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ABSTRACT

The performance of today’s in-memory indexes is bottlenecked by

the memory latency/bandwidth wall. Processing-in-memory (PIM)

is an emerging approach that potentially mitigates this bottleneck,

by enabling low-latency memory access whose aggregate mem-

ory bandwidth scales with the number of PIM nodes. There is an

inherent tension, however, between minimizing inter-node commu-

nication and achieving load balance in PIM systems, in the presence

of workload skew. This paper presents PIM-tree, an ordered index

for PIM systems that achieves both low communication and high

load balance, regardless of the degree of skew in data and queries.

Our skew-resistant index is based on a novel division of labor be-

tween the host CPU and PIM nodes, which leverages the strengths

of each. We introduce push-pull search, which dynamically decides

whether to push queries to a PIM-tree node or pull the node’s keys

back to the CPU based on workload skew. Combined with other

PIM-friendly optimizations (shadow subtrees and chunked skip lists),

our PIM-tree provides high-throughput, (guaranteed) low commu-

nication, and (guaranteed) high load balance, for batches of point

queries, updates, and range scans. We implement PIM-tree, in addi-

tion to prior proposed PIM indexes, on the latest PIM system from

UPMEM, with 32 CPU cores and 2048 PIM nodes. On workloads

with 500 million keys and batches of 1 million queries, the through-

put using PIM-trees is up to 69.7× and 59.1× higher than the two

best prior PIM-based methods. As far as we know these are the first

implementations of an ordered index on a real PIM system.
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1 INTRODUCTION

The mismatch between CPU speed and memory speed (a.k.a. the

“memory wall”) makes memory accesses the dominant cost in to-

day’s data-intensive applications. Traditional architectures use
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multi-level caches to reduce data movement between CPUs and

memory, but if the application exhibits limited locality, most data

accesses are still serviced by the memory. This excessive data move-

ment incurs significant energy cost, and performance is bottle-

necked by high memory latency and/or limited memory bandwidth.

Processing-in-Memory (PIM) [25, 30], a.k.a. near-data-processing,

is emerging as a key technique for reducing costly data move-

ment. By integrating computing resources in memory modules,

PIM enables data-intensive computation to be executed in the PIM-

enabled memory modules, rather than moving all data to the CPU

to process. Recent studies have shown that, for programs with

high data-intensity and low cache-locality, PIM provides significant

advantages in increasing performance and reducing power con-

sumption by reducing data movement [14, 15]. Although proposals

for processing-in-memory/processing-in-storage date back to at

least 1970 [29], including forays by the database community in ac-

tive disks [26], PIM is emerging today as a key technology thanks to

advances in 3D-stacked memories [18, 22] and the recent availabil-

ity of commercial PIM system prototypes [30]. Typical applications

exploiting state-of-the-art PIM architectures include neural net-

works [3, 21, 23, 32], graph processing [1, 17, 35], databases [6, 7],

sparse matrix multiplication [13, 33], and genome analysis [2, 34].

PIM systems are typically organized as a host (multicore) CPU

that pushes compute tasks to a set of 𝑃 PIM modules (compute-

enhanced memory modules), and collects the results. Thus, cost

is incurred for moving both task descriptors and data—the sum of

these costs is the communication cost between the CPU and the PIM

modules. The host CPU can be any commodity multicore processor,

and is typically more powerful than the wimpy CPUs within the

PIM modules. Thus, an interesting feature of a PIM system is the

potential to utilize both sets of resources (CPU side and PIM side).

In this paper, we focus on designing a PIM-friendly ordered index

for in-memory data. Ordered indexes (e.g., B-trees [11]) are one

of the backbone components of databases/data stores, supporting

efficient search queries, range scans, insertions, and deletions. Prior

works targeting PIM [10, 24] proposed ordered indexes based on

range partitioning: the key space is partitioned into 𝑃 subranges

of equal numbers of keys, and each of the 𝑃 PIM modules stores

one subrange. Each PIM module maintains a local index over the

keys in its subrange, and the host CPU maintains the top portion of

the index down to the 𝑃 roots of the local indexes. This approach

works well for data and queries with uniformly random keys—the

setting studied by these works—but it suffers from load imbalance

under data or query skew. In more realistic workloads, batches of

queries/updates may concentrate on the data in a small subset of the

partitions, overwhelming those PIMmodules, while the rest are idle.
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In the extreme, only one PIM module is active processing queries

and the rest are idle, fully serializing an entire batch of queries on

a single (wimpy) processor. The approach also suffers the cost of

all data movements required to keep partitions (roughly) balanced

in size. In a recent paper [19], we designed a PIM-friendly skip list

that asymptotically achieves load-balance (details in Section 2.4),

but the solution is not practical (as discussed below).

To address the above challenges with query and data skew, we

present the PIM-tree, a practical ordered index for PIM that achieves

both low communication cost and high load balance, regardless of

the degree of skew in data and queries. Our skew-resistant index is

based on a novel division of labor between the host CPU and PIM

nodes, which leverages the strengths of each. Moreover, it combines

aspects of both a B+-tree and a skip list to achieve its goals. We

focus on achieving high-throughput, processing batches of queries

at a time in a bulk-synchronous fashion. The PIM-tree supports

a wide range of batch-parallel operations, including point queries

(Get, Predecessor), updates (Insert, Delete), and range Scan.

We introduce push-pull search, which dynamically decides, based

on workload skew, whether (i) to push queries from the CPU to

a PIM-tree node residing on a PIM module or (ii) to pull the tree-

node’s keys back to the CPU. Combined with other PIM-friendly

optimizations—shadow subtrees and chunked skip lists—our PIM-tree

provides high-throughput, (guaranteed) low communication costs,

and (guaranteed) high load balance, for batches of point queries,

updates, and range scans. For example, each point query and update

is answered using only 𝑂 (log𝐵 log𝐵 𝑃) expected communication

cost, where 𝐵 is the expected fanout of a PIM-tree node and 𝑃 is

the number of PIM modules, independent of the number of keys 𝑛

in the data structure, or the data skew. Note that it would take over

10
19

PIM modules for log𝐵 log𝐵 𝑃 to exceed 1, under our selection

of 𝐵 = 16; hence, the communication cost is constant in practice.

We implement the PIM-tree on the latest PIM system from UP-

MEM [30], with 32 CPU cores and 2048 PIM modules. We choose

four state-of-the-art ordered indexes as competitors, including two

PIM-friendly approaches [19, 24] implemented by ourselves, and

two traditional approaches[8, 9] implemented in SetBench [4]. On

workloads with 500 million keys and batches of 1 million queries,

the PIM-tree achieves (i) up to 59.1× higher throughput than the

range-partitioned solution [24], (ii) up to 69.7× higher throughput

than the prior skew-resistant solution [19], and (iii) comparable

throughput in all cases regardless of skew and as low as 0.3× less

communication than two state-of-the-art non-PIM indexes [8, 9].

The main contributions of the paper are:

• We design the PIM-tree, a high-throughput skew-resistant PIM

data structure that efficiently supports a wide range of batch-

parallel point queries, updates, and scans, even under highly-

skewed workloads. It causes nearly constant data movement

(communication cost) for a point query or update, and linear

data movement for scans. Key ideas include push-pull search and

shadow subtrees.

• We implement and evaluate the PIM-tree on a commercial PIM

system prototype, demonstrating significant performance im-

provements at modest skew, and performance gains that increase

linearly with larger skew. As far as we know these are the first

implementations of an ordered index on a real PIM system.

