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ABSTRACT: The impact of the exact spatial arrangement of the
alkali metal on the electronic properties of 9-carbene-9-
borafluorene monoanions is assessed, and a series of [K][9-
CAAC-9-borafluorene] complexes (1−4) have been isolated
(CAAC = cyclic(alkyl)(amino) carbene, (2,6-diisopropylphenyl)-
4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene). Compound 1,
which contains [B]−K(THF) interactions, is compared to
charge-separated 2−4, which were prepared by capturing the
potassium cations with 18-crown-6, 2.2.2-cryptand, or 1,10-
phenanthroline. Notably, the 11B NMR spectra of charge-separated
borafluorene monoanions 2−4 show distinct low-field signatures
compared to 1. Theoretical calculations indicate that charge
separation may be exploited to influence the nucleophilic and
electron transfer properties of 9-carbene-9-borafluorene monoanions. When [K(2.2.2-cryptand)][9-CAAC-9-borafluorene] (3) is
reacted with 9,10-phenanthrenequinone and 1,10-phenanthroline-5,6-dione, the carbene ligand is displaced, and new air-stable R
BO spirocycles are formed (5 and 6, respectively). Remarkably, compounds 5 and 6 display fluorescence under UV light in both the
solid and solution phases with quantum yields of up to 20%. In addition, a drastic red-shift in the emission color is observed in 6 because
of the presence of the nitrogen atoms on the phenanthroline moiety. Mechanistic insights into the formation of these spirocycles
are also described based on density functional theory calculations.

1. INTRODUCTION
Tricoordinate Lewis acidic boron complexes have long been
utilized in synthetic chemistry as strong electrophilic reagents
for the formation of new olefin polymers,1−4     substituted
aromatics,5−7 and the functionalization of C −H  bonds,8 which
have all been essential in materials-relevant chemical synthesis.
However, through chemical reduction reactions, boron-based
compounds can be designed such that they become electron-
rich nucleophiles. The initial reports on boron nucleophiles (or
boryl anions)9−18 spawned new investigations into under-
standing the chemistry and reactivity of group 13 Lewis bases
(Figure 1a). These compounds are isoelectronic to N-
heterocyclic carbenes (NHC) but are weaker sigma-donors19

and are generally used for the formation of novel B−E bonds
(E = transition metal, main-group element, or lanthanide). By
stabilizing the E element in low oxidation states, reactivity
occurring at the E atom or within the B−E bond can be
explored.20−27     Since the first isolation of the unsaturated
boryllithium,10     structurally unique boryl anions have been
reported which have benzannulated backbones and potassium
cation interactions with the electron-rich boron atom.9,12,28−31

Despite this class of compounds being identified nearly 15

years ago, much less is known concerning the chemical
reactivity of these species with small molecules compared to
the chemistry of the related aluminyl anions,32−35 which is
rapidly emerging. Because of the nature of the bonding within
the ion pair (e.g., binding of weakly coordinating atoms,
cation-π or other non-covalent interactions, fully charge-
separated ions), diverse reactivity can occur. Accordingly,
there is still a need for the realization and isolation of
electronically and sterically different anionic boryl species as a
means to probe reactivity and donor strength at the boron
center and their use as a platform for the development of novel
boron-containing materials.

Recently, we have been investigating the structure and
bonding, reactivity, and materials properties of 9-carbene-9-
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Figure 1. (a) Examples of structurally unique cyclic boryl anions; (b) borafluorene-based spirocycles obtained from 9-carbene-9-borafluorene
monoanion and diketones; (c) R2BO2 salts prepared via nucleophilic addition to frustrated Lewis pair-stabilized boracyclic radicals.

