to 1.410(3) Å while the length of the exocyclic C2–04 bond is significantly shorter [1.210(3) Å] and indicative of double bond character. In compound **3**, the B–0 bond lengths [1.5429(18) Å and 1.4746(17) Å] are comparable to those of **2**.

In conclusion, we report the first structurally authenticated example of a trioxaborinanone (2), which was synthesized from the activation of CO2 by the 9-CAAC-9-borafluorene monoanion. Notably, compound 2 functions as a carbon monoxide-releasing molecule when heated or irradiated with UV light and forms the luminescent dioxaborinanone (3) via loss of CO. Thus, a fluorescent response can be observed optically upon CO release. Remarkably compound 2 represents a new metal-free, heterocyclic CORM that does not require the use of toxic CO gas in the synthesis. Both 2 and 3 are stable under aerobic conditions in the solid-state, and 3 is even stable in solution. Furthermore, theoretical mechanistic studies reveal that the reactivity of 9-CAAC-9-borafluorene monoanion with CO2 proceeds via a nucleophile addition pathway, which is unique compared to known single-electron transfer mechanisms for 9carbene-9-boryl anions.7a, 20 Additional studies to investigate the reactivity of the 9-carbene-9-borafluorene monoanions with other small molecules are currently underway in our laboratory.

ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge at http://pubs.acs.org. Experimental details, NMR spectra, computational details, and single-crystal X-ray diffraction data (PDF) Crystallographic data for 2 and 3 (CIF)

Accession Codes. CCDC 2166590 and 2166591 (for compounds 2 and 3, respectively) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures

AUTHOR INFORMATION

Corresponding Authors

- * David J. D. Wilson Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria, Australia; orcid.org/0000-0002-0007-4486; Email: david.wilson@latrobe.edu.au
- * Robert J. Gilliard, Jr. Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States; orcid.org/0000-0002-8830-1064; Email: rjg8s@virginia.edu

Author Contributions

Kelsie E. Wentz - Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States; orcid.org/0000-0002-0464-8010

Andrew Molino - Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria (Australia); orcid.org/0000-0002-0954-9054

Lucas A. Freeman - Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States; orcid.org/0000-0002-3108-939X

Diane A. Dickie - Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States; orcid.org/0000-0003-0939-3309

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

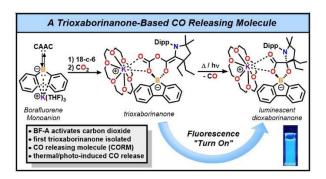
Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the University of Virginia and the National Science Foundation Chemical Synthesis (CHE-2046544) and Major Research Instrumentation (CHE-2018870) programs for support of this work. R.J.G. acknowledges additional laboratory support through a Beckman Young Investigator Award from the Arnold and Mabel Beckman Foundation. We acknowledge the Zhang Group (UVA) for use of their GC-FID instrument and Meiyang Cui for help running the experiments. Generous allocation of computing resources from the National Computational Infrastructure (NCI), Intersect, and La Trobe University are also acknowledged.