2 BACKGROUND

2.1 PIM System Architecture and Model

The Processing-in-Memory Model. We use the Processing-in-
Memory Model (PIM Model) (first described in [19]) as an abstrac-

tion of generic PIM systems. It is comprised of a host CPU front

end (CPU side) and a collection of 𝑃 PIM modules (PIM side). The

CPU side is a standard multicore processor, with an on-chip cache

of 𝑀 words. Each PIM module is comprised of a DRAM memory

bank (local PIM memory) with an on-bank processor (PIM processor)

and a local memory of Θ(𝑛/𝑃) words (where 𝑛 denotes the problem
size). The PIM processor is simple but general-purpose (e.g., a single

in-order core capable of running C code). The CPU host can send

code to the PIM modules, launch the code, and detect when the

code completes. It can also send data to and receive data from PIM

memory. The model assumes there is no direct PIM-to-PIM commu-

nication, although we could take advantage of such communication

on PIM systems supporting it.

As the PIM model combines a shared-memory side (CPU and

its cache) and a distributed side (PIM modules), algorithms are

analyzed using both shared-memory metrics (work, depth) and

distributed metrics (local work, communication time). On the CPU

side, the model accounts for CPU work (total work summed over

all cores) and CPU depth (all work on the critical path). On the PIM

side, the model accounts for PIM time, which is the maximum local

work on any one PIM core, and IO time, which is the maximum

number of messages to/from any one PIM module.
1
Programs exe-

cute in bulk-synchronous rounds [31], and the overall complexity

metrics of an algorithm is the sum of the complexity metrics of

each round. We focus on IO time and IO rounds in this paper.

Programming Interface. For concreteness, we assume the follow-

ing programming interface for our generic PIM system, although

our techniques would also work with other interfaces. Programs

consist of two parts: a host program executed on the host CPU, and

a PIM program executed on PIM modules. The host program has

additional functions (discussed below) to communicate with the

PIM side, including functions to invoke PIM programs on PIM mod-

ules and to transfer data to/from PIM modules. The PIM program

is a traditional program that is invoked in all PIM processors when

launched by the host program. It executes using the module’s local

memory, with no visibility into the CPU side or other PIM modules.

The specific functions are (named MPI-style [16]):

• PIM_Load(PIM_Program_Binary): loads a binary file to the PIM

modules.

• PIM_Launch(): launches the loaded PIM program on all PIMs.

• PIM_Status(): checks whether the PIM program has finished on

all PIMs.

• PIM_Broadcast(src, length, PIM_Local_Address): copies a fixed

length buffer to the same local memory address on each PIM.

• PIM_Scatter(srcs[], length[], PIM_Local_Address): similar to

PIM_Broadcast, but with a distinct buffer for each PIM module.

• PIM_Gather(dsts[], length[], PIM_Local_Address): the reverse

of PIM_Scatter, reading into the buffer array dsts[].

1
There is no separate accounting needed for messages to/from the CPU side because

any well-balanced system should provide bandwidth out of the host CPU that matches

bandwidth into the PIM modules (and vice-versa).
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Figure 1: The architecture for the UPMEM PIM system, a specific

example of our generic PIM system architecture. PIM modules are

packed into memory DIMMs connected to the host CPU via normal

memory channels. The CPU side also includes traditional DRAM

modules, which are not part of the PIM model.

Algorithm 1. Batch-parallel Execution(𝑂 : batch of operations)

Repeat the following steps until done processing 𝑂 :

(1) Prepare a buffer of tasks for each PIM module.

(2) Scatter the task buffers to the local memory of each PIM

module using either PIM_Scatter or PIM_Broadcast.

(3) Launch PIM programs using PIM_Launch, to run their tasks

and fill their reply buffers. Wait until all tasks finish.

(4) Gather reply buffers using PIM_Gather.

Based on this interface, our PIM-friendly ordered index processes

batches of operations in bulk-synchronous rounds, like in [28], using

the steps in Algorithm 1. As discussed in Section 5, when imple-

menting our PIM-friendly programs, we use pipelining to overlap

step 1 at the CPU and step 3 at the PIM modules.

A Concrete Example: UPMEM.We evaluate our techniques on

the latest PIM system from UPMEM [30]. UPMEM’s architecture

(Figure 1) is one way to instantiate the PIM model. Its PIM modules

are plug-and-play DRAM DIMM replacements, and therefore can

be configured with various ratios of traditional DRAM memory to

PIM-equipped ones (current maximum available configuration has

2560 PIM modules). The CPU has access to both the main memory

(traditional DRAM) and all the PIMmemory, but each PIM processor

only has access to its local memory. Each PIM module has up to

628 MB/s local DRAM bandwidth, so a machine with 2560 PIM

modules can provide up to 1.6 TB/s aggregate bandwidth [15]. To

move data between PIM modules, the CPU reads from the origin

and writes to the target. UPMEM’s SDK supports the programming

interface functions listed above, but with the restriction that the

scatter/gather functions must transmit same length buffers to/from

all PIM modules (i.e., the buffers are padded out to equal lengths).

UPMEM’s main memory (a component not in the PIM model) en-

ables running programs with CPU-side memory footprints over𝑀

words, but these additional memory accesses bring another type of

communication not existing in the PIM model: CPU-DRAM commu-

nication. Thus the cache efficiency is important for host programs.

Our solution in the PIM-tree is to use only a small amount of CPU-

side memory: Θ(𝑆) < 𝑀 words for a batch of 𝑆 operations.

2.2 Load Balance Preliminaries

A key challenge for PIM systems is to keep load balance among the

PIM modules, which we define as follows:

Definition 2.1. A program achieves load balance if the work

(unit-time instructions) performed by each PIM program is𝑂 (𝑊 /𝑃)
and the communication (data sent/received) by each PIM module

is 𝑂 (𝐶/𝑃), where𝑊 and 𝐶 are the sums of the work and com-

munication, respectively, across all 𝑃 PIM modules. For programs

with multiple bulk-synchronous rounds, the program achieves load

balance if each round achieves load balance.

The challenge in achieving load balance is that the PIM mod-

ule with the maximum work or communication must be bounded.

Note that randomization does not directly lead to load balance, e.g.,

randomly scattering 𝑃 tasks of equal work and communication to

𝑃 PIM modules fails to achieve load balance. This is because one of

the PIM modules receives Θ(log 𝑃/log log 𝑃) tasks with high proba-

bility (whp)
2
in 𝑃 [5], causing the work and communication at that

module to be a factor of Θ(log 𝑃/log log 𝑃) higher than balanced.

We use balls-into-bins lemmas to prove load balance, where a

bin is a PIM module and a ball with weight𝑤 corresponds to a task

with𝑤 work or𝑤 communication. We will use the following:

Lemma 2.2 ([19, 27]). Placing weighted balls with total weight𝑊 =
𝑤𝑖 and each 𝑤𝑖 < 𝑊 /(𝑃 log 𝑃) into 𝑃 bins uniformly randomly

yields 𝑂 (𝑊 /𝑃) weight in each bin whp.

2.3 Prior Work on Indexes for PIM

There are several prior works for indexes on PIM systems. Two

prior works [10, 24] proposed PIM-friendly skip lists. Their skip

lists are based on range partitioning: they partition the skip list

by disjoint key ranges and maintain each part locally on one PIM

module. As discussed in Section 1, such range partitioning can

suffer from severe load imbalance under data and query skew.

The load imbalance problem of range-partitioned ordered in-

dexes is also studied in traditional distributed settings. Ziegler et

al. [36] discussed other choices for tree-based ordered indexes in

order to avoid load imbalance, including: (i) partitioning by the

hash value of keys, (ii) fine-grained partitioning that randomly

distributes all index nodes, and (iii) a hybrid method that does fine-

grained partitioning in leaves, and range partitioning for internal

nodes. They also experimentally evaluated their approaches on an

8 machine cluster. However, each of these choices has its own prob-

lem in the case of a PIM system with thousands of PIM modules: (i)

partitioning by hash makes range operations costly, because they

must be processed by all PIM modules, (ii) fine-grained partition-

ing causes too much communication because all accesses will be

non-local, and (iii) the hybrid method suffers from the load balance

problem in its range partitioned part.

2.4 Prior Work: PIM-balanced Skip List

In a recent paper [19], we presented the first provably load-balanced

batch-parallel skip list index, the PIM-balanced skip list, under
adversary-controlled workloads on the PIM model. A key insight

was to leverage the CPU side to solve the load balance problem.

