) Provably Fast and Space-Efficient Parallel Biconnectivity

Check for
Updates

Xiaojun Dong Letong Wang
UC Riverside UC Riverside
xdong038@ucr.edu lwang323@ucr.edu
Abstract

Computing biconnected components (BCC) of a graph is a
fundamental graph problem. The canonical parallel BCC al-
gorithm is the Tarjan-Vishkin algorithm, which has O(n+m)
optimal work and polylogarithmic span on a graph with
n vertices and m edges. However, Tarjan-Vishkin is not
widely used in practice. We believe the reason is the space-
inefficiency (it uses O(m) extra space). In practice, existing
parallel implementations are based on breath-first search
(BFS). Since BFS has span proportional to the diameter of
the graph, existing parallel BCC implementations suffer from
poor performance on large-diameter graphs and can be slower
than the sequential algorithm on many real-world graphs.

We propose the first p arallel biconnectivity algorithm
(FAST-BCC) that has optimal work, polylogarithmic span,
and is space-efficient. Our algorithm creates a skeleton graph
based on any spanning tree of the input graph. Then we use
the connectivity information of the skeleton to compute the
biconnectivity of the original input. We carefully analyze the
correctness of our algorithm, which is highly non-trivial.

We implemented FAST-BCC and compared it with exist-
ing implementations, including GBBS, Slota and Madduri’s
algorithm, and the sequential Hopcroft-Tarjan algorithm. We
tested them on a 96-core machine on 27 graphs with varying
edge distributions. FAST-BCC is the fastest on all graphs. On
average (geometric means), FAST-BCC is 3.1x faster than
the best existing baseline on each graph.

CCS Concepts: « Theory of computation — Shared mem-
ory algorithms; Graph algorithms analysis; Parallel
algorithms.

Keywords: Parallel Algorithms, Graph Algorithms, Bicon-
nectivity, Connectivity, Graph Analytics

1 Introduction

Graph biconnectivity is one of the most fundamental graph
problems. Given an undirected graph G = (V,E) with n =
|V| vertices and m = |E| edges, a connected component

This work is licensed under a Creative Commons Attribution International 4.0 License.

PPoPP °23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0015-6/23/02.
https://doi.org/10.1145/3572848.3577483

Yihan Sun
UC Riverside
yihans@cs.ucr.edu

Yan Gu
UC Riverside
ygu@cs.ucr.edu

(CC) is a maximal subset in V such that every two vertices
in it are connected by a path. A biconnected component
(BCC) (or blocks) is a maximal subset C C V such that
C is connected and remains connected after removing any
vertex v € C. In this paper, we use BCC (or CC) for both the
biconnected (or connected) component in the graph and the
problem of computing all BCCs (or CCs). BCC has extensive
applications such as planarity testing [8, 24, 46], centrality
computation [48, 59, 60], and network analysis [7, 56].

Sequentially, the Hopcroft-Tarjan algorithm [45] for BCC
uses O(n + m) work. However, this algorithm requires gen-
erating a spanning tree of G based on the depth-first search
(DFS), which is considered hard to be parallelized [57]. Later,
Tarjan and Vishkin proposed the canonical parallel BCC al-
gorithm [65]. It uses an arbitrary spanning tree (AST) (a
spanning tree with any possible shape) of the graph instead
of the depth-first tree. Tarjan-Vishkin algorithm has O(n+m)
optimal work (number of operations) and polylogarithmic
span (longest dependent operations), assuming an efficient
parallel CC algorithm.

Although the Tarjan-Vishkin algorithm is theoretically
considered “optimal” in work and span, significant chal-
lenges still remain in achieving a high-performance imple-
mentation in practice. The main issue in Tarjan-Vishkin is
space-inefficiency. Tarjan-Vishkin generates an auxiliary
graph G* = (V',E’) (which we refer to as the skeleton),
where every edge e € E maps to a vertex in V'. Tarjan and
Vishkin showed that computing CC on G’ gives the BCC
on G, and we refer to this step as the connectivity phase.
This skeleton-connectivity framework is adopted in many
later papers. Such algorithms first generate a skeletonas an
auxiliary graph G’ from G, and then finds the CCs on G’ that
reflect BCC information on the input graph G. Unfortunately,
in Tarjan-Vishkin, generating the skeleton G” and computing
CC on G’ take O(m) extra space, which greatly increases the
memory usage and slows down the performance.

In practice, most existing parallel BCC implementations
also follow the skeleton-connectivity framework but over-
come the space issue by using other skeletons based on
breadth-first search (BFS) trees [25, 26, 29, 31, 40, 64, 68].
These algorithms either use skeletons with O(n) size [25, 26,
29, 40, 68] or maintain implicit skeletons with O(n) auxiliary
space [31, 64]. We say a BCC algorithm is space-efficient
if it uses O(n) auxiliary space (other than the input graph).
However, since computing BFS has span proportional to
the graph, these BFS-based algorithms can be fast on small-
diameter graphs (e.g., social and web graphs), but have poor
performance on large-diameter graphs (e.g., k-nn and road

https://doi.org/10.1145/3572848.3577483
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3572848.3577483&domain=pdf&date_stamp=2023-02-21

Ours GBBS SM'14 SEQ Ours GBBS SM'14 SEQ

YT 588 436 3.15
OK 30.51 19.91 5.66
U 1792 11.77

Social

34.21 17.42 2.40
39.26 18.93 10.22

K-NN

29.74 16.46
30.37 17.52
32.46 19.96
33.99 29.15

cw

Web

Synthetic

Road

TOTAL MEAN
s 5 = § & MEAN = geometric mean
0 51 2 4 8 16 32 >32 n = no support

Figure 1. The heatmap of relative speedup for parallel BCC al-
gorithms over the sequential Hopcroft-Tarjan algorithm [45]
using 96 cores (192 hyper-threads). Larger/green means better.
The numbers indicate how many times a parallel algorithm is faster
than sequential Hopcroft-Tarjan (< 1 means slower). The two base-
line algorithms are from [31, 64]. Complete results are in Tab. 2.

graphs). In our experiments, we observe that existing par-
allel implementations can even be slower than sequential
Hopcroft-Tarjan on many real-world graphs (see GBBS [31]
and SM’14 [64] in Fig. 1).

In this paper, we give the first space-efficient (O(n)
auxiliary space) parallel biconnectivity algorithm that
has efficient O(m + n) work and polylogarithmic span.
Our skeleton G’ is based on an arbitrary spanning tree (AST).
Unlike Tarjan-Vishkin, our G’ is a subgraph of G and can
be maintained implicitly in O(n) auxiliary space. The key
idea is to carefully identify some fence edges, which indicate
the “boundaries” of the BCCs. At a high level, we categorize
all graph edges into fence tree edges, plain (non-fence) tree
edges, back edges, and cross edges. Our skeleton G’ contains
the plain tree edges and cross edges. Using O(n) space, we
can efficiently determine the category of each edge in G.
When processing the skeleton, we use the input graph G
but skip the fence and back edges. We show that the BCC
information of G can be constructed from the CC information
of G’ plus some simple postprocessing. Since our algorithm
is based on Fencing an Arbitrary Spanning Tree, we call
our algorithm FAST-BCC. More details of FAST-BCC are
in Fig. 2. We note that conceptually our algorithm is simple,
but the correctness analysis is highly non-trivial.

We implement our theoretically-efficient FAST-BCC al-
gorithm and compare it to the state-of-the-art parallel BFS-
based BCC implementations GBBS [31] and SM’14 [64]. We
also compare FAST-BCC to the sequential Hopcroft-Tarjan
algorithm. We test 27 graphs, including social, web, road,
k-NN, and synthetic graphs, with significantly varying sizes
and edge distributions. The details of the graphs and results

53

are given in Tab. 2. We also show the relative running time
in Fig. 1, normalized to the sequential Hopcroft-Tarjan.

On a machine with 96 cores, FAST-BCC is the fastest on
all tested graphs. We use the geometric means to compare
the “average” performance across multiple graphs. Due to
work- and space-efficiency, our algorithm running on one
core is competitive with Hopcroft-Tarjan (2.8X slower on
average). Polylogarithmic span leads to good parallelism
for all types of graphs (15-66X self-relative speedup on
average). On small-diameter graphs (social and web graphs),
although GBBS and SM’14 also achieve good parallelism,
FAST-BCC is still 1.2-2.1x faster than the best of the two,
and is 5.9-39x faster than sequential Hopcroft-Tarjan. For
large-diameter graphs (road, k-nn, grid, and chain graphs),
existing BFS-based implementations can perform worse than
Hopcroft-Tarjan. Due to low span, FAST-BCC is 1.7-295X%
faster than GBBS (10X on average), and 4.1-18.5X faster
than sequential Hopcroft-Tarjan (9.2X on average). On all
graphs, FAST-BCC is 3.1x faster on average than the best
of the three existing implementations. Our code is publicly
available [36]. We present more results and analyses in the
full version of this paper [37].

2 Preliminaries

Computational Model. We use the work-span (or work-
depth) model for fork-join parallelism with binary forking to
analyze parallel algorithms [15, 30], which is recently used
in many papers on parallel algorithms [3, 10, 11, 13, 14, 16—
22, 33-35, 42, 43, 62, 71]. We assume a set of threads that
share a common memory. A process can fork two child soft-
ware threads to work in parallel. When both children com-
plete, the parent process continues. The work of an algorithm
is the total number of instructions and the span (depth) is the
length of the longest sequence of dependent instructions in
the computation. We say an algorithm is work-efficient if its
work is asymptotically the same as the best sequential algo-
rithm. We can execute the computation using a randomized
work-stealing scheduler [6, 23] in practice. We assume unit-
cost atomic operation compare_and_swap(p, Voids Unew) (OT
CAS), which atomically reads the memory location pointed
to by p, and write value vp,,, to it if the current value is v,4.
It returns true if successful and false otherwise.