REFERENCES


- 1. (a) Lamb, W. F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J. G. J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A. A.; House, J.; Pachauri, S.; Figueroa, M.; Saheb, Y.; Slade, R.; Hubacek, K.; Sun, L.; Ribeiro, S. K.; Khennas, S.; de la Rue du Can, S.; Chapungu, L.; Davis, S. J.; Bashmakov, I.; Dai, H.; Dhakal, S.; Tan, X.; Geng, Y.; Gu, B.; Minx, J., A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. *Environ. Res. Lett.* 2021, 16, 073005; (b) Ye, R.-P.; Ding, J.; Gong, W.; Argyle, M. D.; Zhong, Q.; Wang, Y.; Russell, C. K.; Xu, Z.; Russell, A. G.; Li, Q.; Fan, M.; Yao, Y.-G., CO2 hydrogenation to high-value products via heterogeneous catalysis. *Nature Commun.* 2019, 10, 5698; (c) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M., Using carbon dioxide as a building block in organic synthesis. *Nature Commun.* 2015, 6, 5933.
- 2. (a) Huang, K.; Sun, C.-L.; Shi, Z.-J., Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. *Chem. Soc. Rev.* **2011**, *40*, 2435-2452; (b) Schneider, J.; Jia, H.; Muckerman, J. T.; Fujita, E., Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2reductioncatalysts. *Chem. Soc. Rev.* **2012**, *41*, 2036-2051; (c) Severin, K., Synthetic chemistry with nitrous oxide. *Chem. Soc. Rev.* **2015**, *44*, 6375-6386.
- 3. (a) Arrowsmith, M.; Braunschweig, H.; Stennett, T. E., Formation and Reactivity of Electron-Precise B–B Single and Multiple Bonds. *Angew. Chem. Int. Ed.* **2017**, *56*, 96-115; (b) Braunschweig, H.; Dellermann, T.; Dewhurst, R. D.; Ewing, W. C.; Hammond, K.; Jimenez-Halla, J. O. C.; Kramer, T.; Krummenacher, I.; Mies, J.; Phukan, A. K.; Vargas, A., Metal-free binding and coupling of carbon monoxide at a boron–boron triple bond. *Nature Chemistry* **2013**, *5*, 1025-1028; (c) Braunschweig, H.; Dewhurst, R. D.; Hupp, F.; Nutz, M.; Radacki, K.; Tate, C. W.; Vargas, A.; Ye, Q., Multiple complexation of CO and related ligands to a main-group element. *Nature* **2015**, *522*, 327-330; (d) Dewhurst, R. D.; Légaré, M.-A.; Braunschweig, H., Towards the catalytic activation of inert small molecules by main-group ambiphiles. *Commun. Chem.* **2020**, *3*, 131; (e) Weetman, C., Main Group Multiple Bonds for Bond Activations and Catalysis. *Chem. Eur. J.* **2021**, *27*, 1941-1954.
- (a) Su, Y.; Kinjo, R., Small molecule activation by boroncontaining heterocycles. Chem. Soc. Rev. 2019, 48, 3613-3659; (b) Kong, L.; Lu, W.; Yongxin, L.; Ganguly, R.; Kinjo, R., Formation of Boron-Main-Group Element Bonds by Reactions with a Tricoordinate Organoboron L2PhB: (L = Oxazol-2-ylidene). Inorg. Chem. 2017, 56, 5586-5593; (c) Wang, B.; Li, Y.; Ganguly, R.; Hirao, H.; Kinjo, R., Ambiphilic boron in 1,4,2,5-diazadiborinine. Nature Commun. 2016, 7, 11871; (d) Wu, D.; Kong, L.; Li, Y.; Ganguly, R.; Kinjo, R., 1,3,2,5-Diazadiborinine featuring nucleophilic and electrophilic boron centres. Nature Commun. 2015, 6, 7340; (e) Segawa, Y.; Suzuki, Y.; Yamashita, M.; Nozaki, K., Chemistry of Boryllithium: Synthesis, Structure, and Reactivity. J. Am. Chem. Soc. 2008, 130, 16069-16079; (f) Mömming, C. M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D. W.; Erker, G., Reversible Metal-Free Carbon Dioxide Binding by Frustrated Lewis Pairs. Angew. Chem. Int. Ed. 2009, 48, 6643-6646; (g) Stephan, D. W.; Erker, G., Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angew. Chem. Int. Ed.