Scheme 1. Synthesis of [K][9-Carbene-9-borafluorene] Complexes (1−4)

borafluorenes.14,36−41     While 9-borafluorene has become a
popular building block in molecular chemistry,42 studies of
chemically reduced borafluorenes are still rare.13,14,17,37

Previously, we reported the formation of borafluorene-based
spirocycles resulting from the reaction of diketones and 9-
carbene-9-borafluorene monoanion (Figure 1b).14 Although
the electronic structures differ significantly, the R BO moiety
of our closed-shell compounds bear resemblance, in terms of
connectivity, to open-shell boracyclic radicals and salts
synthesized by Stephan (Figure 1c).43,44 Most notably, the
incorporation of borafluorene in the spirocycle produces
fluorescent materials.14 In light of the novelty of the R BO
spirocyclic fragment and luminescent properties that can be
accessed, we sought to investigate reactions of borafluorene
monoanions with other diketones in order to study their
optical properties in more detail. This resulted in a need to
understand how the spatial arrangement of the alkali metal in
9-carbene-9-borafluorene monoanions affect chemical reac-
tions and the crystallization of various products. Herein, we
report a study on the structural and electronic properties of
[K][9-CAAC-9-borafluorene] complexes (1−4) (CAAC =

(2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-
ylidene). Charge-separated [K(2.2.2-cryptand)][9-CAAC-9-
borafluorene] is used as a building block for the synthesis of
boron−oxygen-containing heterocycles 5−6.

2. RESULTS AND DISCUSSION
During our initial studies on the isolation and reactivity of 9-
carbene-9-borafluorene monoanions, we often observed
solvent- or cation-dependent stability differences and variations
in the selectivity for specific products, even in cases where the
carbene ligand and alkali metal cation were the same.14,39 To
systematically investigate the possibility of different bonding
modes of [K][9-CAAC-9-borafluorene monoanion] (CAAC =
(2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-
ylidene;45−47      BF = borafluorene) and the role that
coordination environment plays in chemical reactions, we
first sought to understand the solution-phase behavior of our
previously reported [K][9-CAAC-9-BF] coordination polymer
(CAAC-BF-P).14 When CAAC-BF-P is dissolved in tetrahy-
drofuran (THF)  (Scheme 1), the 11B{1H} NMR spectrum
shows a singlet at 1.5 ppm. Single crystal X-ray diffraction
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Figure 2. Molecular structures of 1 (a), 2 (b), 3 (c), and 4 (d). Hydrogen atoms omitted for clarity and thermal ellipsoids shown at 50%
probability. Selected bond lengths [Å]: 1: B1−C1 1.505(3), B1−C23 1.609(2), B1−C34 1.598(3), B1−K1 3.2363(19); 2: B1−C1 1.519(7), B1−
C23 1.586(8), B1−C34 1.617(8), B1−K1 5.911(6); 3: B1−C1 1.495(2), B1−C23 1.601(2), B1−C34 1.616(2), B1−K1 6.891(2); 4: B1−C1
1.504(3), B1−C23 1.607(3), B1−C34 1.600(3), B1−K1 8.095(2).

studies of 1 reveal a [K(THF) ][9-CAAC-9-BF] structure in
which the K  atom binds to the central BF ring in a η5-fashion.
In contrast, when compound 1 is reacted with 18-crown-6,
2.2.2-cryptand, or 1,10-phenanthroline, charge-separated ion
pairs 2−4 are formed as red solids, which display downfield
chemical shifts in the 11B{1H} NMR spectra (14.2−15.4 ppm,
THF-D ).

Comparison of the single crystal X-ray diffraction data for
1−4 show that the bond metrics for 1 are similar to free boryl
anions (2−4) in the solid state (Figure 2). The B1−C1 bond
lengths for 1 [1.505(3)], 2 [1.519(7)], 3 [1.495(2)], and 4
[1.504(3)] are also similar to the previously reported CAAC-
BF-P [1.502(5)],14 and all indicate double bond character
between the boron and carbon atoms.

The local paramagnetic contribution (σp) is widely under-
stood to be responsible for deshielding nonspherically
distributed valence electrons in light nuclei such as
boron.48,49 The paramagnetic term is inversely proportional
to the magnitude of the highest occupied molecular orbital−
lowest unoccupied molecular orbital (HOMO−LUMO) gap
and is especially large in nuclei with asymmetric p and d
electron distributions.50 Theoretical studies were carried out in
order to gain insight into the altered electronic characteristics
of BF with respect to contact ion distance. A series of BF−K
distances were used to calculate the boron chemical shift of 1.
In agreement with experimental observations, increasing the
distance between the potassium ion and the BF moiety
resulted in an increasing downfield chemical shift (δ BF−K(3.1
Å) = 1.89 ppm, δ BF−K(6.6 Å) = 3.95 ppm) (Figure S18).
Critically, the paramagnetic contribution (σp      )  to the
isotropic shielding of 11B was found to increase as the