The PIM-balanced skip list horizontally splits the skip list into

two parts, an upper part and a lower part, replicating the upper part

in all PIM modules and distributing lower part nodes randomly to

PIMs. This is shown in Figure 2, where nodes in different PIM mod-

ules have different colors, and the replicated upper part is explicitly

2
We use𝑂 (𝑓 (𝑛) ) with high probability (whp) (in 𝑛) to mean𝑂 (𝑐 𝑓 (𝑛) ) with proba-

bility at least 1 − 𝑛−𝑐
for 𝑐 ≥ 1.

948



[2,6) [6,7) [7,8)[-∞,2) [8,9) [9, ∞)

[-∞,6) [6,7) [7,8) [8, ∞)

-∞ 7 -∞ 7 -∞ 7 -∞ 7 Upper

Lower

2 V2 6 V6 7 V7 8 V8 9 V9 Data

Figure 2: PIM-balanced skip list [19] with the upper part replicated

on a 4-PIM system. Nodes on different PIM modules are different

colors. PIM pointers are dashed lines. The lower part is log𝑃 levels.

drawn as multiple copies. For a system with 𝑃 PIM-modules, the

lower part is log 𝑃 levels. We can afford to replicate (only) the top

part because (i) it is small relative to the rest of the skip list and

(ii) it is updated relatively infrequently (recall that an inserted key

reaches a height ℎ in a skip list with probability 1/2ℎ).
Queries are executed by pointer chasing in the “tree” of skip

list nodes. The batched queries are first evenly divided and sent to

all PIM modules, each progressing through the upper part locally.

Then the skip list goes through the lower part by sending the query

to the host PIM module of each lower part node on the search path

one-by-one, until reaching a leaf. We call this the Push method,

because queries are sent (“pushed”) to PIM modules to execute.

Executing a batch of parallel queries using only Push can cause

severe imbalance, despite the lower part nodes being randomly

distributed. For skewed workloads, many queries may share a com-

mon node on their search path, meaning that they are all sent to

the host PIM module of that node, causing a load imbalance. These

nodes are called contention points. An example is when multiple

non-duplicate Predecessor queries return the same key, with all

nodes on the search path to that key being contention points.

The PIM-balanced skip list [19] solves this problem by avoid-

ing contention points, based on a key observation: once the search

paths of keys 𝑙 and 𝑟 share a lower part node 𝑣 , searching any key

𝑢 ∈ [𝑙, 𝑟 ] will also reach node 𝑣 . Thus the search for 𝑢 can start

directly from the LCA (lowest common ancestor) of these two paths.

We call this the Jump-Push method. Jump-Push search has a pre-

processing stage to record search paths. It is a multi-round sample

search starting with one sample: In each round, it doubles the sam-

ple size and uses the search paths recorded in previous rounds to

decide start nodes of sample queries in this round. This approach

limits the contention on each node, avoiding load imbalance.

However, the preprocessing cost is high. For 𝑃 PIM modules and

a batch of 𝑃 log2 𝑃 operations, it takes 𝑂 (log 𝑃) sampling rounds,

each of which takes 𝑂 (log 𝑃) steps of inter-module pointer chas-

ing to search the lower part. The main stage, in contrast, takes

only 𝑂 (log 𝑃) steps. Moreover, the preprocessing stage requires

recording entire search paths—another overhead for the CPU side.

Our new ordered index (PIM-tree) uses some of the same ideas

as this work, but includes key new ideas to make it simpler, and

more efficient both theoretically and practically.

3 PIM-TREE DESIGN

Overview. The PIM-tree is a batch-parallel skew-resistant ordered

index designed for PIM systems. It supports fundamental key-value

operations, including Get(key), Update(key, value), Predeces-

sor(key), Insert(key, value),Delete(key), and Scan(Lkey, Rkey). It

executes operations in same-type atomic batches in parallel, similar

to [28]. As such, the data structure avoids conflicts caused by oper-

ations of different types. We design it starting from the structure

discussed in §2.4.

In this section, we describe PIM-tree’s design by studying the

impact of our techniques/optimizations on the Predecessor opera-

tion. We review the basic data structure design discussed in §2.4 in

detail, then introduce our three key techniques/optimizations, and

finally analyze the resulting communication cost and load balance.

Later in §4, we describe the design of PIM-tree’s other operations.

Notations. We refer to the number of PIM modules as 𝑃 , the total

number of elements in the index as 𝑛, the batch size as 𝑆 , and the

expected fanout of PIM-tree nodes as 𝐵.

Key Ideas. We observe that the two components of the PIM archi-

tecture, the CPU side and the PIM side, prefer different workloads.

The distributed PIM side prefers uniformly random workloads and

suffers from the load imbalance caused by highly skewed ones.

Meanwhile, the shared CPU side prefers skewed workloads since

we can explore spatial and temporal locality in these workloads

that lead to better cache efficiency. This difference shows the com-

plementary nature of shared-memory and distributed computing,

and their coexistence in the PIM architecture motivates our hybrid

method: we design a dynamic labor division strategy that automat-

ically switches between the CPU side and the PIM side to use the

more ideal platform. This strategy, called Push-Pull search, is the

core technique of the PIM-tree.

With load balance achieved by Push-Pull search, we further

propose two other optimizations, called shadow subtrees and chunk-

ing, to reduce communication. These optimizations are motivated

by two basic ideas respectively: caching remote accesses at PIM

modules to build local shortcuts (thereby eliminating communi-

cation), and blocking nodes into chunks (for better locality). We

will show how these “traditional” techniques combine with the

Push-Pull search optimization to bring an asymptotic reduction of

communication from𝑂 (log 𝑃) to𝑂 (log𝐵 log𝐵 𝑃) (𝐵 is the expected

fanout of chunked nodes), and a throughput increase of up to 69.7×,
compared with the PIM-friendly skip list of §2.4.

3.1 Basic Structure

The PIM-balanced skip list is a distributed skip list horizontally

divided into three parts, the upper part, the lower part, and the

data nodes (Figure 2). Data nodes are key-value pairs randomly

distributed to PIM modules to support hash-based lookup in one

round and𝑂 (1) communication. Every upper part node is replicated

across all PIM modules, and every lower part node is stored in a

single random PIM module. The ID of the PIM module hosting a

lower part node is called the node’s PIM ID. Remote pointers, called

PIM pointers, are comprised of (PIM ID, address) pairs. In Figure 2,

PIM pointers are represented by dashed arrows, while traditional

(i.e., intra-PIM) pointers are represented by solid arrows. To save

communication during search, each lower part node stores the key

of the next skip list node at the same level (called a right-key).
There is a node at the lowest level for each key, and the probability

of a node joining the next higher level in the skip list is set to 1/2.
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The upper part is replicated to enable local executions for queries

on PIM modules, but the replication brings an overhead of 𝑃 to

both space complexity and update costs. To mitigate this overhead,

the lower part height is set to be 𝐻
low

= log 𝑃 , so that only a

1/2log𝑃 = 1/𝑃 fraction of the keys reach the upper part. By repli-

cating the upper part, the number of remote accesses needed for a

Predecessor query is reduced from 𝑂 (log𝑛) to 𝑂 (log 𝑃).
In the following sections, we call the upper part L3 and the lower

part L2. After applying the Shadow Subtree optimization (§3.3), we

will further divide the lower part horizontally into two parts, called

L2 and L1.

3.2 Push-Pull Search

Push-Pull search is our proposed search method that guarantees

load balance even under skewed workloads. In the Push method,

the CPU sends the query to the host PIM module of the next node

along the search path, the PIMmodule runs the query, then the CPU

fetches the result; in the Pull method, the CPU retrieves the next

node along the path back to the CPU side, running the query itself.

Push-Pull search chooses between Push and Pull by counting the

number of queries to each node: when the number of queries to a

node exceeds a specific threshold, denoted as 𝐾 in the following

sections, we Pull that node, otherwise we Push the query.