- 2010, 49, 46-76; (h) Lorbach, A.; Bolte, M.; Lerner, H.-W.; Wagner, M., Dilithio 9,10-Diborataanthracene: Molecular Structure and 1,4-Addition Reactions. *Organometallics* 2010, 29, 5762-5765; (i) von Grotthuss, E.; Prey, S. E.; Bolte, M.; Lerner, H.-W.; Wagner, M., Selective CO2 Splitting by Doubly Reduced Aryl Boranes to Give CO and [CO3]2-. *Angew. Chem. Int. Ed.* 2018, 57, 16491-16495; (j) Taylor, J. W.; McSkimming, A.; Guzman, C. F.; Harman, W. H., N-Heterocyclic Carbene-Stabilized Boranthrene as a Metal-Free Platform for the Activation of Small Molecules. *J. Am. Chem. Soc.* 2017, 139, 11032-11035; (k) Gilmer, J.; Budy, H.; Kaese, T.; Bolte, M.; Lerner, H.-W.; Wagner, M., The 9H-9-Borafluorene Dianion: A Surrogate for Elusive Diarylboryl Anion Nucleophiles. *Angew. Chem. Int. Ed.* 2020, 59, 5621-5625.
- 5. Stoy, A.; Härterich, M.; Dewhurst, R. D.; Jiménez-Halla, J. O. C.; Endres, P.; Eyßelein, M.; Kupfer, T.; Deissenberger, A.; Thiess, T.; Braunschweig, H., Evidence for Borylene Carbonyl (LHB=C=O) and Base-Stabilized (LHB=O) and Base-Free Oxoborane (RB=O) Intermediates in the Reactions of Diborenes with CO2. *J. Am. Chem. Soc.* 2022, 144, 3376-3380.
- 6. Stoy, A.; Böhnke, J.; Jiménez-Halla, J. O. C.; Dewhurst, R. D.; Thiess, T.; Braunschweig, H., CO2 Binding and Splitting by Boron–Boron Multiple Bonds. *Angew. Chem. Int. Ed.* **2018**, *57*, 5947-5951.
- 7. (a) Wentz, K. E.; Molino, A.; Freeman, L. A.; Dickie, D. A.; Wilson, D. J. D.; Gilliard, R. J., Reactions of 9-Carbene-9-Borafluorene Monoanion and Selenium: Synthesis of Boryl-Substituted Selenides and Diselenides. *Inorg. Chem.* **2021**, *60*, 13941-13949; (b) Wentz, K. E.; Molino, A.; Weisflog, S. L.; Kaur, A.; Dickie, D. A.; Wilson, D. J. D.; Gilliard Jr., R. J., Stabilization of the Elusive 9-Carbene-9-Borafluorene Monoanion. *Angew. Chem. Int. Ed.* **2021**, *60*, 13065-13072.
- 8. (a) Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G., Stable Cyclic (Alkyl)(Amino)Carbenes as Rigid or Flexible, Bulky, Electron-Rich Ligands for Transition-Metal Catalysts: A Quaternary Carbon Atom Makes the Difference. *Angew. Chem. Int. Ed.* **2005**, *44*, 5705-5709; (b) Melaimi, M.; Jazzar, R.; Soleilhavoup, M.; Bertrand, G., Cyclic (Alkyl)(amino)carbenes (CAACs): Recent Developments. *Angew. Chem. Int. Ed.* **2017**, *56*, 10046-10068; (c) Soleilhavoup, M.; Bertrand, G., Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise. *Acc. Chem. Res.* **2015**, *48*, 256-266.
- 9. Cheng, J.; Hu, J., Recent Advances on Carbon Monoxide Releasing Molecules for Antibacterial Applications. *ChemMedChem* **2021**, *16*, 3628-3634.
- (a) Faizan, M.; Muhammad, N.; Niazi, K. U. K.; Hu, Y.; Wang, Y.; Wu, Y.; Sun, H.; Liu, R.; Dong, W.; Zhang, W.; Gao, Z., CO-Releasing Materials: An Emphasis on Therapeutic Implications, as Release and Subsequent Cytotoxicity Are the Part of Therapy. Materials 2019, 12, 1643; (b) Ling, K.; Men, F.; Wang, W.-C.; Zhou, Y.-Q.; Zhang, H.-W.; Ye, D.-W., Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J. Med. Chem. 2018, 61, 2611-2635; (c) Mann, B. E., CO-Releasing Molecules: A Personal View. Organometallics 2012, 31, 5728-5735; (d) Yan, H.; Du, J.; Zhu, S.; Nie, G.; Zhang, H.; Gu, Z.; Zhao, Y., Emerging Delivery Strategies of Carbon Monoxide for Therapeutic Applications: from CO Gas to CO Releasing Nanomaterials. Small 2019, 15, 1904382; (e) Alberto, R.; Motterlini, R., Chemistry and biological activities of COreleasing molecules (CORMs) and transition metal complexes. Dalton Trans. 2007, 10.1039/B701992K, 1651-1660.
- 11. (a) Frank, R.; Howell, J.; Tirfoin, R.; Dange, D.; Jones, C.; Mingos, D. M. P.; Aldridge, S., Circumventing Redox Chemistry: Synthesis of Transition Metal Boryl Complexes from a Boryl Nucleophile by Decarbonylation. *J. Am. Chem. Soc.* **2014**, *136*, 15730-15741; (b) García-Gallego, S.; Bernardes, G. J. L., Carbon-Monoxide-Releasing Molecules for the Delivery of Therapeutic CO In Vivo. *Angew. Chem. Int. Ed.* **2014**, *53*, 9712-9721; (c) Foresti, R.; Motterlini, R., Interaction of Carbon Monoxide with Transition Metals: Evolutionary Insights into Drug Target Discovery. *Current Drug Targets* **2010**, *11*, 1595-1604; (d) Schatzschneider, U., Novel lead