HOMO−LUMO gap steadily decreases in magnitude at
greater BF−K distances (Figure 3). The smaller HOMO−
LUMO gap results from the destabilization of the HOMO,
particularly at BF−K distances greater than 4.5 Å. These

Figure 3. Calculated 11B paramagnetic contribution (σp     )  and
HOMO−LUMO gaps (eV) with respect to BF−K(THF) distance
for 1 (TPSSh/pcSseg-2 (CPCM, THF)).
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results indicate that different-sized chelating agents may be
utilized to control the HOMO energy of 9-CAAC-9-BF
monoanion, altering its nucleophilic and reducing properties
(vide infra).

We hypothesized that the use of the charge-separated
borafluorene monoanion 3 as a starting material for reactions
with 9,10-phenanthrenequinone and 1,10-phenanthroline-5,6-
dione would generate borafluorene spirocycles with varied
photophysical properties. Upon addition of 9,10-phenanthre-
nequinone or 1,10-phenanthroline-5,6-dione to 3, an immedi-
ate color change from deep red to orange was observed,
indicative of the formation of 5 and 6, respectively (Scheme 2).

Scheme 2. Displacement of the CAAC Ligand by 9,10-
Phenanthrenequinone and 1,10-Phenanthroline-5,6-dione
To Form Spirocyclic Borafluorenes (5−6)

In both cases, the CAAC ligand was displaced, and
borafluorene spirocycles 5 and 6 were characterized by distinct
downfield chemical shifts in the 11B NMR spectra at 16.2 and
16.6 ppm, respectively. Yellow and orange air-stable single
crystals of 5 and 6 were grown from concentrated solutions in
THF with a couple of drops of hexanes added. In both
molecules, charge-separated boron-based spirocycles with no
potassium contacts were observed, which differ from our
previously reported borafluorene spirocycles that exist as
coordination polymers (Figure 4).14 Additionally, the B−O
bonds of 5 and 6 range from 1.513(14) to 1.533(2) Å, and are
close in length to the sum of the covalent single bond radii
(R(B−O) = 1.50 Å),51 indicative of single bond character. The
placement of the nitrogen atoms on 6 leaves a site for potential
binding to other elements to generate mixed metal systems.
Compound 6 is particularly interesting as 1,10-phenanthroline
complexes have been used for various technologies including
analytical probes.52−54 Because of the higher quantum yields of
6 (Φ = 4%) compared to the weakly luminescent parent
phenanthroline (Φ = 0.8%),52 complexes similar to 6
should open up new possibilities in molecular materials
applications.

The reactivity of nucleophiles with monocyclic benzoqui-
nones is well-documented to undergo addition and sub-
stitution reactions at the carbonyl-alpha positions facilitated by
the ability to form enolate anions.55 Because of the absence of
acidic hydrogen atoms at the positions alpha to the carbonyl,
nucleophilic reactivity is not observed with saturated polycyclic
quinones.56 Recently, we demonstrated that 1 may serve as a
single-electron reducing agent with diselenides to undergo
subsequent radical coupling.39 Single-electron transfer (SET)
can occur spontaneously, provided the energies of the donor
HOMO and acceptor LUMO are close. Quinones are
especially susceptible to SET reactions as the carbonyl π*
orbital is easily reduced to generate an electronically stabilized
ketyl radical anion.57 Furthermore, it has been observed that
the reactivity of quinones with electron-rich species occurs via
electron-transfer routes, resulting in cyclization products
similar to those described herein.58−62

D

Figure 4. Molecular structures of B-phen (a),14 5 (b), and 6 (c).
Hydrogen atoms omitted for clarity and thermal ellipsoids shown at
50% probability. Selected bond lengths [Å]: B-phen: B1−O1:
1.52(3); B1−O2: 1.57(3); O1−C13: 1.42(2); O2−C14: 1.35(2);
C13−C14: 1.30(3); 5: B1−O1 1.525(13), B1−O2 1.513(14), O1−
C13 1.362(11), O2−C14 1.356(12), C13−C14 1.352(14); 6: B1−
O1 1.533(2), B1−O2 1.532(2), O1−C13 1.348(2), O2−C24
1.49(2), C13−C24 1.364(2).