In further detail, Push-Pull search performs multi-round pointer

chasing over the basic structure mentioned in §3.1 in three stages,

where the CPU records the next pointer for each query as an array

of PIM pointers throughout the process.

(1) Traverse L3 using the replicated upper parts. The CPU evenly

distributes queries to PIM modules. Each PIM module runs its

queries using its local copy of L3, until reaching a pointer to an

L2 node. The CPU retrieves these pointers (using PIM_Gather).

(2) Traverse L2 using contention-aware Push-Pull. The CPU per-

formsmultiple Push-Pull rounds. In each round, the CPU counts

the number of queries to each L2 node. If there are more than 𝐾

queries to a node, choose Pull by sending a task to the PIM-side

to retrieve that node to the CPU-side, then partition the queries

(in parallel) based on the PIM IDs in the retrieved node’s point-

ers on the CPU-side. Otherwise, choose Push to send a Query

task to the PIM and retrieve the next pointer for the query.

(3) When the search reaches a data node, return the data.

We can record the addresses of all nodes on the pointer-chasing

path for a query on the CPU side to get the search trace for each
query. Note that these traces are used when performing updates

(in §4). For the basic structure mentioned in §3.1, we choose 𝐾 = 1,

as it minimizes communication for constant size nodes.

Discussion. The most interesting part of Push-Pull search is that it

is based on integrating two fundamental methods from distributed

and shared-memory computing to achieve provable load balance

with low cost (see §3.5 for analysis). We observe that the Push

method is a distributed computing technique, as it uses the CPU

as a router and always runs queries on PIM modules. Meanwhile,

the Pull method is a shared memory technique, treating the PIM

modules as standard memory modules and running the queries on

the CPU. As discussed in §3, combining such fundamental methods

works because of the complementary nature of the CPU side and the

PIM side in the load balance issue: contention-causing (thus PIM-

unfriendly) workloads are meanwhile CPU-friendly workloads.

As a solution only to the load balance issue, Push-Pull search

provides no asymptotic improvements in worst-case bounds com-

pared with Push-Only or Pull-Only methods. Such improvements

are provided by our optimizations, shadow subtrees and chunking,

which we describe next.

3.3 Shadow Subtrees

Shadow subtrees are auxiliary data structures in L2 that act as short-

cuts to reduce communication from 𝑂 (log 𝑃) to 𝑂 (log log 𝑃) for
each query, while ensuring that the space complexity is still 𝑂 (𝑛).
The shadow subtree optimization is based on the idea of the search

tree defined by a skip list, which is an imaginary tree generated

by merging all possible search paths of a skip list. It contains all

nodes and all edges of the skip list, except some horizontal edges.

The shadow subtree of each node is a shadow copy of its search

subtree stored together with this node. By using shadow subtrees, a

PIM module can run queries locally through L2. Although shadow

subtrees and replicating the top of the tree both involve copying

nodes across different PIM modules with the purpose of reducing

communication, they are actually quite different. When replicating

the top, a single tree is copied 𝑃 times across the modules. In the

shadow subtree, every ancestor of a node has a copy of that node

as part of its shadow subtree (in our case just the ancestors in L2).

Building shadow subtrees on all (𝑂 (𝑛)) L2 nodes would require

𝑂 (𝑛 log 𝑃) space. Instead, to maintain 𝑂 (𝑛) space, we build them

only on a small proportion of L2 nodes. In particular, we divide L2

into two layers, denoting the upper levels to be the new L2 and the

lower levels to be L1. We build shadow subtrees only on the new

L2. We set the height of L1 to be 𝐻L1 = log log 𝑃 , so only (1/log 𝑃)-
fraction of nodes (𝑂 (𝑛/log 𝑃) nodes) are in the new L2, and the

space complexity summing over all shadow subtrees is 𝑂 (𝑛). Thus,
the PIM-tree now has three layers: L3 under full replication, L2

with shadow subtrees, and L1 under random distribution without

any replication. Each layer requires 𝑂 (𝑛) space, so the total space

complexity is 𝑂 (𝑛). This is shown in Figure 3. We refer to original

tree nodes and pointers to them as physical nodes (pointers), and
mark them in black. Shadow-tree nodes and pointers to them are

referred to as shadow nodes and pointers, and are marked in red.

Accelerating Predecessor using Shadow Subtrees. Shadow

subtrees strengthen the Push side of Push-Pull search: a single Push

round can send a query through the whole L2, rather than going

forward by just one level, by running the query on the shadow sub-

tree. Therefore the search process takes only 𝑂 (log log 𝑃) rounds
for uniform-random workloads: one Push through L3, one Push

through L2, and 𝑂 (𝐻L1) = 𝑂 (log log 𝑃) Push-Pull rounds for L1.
However, for skewed workloads, we cannot simply perform a sin-

gle Push round through L2, because multiple queries may still be

pushed to the contention points in L2 and cause load imbalance.

We solve this problem again by Pull, by introducing a multi-round

Pull process to eliminate contention points.

In further detail, Push-Pull search in L2 has two stages: we first

perform up to𝑂 (𝐻L2) Pull rounds for nodes with ≥ 𝐾 queries until

no such node exists, where 𝐻L2 = log 𝑃 − log log 𝑃 denotes the

new L2’s height, then execute one “Push” round to send all queries

through L2. We set the threshold 𝐾 = 𝐻L2 instead of 1 since “Push”

is now more powerful and we tend to use it more. Both stages take
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Figure 3: The structure of L2 and L1 after introducing shadow sub-
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that blue 1 does not have a shadow tree node for 3 because node 3 is

not in its search subtree. Right-keys are omitted. We also omit point-

ers from shadow nodes to physical nodes except for node A. The L1
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Figure 4: The intermediate state of the chunking transformation.

We merge non-pivot nodes (nodes whose keys do not go to upper

levels) to their left-side neighbors. Redundant shadow subtrees after

merging are marked in blue, and will be removed in Figure 5. All

physical pointers from shadow nodes are omitted.
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Figure 5: The actual structure of the PIM-treewith redundant shadow

subtrees removed from Figure 4. We no longer need right-keys after

chunking. Data nodes are omitted.

𝑂 (1) balanced communication per query. This is partly proved in

Lemma 3.2, and fully proved in the full paper [20].

In practice, we use another optimization to reduce the number

of Pull rounds. Note that although contention points are the only

source of load imbalance, we may reach a reasonable level of load

balance before eliminating all contention points. Therefore, to avoid

unnecessary Pull rounds, before starting a Pull round, we measure

the load balance across PIMs by counting the number of queries

that will be sent to each PIM module; if the one with the most is

below 3× the average load, we stop the Pull round and start to Push.

Replication and Space/Imbalance Tradeoffs. Compared with

(i) full replication used for L3 and (ii) range partitioning (which

performs no replication) used in related works, shadow subtree is a

novel scheme that supports queries with 𝑂 (1) communication by

improving the locality of a distributed ordered index. Specifically,

shadow subtree is a selective replication approach that lies between

these two prior schemes. If we replicate nodes not only to their L2

Table 1: Comparison between three types of replication schemes

that run queries with𝑂 (1) communication. The larger the overhead

factor, the more space it takes and the slower updates will be. The

larger the maximum query number is, the more imbalanced the

execution will be under skewed workloads.

Scheme Overhead factor Maximum query number

Full Replication 𝑃 Perfect Balance

Range Partitioned 1 𝑃

Shadow Subtrees 𝑂 (log 𝑃) log 𝑃

ancestors, but to all PIM modules, we obtain full replication. On the

other hand, if we only keep the shadow subtrees of the L2 roots,

we obtain the range partitioned scheme.