Notation. Given an undirected graph G = (V, E), we use
n = |V|, m = |E|. Let diam(G) be the diameter of G, and
x-y be an edge between x and y. CC and BCC are defined
in Sec. 1. An articulation point (or cut vertex) is a vertex
s.t. removing it increases the number of CCs. A bridge (or
cut edge) is an edge s.t. removing it increases the number of
CCs. A spanning tree T of a connected graph G is a spanning
subgraph of G that contains no cycles. The spanning forest is
defined similarly if G is disconnected. For simplicity, we as-
sume G is connected, but our algorithm and implementation
work on any graph. Given a graph G and a rooted spanning

G = (V,E) : Input Graph T = (V,ET): A spanning tree in G
a,b,c,u,0,h,w,x,y,z,u’,0', ¢’ - €V :Verticesin G

x-y€E :AnedgeinG C,C;i :ABCCinG
Ty :u’s subtree in T he : The BCC head of C
p(u) :uwsparentinT x~y :AtreepathinT
P = x—y—---: A path G’ : The skeleton

Fence edge: (p(v),v) € E7, A (x,y) € E,st.x € Tyandy ¢ Ty (o)
(no edge from v’s subtree escapes from p(v)’s subtree)
Plain edge : (p(v),v) € ET, (p(v),0) is not a fence edge
Back edge, Cross edge : Edges in E \ ET, defined as usual
Skeleton G’ = (V,E’) in FAST-BCC: E’ = {plain & cross edges}
Table 1. Notations and terminologies in this paper.

tree T, an edge is a tree edge if it is in T. A non-tree edge
is a back edge if one endpoint is the ancestor of the other
endpoint, and a cross edge otherwise. Fig. 2 Step 3 shows an
illustration. If T is a BFS tree, there are no back edges; if T is
a DFS tree, there are no cross edges. We use x ~y to denote
the tree path between x and y on T. We denote the parent
of vertex u as p(u), and the subtree of u as T,,. The notation
used in this paper is given in Tab. 1.

We use O(f(n)) with high probability (whp) in n to mean
O(cf(n)) with probability at least 1 — n™° for ¢ > 1.
Euler tour technique (ETT). ETT is proposed by Tarjan
and Vishkin [65] in their BCC algorithm to root a spanning
tree. Later, ETT becomes a widely-used primitive in both
sequential and parallel settings, including computational ge-
ometry [2], graph algorithms [5, 28, 67], maintaining subtree
or tree path sums [30], and many others. ETT is needed in
Tarjan-Vishkin because when an arbitrary spanning tree is
generated for a graph (e.g., from a CC algorithm), it is not
rooted, and thus we do not have the parent-child information
for the vertices. Given an unrooted tree T with n — 1 edges,
ETT finds an Euler tour of T, which is a cycle traversing
each edge in T exactly twice (once in each direction). ETT
first constructs a linked list on the 2n — 2 directed tree edges,
and runs list ranking on it. We refer the audience to the text-
books on parallel algorithms [47, 58] for more details on ETT.
Using the semisort algorithm from [15, 44] and list ranking
from [15], ETT costs O(n) expected work and O(log n) span
whp. Given T, we can set any vertex as the root of T, and use
ETT to determine the directions of the edges. We can then
determine the parent of any vertex, and whether an edge is
a tree edge, back edge, or cross edge in O(1) work.

3 Existing BCC Algorithms

This section reviews the existing BCC algorithms and imple-
mentations. We will use the skeleton-connectivity framework
to describe the existing BCC algorithms. The skeleton phase
generates a skeleton G’ from G, which is an auxiliary graph.
Then the connectivity phase computes the connectivity on
G’ to construct the BCCs of G. Existing BCC algorithms can
be categorized by how the skeleton G’ is generated. The
Hopcroft-Tarjan algorithm uses DFS-based skeletons; the
Tarjan-Vishkin Algorithm generates a skeleton based on an

54

arbitrary spanning tree (AST); almost all other BCC algo-
rithms (see Sec. 3.3) use BFS-based skeletons.

3.1 The Hopcroft-Tarjan Algorithm

Sequentially, Hopcroft-Tarjan BCC algorithm [45] has O(n +
m) work using a depth-first search (DFS) tree T. Based on
T, two tags first[-] and low[:] are assigned to each vertex.
first[v] is the preorder number of each vertex in T. low[v]
gives the earliest (smallest preorder) vertex incident on any
vertex u € T, via a non-tree edge and u itself. More formally,

low[v] = min{w;[u] | u € V is in the subtree rooted at v}
wi [u] = min{{first[u]} U {first[v'] | (u,u') & T}}

To compute the BCCs, an additional stack is maintained.
Each time we visit a new edge, it is pushed into the stack.
When an articulation point p(u) is found by u (low[u] >
first[p(u)]), edges are popped from the stack until u—p(u) is
popped. These edges and the relevant vertices form a BCC.

Conceptually, the skeleton in Hopcroft-Tarjan is the DFS
tree without the “fence edges” of u—p(u) when low[u] >
first[p(u)]. This insight also inspires our BCC algorithm.

3.2 The Tarjan-Vishkin Algorithm

Hopcroft-Tarjan uses a DFS tree as the skeleton, but DFS is in-
herently serial and hard to be parallelized [57]. To parallelize
BCC, the Tarjan-Vishkin algorithm [65] uses an arbitrary
spanning tree (AST) instead of a DFS tree. This spanning tree
T can be obtained by any parallel CC algorithm. The algo-
rithm then uses ETT (which was also proposed in that paper)
to root the tree T (see Sec. 2). Then the algorithm builds a
skeleton G’ = (E, E’) and runs a connectivity algorithm on
it. We describe G’ in more details in the full paper [37], and
only briefly review it here. The vertices in G’ correspond
to the edges in G'. To determine the edges in G/, the algo-
rithm uses four tags (first[-], last[-], low[-], and high[-]) for
each vertex. Here first[u] and last[u] are the first and last
appearance of vertex u in the Euler tour (note that this is
not the same first[-] in Hopcroft-Tarjan, but conceptually
equivalent). low([-] is the same as defined in Hopcroft-Tarjan,
and high[-] is defined symmetrically:

high[v] = max{w;[u] | u € V is in the subtree rooted at v}

wy [u] = max{{first[u] } U {first[u'] | (u,u") ¢ T}}

All tags can be computed in O(n + m) expected work and
O(log n) span whp using ETT. Tarjan-Vishkin then finds the
CCs on G’ to compute the BCCs of G. However, G’ in Tarjan-
Vishkin can be large, making the algorithm less practical.

Assuming an efficient ETT and a parallel CC algorithm,
Tarjan-Vishkin uses O(n + m) optimal expected work and
polylogarithmic span. However, the space-inefficiency ham-
pers the practicability of Tarjan-Vishkin since G’ contains
O(m) edges. In our experiments, Tarjan-Vishkin takes up to

n a later paper [39], it was shown that the number of vertices in G’ can
be reduced to O(n), but |E’| is still O(m).

11X extra space than our FAST-BCC or GBBS. On our ma-
chine with 1.5TB memory, Tarjan-Vishkin ran out of memory
when processing the Clueweb graph [54], although it only
takes about 300GB to store the graph (see discussions in the
full version [37]). The large space usage forbids running
Tarjan-Vishkin on large-scale graphs on most multicore ma-
chines. Even for small graphs, high space usage can increase
memory footprint and slow down the performance.

Some existing BCC implementations (e.g., GBBS [31] and
TV-filter [29]) were also described as Tarjan-Vishkin algo-

rithms, probably because they also use the skeleton-connectivity

framework. We note that their correctness relies on BFS-
based skeletons (i.e., sparse certificates [27]), and we catego-
rized them below together with a few other algorithms.

3.3 Other Existing Algorithms / Implementations

Before Tarjan-Vishkin, Savage and JaJa [61] showed a par-
allel BCC algorithm based on matrix-multiplication with
O(n®log n) work. Tsin and Chin [66] gave an algorithm that
uses an AST-based skeleton. It is quite similar to Tarjan-
Vishkin, but uses O(n?) work.

To achieve space-efficiency, many later parallel BCC algo-
rithms use BFS-based skeletons [25, 26, 29, 31, 40, 50, 64, 68].
Many of them use the similar idea of sparse certificates [27].
BCC is much simpler with a BFS tree—all non-tree edges
are cross edges with both endpoints in the same or adja-
cent levels. Cong and Bader’s TV-filter algorithm [29] uses
the skeleton as the BFS tree T and an arbitrary spanning
tree/forest for G \ T (O(n) total size). Slota and Madduri’s
algorithms [64] and Dhulipala et al’s algorithm [31] use the
skeletons as the input graph G excluding O(n) vertices/edges.
The other algorithms [25, 26, 40, 68] use a BFS tree as the
skeleton, and compute connectivity dynamically. All these
algorithms are space-efficient. Their skeleton graphs either
have O(n) size [25, 26, 29, 40, 68] or can be implicitly repre-
sented using O(n) information [31, 64]. However, the span
to generate a BFS tree is proportional to the diameter of the
graph, which is inefficient for large-diameter graphs.

3.4 Space-Efficient BCC Representation

Since some vertices (articulation points) appear in multiple
BCCs (see Fig. 2 as an example), we need a representation of
all BCCs in a space-efficient manner (O(n) space). We use a
commonly used representation [11, 31, 40] in our algorithm.
Given a spanning tree T, we assign a label for each vertex
except for the root of T, indicating which BCC this vertex
is in. For all vertices with the same label, we find another
vertex called the component head (see details in Sec. 4.1)
attached to this label. All vertices with the same label and the
corresponding component head form a BCC. An example of
this representation is given in Fig. 2. It is easy to see that this
representation uses O(n) space since we have n — 1 labels
for all vertices and at most n — 1 component heads.