Theoretical calculations were utilized to determine a
possible mechanism for the formation of spirocycles 5 and 6.
We first sought to model the energetic feasibility of an electron
t r a n s f e r p a t h w a y . T h e H O M O −LU -
MO( 9,10- phenanthrenequinone)  gap was calculated to be 0.59 eV

eV), well
( 
within

9
the range for 

,
spontaneous 

-
electron transfer

(Figure 5).63 Further support for a SET process is revealed
when comparing the relative free energies of the reactant
encounter complexes. The open-shell singlet reactant complex
(OSSRC) was calculated to be lower in energy than the closed-
shell singlet analogue, relative to the free reactants (ΔΔG =
−53 kJ mol−1) (Figure 6). A transition state was located
describing the formation of an adduct (Int1) between boron
and one of the oxygen atoms (TS1, ΔG‡  = +67 kJ mol−1). In
contrast to free quinone, the C −C  bond linking the carbonyl
groups in Int1 is shorter by 0.129 Å, while the unbound
carbonyl bond is longer by +0.060 Å. The HOMO of Int1 is
localized to the quinone moiety, displaying significant π-
bonding character across both carbonyl α-carbons (Figure

https://doi.org/10.1021/acs.inorgchem.2c01945
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Figure 5. Calculated frontier molecular orbital energies of [9-CAAC-9-
BF]− and quinone substrates 9,10-phenanthrenequinone and 1,10-
phenanthroline-5,6-dione (B3LYP-D3(BJ)/def2-TZVP//B3LYP-
D3(BJ)/def2-SVP (CPCM, THF)).

S19). The geometry and electronic structure of Int1 are
characteristic of an enolate intermediate. Furthermore, the

unique resonance stabilizing effects of enolate anions may
explain the high stability of anion Int1 relative to the reactants.
Following the formation of Int1, stepwise elimination of
CAAC (TS2, ΔG‡      = +98 kJ mol−1) and subsequent
intramolecular cyclization (TS3, ΔG‡  = +67 kJ mol−1) result
in the spirocyclic product (ΔG = −193 kJ mol−1).

UV−vis and fluorescence studies were performed to
investigate the photophysical characteristics of the borafluor-
ene spirocycles in the solution phase. Absorption maxima for 5
and 6 are observed at 390 and 414 nm, respectively, with red-
shifted emission wavelengths for 5 and 6 at 517 and 569 nm
(Figure 7). These absorption and emission values are
consistent with the previously reported potassium-coordinated
borafluorene spirocycles (B-benzil and B-phen −  see Table 1
for structures).14 However, under UV light, 5 displays a bright
green color while 6 is orange.

To quantify luminescence, quantum yield (QY) measure-
ments were obtained in the solution and solid states of the
borafluorene spirocycles. Expectedly, B-phen has the highest
QY in solution phase because of the more rigid structure
compared to B-benzil (Table 1). However, compound 5 has a
higher QY in the solid state, likely due to aggregation-induced
emission. Time-dependent density functional theory (TD-DFT
−  ωB97X/def2-TZVP, CPCM(THF)) analysis indicates that
the lowest energy transition for 5 and 6 is associated with π →
π* excitations centered on the quinone moieties (Figures
S20−22). Spirocycles 5 and 6 possess C  symmetry, resulting
in weak symmetry forbidden charge-transfer transitions
between the quinone and borafluorene moieties (Table S3).
While the QYs for 6 are low, those of 5 are higher, and both

Figure 6. Calculated free energies relative to reactants (ΔG ,  kJ mol−1) for the reactivity of [9-CAAC-9-BF]− and 9,10-phenanthrenequinone
(B3LYP-D3(BJ)/def2-TZVP//B3LYP-D3(BJ)/def2-SVP (SMD, THF)).  Values in parentheses correspond to the reactivity of [9-CAAC-9-BF]−
with 1,10-phenanthroline-5,6-dione.
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control reactivity.14,39 Moreover, when reacting 3 with 9,10-
phenanthrenequione and 1,10-phenanthroline-5,6-dione, novel
charge-separated boron spirocycles (5 and 6) are synthesized
via carbene elimination, with computational mechanistic
studies suggesting this reactivity proceeds via an electron-
transfer mechanism. Compounds 5 and 6 display bright green
and orange luminescence under UV light and are air-stable in
the solid state. The presence of nitrogen atoms on the
phenanthroline moiety of 6 leads to a red-shifted emission.
Because of the open biding site, compounds similar to 6 may
be useful in the preparation of other coordination complexes.
Additional reactivity studies with the charge-separated
borafluorene monoanions and spirocycles are currently under-
way in our laboratory and will be reported in due course.