- structures and activation mechanisms for CO-releasing molecules (CORMs). *Br. J. Pharmacol.* **2015**, *172*, 1638-1650.
- 12. (a) Abeyrathna, N.; Washington, K.; Bashur, C.; Liao, Y., Nonmetallic carbon monoxide releasing molecules (CORMs). *Org. Biomol. Chem.* **2017**, *15*, 8692-8699; (b) Palao, E.; Slanina, T.; Muchová, L.; Šolomek, T.; Vítek, L.; Klán, P., Transition-Metal-Free CO-Releasing BODIPY Derivatives Activatable by Visible to NIR Light as Promising Bioactive Molecules. *J. Am. Chem. Soc.* **2016**, *138*, 126-133.
- 13. Lieske, L. E.; Freeman, L. A.; Wang, G.; Dickie, D. A.; Gilliard Jr., R. J.; Machan, C. W., Metal-Free Electrochemical Reduction of Carbon Dioxide Mediated by Cyclic(Alkyl)(Amino) Carbenes. *Chem. Eur. J.* **2019**, *25*, 6098-6101.
- 14. (a) Fujimori, S.; Inoue, S., Carbon Monoxide in Main-Group Chemistry. *J. Am. Chem. Soc.* **2022**, *144*, 2034-2050; (b) Braunschweig, H.; Krummenacher, I.; Légaré, M.-A.; Matler, A.; Radacki, K.; Ye, Q., Main-Group Metallomimetics: Transition Metallike Photolytic CO Substitution at Boron. *J. Am. Chem. Soc.* **2017**, *139*, 1802-1805.
- (a) Birney, D. M.; Ham, S.; Unruh, G. R., Pericyclic and Pseudopericyclic Thermal Cheletropic Decarbonylations: When Can a Pericyclic Reaction Have a Planar, Pseudopericyclic Transition State?1. J. Am. Chem. Soc. 1997, 119, 4509-4517; (b) Kao, M.-H.; Venkatraman, R. K.; Ashfold, M. N. R.; Orr-Ewing, A. J., Effects of ring-strain on the ultrafast photochemistry of cyclic ketones. Chem. Sci. 2020, 11, 1991-2000; (c) Sun, Y.; Neary, W. J.; Burke, Z. P.; Qian, H.; Zhu, L.; Moore, J. S., Mechanically Triggered Carbon Monoxide Release with Turn-On Aggregation-Induced Emission. J. Am. Chem. Soc. 2022, 144, 1125-1129; (d) Unruh, G. R.; Birney, D. M., The Stereochemistry of the Thermal Cheletropic Decarbonylation of 3-Cyclopentenone As Determined by Multiphoton Infrared Photolysis/Thermolysis. J. Am. Chem. Soc. 2003, 125, 8529-8533; (e) Wang, D.; Viennois, E.; Ji, K.; Damera, K.; Draganov, A.; Zheng, Y.; Dai, C.; Merlin, D.; Wang, B., A click-and-release approach to CO prodrugs. Chem. Commun. 2014, 50, 15890-15893.