55

Algorithm 1: The FAST-BCC algorithm

Input: An undirected graph G = (V,E)

Output: The labels [[-] for vertices, and the component head
for each BCC

Compute the spanning forest F of G

> First CC
Root all trees in F using the Euler tour technique > Rooting

[

)

©

Compute tags (e.g., low, high) of each vertex based on the
Euler tour > Tagging

Compute the vertex label I[-] using connectivity on G with
edges satisfying INSKELETON (u, v) = true > Last CC

5 ParallelForEach u € V with [[u] # [[p(u)]

‘ Set the component head of I[u] as p(u)

'S

=Y

Function INSKELETON (u, v)> Decide if u—v is in skeleton G’
8 if (u,v) is a tree edge then
9 | return - FENCE(y, v) and — FENCE(v, u)

N}

10 else return - BAck(u,v) and — BAcCk(v, u)

Function FENCE(u,0) > Decide if tree edge is fence edge
‘ return first[u] < low[v] and last[u] > high[v]

Function BAck(u,v) » Decide if non-tree edge is back edge
‘ return first[u] < first[v] and last[u] > first[v]

11
12
13
14

4 The FAST-BCC Algorithm

In this section, we present our FAST-BCC algorithm with
analysis. Our algorithm is the first parallel BCC algorithm
that is work-efficient, space-efficient, and has polylogarith-
mic span. Recall that BFS-based algorithms are space-efficient,
but BES itself does not parallelize well. Tarjan-Vishkin is
based on AST and is highly parallel, but generating the skele-
ton is space-inefficient. To achieve both high parallelism and
space efficiency, we need novel algorithmic insights.
Interestingly, our key idea is to revisit the sequential DFS-
based Hopcroft-Tarjan algorithm (Sec. 3.1). Although DFS
is inherently sequential, the insights in Hopcroft-Tarjan in-
spire our parallel BCC algorithm. The (implicit) skeleton
in Hopcroft-Tarjan is simple and the skeleton size is small
(O(n)). Unlike many later parallel BCC algorithms with the
high-level ideas to combine cycles (based on Fact 4.2), the
idea in Hopcroft-Tarjan is the “fencing” condition as follows.
When computing the CC on the skeleton G’ (the DFS tree)
and traversing the edge from v to p(v), the CC on G’ (BCC on
G) is fenced if low[v] > first[p(v)]. This condition partitions
the DFS tree T into multiple CCs that correspond to BCCs
in G. Note that G” in Hopcroft-Tarjan only contains edges
from the DFS tree, because there are no cross edges in DFS
trees and all back edge information is captured by low|-].
Now we try to generalize this idea to an arbitrary span-
ning tree (AST). Directly using the “fencing” condition in
Hopcroft-Tarjan does not work since we need to deal with
cross edges. Note that a fence edge v—p(v) in Hopcroft-Tarjan
means that vertices in u’s subtree do not have an edge that
escapes (i.e., the other endpoint is outside) p(u)’s subtree. We
define our fence edges also based on this condition. More for-
mally, we say a tree edge (u, v) where u = p(v) is a fence edge

if there is no edge (x,y) € E such thatx € T, and y ¢ T,,. In-
tuitively, it means v’s subtree T, is “isolated” from other parts
outside p(v)’s subtree, and only interacts with the outside
world through p(v). To get an equivalent condition for an
AST, we borrow the idea from Tarjan-Vishkin and also com-
pute four axillary arrays first[-], last[-], low[-], and high[-].
The “fencing” condition then becomes low[v] > first[p(v)]
and high[v] < last[p(v)]. A non-fence tree edge is referred
to as a plain edge. Note that the information for back edges
is already captured by the low[-] and high[-] arrays, which
will also be used to decide fence edges. Our algorithm will
ignore back edges as in Hopcroft-Tarjan, and our skeleton G’
contains plain tree edges and cross edges. Since the main
approach in our algorithm is Fencing an Arbitrary Spanning
Tree, we call our algorithm FAST-BCC. We note that the
high-level idea of fencing (finding some special edges on the
spanning tree) is also used in some existing work [11, 31, 64].
Our design of the skeleton and the fencing condition is the
first to achieve work-efficiency, polylogarithmic span, and
space-efficiency for the BCC problem.

The outline of the algorithm is given in Fig. 2, and the
pseudocode is in Alg. 1. Although our fencing algorithm
is simple, we note that formally proving the correctness
(Sec. 4.2) is highly non-trivial.

4.1 Algorithmic Details

Our FAST-BCC algorithm has four steps: First-CC (gener-
ate spanning trees), Rooting (root the spanning trees using
ETT), Tagging (compute first[-], last[-], wi[-], w2[-], low[-],
high[-], p[-]), and Last-CC (run CC on the skeleton and post-
processing). In the skeleton-connectivity framework, the
first three steps are the skeleton phase (compute the skele-
ton G’), and the last step is the connectivity phase (run CC
on G’ to find all BCCs in G).

First-CC (Step 1 in Fig. 2, Line 1 in Alg. 1). This step finds
all CCs in G and generates a spanning forest F of G. For
simplicity, in the following, we focus on one CC and its
spanning tree T, which is unrooted at this moment. If G
contains multiple CCs, they are simply processed in parallel.
Running CC only requires O(n) auxiliary space.

Rooting (Step 2 in Fig. 2, Line 2 in Alg. 1). We use the Euler
tour technique (ETT) in Sec. 2 to root T, which implies the
tree edge directions (Fig. 2, Step 2). ETT requires O(n) space.
Tagging (Step 3 in Fig. 2, Line 3 in Alg. 1). This step generates
the tags used in the algorithm, including wy [-], wa[-], low[-],
high[-], first[-], last[-] (same as in Tarjan-Vishkin, see Sec. 3)
and the parent array p[-]. low[-] and high[-] values are com-
puted by looping over all edges and getting arrays w; and wa,
and applying n 1D range-minimum queries (RMQ). This step
takes in O(n + m) work and O(log n) span [15]. These tags
will help to decide the four edge types (see details below).
All the tag arrays have size O(n).

Last-CC (Step 4 in Fig. 2, Line 4-6 in Alg. 1). As men-
tioned, our skeleton graph G’ contains plain tree edges and

56

cross edges. To achieve space efficiency, we do not explic-
itly store G’. Since G’ is a subgraph of G, we can directly
use G but skip the fence edges and back edges, which can
be determined using the tags generated in Step 3 (Line 7-
14). Then we compute the CCs on the skeleton G’ (Line 4),
which assigns a label [[v] to each vertex (Fig. 2, Step 4.1). In
Lem. 4.11, we show that if two vertices are connected in G,
they must be biconnected on the input graph G. We then
assign the head to each label (Lines 5 and 6) by looping over
all fence edges (Fig. 2, Step 4.2). For a fence edge u—p(u), if
u and p(u) have different labels (Line 5), p(u) (intuitively)
isolates vertices below u with the other parts in the graph.
Thus, we assign p(u) as the component head of u’s CC in G'.
We prove the correctness of this step in Lem. 4.9 and 4.12.
This step also only requires O(n) auxiliary space, which is
needed by running CC on G but skip certain edges.

4.2 Correctness for the FAST-BCC Algorithm

We now prove the correctness of our algorithm. Note that our
algorithm will identify the spanning forest in the first step
and deal with each CC respectively. For simplicity, through-
out the section, we focus on one CC in G.

In the following, when we use the concepts about a span-
ning tree of the graph (e.g., root, parent, child, and subtree),
we refer to the specific spanning tree identified in Step 1
of our algorithm, and use T to represent it. Recall that T,
denotes the subtree rooted at vertex u, and u ~ v denotes the
tree path on T from u to v. Some other notation is given
in Tab. 1. In a spanning tree, we say a node u is shallower
(deeper) than v if u is closer (farther) to the root than v. We
use node and vertex interchangeably.

We note that although Alg. 1 is simple, the correctness
proof is sophisticated. We show the relationship of facts,
lemmas, and theorems in Fig. 2. Due to the space limit, the
proofs for Fact 4.1 and 4.2 and Lem. 4.3 to 4.5 are given in the
full version of the paper, and we mainly focus on the proofs
that reflect some key ideas in our new algorithm.

We first show some facts for BCCs based on the definition.

Fact 4.1. Two BCCs share at most one common vertex.

Fact 4.2. For a cycle in a graph, all vertices on the cycle are
in the same BCC.

Lemma 4.3. Given a graph G, vertices in each BCCC C V
must also be connected in an arbitrary spanning tree T for G.

Since each BCC C must be connected in the spanning tree
in T, there must exist a unique shallowest node in this BCC
on T. We call this shallowest node the BCC head of the
BCC C, and denote it as hc.

Lemma 4.4. Each non-root BCC head is an articulation point.
An articulation point must be a BCC head.

Lemma 4.5. The function INSKELETON (Line 7) in Alg. 1 can
correctly skip the fence and back edges.

Input Graph G: contains 3 BCCs
{s,ubdr s, t,v, w,x} {t, y, 2}

Step 2: Rooting. Generate rooted spanning trees.
Step 2.1: Based on the
spanning tree T of G. Create
the linked list of the Euler
tour of T.

Step 2.2: Set any vertex as the
root and run list ranking. The
result implies the tree edge
directions.

Step 3: Tagging.

Compute tags (first/last/low/high/...) for each
vertex. Use these tags to identify fence, plain,
cross, and back edges.

Tree edge:
--» Fence edge
— Plain edge

Non-tree edge:

Step 4.1: Find the CCs of the
skeleton G’ only with cross and

Step 1: First CC. Find the CCsof G || —~ 7 ¢t W& — — — — x|{{~— — — = 1x =~ Back edge

and a spanning tree (forest). —— Cross edge

Step 4: Last CC. Run CC on the skeleton. Step 4.2: Assign the BCC1 {s, u}:
component head to Head s + {u}

each CCin G'. Each

plain edges in G (solid edges in CCin G' with its _ Headr+{s, t,v, w, x}
Step 3). Ignore the root. component head is BCC3 {t, y, z}:
a BCC. Head t + {y, z}

BCC2 {s, t, v, w, x}:

Fact 4.1 Fact 4.2 Lemma 4.3 Lemma 4.4 Lemma 4.6
Two BCCs Cycle = BCC ABCCis BCC head & Property of
ICinGl <1 connected on T| |articulation point plain tree edge
kT T ~o T 7
Sa's o ~mm T —— e, /

A" ikl T Se—y ei-_"*"'—-— .;’
Lemma 4.11 Lemma 4.12 Lemma 4.8 Lemma 4.9
(constructive) Component head for (inductive) BCC head is

vertices with the label [is biconnected Non-head vertices identified as
same label are with all vertices with in a BCC get the component head
biconnected label [same label

S -, T == T

Wee—"—"" 00O TTE=aa N 4
Theorem 4.10 Lemma 4.5 Theorem 4.7
Every BCC identified by The skeleton G is generated Every BCCin G is
Alg. 1 is biconnected correctly identified by Alg. 1
T

Algorithm 1 is correct

Figure 3. The structure of the correctness proof for Alg. 1.
Next, we show a useful property of the plain tree edges.