The cost and the skew-resistance of shadow subtrees also lies

between those of the other two schemes. Table 1 shows the bounds

when applying different schemes to a skip list with height log 𝑃

and size 𝑃 in expectation. In the full replication scheme, we can

run queries with perfect load balance, but it brings an overhead

factor 𝑃 to both space complexity and update costs. On the other

hand, for the range partitioned scheme, each query can only be

executed by a single PIM module. We can still do Push-Pull to avoid

contention with a threshold of 𝐾 = 𝑃 : we will choose to simply Pull

the whole tree when the number of queries exceeds the size of the

whole part. There can be load imbalance, as some part gets up to 𝑃

queries and others get none. For this approach there is no overhead

on space complexity or for updates. Lastly, using shadow subtrees,

the overhead factor is 𝑂 (log 𝑃) as each node is replicated in all its

L2 search tree ancestors, and the maximum query number is log 𝑃

according to our choice of Push-Pull threshold 𝐾 = 𝐻L2.

Shadow subtrees therefore yield a balanced compromise between

the two schemes, providing a sweet spot for both overhead and

skew-resistance.

3.4 Chunked Skip List

Chunking or “blocking” is a classic idea widely used in locality-

aware data structures, e.g., B-trees and B+-trees. To improve locality,

we apply a similar chunking approach to improve the access granu-

larity of the PIM computation, while decreasing the tree height. As

chunking increases the access granulariy, each PIM processor ob-

tains larger local memory bandwidth, therefore better performance.

The effect of access granularity in PIM is discussed in detail in [15].

We apply chunking to all layers of the PIM-tree. In L3, we replace

the multi-thread skip list with a batch-parallel multi-threaded B+-

tree [28]. In L2 and L1, we chunk the nodes in our skip list to obtain

a chunked skip list. We first merge horizontal non-pivot nodes

(whose keys do not go to upper levels) into a single chunk, then

remove redundant shadow subtrees. Applying this two step process

on Figure 3 first gives Figure 4 as an intermediate state, and finally

the PIM-tree in Figure 5.

The result with shadow subtrees looks similar to a B+-tree. The

difference is that while the B+-tree sends nodes to upper levels on

overflow of lower level nodes, the chunked skip list uses random

heights generated during Insert, so the fanout holds in expectation.

We decrease the probability of reaching the next level in the skip

list from 1/2 to 1/𝐵, so that the expected fanout is 𝐵. We choose

the same chunking factor 𝐵 in L3, L2 and L1 for simplicity, but

different factors could be used in each part. As discussed in §4.2,
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we use a chunked skip list instead of a classical B+-tree in L2 to

make batch-parallel distributed Insert and Delete simpler and

more efficient. We use a B+-tree in L3 because the structure is not

distributed, making batch-parallel Insert and Delete easier.

Chunking reduces tree height at all levels, which improves mul-

tiple aspects of our design. We denote the new L2 (L1) height as

𝐻 ′
L2

(𝐻 ′
L1
, respectively). The L2 part of the search path to each node

is reduced from 𝑂 (𝐻L2) = 𝑂 (log 𝑃) to 𝐻 ′
L2

= log𝐵 𝑃 − log𝐵 log𝐵 𝑃 ,

as there are no longer horizontal pointer-chasing processes. There-

fore, the space and replication overhead of shadow subtree reduces

from 𝑂 (𝐻L2) to 𝐻 ′
L2
, as each node is only replicated in its L2 an-

cestors. Furthermore, lower overhead enables us to reduce 𝐻 ′
L1

to

log𝐵 log𝐵 𝑃 . 𝐻
′
L1

is effectively 1 in practice, because with our choice

of 𝐵 = 16 it will take over 10
19

PIM modules for 𝐻 ′
L1

to exceed 1.

Therefore, in practice, the height of L2 is reduced to 2 levels,

and L1 reduced to 1 level. The probability for a key to reach L3 is

1/4096 < 1/𝑃 , and the probability of reaching L2 is 1/16 < log
16
𝑃 .

Implementing Predecessor after Chunking.Chunking brings

only one modification to the search process: changing the Push-Pull

threshold 𝐾 from 𝐻L2 to 𝐵 · 𝐻 ′
L2
, because we now “Pull” chunks

with expected size 𝑂 (𝐵) instead of 𝑂 (1). The detailed algorithm is

explained in §3.5.

Chunking also improves the communication costs of Predeces-

sor. First, as the height of L1 is reduced from log log 𝑃 to log𝐵 log𝐵 𝑃 ,

each query now causes only 𝑂 (log𝐵 log𝐵 𝑃) communication in L1.

Second, chunking reduces the maximum possible number of Pull-

only rounds in L2 from 𝑂 (𝐻L2) = 𝑂 (log 𝑃) to exactly 𝐻 ′
L2
, which

is log𝐵 𝑃 − log𝐵 log𝐵 𝑃 . This helps reduce the number of communi-

cation rounds under skewed workloads.

3.5 Predecessor Algorithm and Bounds

Next, we describe the complete algorithm for Predecessor, and

discuss its cost complexity. We provide proofs for the communica-

tion cost and load balance of Predecessor queries. For simplicity

throughout the paper, our cost analyses assume that hash functions

provide uniform random maps to PIM modules, so that the lemma

in §2.2 can be applied. Algorithm 2 summarizes the search process.

Algorithm 2. Predecessor (𝑄 : batch of query keys)

(1) Push queries from𝑄 evenly to PIM modules, and traverse L3.

(2) While the number of queries that will be sent to each PIM

module for L2 is not balanced (i.e., the busiest PIM module

gets more than 3× the average load), do the following:

(a) Pull all nodes with more than 𝐾 = 𝐵 · 𝐻 ′
L2

queries back

to the CPU.

(b) Use these nodes to progress the pointer-chasing process

of these queries by one step.

(3) Push each query to the PIM module holding its search node,

and traverse L2 using the shadow subtrees.

(4) Perform 𝐻 ′
L1

Push-Pull rounds with 𝐾 = 𝐵 to traverse L1,

and retrieve the data nodes.

We demonstrate here a mini step-by-step example of a Predeces-

sor batch with four queries on the PIM-tree in Figure 5 (note that

real batches should have more queries on this tree to achieve load-

balance). The queries request the Predecessors of keys 1, 3, 4 and 7.

PIM-tree first evenly distributes one query for each of the four PIM

modules to search through L3, returning three queries falling onto

the L2 node [−∞, 3] and one falling onto node [5, 7]. The context
of node [−∞, 3] will be pulled to the CPU from the yellow-masked

PIM module due to its large contention, and the pointer-chasing

searching of keys 1, 3 and 4 over L2 will be executed on the CPU

side. After that, query 1, query (3, 4), and query 7 will be pushed to

the PIM module containing the blue-masked node [−∞, 1], green-
masked node [3] and green-masked node [5, 7] respectively on the

local shadow subtrees to search through L2. Finally, all queries will

be carried out in a similar Push-Pull way to return the results from

L1 and data nodes.

Theorem 3.1. A batch of Predecessor queries can be executed

in 𝑂 (log𝐵 𝑃) communication rounds, with a cost of 𝑂 (log𝐵 log𝐵 𝑃)
communication for each operation in total whp. The execution is load

balanced if the batch size 𝑆 = Ω(𝑃 log 𝑃 · 𝐵 · 𝐻 ′
L2
) = Ω(𝑃 log 𝑃 · 𝐵 ·

log𝐵 𝑃). The CPU-side memory footprint is 𝑂 (𝑆).

We provide part of the proof here, and give the full proof with

all details in the full paper [20]. The key challenge is to prove the

communication bounds and load balance, and we do this by proving

separately for each stage of Algorithm 2. We take Lemma 3.2, the

proof for the L2 Push stage (stage 3) as an example.

Lemma 3.2 (Push round for L2). Push using the shadow subtrees

(stage 3) takes 1 round,𝑂 (1) communication whp for each query, and

is load balanced.