- 16. (a) Koch, R.; Blanch, R. J.; Wentrup, C., Ketene–Ketene Interconversion. 6-Carbonylcyclohexa-2,4-dienone–Hepta-1,2,4,6-tetraene-1,7-dione–6-Oxocyclohexa-2,4-dienylidene and Wolff Rearrangement to Fulven-6-one. *J. Org. Chem.* **2014**, *79*, 6978-6986; (b) Rzepa, H. S.; Wentrup, C., Mechanistic Diversity in Thermal Fragmentation Reactions: A Computational Exploration of CO and CO2 Extrusions from Five-Membered Rings. *J. Org. Chem.* **2013**, *78*, 7565-7574.
- 17. Aho, J. E.; Pihko, P. M.; Rissa, T. K., Nonanomeric Spiroketals in Natural Products: Structures, Sources, and Synthetic Strategies. *Chem. Rev.* **2005**, *105*, 4406-4440.
- 18. (a) Liu, L. L.; Cao, L. L.; Zhou, J.; Stephan, D. W., Facile Cleavage of the P=P Double Bond in Vinyl-Substituted Diphosphenes. *Angew. Chem. Int. Ed.* **2019**, *58*, 273-277; (b) Peltier, J. L.; Tomás-Mendivil, E.; Tolentino, D. R.; Hansmann, M. M.; Jazzar, R.; Bertrand, G., Realizing Metal-Free Carbene-Catalyzed Carbonylation Reactions with CO. *J. Am. Chem. Soc.* **2020**, *142*, 18336-18340; (c) Pranckevicius, C.; Weber, M.; Krummenacher, I.; Phukan, A. K.; Braunschweig, H., Phosphinoborylenes as stable sources of fleeting borylenes. *Chem. Sci.* **2020**, *11*, 11055-11059; (d) Walley, J. E.; Obi, A. D.; Breiner, G.; Wang, G.; Dickie, D. A.; Molino, A.; Dutton, J. L.; Wilson, D. J. D.; Gilliard, R. J., Cyclic(alkyl)(amino) Carbene-Promoted Ring Expansion of a Carbodicarbene Beryllacycle. *Inorg. Chem.* **2019**, *58*, 11118-11126.
- 19. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S., Covalent radii revisited. *Dalton Trans.* **2008**, 10.1039/B801115J, 2832-2838.
- 20. Bertermann, R.; Braunschweig, H.; Dewhurst, R. D.; Hörl, C.; Kramer, T.; Krummenacher, I., Evidence for Extensive Single-Electron-Transfer Chemistry in Boryl Anions: Isolation and Reactivity of a Neutral Borole Radical. *Angew. Chem. Int. Ed.* **2014**, *53*, 5453-5457.

SYNOPSIS TOC:

A reaction between a 9-carbene-9-borafluorene monoanion and carbon dioxide produces the first example of a trioxaborinanone. Remarkably, when heated or irradiated, the trioxaborinanone releases carbon monoxide and gives the luminescent dioxaborinanone.