Lemma 4.6. For a plain tree edge x—y where x is the parent
of y, let z be x’s parent, then x, y, z are biconnected.

Proof. Since x-y is not a fence edge, there must be an edge
a-b,s.t.a € Tyand b ¢ Ty. The cycle y~a-b~z-x-y then
contains x, y, and z. Due to Fact 4.2, x, y, and z are in the
same BCC. O

Next, we show that Alg. 1 can correctly identify all BCCs.
We will show two directions. First, if two vertices u and v are
biconnected, Alg. 1 must put them in a BCC. Second, for any
two vertices u and v in a BCC found by Alg. 1, they must be
biconnected.

Theorem 4.7. Foru,v € V, if they are biconnected, Alg. 1
assigns them to the same BCC.

To prove Thm. 4.7, we discuss two cases: 1) one of u and v
is a BCC head, and 2) neither of them is a BCC head.

Lemma 4.8. For a BCC C and two verticesu,v € C \ {hc},
they are connected in the skeleton G’ and will get the same
label in Alg. 1.

Proof. If all tree edges connecting C \ {hc} are plain tree
edges, u and v are already connected in G’. Next, we show
that the two endpoints of every fence edge are also connected
in G’. To do so, we first sort (only conceptually) all vertices

57

Figure 2. The outline of the FAST-BCC algorithm and a running example. The four steps are explained in detail in Sec. 4.1.

in C \ {hc} by their depth in T. Then we inductively show
from bottom up (deep to shallow) that, given a vertex v € C,
T, N C (v’s subtree in C) is connected in G'.

The base case is the deepest vertices in C\{h¢}. In this case,
their subtree contains only one vertex so they are connected.

We now consider the inductive step—if for all vertices
with depth > d, their subtrees in C are connected in G’,
then for all vertices with depth d — 1, their subtrees in C
are also connected in G’. Consider a vertex u € C \ {hc}
with depth d — 1. If u has only one child v in C, then u-v is
a plain tree edge since otherwise v’s subtree cannot escape
u’s subtree and u is an articulation point (disconnecting v
and p(u)), contradicting Lem. 4.4. Assume u has multiple
children cy, ..., cg in C. Let u—v be a fence edge that is not
in G’, where v = ¢; is a child of u. We will show that u and v
are still connected in G’.

Since u is not a BCC head, p(u) must also be in C. Based
on the definition of BCC, if we remove u, v and p(u) are
still connected C. Let the path be P = v—x;-x2—...—x;—p(u)
where x; € C and x; # u. We will construct a path in G’ from
P that connects v and u. Let x;,; be the first vertex on path
P that is not in T,,. We will use the path v = xo—x;-x2—..~x;.
All nodes in this path have depths > d. Due to the induction
hypothesis, if some of the edges are back or fence edges, we
can replace them with the paths in G’, and denote this path
as P’. Then, since xj,; ¢ T, is connected to x; € T,,, all edges
on tree path x; ~u are plain tree edges. As a result, u and v
are connected in G’ using the path P’ from v to x;, and the
tree path from x; to u (all edges are in G’). By the induction,
all vertices in C \ {h¢} are connected in G’, and hence get
the same label after Line 4. O

Lemma 4.9. Any BCC head will be correctly identified as a
component head in Alg. 1.

Proof. Consider a BCC C and its BCC head hc. Among all
the children of h¢, a subset S of them are in the same BCC C.
Consider any ¢ € S. We will show that the edge c—hc must
be identified correctly in Line 5.

We first show that c—hc must be a fence. If h¢ is the root
of T, and in this case, all tree edges connecting to h¢ are
fence edges. Otherwise, this can be inferred from the contra-
positive of Lem. 4.6. If c—h¢ is a plain tree edge, ¢, hc, and
p(hc) must be biconnected, which means p(h¢) is also in
the BCC C. This contradicts the assumption that h¢ is the
shallowest node (BCC head) in the BCC.

We then show that after we run the CC on the skeleton G’
(Line 4), h¢e and c have different labels (i.e., h¢c and ¢ are not
connected in G’). Assume to the contrary that there exists a
path P from c to h¢ on G’. Consider the last node t on the
path before h¢. Because he—c is a fence edge and is ignored
in G’, ¢ # t. We discuss three cases. (1) t is not in the h¢’s
subtree Tp.. Consider the first edge x-y on the path P such
that x € Tj,. and y # Tj.. Since x-y escapes h¢’s subtree,
the tree path P’ = x~hc only contains plain tree edges.
Let ¢’ be h¢’s child on the path P’. From Lem. 4.6, ¢’, hc,
and p(h¢) are biconnected. In this case, hc—c~x~ ¢’ h¢ is
a cycle, and Fact 4.2 shows that ¢, h¢ and ¢ are biconnected.
The contrapositive of Fact 4.1 indicates that ¢’, h¢, ¢, and
p(hc) are all biconnected, contradicting the assumption that
hc is the BCC head (the shallowest node in the BCC). (2)
t € Ty, but t is not h¢’s child. This is impossible because
t—hc is a back edge, which is not in G’. (3) t is a child of A¢.
This case is similar to (1). By replacing ¢’ in the previous
proof by ¢, we can get the same contradiction. Combining
all cases proves that there is no path in G’ between h¢ and
its children in C, so [[h¢] is different from the labels of its
children in C. O

Combining Lem. 4.8 and 4.9, we can prove Thm. 4.7.
We then show the other direction—all the BCCs computed
by Alg. 1 are indeed biconnected.

Theorem 4.10. If two vertices u and v are identified as in the
same BCC by Alg. 1, they must be biconnected.

Similar to the previous proof, we consider two cases: (1)
none of the two vertices is a component head (they are con-
nected in G’), proved in Lem. 4.11, and (2) one of them is
identified as a component head in Line 6, proved in Lem. 4.12.

Lemma 4.11. If two vertices u and v are connected in the
skeleton G’, they are biconnected.

Proof. Since u and v are connected in G’, there exists a path
P from u to v only using edges in G’. Let P be u = py—p1—...—
Pk-1—pr = v. We will show that after removing any vertex
pi where 1 < i < kon P, p;_y and p; are still connected,
meaning that v and v are biconnected. We summarize all
possible local structures in three cases, based on whether
Pi-1 (and pi+l) is a child Ofpi inT.

Case 1: both p;_; and pj1 are p;’s children. Since p;_1—p; is
not a fence edge, there must be an edge x-y s.t. x € T,,_, and
y ¢ Tp,,. Similarly, for p;—p;q, there exists an edge (x’,y")
s.t. x" € Tp,,, and y’ ¢ Tp,. Hence, without using p;, p;—1 and

58

pit1 are still connected by the path p;_; ~x-y~y’'-x" ~ pj41.
Here since y,y" € Tp,, y ~y’ does not contain p;.

Case 2: one of p;_; and p;4 is p;’s child. WLOG, assume
pi—1 is the child. Since p;_1—p; is not a fence edge, there must
be an edge x-y such that x € T, and y ¢ Tj,,. Also, since
pi+1 1s either the parent of p; or connected to p; using a cross
edge, pi+1 € Tp,. Hence, without using p;, p;—1 and p;4 are
still connected using the path p;_; ~x-y ~ pis1-

Case 3: neither p;_; nor p;4; is a child of p;, and neither of
them is in T,, (otherwise they are connected by a back edge).
Without using p;, p;—1 and p;4q are still connected using the
tree path p;_1 ~ pi41-

Since removing any vertex on the path P does not discon-
nect the path, all vertices in the same CC of the skeleton are
biconnected. O

Lemma 4.12. If Line 6 in Alg. 1 assigns h as the component
head of a connected component (CC) C in the skeleton G’, then
h is biconnected with C.

Proof. First of all, assume h is assigned as the component
head because of its child ¢, where h—c is a fence edge. We
will show that the connected component C in G’ containing
¢ is biconnected with h. There are two cases.

Case 1: C only contains vertices in T;.. This means that no
vertices in T, have a cross edge to another vertex outside T..
Therefore, either all edges incident on ¢’ € T, do not escape
from T, or some node ¢’ € T, is connected to nodes outside
T, via back edges. In the former case, all the edges connecting
c and its children are fence edges, and thus C only contains
c. In this case, h is trivially biconnected with C. In the latter
case, assume x € T. N C has a back edge connected to y ¢ T¢.
Note that y can only be h—if y is h’s ancestor, then edge
x—y escapes T, so h—c is a plain tree edge (contradiction).
Therefore, we can find a cycle h—c ~ x—h. From Fact 4.2, h, ¢, x
are biconnected, and A is in the same BCC as ¢ and x, and
thus all vertices in C (Lem. 4.11 and Fact 4.1).

Case 2: C contains both vertices in T, and some vertices
in Ty, \ T... Hence, there exists a cross edge x—y, where x € T,
and y ¢ T.. We can find a cycle h,~x—y ~ h. From Fact 4.2,
h, ¢, u are biconnected. h is in the same BCCascandu. 0O

Combining Lem. 4.11 and 4.12 proves Thm. 4.10.

Thm. 4.7 shows that if two vertices are put in the same
BCC by Alg. 1, they are biconnected in G. Thm. 4.10 indicates
that two vertices biconnected in G will be put in the same
BCC by Alg. 1. Lem. 4.5 indications back edges and fence
edges are identified correctly by Alg. 1. Combining them
together indicates that Alg. 1 is correct.

4.3 Cost Bounds for the FAST-BCC Algorithm
We now analyze the cost bounds of the algorithm.
Theorem 4.13. Alg. 1 computes the BCCs of a graph G withn

vertices and m edges using O(n +m) expected work, O(log> n)
span whp, and O(n) auxiliary space (other than the input).

Proof. The first and last steps compute the graph connectiv-
ity twice. Graph connectivity can be computed in O(n + m)
expected work and O(log® n) span whp [63]. In Step 2, ETT
can be performed O(n) expected work and O(logn) span
whp (see Sec. 2). In Step 3, computing low[-] and high[-] ar-
rays based on RMQ takes O(m) work and O(log n) span [15].
Adding all pieces together gives the work and span bounds.

For the space, all arrays for the tags have size O(n). As
mentioned, we do not generate the skeleton explicitly. In the
last step, we try all the edges in G but skipping the back and
fence edges. In all, the auxiliary space needed is O(n). 0O

5 Implementation Details

We discuss some implementation details of FAST-BCC in
this section.