Figure 7. Normalized absorption (solid line) and emission (dashed
line) spectra of B-benzil (red) B-phen (blue), 5 (green), and 6
(orange). Samples were dissolved in THF and ran at room
temperature. Excitation wavelengths: B-benzil and 6 (λ = 410
nm); B-phen (λex = 370 nm) and 5 (λex = 390 nm).

Table 1. Comparison of QYs in THF Solutions and the
Solid State

compound ΦF
(solution)/%a ΦF

(solid)/%a

B-benzil 21 1
B-phen 37 6
5 20 16
6 4 4

aAbsolute QYs determined using an integrating sphere. Digital images
of solution and solid-state luminescence are shown under 365 nm UV
light.

the borafluorene and quinone moieties possess highly
conjugated structures that may be easily functionalized.
Therefore, we envisage the utility of these spirocycles as new
frameworks for which charge-transfer complexes may be built
upon.

3. CONCLUSIONS
In summary, we report structurally unique [K][9-CAAC-9-BF]
complexes (1−4). Charge-separated compounds 2−4 with
potassium counterions chelated by 18-crown-6, 2.2.2-cryptand,
and 1,10-phenanthroline are identified by distinct low-field 11B
NMR chemical shifts compared to compound 1 where the K
atom is coordinated to the central boron ring. Theoretical
modeling identifies that these low-field signals are due to a
large paramagnetic contribution at boron as a result of reduced
HOMO−LUMO gaps in charge-separated borafluorenes. The
ability to easily tune the HOMO of 9-carbene-9-borafluorene
monoanions not only allows for the modification of the anion’s
electronic structure but may also prove useful as a means to

F

4. EXPERIMENTAL SECTION
4.1. General Procedures. All experiments were carried out under

an inert atmosphere of argon using an MBRAUN LABmaster
glovebox equipped with a −37 °C freezer. The solvents were purified
by distillation over sodium and benzophenone. THF-d for NMR
experiments was purified by distillation over sodium and stored over
Na/K under an inert atmosphere. Glassware was oven-dried at 190 °C
overnight. The NMR spectra were recorded at room temperature on a
Varian 600 MHz spectrometer. Proton and carbon chemical shifts are
reported in ppm and referenced using the residual proton and carbon
signals of the deuterated solvent (1H: THF-d −  δ = 3.58; 13C: THF-
d −  δ = 67.6), while boron chemical shifts are referenced to an
external standard (11B: BF •Et O −  δ = 0.0). Because of the
borosilicate NMR probe, a large broad peak is observed at
approximately 25 to −25 ppm in the 11B NMR spectra. The UV−
visible and fluorescence spectra were recorded on a Cary 60 UV−vis
spectrophotometer and a Cary Eclipse fluorescence spectrophotom-
eter. Sample solutions were prepared in THF in 1 cm square air-free
quartz cuvettes. Absolute fluorescence QYs were obtained using a
Hamamatsu C11347-11 Quantaurus-QY Absolute PL QY spectrom-
eter. Samples were prepared in a glovebox using quartz Petri dishes
(single crystals) or 1 cm square quartz cuvettes (solutions). The
solutions were prepared in THF, and the data were collected with
absorbance values less than 0.1. Elemental analyses were performed
on a Perkin-Elmer 2400 Series II analyzer. 1,10-Phenanthroline, 9,10-
phenanthrenequinone, 1,10-phenanthroline-5,6-dione, and 2.2.2
cryptand were purchased from Sigma Aldrich and used as received.
18-Crown-6 was purchased from Sigma Aldrich and was recrystallized
from minimal toluene at −37 °C and dried under reduced pressure
before use. Compound 114 was prepared according to the previous
literature from 2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrro-
lidin-5-ylidene and 9-bromo-9-borafluorene. Single crystals of 1 for X-
ray diffraction studies were grown from a concentrated THF solution
with a few added drops of hexanes and storage at −37 °C.