Proof. In this stage we send each query as a task to the corre-

sponding PIM module, incurring 𝑂 (1) communication per query

and 1 round overall. For load balance, we analyze it as a weighted

balls-into-bins game, where we take the target nodes as balls, the

numbers of queries on the target nodes as weights, and PIMs as

bins. The weight limit is 𝐾 = 𝐵 · 𝐻 ′
L2

by assumption, as each node

gets at most 𝐾 queries, and the weight sum is at most 𝑆 . Applying

Lemma 2.2, each PIM module incurs 𝑂 (𝑆/𝑃) communication. □

4 PIM-TREE: OTHER OPERATIONS

Having described the design of the PIM-tree data structure in §3,

using the Predecessor operation as the running example, we now

briefly introduce how other PIM-tree operations are implemented.

Please refer to the full paper [20] for more detail.

4.1 Get and Update using Hashing

Get and Update are operations with a given key. These operations

also do not modify the structure of the data structure. Therefore, we

solve these in one round and 𝑂 (1) communication per operation

through a hash-based approach by first (i) using a fixed hash func-

tion to map keys to PIM modules, and (ii) building a local hash table

on each PIM module to map keys to the local memory addresses of

their data nodes.

Because the data nodes are distributed by a hash function, we

achieve good load balance even for skewed workloads, assuming

that there are not duplicate operations to the same key. If such

redundant operations exist, we can solve this by preprocessing to
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Figure 6: The process to insert keys 3, 6, and 8 into L2 of the PIM-tree.

Insertion 3 has height 1, and insertion 6 and 8 both have height 2.

These heights are generated beforehand by coin tossing with proba-

bility 1/𝐵. The height of the yellow node is 1, and that of the blue

node is 2. As a result, key 3 is inserted into the yellow node, and keys

6 and 8 split the yellow node.

combine operations on the CPU-side, using a user-defined com-

binining mechanism. In practice, we use a linear-probing hash table

on the PIM-side, but other hash-table variants could also be used.

4.2 Insert

An Insert(key,value) operation inserts the key into nodes on its

search path, and the primary challenge is to avoid contention and

conflicts when multiple Inserts in a batch go to the same node(s).

We solve this by preprocessing: we perform searches in parallel and

record the trace of each search, and use the traces to detect and han-

dle contention points. Our algorithm has three stages: (1) perform

searches to record the search trace, (2) modify the physical skip list

based on the search trace, and (3) update the shadow subtrees.

Update Physical Skip List. After getting the search traces of each

Insert, we Insert into these nodes according to random heights

we generate prior to updating the PIM-tree. Figure 6 is an example

of our contention solving strategy. According to their pre-generated

heights, the insertion of 3 is into the yellow node, and the insertions

of 6 and 8 will split that node. The insertion takes three steps: in

(b) we fetch the right-side part of the node to the CPU side and

generate empty new nodes in random PIMmodules; in (c) we derive

the correct element to be inserted to each node in CPU; finally in

(d) we insert them.

Choosing skip lists instead of B+-trees as the basis of L1 and L2

helps reduce the number of rounds, since we can insert to all nodes

in parallel, rather than level-by-level bottom up from the leaves

like the B+-tree. Insert to L3 is also executed in parallel with that

of L2, performed by broadcasting Inserts reaching L3 to all PIMs.

Update Shadow Subtrees. To maintain the invariant that shadow

subtrees are copies of the search subtrees, we update the shadow

subtrees after updating the physical skip list. There are three types

of updates: (1) build the new shadow subtree for a new node, (2)

insert a new node into the shadow subtrees of its ancestors, and

(3) trim a shadow subtree after a node split.

Our shadow subtree updating technique is straightforward. For

build, we pull the L2 search tree and send it to the new node. For

insert and trim, we observe that only shadow subtrees of nodes

on the search trace need updating, so we send the newly-inserted

node to all these nodes.

Discussion: Load Balance in Insert. There is a load balance

issue in our shadow subtree update algorithm: To keep shadow sub-

trees up to date, an L2 node may need updates of size 𝑂 (𝑃/log𝐵 𝑃).
For example, a new L2 root needs to build its shadow subtree of

expected 𝑂 (𝑃/log𝐵 𝑃) nodes (given 𝐻 ′
𝐿2

= log𝐵 𝑃 − log𝐵 log𝐵 𝑃 ).

This contention factor𝑂 (𝑃/log𝐵 𝑃) will grow faster than the factor

𝐾 = 𝐵 · log𝐵 𝑃 of Predecessor as 𝑃 grows. This contention has

minor effect at present, but we propose an algorithm to address

this problem (not implemented at present).

The solution is not to keep all shadow subtrees up to date, but

instead to mark some nodes as unfinished, update their shadow

subtrees gradually in future rounds, and avoid using a shadow

subtree until it is up to date. This helps smooth out the imbalance.

Predecessor bounds still hold when the number of such nodes is

below a threshold, and we achieve this by additional update rounds,

which are load balanced when the number of such nodes is high.

Theorem 4.1. A batch of Insert operations can be executed in

𝑂 (log𝐵 𝑃) IO rounds, incurring 𝑂 (log𝐵 log𝐵 𝑃) communication for

each operation. The execution is load balanced if the batch size 𝑆 =

Ω(𝑃 log 𝑃 · 𝐵 ·𝐻 ′
L2
) = Ω(𝑃 log 𝑃 · 𝐵 · log𝐵 𝑃). The CPU-side memory

footprint is 𝑂 (𝑆).

Implementing Delete. We handle deletions similarly to inser-

tions: first obtain the search trace, then delete keys from nodes on

the trace, finally apply updates to shadow subtrees. While insertion

causes node split, deletion causes nodes to merge when removing

the pivot key from a node. See the full paper [20] for details.

4.3 Scan

The Scan(LKey,Rkey) operation (a.k.a. range query) returns all the

(key, value) pairs whose keys fall into the range of [Lkey, Rkey]. Its

algorithm is similar to Predecessor.

When running a batch of Scan queries, we first on the CPU

merge all batched overlapping ranges into groups of disjoint ranges.

Then PIM-tree labels two boundary nodes (the predecessors of Lkey

and Rkey on the current search level of the tree) for each range as

SearchReqired, and all the intermediate nodes as FetchAll.

FetchAll nodes are required to return all their leaf data nodes.

Note that all ranges are disjoint, so no contention exists in FetchAll

nodes. All FetchAll nodes are pushed to PIMs and recursively

return all child nodes. Meanwhile, SearchReqired nodes of a

range are maintained similar to Predecessor on each level, using

push-pull search to deal with potential contention. It might generate

new FetchAll nodes. Please see the full paper [20] for details.

5 IMPLEMENTATION

CPU-PIM Pipelining. Thus far, we have introduced algorithms

where tasks on the CPU and PIM run in a synchronized, tick-tock

manner in each round as depicted in Algorithm 1. The total ex-

ecution time of this approach consists of three non-overlapping

components: CPU-only time, PIM-only time, and communication

time. Communication requires both CPU and PIM, but the other two

components only utilize one part of the system, which presents an

opportunity to reduce execution time by pipelining the CPU-only

and PIM-only components.
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Figure 7: Program traces before/after CPU-PIM pipelining

For pipelining, we consider executions that run multiple batches

in parallel in the PIM-tree. This is shown in Figure 7, where “CPU”

represents time spent in CPU-only execution, while “IO & PIM”

represents time spent in CPU-PIM communication and the PIM

program. On our UPMEM system, CPU-PIM communication re-

quires exclusive control of the PIM side, and any concurrent use of

the PIM side will cause a hardware fault. Hence, one batch needs

to wait for the PIM side to finish the current execution tasks. We

only pipeline queries in our experiments, since update batches can-

not be carried out concurrently. For mixed operations, we protect

the PIM-tree by a read-write lock to prevent update batches from

running concurrently with other batches.