Connectivity. Connectivity is used twice in FAST-BCC.
The only existing parallel CC implementation with good
theoretical guarantee we know of is the SDB algorithm [63]
(an initial version of GBBS is based on this algorithm). A
recent paper by Dhulipala et al. [32] gave 232 parallel CC
implementations, many of which outperformed the SDB
algorithm, but no analysis of work-efficiency was given. A
more recent version of GBBS uses the UF-Async algorithm
in [32] to compute CC. To achieve efficiency both in theory
and in practice, FAST-BCC uses the LDD-UF-JTB algorithm
from [32] and we provide a new analysis for this algorithm
to prove its theoretical efficiency.

LDD-UF-JTB consists of two steps. It first runs a low-
diameter decomposition (LDD) algorithm [55] to find a de-
composition (partition of vertices) of the graph such that
each component has a low diameter and the number of edges
crossing different components is bounded. The second step
is to use a union-find structure by Jayanti et al. [49] to union
components connected by cross-component edges. We now
show the bounds of this algorithm.

Theorem 5.1. The LDD-UF-JIB algorithm computes the CCs
of a graph G with n vertices and m edges using O(n + m)
expected work and O(log® n) span whp.

Therefore, using LDD-UF-JTB for CC preserves the cost
bounds in Thm. 4.13. We prove Thm. 5.1 in the full version
of this paper.

We optimized LDD-UF-JTB using the hash bag and local
search techniques proposed from [69]. These optimizations
are only used in computing CCs in our algorithm, and we
do not claim them as contributions of this paper. In our
tests, using these optimizations improves the performance
of FAST-BCC by 1.5x on average (up to 5x). Some results are
shown in the full version of this paper. We note that among
all 232 CC algorithms in [32], no one is constantly faster,
and the relative performance is decided by the input graph
properties. In FAST-BCC, we currently use the same CC
algorithm for all graphs, and we acknowledge that using the
fastest CC algorithm on each graph can further improve the

59

performance of FAST-BCC. We choose LDD-UF-JTB mainly
because it is theoretically-efficient, and also can generate CC
as a by-product efficiently.
Spanning Forest. The spanning forest of G is obtained as a
by-product of Step 1, which saves all edges to form the CCs.
We then re-order the vertices in the compressed sparse row
(CSR) format to let each CC be contiguous.
Euler Tour Technique (ETT). We use the standard ETT
to root the spanning trees (see Sec. 2). We replicate each
undirected edge in T into two directed edges and semisort
them [44], so edges with the same first endpoint are con-
tiguous. Then we construct a circular linked list as the Euler
circuit. Assume a vertex v has k in-coming neighbors uy, uy,
-+, ug. For every incoming edge of v except for the last one,
we link it to its next outgoing edge (i.e., u;—v is linked to
v-u;4 for 1 < i < k). For the last incoming edge, we link it
to the first outgoing edge of v (i.e., ux—v is linked to v-u).
After we obtain the Euler circuit of the tree, we flatten
the linked list to an array by list ranking, and acquire the
Euler tour order of each vertex. For list ranking, we coarsen
the base cases by sampling v/n nodes. We start from these
nodes in parallel, with each node sequentially following the
pointers until it visits the next sample. Then we compute
the offsets of each sample by prefix sum, pass the offsets to
other nodes by chasing the pointers from the samples, and
scatter all nodes into a contiguous array.
Computing Tags. We use several tags wy, wy, first, last,
low, and high for each vertex, defined the same as Tarjan-
Vishkin [65] (see Sec. 3). We use CAS operations to compute
first and last as they represent the first and last appearances
of a vertex in the Euler tour order. For each tree edge (u,v), if
first[u] < first[v], we set p(v) = u, or vice versa. Computing
low and high are similar, so we only discuss low here. We first
initialize wy [v] with first[v] for each v € V. Then it traverses
all non-tree edges u—v and updates w; [u] and wy [0] with the
minimum of first[u] and first[v]. We build a parallel sparse
table [15] on w; to support range minimum queries. Note
that first[v] and last[v] reflect the range of v’s subtree in the
Euler tour order. Thus, low[v] can be computed by finding
the minimum element in wy [-] in the range between first[v]
and last[v]. high[-] can be computed similarly.

6 Experiments

Setup. We run our experiments on a 96-core (192 hyper-
threads) machine with four Intel Xeon Gold 6252 CPUs, and
1.5 TB of main memory. We implemented all algorithms in
C++ using ParlayLib [12] for fork-join parallelism and some
parallel primitives (e.g., sorting). We use numactl -i all
in experiments with more than one thread to spread the
memory pages across CPUs in a round-robin fashion. We
run each test for 10 times and report the median.

We tested on 27 graphs, including social networks, web
graphs, road graphs, k-NN graphs, and synthetic graphs.

Ours GBBS M’ Thest
n m b #BCC [BCCy|7% par. seq. spd.| par. seq. spd.| 14 SEQ /ours Notes
YT |1.13M 5.98M 23 673,661 39.83% |0.030 0.465 15.6 |0.040 0.435 10.8 {0.059 0.175| 1.35 |com-youtube [72]

= OK |3.07M 234M 9 68,117 97.76%|0.103 3.08 30.0 |0.158 4.86 30.8 {0.297 3.14 | 1.53 |com-orkut [72]

'g LJ|4.85M 85.7M 19 1,133,883 75.61%|0.104 3.02 28.90.159 3.34 21.0 n 1.87 | 1.52 |soc-LiveJournall [9]

v TW|41.7M 2.41B 23 1,936,001 95.33%| 144 529 36.7|2.83 952 33.7 [20.5% 49.2 | 1.96 |Twitter [51]

FT |65.6M 3.61B 37 14,039,045 7850%| 3.10 129 41.6| 6.44 260 405 | 109 122 2.07 |Friendster [72]
GG | 876K 8.64M 24 175,274 73.31%|0.029 0.534 18.7 |0.045 0.530 11.8 | n 0.255| 1.58 |web-Google [53]

a SD|89.2M 3.88B 35 16,189,065 80.36%| 3.11 134 43.2| 5.61 213 38.0 n 923 | 1.81 |sd_arc [54]

§ CW | 978M 74.7B 254 81,809,602 86.48% | 22.9 1464 64.0 | 39.7 1526 384 n 695 1.73 | ClueWeb [54]

HL14| 1.72B 124B 366 124,406,075 83.25%| 31.1 2057 66.0 | 50.7 2113 41.7 | n 1011 | 1.63 |Hyperlink14 [54]
HL12| 3.56B 226B 650 410,853,262 80.63% | 89.1 5435 61.0| 104 5985 57.6 n 3027 | 1.17 |Hyperlink12 [54]

- CA|1.97M 5.53M 857 381,366 79.55%|0.040 0.824 20.6 [0.372 1.05 2.82 n 0.206| 5.15 |[roadnet-CA [53]

8 USA |239M 57.7M 8,263 7,390,330 66.90% |0.336 12.1 36.0 | 4.64 15.1 3.25|3.73* 2.25| 6.69 |RoadUSA [1]

& GE|123M 323M 2,240 2,482,488 78.67%(0.267 11.1 41.6 | 2.02 11.4 5.66 |1.14" 2.88 | 7.54 |Germany [1]
HH5|2.05M 13.0M 1,859 17,408 62.55%|0.073 1.60 22.0|0.447 1.52 3.41 n 0.509| 6.16 |Household [38, 70], k=5
CH5 [4.21M 29.7M 14,479 299 15.41%|0.128 2.85 22.2| 144 238 1.66 n 0.528| 4.11 |CHEM [41, 70], k=5
GL2|249M 65.4M 13,333 10,940,922 0.03%|0.402 13.8 34.5| 1.53 169 11.0 n 251 | 3.80 |Geolife [70, 73], k=2

% GL5|249M 157M 21,600 1,009,434 30.07%|0.472 19.1 40.5|2.80 194 692 | n 4.03 | 593 |GeoLife [70, 73], k=5

< GL10|249M 305M 3,824 51,465 86.38%(0.668 29.2 43.8| 1.64 235 143 n 7.07 | 2.46 |Geolife [70, 73], k=10
GL15|249M 453M 3,664 23,149 91.11%|0.751 34.4 458 | 151 259 17.1 n 892 | 2.01 |GeolLife [70, 73], k=15
GL20|249M 602M 2,805 13,619 93.96%|0.861 39.2 456 | 1.48 286 193 | n 102 | 1.72 |GeoLife [70, 73], k=20
COS5| 321IM 1.96B 1,180 85,283 99.74%| 8.46 382 45.2| 17.5 392 224 n 120 2.07 | Cosmo50 [52, 70], k=5
SOR | 100M 400M 10,000 1 100.00% | 1.32 43.4 329|154 44.2 287 |20.3* 24.4 | 11.7 |2D grid 10% x 10*

2 REC| 100M 240M 50,500 1 100.00% | 1.35 43.6 32.4|47.0 34.6 0.735|13.1% 16.8 | 12.5 |2D grid 103 x 10°

E SQR’| 100M 400M 10,256 23,836,580 70.65%| 1.31 50.1 38.1| 125 609 488 | n 10.6 | 8.06 |sampled SQR

s REC’| 100M 240M 69,014 23,826,514 70.66% | 1.37 46.8 343|224 589 2.63 n 10.7 | 7.81 |sampled REC

% Chn7| 10M 20M 107 —1 107 -1 0.00%|0.278 13.1 46.9 | 81.6 19.7 0.241|40.5" 3.33 | 12.0 |Chain of size 107
Chn8| 100M 200M 102 — 1 108 -1 0.00%| 3.25 152 46.9 | 957 307 0.320|703* 38.9 | 12.0 |Chain of size 10

Table 2. Graph information, running times (in seconds), and speedups. Ty, /ours (highlighted in yellow) is the fastest time of
the other implementations / our time, both using all cores. “n” = number of vertices. “m” = number of edges. “D” = approximate
diameter. “4BCC” = number of BCCs. “|BCC1|%” = percentage of the largest BCCs. “GBBS” = GBBS’s implementation [31]. “SM’14” = Slota
and Madduri’s algorithm [64] (the faster of the two proposed algorithms). Since SM’14 has scalability issues (see Fig. 4), we report the
16-core time if it is faster, and denote as (*). “SEQ” = Hopcroft-Tarjan BCC algorithm [45]. Details about the baselines are introduced in

Sec. 6. The fastest runtime for each graph is underlined. Red numbers are parallel runtime slower than the sequential algorithm. “par.”

parallel running time (on 192 hyper-threads). “seq.” = sequential running time (on 1 thread). “spd.” = self-relative speedup. “n” = no support,

because SM’14 only works on connected graphs.