4.2. Synthesis of Compound 2. In a vial, 1 (25.0 mg, 0.0483
mmol) and 18-crown-6 (12.8 mg, 0.0483 mmol) were dissolved in
toluene (5 mL). The solution was then filtered through a 0.45 μm
polytetrafluoroethylene (PTFE) syringe filter to remove any residual
solids. Dark red rod-shaped crystals were obtained and further dried
under vacuum (13.3 mg, 35% yield). 1H NMR (600 MHz, THF-d ,
298 K )  δ = 7.90 (d, J = 7.4 Hz, 1H, ArH), 7.49 (d, J = 8.4 Hz, 1H,
ArH), 7.36 (d, J = 7.5 Hz, 1H, ArH), 7.22 (t, J = 7.7 Hz, 1H, ArH),
7.10 (d, J = 7.7 Hz, 2H, ArH), 6.69 (t, J = 7.4 Hz, 1H, ArH), 6.50 (t, J
= 7.0 Hz, 2H, ArH), 6.29 (t, J = 7.0 Hz, 1H, ArH), 6.00 (t, J = 8.0 Hz,
1H, ArH), 4.75 (d, J = 8.4 Hz, 1H, ArH), 3.68 (hept, J = 7.0 Hz, 2H,
CH (CH )  ), 3.24 (s, 24H, 18-c-6), 2.52 (m, 2H, CH C H  ), 2.38 (m,
2H, CH C H  ), 2.01 (s, 2H, CH )  1.17 (m, 12H, CH(CH )  /
(CH )  ), 1.08 (t, J = 7.3 Hz, 6H, C H  CH ), 0.81 ppm (d, J = 6.6 Hz,
6H, CH(CH )  ); 13C{1H} NMR (151 MHz, THF-d , 298 K )  δ =
153.9, 144.2, 133.2, 126.8, 124.7, 121.7, 121.0, 117.6, 117.0, 116.6,
116.3, 71.1, 53.06, 51.00, 32.0, 31.7, 29.7, 27.2, 11.0 ppm; 11B{1H}
NMR (193 MHz, THF-d8, 298 K )  δ = 14.2 ppm. Anal calcd for
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C  H  BKNO : C, 72.99; H, 8.67; N, 1.61%. Found: C, 72.88; H,
8.66; N, 1.70%.

4.3. Synthesis of Compound 3. In a vial, 1 (25.0 mg, 0.0483
mmol) and 2.2.2 cryptand (18.2 mg, 0.0483 mmol) were dissolved in
toluene (5 mL). The solution was then filtered through a 0.45 μm
PTFE syringe filter to remove any residual solids. The deep red
solution was concentrated to �2 mL under reduced pressure and
stored at room temperature for recrystallization. Dark red block-
shaped crystals were obtained and further dried under vacuum (34.3
mg, 79% yield). 1H NMR (600 MHz, THF-d , 298 K )  δ = 7.90 (d, J =
7.9 Hz, 1H, ArH), 7.51 (d, J = 8.3 Hz, 1H, ArH), 7.37 (d, J = 8.5 Hz,
1H, ArH), 6.68 (t, J = 7.9 Hz, 1H, ArH), 6.51 (t, J = 7.0 Hz, 1H,
ArH), 6.30 (t, J = 7.0 Hz, 1H, ArH), 6.00 (t, J = 8.0 Hz, 1H, ArH),
4.75 (d, J = 7.9 Hz, 1H, ArH), 3.69 (hept, J = 6.7 Hz, 2H,
CH (CH )  ), 3.23 (m, 24H, crypt), 2.53 (m, 2H, CH C H  ), 2.39 (m,
2H, CH C H  ), 2.23 (br s, 12H, crypt), 2.02 (s, 2H, CH ), 1.18 (m,
12H, CH(CH )  /(CH )  ), 1.09 (t, J = 7.3 Hz, 6H, C H  CH ), 0.83
ppm (d, J = 6.6 Hz, 6H, CH(CH )  ); 13C{1H} NMR (151 MHz,
THF-d , 298 K )  δ = 154.0, 138.6, 134.1, 133.2, 129.8, 129.1, 126.8,
126.2, 124.7, 121.7, 121.2, 121.1, 117.7, 117.0, 116.6, 116.4, 71.3,
68.5, 65.6, 54.7, 53.0, 51.0, 32.0, 31.7, 29.7, 27.3, 11.0 ppm; 11B{1H}
NMR (193 MHz, THF-d , 298 K )  δ = 14.2 ppm. Anal calcd for
C  H  BKN O : C, 70.01; H, 8.93; N, 4.71%. Found: C, 70.06; H,
9.20; N, 4.61%.