PIM Program. PIM-tree’s PIM program is a parallel executor of

the tasks in the buffer sent from the CPU. It is designed to address

two features of UPMEM’s current PIM processors. First, the PIM

processor is a fine-grained multi-threaded computing unit [15],

and requires at least 11 threads to fill the pipeline, so we write

PIM programs in the form of 12 threads. Second, UPMEM’s system

only supports PIM programs with fewer than 4K instructions, but

the implementation of PIM-tree exceeds this bound. To bypass

this restriction, we write the PIM program as multiple separate

modules, and load each module when needed. Only Insert and

Delete operations require swapping modules; program loading

currently takes around 25% of the execution time. The remaining

operations on PIM-tree fit within the 4K instruction limit.

6 EVALUATION

In this section, we evaluate our new PIM-optimized indexes on a

PIM-equipped machine provided by UPMEM, and two traditional

state-of-the-art indexes on a machine with similar performance. We

summarize our expeirmental results from this section as follows:

(1) The PIM-tree performs better than the range-partitioned skip

list under skewed workloads in terms of throughput, memory-

bus communication, and energy consumption.

(2) The PIM-tree causes lower communication on the memory bus

compared with traditional indexes without PIM.

(3) All optimizationsmentioned, including Push-Pull search, shadow

subtrees, chunked skip list and CPU-PIM pipelining, yield per-

formance increases to (some) PIM-tree operations.

6.1 Experiment Setup

UPMEM’s PIMPlatform.We evaluate PIM-tree on a PIM-equipped

server provided by UPMEM(R). The server has two Intel(R) Xeon(R)

Silver 4126 CPUs, each CPU with 16 cores at 2.10 GHz and 22 MB

cache. Each socket has 6 memory channels: 4 DIMMs of conven-

tional DRAM are implemented on 2 channels, while 8 UPMEM

DIMMs are on the other 4 channels. Each of the 16 UPMEM DIMMs

has 2 ranks, each rank has 8 chips, and each chip has 8 PIMmodules.

There are 2048 PIM modules in total.

Traditional Machine w/o PIM. We evaluate traditional indexes

on a machine with two Intel(R) Xeon(R) CPU E5-2630 v4 CPUs, each

CPU with 10 cores at 2.20 GHz and 25 MB cache. Each socket has 4

memory channels. There are no PIM-equipped DIMMs. We cannot

evaluate traditional indexes on the server of UPMEM because 2/3
of its memory channels are used by PIM-equipped DIMMs, which

cannot be used as the main memory. Directly running traditional

indexes on the server would cause unfairness in mainmemory band-

width for the traditional indexes. In our experiments we choose the

state-of-the-art binary search tree [8] and (a,b)-tree [9] as competi-

tors. Both implementations are obtained from SetBench [4].

Range-Partitioned and Jump-Push Baselines. We implement a

range-partitioned-based ordered PIM index as our primary baseline,

where both data nodes and index nodes are distributed to PIM

modules based on the ranges of the key [10, 24]. We record the

range splits in the CPU side, and use these splits to find the targeted

PIM module of each operation. Point operations are sent to and

executed on the corresponding PIM module. Running a batch of

Scan operations is similar, except that it runs an additional splitting

in queries according to the range splits before tasks are sent to the

PIMs. We also build a local hash table on all PIM modules for Get.

We also implement the PIM-balanced skip list [19] described in

§2.4 as another baseline. We experimentally evaluate this approach

when discussing the impact of the optimizations proposed in this

paper, in Figure 11, with the algorithm called “Jump-Push based”.

Test Framework.We run multiple types of operations on the PIM-

tree, range-partitioning skip list we implemented, and the state-

of-the-art traditional indexes. In all experiments, we first warm

up the index by running the initialize set that Insert key-value

pairs, then evaluate the index by the evaluation set of multiple

operations. All operations are loaded from pre-generated test files.

PIM algorithms (the PIM-tree and range-partitioning) run opera-

tions in batches, and traditional indexes run them directly with

multi-threaded parallelism. In all experiments, the sizes of both

keys and values are set to 8 bytes.

To study the algorithms, we measure both the time spent, and the

memory bus traffic. Memory bus traffic is measured by adding CPU-

PIM and CPU-DRAM communication, the prior one measured by a

counter increased whenever a PIM function(e.g., PIM_Broadcast)

is called, and the later one measured as cache misses by PAPI. We

bind the program to a single NUMA node and disable the CPU-

PIM pipeline when measuring cache misses for an accurate traffic

measurement. As each CPU of the PIM-equipped machine has two

NUMA nodes, the effective cache of the PIM algorithms is reduced

to 11 MB, half of the full cache, under this setup. Time is measured

with full interleave over all NUMA nodes.

Instability in performance exists in the current generation of

PIM hardwares. We oberserved an approximately ±15% fluctuation

in the measured metrics mentioned above in our experiments.

6.2 Microbenchmarks

Workload Setup. Each test first warms up the index by inserting

500 million uniform random key-value pairs;
3
then for testing it

executes (i) 100 million point operations or (ii) 1 million Scan

3
This is a favorable setting for the range-partitioned baseline, because the range bound-

aries are stable. The performance of the PIM-tree is not impacted by the distribution

of key-value pairs over time.
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operations that each retrieve 100 elements in expectation. Point

operations use batch size 𝑆 = 1 million, and Scan operations use

batch size 𝑆 = 10 thousand.

We generate skewed workloads with Zipfian distribution [37].

However, workloads generated by Zipf-skew over elements is not

ideal for evaluating batch-parallel ordered indexes, because this

skew can be easily handled by a deduplication in preprocessing on

the CPU side, by merging operations of the same key into one. To

better represent the spatial bias, where keys in some ranges are

more likely to be accessed in the same batch, we slightly modify the

way to generate our Zipfian workload, as follows: (i) we divide the

key space evenly into 𝑃 = 2048 parts; (ii) for each operation, we first

choose a part according to the Zipfian distribution, then choose a

uniformly random element in that part. For operations for existing

keys (Get,Delete), we divide and choose among the keys currently

in the index; for operations on arbitrary keys (Predecessor, Insert,

Scan), the key space consists of all 64-bit integers. We periodically

shuffle the probability of each part in Zipfian distribution. This helps

alleviate, but not eliminate the PIM memory overflow problem of

the range-partitioned baseline caused by Inserts accumulating in

high-probability parts. PIM-tree gains no benefit from this shuffle.

To show results on different amounts of skew, we evaluate the

algorithms on different 𝛼 values in the Zipfian distribution, ranging

from 0 (uniformly random) to 1.2. With this skewness generation

approach, less than 10% operations are eliminated because of dupli-

cated keys, under the most skewed case (𝛼 = 1.2).

Performance. Figure 8 illustrates the throughput of the range-

partitioned skip list and the PIM-tree on microbenchmarks. The

performance of the range-partitioned baseline drops drastically as

the query skew increases, while the PIM-tree shows robust resis-

tance to query skew. In fact, across all operations, it is observed

that PIM-tree is essentially unaffected by data skew, obtaining sim-

ilar running times for 𝛼 = 0 and 𝛼 = 1.2. For 𝛼 = 1.2, PIM-tree

outperforms the range-partitioned baseline by 3.87–59.1×.
It is observed that Get operations are significantly simpler and

achieve higher throughput since a hash table is used as a shortcut

(the same holds for Update operations), whereas Predecessor

and Scan operations must go through the entire ordered index.

In Figure 8(c), Insert on the range-partitioned baseline crashes

when 𝛼 = 1.2, because skewed Insert causes imbalanced data

placement over PIMmodules, then causes overflow of local memory

on some PIM modules. Although this problem could be solved by a

rebalancing scheme, the rebalancing process itself will cause load

imbalance as it requires sending data from the overflowing PIM

modules to other less-loaded PIM modules. It is observed that even

if this improvement to the baseline (with which the existing range-

partitioning solutions in the literature are not equipped) were to

be made, the throughput of PIM-tree would still be significantly

larger than range-partitioning, as this would be extra work that the

baseline must perform during the execution.

Figure 9 shows the performance of PIM-tree compared with

state-of-the-art binary search tree [8] and (a,b)-tree [9] under our

workload. PIM-tree outperforms traditional indexes in all test cases,

except throughput of Predecessor compared with (a,b)-tree.