The information of the graphs is given in Tab. 2. In addi-
tion to commonly-used benchmarks of social, web and, road
graphs, we also use k-NN graphs and synthetic graphs. k-
NN graphs are widely used in machine learning algorithms
(see discussions in [70]). In k-NN graphs, each vertex is a
multi-dimensional data point and has k edges pointing to
its k-nearest neighbors (excluding itself). We also create six
synthetic graphs, including two grids (SQR and REC), two
sampled grids (SQR’ and REC’, each edge is created with
probability 0.6), and two chains (Chn7 and Chn8). SQR and
SQR’ have sizes 10? x 10*. REC and REC’ have sizes 10° x 10°.
Each row and column in grid graphs are circular. Chn7 and
Chn8 have sizes 107 and 10%. The tested graphs cover a wide
range of sizes and edge distributions.

For directed graphs, we symmetrize them to test BCC.
We call the social and web graphs low-diameter graphs as

60

they have diameters mostly within a few hundreds. We call
the road, k-NN, and synthetic graphs large-diameter graphs
as their diameters are mostly more than a thousand. When
comparing the average running times across multiple graphs,
we always take the geometric mean of the numbers.
Baseline Algorithms. We call all existing algorithms that
we compare to the baselines. We implement sequential
Hopcroft-Tarjan [45] algorithm for comparison, referred to
as SEQ. We compare the number of BCCs reported by each
algorithm with SEQ to verify correctness.

We also compare to two most recent available BCC im-
plementations GBBS [31], and Slota and Madduri [64]. We
use SM’14 to denote the better of the two BCC algorithms in
Slota and Madduri [64]. On many graphs, we observe that
SM’14 is faster on 16 threads than using all 192 threads, in
which case we report the lower time of 16 and 192 threads.

—— FAST-BCC GBBS —— SM'14
W sD USA GL5 REC
20]]]]]
1< 4 4 4 4
0.2~//M 7N]

vvvvvvvvvvvvvvvvvvvv

Figure 4. Scalability curves for different BCC algorithms. In
each plot, x-axis is core counts (last data point is 96 core with
hyperthreading) and y-axis is speedups normalized to SEQ (the
sequential Hopcroft-Tarjan algorithm). Higher is better. SEQ is 1.

Through correspondence with the authors, we understand
that SM’14 requires the input graph to be connected, so we
only report the running time when it gives the correct an-
swers. As few graphs we tested are entirely connected, we
focus on comparisons with GBBS and SEQ. We also compare
our breakdown and sequential running times with GBBS
since GBBS can process most of the tested graphs?.

Unfortunately, we cannot find existing implementations
for Tarjan-Vishkin to compare with. We are aware of two
papers that implemented Tarjan-Vishkin [29, 39]. Edwards
and Vishkin’s implementation [39] is on the XMT architec-
ture and they did not release their code. Cong and Bader’s
code [29] is released, but it was written in 2005 and uses
some system functions that are no longer supported on our
machine. For a full comparison, we implemented a faithful
Tarjan-Vishkin from the original paper [65]. As engineer-
ing Tarjan-Vishkin is not the main focus of this paper, we
provide the details in the full paper.

We note that both GBBS and SM’14 exclude the postpro-
cessing to compute the actual BCCs, but only report the
number of BCCs at the end of the algorithm. We include this
step in FAST-BCC, although this postprocessing only takes
at most 2% of the total running time in all our tests.

6.1 Overall Performance

We present the running time of all algorithms in Tab. 2.
Our FAST-BCC is faster than all baselines on all graphs,
mainly due to the theoretical efficiency—work- and space-
efficiency enables competitive sequential times over the
Hopcroft-Tarjan sequential algorithm, and polylogarithmic
span ensures good speedup for all graphs.

Sequential Running Time. We first compare the sequential
running time of SEQ, GBBS, and FAST-BCC. SEQ and FAST-
BCC use O(n + m) work. To enable parallelism, both FAST-
BCC and GBBS traverse all edges multiple times (running
CC twice in Steps 1 and 4, and computing low/high for the
skeleton in Step 3). We describe more details about GBBS
implementation in Sec. 6.2. On average, our sequential time
is 2.8% slower than SEQ, but is 10% faster than GBBS.

2GBBS updated a new version after this paper was accepted, so we also
updated the numbers using their latest version (Nov. 2022). Some new
features in the latest version greatly improved their BCC performance.

61

Scalability and Parallelism. We report the scalability curves
for FAST-BCC, GBBS and SM’14 on five graphs (Fig. 4). For
fair comparison, the speedup numbers in Fig. 4 are normal-
ized to the running time of SEQ. On these graphs, FAST-BCC
is the only algorithm that scales to all processors. It outper-
forms GBBS and SM’14 on all graphs with all numbers of
threads (except REC on 2 cores). We noticed that SM’14 suf-
fers from scalability issues, and the best performance can
be achieved at around 16 threads. Hence, we report SM’14’s
better running time of 16 and 192 threads in Tab. 2. GBBS
has similar issues on a few graphs. However, as GBBS’s per-
formance does not drop significantly as core count increases,
we consistently report GBBS’s time on 192 threads in Tab. 2.

Our average self-relative speedups on both low-diameter
graphs and large-diameter graphs are 36x. On large-scale
low-diameter graphs with sufficient parallelism, the self-
relative speedup can be up to 66X. Even on large-diameter
graphs, FAST-BCC achieves up to 47x self-relative speedup.
In comparison, the self-relative speedup of GBBS’s BFS-
based algorithm is 29X on low-diameter graphs and 3.7x on
large-diameter graphs. This makes GBBS only 11% faster
than SEQ on large-diameter graphs (and can be slower on
some graphs), while ours is 5.1-18.5X better. Overall, our
parallel running time is 10X faster on large-diameter graphs
and 1.6X faster on low-diameter graphs than GBBS. On some
graphs, SM’14 achieves better performance than GBBS, but
FAST-BCC is 1.7-11.1x faster than SM’14 on all the graphs.

To verify that GBBS’s performance is bottlenecked by
BFS, we created k-NN graphs GL2-20 from the set of points
but with different values of k. When increasing k over 5,
the graphs have more edges but smaller diameters. For both
FAST-BCC and SEQ, the running times increase when k
grows due to more edges (and thus more work), but the
trend of GBBS’s running time is decreasing. This indicates
that the BFS is the dominating part of running time for
GBBS, and the performance on GBBS is bottlenecked by
the O(D1aM(G) log n) span.

6.2 Performance Breakdown

To understand the performance gain of FAST-BCC over prior
parallel BFS-based BCC algorithms, we compare our perfor-
mance breakdown with GBBS in Fig. 5. We choose GBBS
because it can process all graphs. Since GBBS is also in the
skeleton-connectivity framework, we use the same four step
names for GBBS as in FAST-BCC, but there are a few dif-
ferences. (1) For First-CC, FAST-BCC generates a spanning
forest while GBBS only finds all CCs. (2) For Rooting, FAST-
BCC uses ETT to root the tree while GBBS applies BFS on
all CCs to find the spanning trees. (3) The task for Tagging is
almost the same, but GBBS computes fewer tags than FAST-
BCC since it is based on BFS trees. FAST-BCC uses 1D RMQ
queries that are theoretically-efficient, while GBBS uses a
bottom-up traversal on the BFS tree. (4) For Last-CC, both
algorithms run CC algorithms on the skeletons to find BCCs.

H First CC HEE Rooting BN Tagging Last CC
OK LJ T™W FT SD CwW HL14 HL12 USA GE
2
) 5.0 . 40 100 4
0.1 0.1
1 25 2 20 20 50 2 1
0.0 0.0 0 0 0 0 0 0 0 0
CH5 GL2 GL5 GL10 GL15 GL20 COSs5 SQR SQR' 1000 Chn8
1.0 10
1 2 1 1 1 10 10 500
0.5 5
0.0 0 0 0 0 0 0 0 0 0
9 @ o o o o o o o o o o o o o o o o o o
N 5 S NN NN NN NONN NN NONN NONN NN
éb O éb () éb () éb () éb () éb () éb () éb () éb (@) éb O

Figure 5. BCC breakdown. y-axis is the running time in seconds. The results for all the 27 graphs are in the full paper.

We first discuss the two steps First-CC and Last-CC that
use connectivity. GBBS can be faster than FAST-BCC in First-
CC on some graphs. The reason is that our algorithm also
constructs the spanning forest in First-CC, while GBBS has
to run BFS in Rooting to generate the BFS spanning forest.
In Last-CC, the two algorithms achieve similar performance,
and in many cases, FAST-BCC is faster. We note that the CC
algorithm is independent with the BCC algorithm itself. Both
the CC algorithm used in our implementation and GBBS is
based on algorithms in an existing paper [32]. As mentioned,
based on the results in [32], the “best” CC algorithm can be
very different for different types of graphs. One can also plug
in any CC algorithms to FAST-BCC or GBBS BCC algorithm
to achieve better performance for specific input graphs.

In the Rooting step (generate rooted spanning trees, the
red bar), FAST-BCC is significantly faster than GBBS. GBBS
is based on a BFS tree, and after computing the CCs of in-
put graph G, it has to run BFS on G again, which results in
O(m + n) work and O(D1am(G) log n) span. In comparison,
FAST-BCC obtains the spanning trees from the First-CC step,
and only uses ETT in the Rooting step with O(n) expected
work and O(log n) span whp. As shown in Fig. 5, this step
for GBBS is the dominating cost for large-diameter graphs,
and this is likely the case for other parallel BCC algorithms
using BFS-based skeletons. FAST-BCC almost entirely saves
the cost in this step (13X faster on average on large-diameter
graphs). For low-diameter graphs, the two algorithms per-
form similarly—FAST-BCC is about 1.1X faster in this step.