4.4. Synthesis of Compound 4. In a vial, 1 (50.0 mg, 0.0966
mol) was dissolved in THF (4 mL), and 1,10-phenanthroline (34.8
mg, 0.193 mmol) was then added. The reaction was stirred at room
temperature for 4 h. A few drops of hexanes were added to the
solution, and after storage at −37 °C, red needle-shaped single
crystals were obtained (55.0 mg, 56%). 1H NMR (600 MHz, THF-d
)  δ 8.72 (d, J = 2.7 Hz, 4H, ArH), 8.24 (br s, 4H, ArH) 8.03 (d, J = 7.5
Hz, 1H), 7.78 (s, 4H, ArH) 7.49 (m, 6H, ArH), 7.28 (t, J = 7.7 Hz,
1H, ArH), 7.13 (d, J = 8.0 Hz, 2H, ArH), 6.79 (t, J = 8.0 Hz, 1H, ArH),
6.55 (t, J = 7.2 Hz, 1H, ArH), 6.41 (t, J = 7.7 Hz, 1H, ArH), 6.16 (t, J
= 7.9 Hz, 1H, ArH), 4.84 (d, J = 7.8 Hz, 1H, ArH), 3.62 (m, 8H, OCH
C H  ), 2.51 (m, 2H, CH C H  ), 2.37 (m, 2H, CH C H  ), 2.01 (s, 2H,
CH ), 1.77 (m, 8H, OCH CH ), 1.16 (m, 12H,
CH(CH )  /(CH )  ), 1.01 (t, J = 7.3 Hz, 6H, C H  CH ), 0.76 (d, J =
6.6 Hz, 6H, CH(CH )  ); 13C{1H} NMR (151 MHz, THF-d , 298 K )
δ = 185.8, 153.6, 150.7, 147.3, 137.1, 134.5, 133.3, 127.6, 127.3,
125.0, 122.4, 121.8, 118.3, 117.6, 117.3, 117.0, 111.2, 99.9, 50.5, 32.0,
31.6, 29.7, 27.0, 24.8, 10.8; 11B{1H} NMR (193 MHz, THF-d , 298
K)  δ = 15.4 ppm. Anal calcd for C  H  BKN O : C, 77.70; H, 7.41;
N, 6.86%. Found: C, 77.48; H, 7.70; N, 6.72%.

4.5. Synthesis of Compound 5. In a vial, 1 (50.0 mg, 0.0966
mmol) and 2.2.2 cryptand (36.4 mg, 0.0966 mmol) were dissolved in
THF (5 mL), and 9,10-phenanthrenequinone (20.1 mg, 0.0966
mmol) was then added. The deep red solution immediately turned
orange in color and was stirred at room temperature for 2 h. During
that time, yellow fluorescent crystals precipitated out of solution. The
yellow crystals were collected via filtration, washed with hexanes (5
mL), and dried under reduced pressure (53.2 mg, 70% yield). Single
crystals were grown from a concentrated THF solution and with a few
drops of hexanes added. 1H NMR (600 MHz, THF-d , 298 K )  δ =
8.57 (d, J = 8.2 Hz, 2H, ArH), 7.99 (dd, J = 8.1, 1.4 Hz, 2H, ArH),
7.42 (d, J = 7.6 Hz, 2H, ArH), 7.30 (m, 4H, ArH), 7.16 (ddd, J = 8.2,
6.7, 1.3 Hz, 2H, ArH), 6.96 (td, J = 7.4, 1.3 Hz, 2H, ArH), 6.83 (td, J
= 7.1, 0.9 Hz, 2H, ArH), 3.45 (s, 12H, crypt), 3.38 (m, 12H, crypt),
2.38 (m, 12H, crypt). 13C{1H} NMR (151 MHz, THF-d , 298 K )  δ =
131.5, 126.5, 126.4, 126.3, 125.4, 125.0, 123.4, 121.8, 120.6, 118.4,
118.2, 109.1, 71.4, 68.6, 54.9 ppm. Due to peak broadening attributed
to quadrupolar relaxation, we were unable to observe the two sp2