Execution breakdown. Figure 10 shows the percentage of time

spent in each component mentioned in Section 5. These results

are derived with our pipelining optimization turned off, because

pipelining would cause an overlapping of different components.

We select as typical examples the throughput of Predecessor and

Insert, on range-partitioned skip list and the PIM-tree, for uniform

random workload and Zipfian-skewed workload with 𝛼 = 0.6.

Similar results also exist in the cases of other 𝛼 values.

For range-partitioned skip list, PIM Execution and CPU-PIM Com-

munication dominates the time cost of skewed workloads, mainly

because the bottleneck of the entire execution—the busiest PIM

modules— are receiving a growing number of tasks.

For uniform randomworkloads, PIM Execution only takes a small

proportion of the total time cost, though almost all comparisons

are executed in PIM modules. It is inferred that parallelism is fully

exploited when a large number of PIM modules are involved in this

case. We believe that this implies that PIM-based systems are an

ideal platform for parallel index structures.

PIM-tree Insert spends time loading PIM program modules

during execution, as the full program size exceeds the current size

of instruction memory on PIMs intended to store the PIM program.

This limit is discussed in Section 5.

Effect of Optimizations. Figure 11 shows the impact of different

optimizations on our ordered index. Here, we start with our Jump-

Push baseline (the PIM-balance skip list in [19]). Replacing Jump-

Push with Push-Pull provides up to 6.8× throughput improvements

across all test cases. Adding Chunking provides the biggest improve-

ment jump, up to 9.0×, across all test cases, while adding shadow
subtrees mostly benefits Predecessor under no skew. (Insert get

minor benefits because it needs to maintain this supplementary

data structure.) Finally, adding pipelining—thereby implementing

the complete PIM-tree algorithm—provides additional benefit for

Predecessor. (Pipelining is not implemented for Insert because it

would require interleaved Insert batches, which is not supported

in our implementation.) Compared to the Jump-Push baseline, PIM-

trees are up to 69.7× higher throughput for the settings studied.

Memory bus communication. Figure 12 shows the average amount

of communication for PIM-tree, range-partitioned skip list, and tra-

ditional non-PIM indexes. PIM-tree needs less communication than

all traditional indexes. Range partitioned skip lists outperform all

competitors by much under uniform randomworkload, but perform

much worse in skewed workloads.

Another observation is that, while the PIM-tree stores all the

data and does most comparisons in PIM modules, most memory

bus traffic is between CPU and the DRAM. This is because though

PIM-tree algorithms requires 𝑂 (𝑆) CPU-side memory for a batch

of 𝑆 operations, the available setup with 11MB cache is too small

for batches of one million operations. As the result, CPU side data

overflow to DRAM and cause significant CPU-DRAM communi-

cation. To show the effect of this overflow, in Figure 13 we study

the CPU side communication as we run the 100 million uniform

random predecessor operations with different batch sizes. Results

show that the CPU-DRAM communication is reduced by 67% as we

reduce batch size from 1M to 50K. We cannot directly use smaller

batch size because of the load balance requirements, but this result

hints that we can get much less CPU-DRAM communication when

running the PIM-tree on a machine with larger cache size.
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Push-Pull threshold choice We study the PIM-tree Predeces-

sor performance under different Push-Pull threshold. In our mi-

crobenchmark with 𝛼 = 1, we find that choosing a lower threshold

leads to about 10% throughput drop and up to 28% more CPU-PIM

communication. A higher threshold brings minor performance in-

crease. Please refer to the full paper [20] for more details.

Energy Evaluation. PIM-tree costs roughly 5×–10× less energy

on skewed cases, compared to the range-partitioned baseline on

PIM. Please refer to the full version of this paper [20] for details.
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Figure 12: Average communication on thememory bus per operation

in bytes.

YCSB workload. PIM-tree achieves roughly 9.5×–32× higher

throughput on skewed cases, compared to the range-partitioned

baseline on PIM. Please refer to the full version of this paper [20].

6.3 Workload of Real-world Skewness

In this section, we test the PIM-tree over a workload with real-world

skewness using the publicly available wikipedia dataset [12], which

is a collection of documents from wikipedia. To use this dataset

in our test framework, we need to transform it into a collection

of 8 byte key-value pairs, then run operations over them. To be

specific, we first extract words from each document, lowercase

them, then use (word, document id) pairs as keys, and a random
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Figure 15: Throughput on the wikipedia workload.

8 byte integer as values. Because our indexes only support 8 byte

integer keys, we need to transform the (word, document id) pairs

into 8 byte integers. The transformation is shown in Figure 14. We

use 40 bits to represent the word, and 23 bits to store the document

id (as there’s less than 2
23

documents). In the word part, we use 5

bits for each of the first 5 letters, then store the hash value of the

whole word in the following 15 bits to avoid collision. After this

transformation, the generated integers preserve the two skewness

of english words: (i) word frequency skewness (some words are

used more than others) and (ii) word distribution skewness in the

dictionary order space (words with some prefix are used more).

In this test, we pick the first 1.2 billion keys: the first 1 billion

words used for initialization, and the following 200 million used

for evaluation. These keys covers the first 5.1 million documents,

which is 63% of the whole dataset. There are 3.9 million unique

words, and pairing the word and document id generates 529 million

unique keys. We get duplicated keys only for the same word in the

same document. Because the duplication rate of keys is about 2𝑋 ,

we also double the batch size of the PIM-tree to two million.

The result is shown in Figure 15, where the throughputs are

shown as the bars, and communication (bytes transmitted per-

operation) as labeled points. All indexes experience higher through-

put and lower communication in this workload than in microbench-

marks because of the replicated keys. Comparing different indexes

gives results similar to that of microbenchmarks: PIM-tree has

lower predecessor throughput than the (a,b)-tree, but outperforms

traditional indexes in all other metrics.

7 DISCUSSION

PIM-tree outperforms conventional indexes in throughput in most

cases, but very occasionally cannot win, e.g. only in Predecessor

compared with (a,b)-tree in our paper. We address here three hard-

ware limits of the current PIM system by way of explanation, and

to describe future changes to the hardware that would result in

even better performance for PIM-optimized data structures.

The first factor is the limited CPU-PIM bandwidth on UPMEM’s

newly developed hardware. When carrying out a 50% read - 50%

write task, the bandwidth obtained on UPMEM machine is 16GB/s,

1.9× slower than the shared-memory machine we use with a band-

width of 31GB/s on the same workload. Even under such significant

bandwidth limitations, PIM-tree still achieves better or comparable

performance to DRAM-only indexes, primarily because it greatly

reduces inter-module communication. Designing hardware to im-

prove CPU-PIM bandwidth is thus an important direction, and

one that we expect improvements for in the future. Therefore, we

believe that PIM-tree will outperform conventional indexes in all

cases in terms of throughput in the future.

Another issue is that the limited size of PIM programs prevents

us from more complicated designs. Current workaround—dynamic

program loading—is too costly. We believe this problem will be

solved in future hardware by a larger instruction memory.

The last limit is that of inadequate CPU cache, as mentioned in

Section 6.2. CPU-DRAM communication caused by cache overflow

comprises most of memory bus communication, and this can be

alleviated by a larger cache. We believe an adequate cache will be

important in future PIM systems.

8 CONCLUSION

This paper presented PIM-tree, the first ordered index for PIM sys-

tems that achieves both low communication and high load balance

in the presence of data and query skew. We presented the first

experimental evaluation of ordered indexes on a real PIM system,

demonstrating up to 69.7× and 59.1× higher throughput than the

two best prior PIM-based methods and down to 0.3× less commu-

nication than two state-of-the-art conventional indexes. Key ideas

include push-pull search and shadow subtrees—techniques likely

to be useful for other applications on PIM systems due to their

effectiveness in reducing communication costs and managing skew.

Our future work will explore such applications (e.g., radix-based

indexes, graph analytics).
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