In the Tagging step (the green bars), both FAST-BCC and
GBBS compute the tags such as low and high. Since FAST-
BCC uses an AST, the values of the arrays are computed
using 1D range-minimum query (see Sec. 4.1) with O(log n)
span. GBBS computes them by a bottom-up traversal on
the BFS tree, with O(D1am(G) log n) span. Hence, on large-
diameter graphs, GBBS also consumes much time on this
step, and FAST-BCC is 1.2-830X% faster than GBBS. On low-
diameter graphs, GBBS also gets sufficient parallelism, and
the performance for both algorithms is similar.

In summary, on all graphs, FAST-BCC is faster than GBBS
mainly due to the efficiency in the Rooting and Tagging step,
and the reason is that our algorithm has polylogarithmic
span, while GBBS relies on the BFS spanning tree and re-
quires O(D1aM(G) log n) span.

62

6.3 The Tarjan-Vishkin Algorithm

Although engineering Tarjan-Vishkin (TV) [65] is not the
focus of this paper, for completeness, we also implemented a
faithful TV algorithm. Due to space limit, we give more de-
tails and report the numbers in the full paper, and summarize
our findings here. Due to space inefficiency, our TV imple-
mentation cannot run on the three largest graphs (CW, HL14,
and HL12) on our machines with 1.5TB memory. We note
that the smallest among them (CW) only takes about 300GB
to store the graph, and our algorithm uses 572GB memory
to process it. On all graphs, TV uses 1.2-10.8X more space
than FAST-BCC. GBBS is about 20% more space-efficient
than FAST-BCC. The reason is that they need to compute
fewer number of tags than FAST-BCC.

Regarding running time, we report the running time of
TV on all graphs in the full paper, and summarize the results
here. Due to the cost of explicitly constructing the skeleton,
TV performs slowly on small-diameter graphs, and is slower
than GBBS even on k-NN graphs. On all these graphs, the
speedup for TV on 96 cores over SEQ is only 1.4-3%. This
is consistent with the findings in prior papers [29, 64]. TV
works well on road and synthetic graphs due to small edge-
to-vertex ratio, so the O(m) work and space for generating
the skeleton does not dominate the running time. In this
case, polylogarithmic span allows TV to perform consistently
better than GBBS. TV is faster than SEQ on 96 cores on all
graphs, but slower than FAST-BCC.

7 Conclusion

In this paper, we propose the FAST-BCC (Fencing on Arbi-
trary Spanning Tree) algorithm for parallel biconnectivity.
FAST-BCC has O(m + n) expected optimal work, polylog-
arithmic span (high parallelism), and uses O(n) auxiliary
space (space-efficient). The theoretical efficiency also en-
ables high performance. On our machine with 96 cores and
a variety of graph types, FAST-BCC outperforms all existing
BCC implementations on all tested graphs.

Acknowledgement

This work is supported by NSF grants CCF-2103483 and IIS-
2227669, and UCR Regents Faculty Fellowships. We thank
anonymous reviewers for the useful feedbacks.

References
[1] 2010. OpenStreetMap © OpenStreetMap contributors. https://www.

[2

[10

[11

[12

[13

(14

(15

[16

[17

(18

]

[tr}

]

]

]

]

[l

[

]

—

—

openstreetmap.org/.

Alok Aggarwal, Bernard Chazelle, Leo Guibas, Colm O’Dunlaing, and
Chee Yap. 1988. Parallel computational geometry. Algorithmica 3, 1
(1988), 293-327.

Kunal Agrawal, Jeremy T. Fineman, Kefu Lu, Brendan Sheridan, Jim
Sukha, and Robert Utterback. 2014. Provably Good Scheduling for
Parallel Programs That Use Data Structures Through Implicit Batching.
In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

Daniel Anderson, Guy E Blelloch, Laxman Dhulipala, Magdalen Dob-
son, and Yihan Sun. 2022. The problem-based benchmark suite (PBBS),
V2.In ACM Symposium on Principles and Practice of Parallel Program-
ming (PPOPP). 445-447.

Lars Arge, Michael Bender, Erik Demaine, Bryan Holland-Minkley, and
Ian Munro. 2002. Cache-oblivious priority queue and graph algorithm
applications. In ACM Symposium on Theory of Computing (STOC).
268-276.

N.S. Arora, R. D. Blumofe, and C. G. Plaxton. 2001. Thread Scheduling
for Multiprogrammed Multiprocessors. Theory of Computing Systems
(TOCS) 34, 2 (01 Apr 2001).

Giorgio Ausiello, Donatella Firmani, and Luigi Laura. 2011. Real-time
anomalies detection and analysis of network structure, with applica-
tion to the Autonomous System network. In International Wireless
Communications and Mobile Computing Conference. IEEE, 1575-1579.
Christian Bachmaier, Franz J Brandenburg, and Michael Forster. 2005.
Radial level planarity testing and embedding in linear time. In J. Graph
Algorithms and Applications. Citeseer.

Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang
Lan. 2006. Group formation in large social networks: membership,
growth, and evolution. In ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD). 44-54.

Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B.
Gibbons, Yan Gu, Charles McGuffey, and Julian Shun. 2016. Parallel
Algorithms for Asymmetric Read-Write Costs. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

Naama Ben-David, Guy E. Blelloch, Jeremy T Fineman, Phillip B Gib-
bons, Yan Gu, Charles McGuffey, and Julian Shun. 2018. Implicit
Decomposition for Write-Efficient Connectivity Algorithms. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020.
ParlayLib-a toolkit for parallel algorithms on shared-memory multi-
core machines. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 507-509.

Guy E. Blelloch, Rezaul Alam Chowdhury, Phillip B. Gibbons, Vijaya
Ramachandran, Shimin Chen, and Michael Kozuch. 2008. Provably
good multicore cache performance for divide-and-conquer algorithms.
In ACM-SIAM Symposium on Discrete Algorithms (SODA).

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Har-
sha Vardhan Simhadri. 2011. Scheduling Irregular Parallel Computa-
tions on Hierarchical Caches. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020.
Optimal parallel algorithms in the binary-forking model. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).
Guy E. Blelloch and Phillip B. Gibbons. 2004. Effectively sharing a
cache among threads. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA).

Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri.
2010. Low depth cache-oblivious algorithms. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel
Write-Efficient Algorithms and Data Structures for Computational

63

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Geometry. In ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA).

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Randomized
Incremental Convex Hull is Highly Parallel. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

Guy E. Blelloch and Margaret Reid-Miller. 1998. Fast Set Operations
Using Treaps. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA).

Guy E. Blelloch and Margaret Reid-Miller. 1999. Pipelining with futures.
Theory of Computing Systems (TOCS) 32, 3 (1999).

Guy E. Blelloch, Harsha Vardhan Simhadri, and Kanat Tangwongsan.
2012. Parallel and I/O efficient set covering algorithms. In ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA).

Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient
Scheduling of Multithreaded Computations. SIAM J. on Computing 27,
1(1998).

John M Boyer and Wendy] Myrvold. 2006. Simplified o(n) planarity
by edge addition. J. Graph Algorithms and Applications 5 (2006), 241.
Meher Chaitanya and Kishore Kothapalli. 2015. A simple parallel algo-
rithm for biconnected components in sparse graphs. In International
Parallel and Distributed Processing Symposium (IPDPS) Workshop. IEEE,
395-404.

Meher Chaitanya and Kishore Kothapalli. 2016. Efficient multicore
algorithms for identifying biconnected components. International
Journal of Networking and Computing 6, 1 (2016), 87-106.

Joseph Cheriyan and Ramakrishna Thurimella. 1991. Algorithms for
parallel k-vertex connectivity and sparse certificates. In ACM Sympo-
sium on Theory of Computing (STOC). 391-401.

Yi-Jen Chiang, Michael Goodrich, Edward Grove, Roberto Tamassia,
Darren Erik Vengroff, and Jeffrey Vitter. 1995. External-Memory Graph
Algorithms.. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
Vol. 95. 139-149.

Guojing Cong and David Bader. 2005. An experimental study of paral-
lel biconnected components algorithms on symmetric multiprocessors
(SMPs). In IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). IEEE.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2009. Introduction to Algorithms (3rd edition). MIT Press.
Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2021. Theoreti-
cally efficient parallel graph algorithms can be fast and scalable. ACM
Transactions on Parallel Computing (TOPC) 8, 1 (2021), 1-70.

Laxman Dhulipala, Changwan Hong, and Julian Shun. 2020. Connectlt:
a framework for static and incremental parallel graph connectivity
algorithms. Proceedings of the VLDB Endowment (PVLDB) 14, 4 (2020),
653-667.

Laxman Dhulipala, Charlie McGuffey, Hongbo Kang, Yan Gu, Guy E
Blelloch, Phillip B Gibbons, and Julian Shun. 2020. Semi-Asymmetric
Parallel Graph Algorithms for NVRAMs. Proceedings of the VLDB
Endowment (PVLDB) 13, 9 (2020).

David Dinh, Harsha Vardhan Simhadri, and Yuan Tang. 2016. Ex-
tending the nested parallel model to the nested dataflow model with
provably efficient schedulers. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 49-60.

Xiaojun Dong, Yan Gu, Yihan Sun, and Yunming Zhang. 2021. Efficient
Stepping Algorithms and Implementations for Parallel Shortest Paths.
In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2022. FAST-
BCC: A Parallel Implementation for Graph Biconnectivity. https:
//github.com/ucrparlay/FAST-BCC.

Xiaojun Dong, Letong Wang, Yan Gu, and Yihan Sun. 2023.
Provably Fast and Space-Efficient Parallel Biconnectivity. arXiv
preprint:2301.01356 (2023).

Dheeru Dua and Casey Graf. 2017. UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml/.

https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://github.com/ucrparlay/FAST-BCC
https://github.com/ucrparlay/FAST-BCC
http://archive.ics.uci.edu/ml/

(39]

(40]

[41]

(42]

(43]

[44]

(45]
[46]
(47]

(48]

[49

—

(50]

(51]

(52]

(53]

James A Edwards and Uzi Vishkin. 2012. Better speedups using simpler
parallel programming for graph connectivity and biconnectivity. In
International Workshop on Programming Models and Applications for
Multicores and Manycores (PMAM). 103-114.