carbon atoms bound to boron for this compound.; 11B{1H} NMR
(193 MHz, THF-d , 298 K )  δ = 16.2 ppm. Anal calcd for
C  H  BKN O : C, 67.17; H, 6.66; N, 3.56%. Found: C, 66.95; H,
6.95; N, 3.26%.

4.6. Synthesis of Compound 6. In a vial, 1 (50.0 mg, 0.0966
mmol) and 2.2.2 cryptand (36.4 mg, 0.0966 mmol) were dissolved in
THF (4 mL). 1,10-Phenanthroline-5,6-dione (20.3 mg, 0.0966 mmol)
was then added. The deep red solution quickly turned orange in color

and was stirred at room temperature for 4 h. The insoluble solids were
removed via filtration through a 0.45 μm PTFE syringe filter. A few
drops of hexanes were added to the filtrate and orange single crystals
were grown at room temperature after slow evaporation (38.4 mg,
50%). 1H NMR (600 MHz, THF-d , 298 K )  δ = 8.68 (dd, J = 4.1, 1.8
Hz, 2H, ArH), 8.28 (dd, J = 8.1, 1.8 Hz, 2H, ArH), 7.43 (d, J = 7.5
Hz, 2H, ArH), 7.30 (m, 2H, ArH), 6.99 (td, J = 7.4, 1.3 Hz, 2H,
ArH), 6.84 (td, J = 7.1, 1.0 Hz, 2H, ArH), 3.45 (s, 12H, crypt), 3.39
(m, 12H, crypt), 2.39 ppm (m, 12H, crypt). 13C NMR (151 MHz,
THF-d , 298 K )  δ = 149.9, 145.9, 144.2, 141.9, 131.3, 128.3, 126.8,
126.5, 121.3, 118.5, 71.4, 68.6, 54.9 ppm. Because of peak broadening
attributed to quadrupolar relaxation, we were unable to observe the
two sp2 carbon atoms bound to boron for this compound; 11B{1H}
NMR (193 MHz, THF-d , 298 K )  δ = 16.6 ppm. Anal calcd for C
H  BKN O •1/2(hexanes): C, 64.89; H, 7.02; N, 6.73%. Found: C,
65.00; H, 6.74; N, 6.48%.

4.7. Theoretical Calculations. Geometry optimizations were
performed at the B3LYP-D3(BJ)/def2-SVP (CPCM, THF) level of
theory in Orca 5.0.2.64 All optimizations utilized the resolution of
identity approximation for both Coulomb and Hartree-Fock exchange
integrals and a 590-point integration grid. Harmonic frequency
calculations were conducted analytically to confirm that optimized
geometries were minima on the potential energy surface. Isotropic
chemical shielding values for 11B were calculated relative to BF
O(Et) . All NMR calculations were performed using Orca 5.0.2 at the
TPSSh/pcSseg-2//B3LYP-D3(BJ)/def2-SVP (CPCM, THF) level of
theory with GIAO. We note that the calculations of nuclear shielding
values are extremely sensitive to the molecular geometry and that, in
experimental conditions, the systems are highly dynamic.
Nevertheless, the theoretical results for the nuclear shielding values of
the constrained scans reported here agree with the observed
experimental trends. CM5 partial atomic charges and Wiberg bond
indices were calculated from the optimized geometries using Gaussian
16 rev C.01 and NBO 6.0 at the B3LYP-D3(BJ)/def2-TZVP level of
theory inclusive of PCM solvation (SMD model) with parameters for
THF solvation.65−67 TD-DFT calculations were performed using
ORCA 5.0.2 at the ωB97X/def2-TZVP (CPCM, THF) level of
theory.
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