Xing Feng, Lijun Chang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Long
Yuan. 2018. Distributed computing connected components with linear
communication cost. Distributed and Parallel Databases 36, 3 (2018),
555-592.

Jordi Fonollosa, Sadique Sheik, Ramén Huerta, and Santiago Marco.
2015. Reservoir computing compensates slow response of chemosen-
sor arrays exposed to fast varying gas concentrations in continuous
monitoring. Sensors and Actuators B: Chemical 215 (2015), 618-629.
Yan Gu, Zachary Napier, Yihan Sun, and Letong Wang. 2022. Parallel
Cover Trees and their Applications. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 259-272.

Yan Gu, Omar Obeya, and Julian Shun. 2021. Parallel In-Place Al-
gorithms: Theory and Practice. In SIAM Symposium on Algorithmic
Principles of Computer Systems (APOCS). 114-128.

Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-
Down Parallel Semisort. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 24-34.

John Hopcroft and Robert Tarjan. 1973. Algorithm 447: efficient algo-
rithms for graph manipulation. Commun. ACM 16, 6 (1973), 372-378.
John Hopcroft and Robert Tarjan. 1974. Efficient planarity testing. 7.
ACM 21, 4 (1974), 549-568.

Joseph JaJa. 1992. Introduction to Parallel Algorithms. Addison-Wesley
Professional.

Fuad Jamour, Spiros Skiadopoulos, and Panos Kalnis. 2017. Parallel
algorithm for incremental betweenness centrality on large graphs.
IEEE Transactions on Parallel and Distributed Systems 29, 3 (2017), 659-
672.

Siddhartha Jayanti, Robert E Tarjan, and Enric Boix-Adsera. 2019.
Randomized concurrent set union and generalized wake-up. In ACM
Symposium on Principles of Distributed Computing (PODC). 187-196.
Yuede Ji and H Howie Huang. 2020. Aquila: Adaptive parallel compu-
tation of graph connectivity queries. In ACM International Symposium
on High-Performance Parallel and Distributed Computing (HPDC). 149—
160.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.
What is Twitter, a social network or a news media?. In International
World Wide Web Conference (WWW). 591-600.

YongChul Kwon, Dylan Nunley, Jeffrey P Gardner, Magdalena Bal-
azinska, Bill Howe, and Sarah Loebman. 2010. Scalable clustering
algorithm for N-body simulations in a shared-nothing cluster. In Inter-
national Conference on Scientific and Statistical Database Management.
Springer, 132-150.

Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Ma-
honey. 2009. Community structure in large networks: Natural cluster
sizes and the absence of large well-defined clusters. Internet Mathe-
matics 6, 1 (2009), 29-123.

Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano
Vigna. 2014. Web Data Commons - Hyperlink Graphs. http://
webdatacommons.org/hyperlinkgraph.

64

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Gary L Miller, Richard Peng, and Shen Chen Xu. 2013. Parallel graph
decompositions using random shifts. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA).

ME] Newman and Gourab Ghoshal. 2008. Bicomponents and the
robustness of networks to failure. Physical review letters 100, 13 (2008),
138701.

John H Reif. 1985. Depth-first search is inherently sequential. Inform.
Process. Lett. 20, 5 (1985), 229-234.

John H. Reif. 1993. Synthesis of Parallel Algorithms. Morgan Kaufmann.

Ahmet Erdem Sariyiice, Kamer Kaya, Erik Saule, and Umit Catalyi-

irek. 2013. Incremental algorithms for closeness centrality. In IEEE
International Conference on Big Data. IEEE, 487-492.

Ahmet Erdem Sariyiice, Erik Saule, Kamer Kaya, and Umit V
Catalytirek. 2013. Shattering and compressing networks for between-
ness centrality. In Proceedings of the 2013 SIAM International Conference
on Data Mining. SIAM, 686—-694.

Carla Savage and Joseph JaJa. 1981. Fast, efficient parallel algorithms
for some graph problems. SIAM J. on Computing 10, 4 (1981), 682—691.
Zheqi Shen, Zijin Wan, Yan Gu, and Yihan Sun. 2022. Many Sequen-
tial Iterative Algorithms Can Be Parallel and (Nearly) Work-efficient.
In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

Julian Shun, Laxman Dhulipala, and Guy Blelloch. 2014. A Simple and
Practical Linear-work Parallel Algorithm for Connectivity. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).
George M Slota and Kamesh Madduri. 2014. Simple parallel bicon-
nectivity algorithms for multicore platforms. In IEEE International
Conference on High Performance Computing (HiPC). IEEE, 1-10.
Robert E Tarjan and Uzi Vishkin. 1985. An efficient parallel biconnec-
tivity algorithm. SIAM J. on Computing 14, 4 (1985).

Yung H Tsin and Francis Y Chin. 1984. Efficient parallel algorithms
for a class of graph theoretic problems. SIAM J. on Computing 13, 3
(1984), 580-599.

Uzi Vishkin. 1985. On efficient parallel strong orientation. Inform.
Process. Lett. 20, 5 (1985), 235-240.

Mihir Wadwekar and Kishore Kothapalli. 2017. A fast GPU algorithm
for biconnected components. In International Conference on Contem-
porary Computing (IC3). IEEE, 1-6.

Letong Wang, Xiaojun Dong, Yan Gu, and Yihan Sun. 2022. Parallel
Strong Connectivity Based on Faster Reachability. In manuscript.
Yigiu Wang, Shangdi Yu, Laxman Dhulipala, Yan Gu, and Julian Shun.
2021. GeoGraph: A Framework for Graph Processing on Geometric
Data. ACM SIGOPS Operating Systems Review 55, 1 (2021), 38—46.
Yifan Xu, Anchengcheng Zhou, Grace Q Yin, Kunal Agrawal, I-Ting An-
gelina Lee, and Tao B Schardl. 2022. Efficient Access History for Race
Detection. In Algorithm Engineering and Experiments (ALENEX). SIAM,
117-130.

Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating net-
work communities based on ground-truth. Knowledge and Information
Systems 42, 1 (2015), 181-213.

Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning
transportation mode from raw gps data for geographic applications
on the web. In International World Wide Web Conference (WWW).
247-256.

http://webdatacommons.org/hyperlinkgraph
http://webdatacommons.org/hyperlinkgraph

A Artifact Description
A.1 Availability

Our artifact is available on Zenodo: https://doi.org/10.5281/
zenodo.7445964. Our code is also released on GitHub: https:
//github.com/ucrparlay/FAST-BCC. Scripts for downloading
the dataset and running the code, including a README file
on how to use them are given on the GitHub repo.

A.2 Requirements

e Hardware: any modern (2010+) x86-based multi-core
(ideally more than 32 physical cores) Intel machines.
64GB memory is required for the basic datasets (with-
out the three largest graphs). Running the complete
dataset requires about 1.5TB main memory.

e Software: Linux machines with gcc or clang support-
ing C++17 features.

A.3 Getting the Artifact

Our code is also publicly available on GitHub: https://github.
com/ucrparlay/FAST-BCC. Our source code can be acquired
using;:

git clone --recurse-submodules https://github.com/
ucrparlay/FAST-BCC.git

A.4 Download the Dataset

We provide the basic datasets on our Google Drive: https:
//tinyurl.com/FAST-BCC-Dataset. We also provide a script
to download the graphs.

$ cd scripts/
$./download_dataset.sh

Our complete dataset contains some large graphs, which
is about 2TB data in total. Due to storage limit, we cannot
provide the largest three graphs tested in the paper. They
are available on Web Data Commons [54].

65

A.5 Running the benchmark
To run the FAST-BCC and Hopcroft-Tarjan, simply run:

$ cd scripts/

$./run_fastbcc.sh

$./run_fastbcc_sequential.sh
$./run_hopcroft_tarjan.sh

$./run_tarjan_vishkin.sh

The scripts will generate the results in CSV format in
the results/ folder. The running times and the number of
biconnected components are reported in these files.

A.6 Graph Formats

The application can auto-detect the format of the input graph

based on the suffix of the filename. Here is a list of supported

graph formats:

e .bin: The binary graph format from GBBS. It uses com-
pressed sparse row (CSR) format and organizes as follows:

- n: the number of vertices (64-bit variable);

— m: the number of edges (64-bit variable);

— size: the size of this file in bytes, which equals to 3 X
8+ (n—1) X 8 + m X 4 (64-bit variable);

— offset[]: offset[i] (inclusive) and of fset[i+1] (ex-
clusive) represents the range of neighbors list of the i-th
vertex in the edges array (64-bit array of length n + 1);

— edges[]: the edges list (32-bit array of length m) and
edges[i] is a vertex id representing the other endpoint
of an edge.

e .adj The adjacency graph format from Problem Based

Benchmark Suite (PBBS) [4].

Some graphs in binary format can be found in our Google
Drive folder. See more details in Section A.4. The input
graphs need to be undirected, i.e., each edge should appear
twice in the input in both directions.

https://doi.org/10.5281/zenodo.7445964
https://doi.org/10.5281/zenodo.7445964
https://github.com/ucrparlay/FAST-BCC
https://github.com/ucrparlay/FAST-BCC
https://github.com/ucrparlay/FAST-BCC
https://github.com/ucrparlay/FAST-BCC
https://tinyurl.com/FAST-BCC-Dataset
https://tinyurl.com/FAST-BCC-Dataset

	Abstract
	1 Introduction
	2 Preliminaries
	3 Existing BCC Algorithms
	3.1 The Hopcroft-Tarjan Algorithm
	3.2 The Tarjan-Vishkin Algorithm
	3.3 Other Existing Algorithms / Implementations
	3.4 Space-Efficient BCC Representation

	4 The FAST-BCC Algorithm
	4.1 Algorithmic Details
	4.2 Correctness for the FAST-BCC Algorithm
	4.3 Cost Bounds for the FAST-BCC Algorithm

	5 Implementation Details
	6 Experiments
	6.1 Overall Performance
	6.2 Performance Breakdown
	6.3 The Tarjan-Vishkin Algorithm

	7 Conclusion
	References
	A Artifact Description
	A.1 Availability
	A.2 Requirements
	A.3 Getting the Artifact
	A.4 Download the Dataset
	A.5 Running the benchmark
	A.6 Graph Formats

