
Parallel Cover Trees and their Applications
Yan Gu

UC Riverside

ygu@cs.ucr.edu

Zachary Napier

UC Riverside

znapi001@ucr.edu

Yihan Sun

UC Riverside

yihans@cs.ucr.edu

Letong Wang

UC Riverside

lwang323@ucr.edu

ABSTRACT
The cover tree is the canonical data structure that efficiently main-

tains a dynamic set of points on a metric space and supports nearest

and 𝑘-nearest neighbor searches. For most real-world datasets with

reasonable distributions (constant expansion rate and bounded as-

pect ratio mathematically), single-point insertion, single-point dele-

tion, and nearest neighbor search (NNS) only cost logarithmically to

the size of the point set. Unfortunately, due to the complication and

the use of depth-first traversal order in the cover tree algorithms,

we were unaware of any parallel approaches for these cover tree

algorithms.

This paper shows highly parallel and work-efficient cover tree

algorithms that can handle batch insertions (and thus construc-

tion) and batch deletions. Assuming constant expansion rate and

bounded aspect ratio, inserting or deleting𝑚 points into a cover

tree with 𝑛 points takes 𝑂 (𝑚 log𝑛) expected work and polyloga-

rithmic span with high probability. Our algorithms rely on some

novel algorithmic insights. We model the insertion and deletion

process as a graph and use a maximal independent set (MIS) to

generate tree nodes without conflicts. We use three key ideas to

guarantee work-efficiency: the prefix-doubling scheme, a careful

design to limit the graph size on which we apply MIS, and a strat-

egy to propagate information among different levels in the cover

tree. We also use path-copying to make our parallel cover tree a

persistent data structure, which is useful in several applications.

Using our parallel cover trees, we show work-efficient (or near-

work-efficient) and highly parallel solutions for a list of problems

in computational geometry and machine learning, including Eu-

clidean minimum spanning tree (EMST), single-linkage clustering,

bichromatic closest pair (BCP), density-based clustering and its hi-

erarchical version, and others. To the best of our knowledge, many

of them are the first solutions to achieve work-efficiency and poly-

logarithmic span assuming constant expansion rate and bounded

aspect ratio.

CCS CONCEPTS
• Theory of computation� Sharedmemory algorithms;Data
structures design and analysis.
KEYWORDS
cover tree, parallel algorithms, parallel data structures, nearest

neighbor search, euclidean minimum spanning tree, single-linkage

clustering

This work is licensed under a Creative Commons Attribution

International 4.0 License.

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9146-7/22/07.

https://doi.org/10.1145/3490148.3538581

ACM Reference Format:
Yan Gu, Zachary Napier, Yihan Sun, and Letong Wang. 2022. Parallel Cover

Trees and their Applications. In Proceedings of the 34th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’22), July 11–14, 2022,
Philadelphia, PA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/

10.1145/3490148.3538581

1 INTRODUCTION
Nearest neighbor search (NNS) on a metric space is one of the most

widely-used primitives in algorithm design, which has applications

in computational geometry, computer graphics, machine learning,

computer vision, and many other areas. Finding (or even approxi-

mating) nearest neighbor for general metrics requires linear time
1
.

However, the metrics in real-world applications and of practical in-

terest usually do exhibit nice properties that can be exploited. Some

widely-studied properties include the low expansion rate, which

indicates that the density of points in the metric space changes

smoothly, and bounded aspect ratio (defined in Sec. 2),

A canonical data structure that exploits such a property is the

cover tree [8], which is usually considered as the “standard” solution

for NNS on metric space, both theoretically and practically. Theo-

retically, the point-insert, point-delete, and NNS query only take

logarithmic time, assuming the metric space has constant expansion

rate and bounded aspect ratio. Practically, highly-optimized soft-

ware for cover trees from [8, 39] demonstrates good performance

on a large variety of real-world instances. Cover tree is simpler

than several related data structures around the time [23, 41, 44], but

it is only simple conceptually. Although cover trees were proposed

in 2006, many tricky details and corrections are discussed and made

in later works [26, 31, 43]. In fact, it was only until recently that

Elkin and Kurlin [31] corrected the single-update and query bounds,

which will be reviewed in Sec. 3.

A cover tree𝑇 organizes a set 𝑆 of points in somemetric space [8].

It consists of a number of levels. Every level consists of nodes, each

corresponding to a point in 𝑆 . Note that a point can correspond

to multiple nodes across different levels. The cover tree is defined

to maintain three key invariants (formal definition in Sec. 3): (1)

Nesting: tree nodes at level 𝑖 is a subset of nodes at level 𝑖 − 1. (2)
Covering tree: for all 𝑖 , each tree node at level 𝑖−1must be covered

by some tree nodes in level 𝑖 within distance 2
𝑖
(one corresponding

node at level 𝑖 will be the parent of that at level 𝑖−1). (3) Separation:
any two tree nodes at level 𝑖 are separated by distance 2

𝑖
. We show

an illustration in Fig. 1. A cover tree for a set 𝑆 of points is not

unique. As long as the three invariants hold, the logarithmic bound

for point insertion, deletion, and NNS query holds (assuming low

expansion rate and bounded aspect ratio).

Given the wide applications of cover trees, parallelizing it is

of interest both in theory and in practice. There are two major

1
A simple example is a uniform metric space [5] where all pairwise distances are

similar so that we can take no structural advantage [8].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3490148.3538581
https://doi.org/10.1145/3490148.3538581
https://doi.org/10.1145/3490148.3538581

AB
C

C

DA
E

F

B
G H

A

Level 2, radius=22

Level 1, radius=21

Level 0, radius=20

Figure 1: An example cover tree with 8 points in 3 levels. No points

are in other points’ circles at the same level (separation distance),

and each point is in at least one point’s circle at a higher level

(covering distance).

challenges in parallelizing it. The first one is the complication in the

algorithms mentioned above, especially in the analysis. The second

and main reason is that the existing cover tree algorithms are also

inherently sequential—both the insertion and the deletion are in a

depth-first order (see Alg. 1 and 2: the algorithms need to traverse

as deep as possible, and modify the cover tree during backtracking).

Hence, the result of a single-insert/delete can drastically change the

position of another operation. An example is presented in Fig. 2. The

two inserted nodes, even when they will be inserted to different

branches in the tree, can interact and conflict with each other.

Hence it is highly non-trivial to parallelize the original algorithm

to handle parallel insertions on two or more points. To solve such

conflicts, we need some proximity information for each point (e.g.,

the points close to it), but such information is not known before

the point is inserted into the cover tree. This chicken-and-egg issue

adds extra difficulty to parallelizing the cover tree. To the best of

our knowledge, we are only aware of two papers that “claimed”

that they parallelized the cover tree [39, 57]. Sharma and Joshi’s

algorithm [57] missed many details and it remains unclear what

their algorithms and the cost bounds are. Izbicki and Shelton’s

version [39] relaxed the separation property in cover trees. Hence,

their tree is more similar to a quadtree, and the cost of an NNS can

be linear as opposed to logarithmic in the original cover tree [8].

As a result, it has been open for 15 years on parallelizing the cover

tree proposed in 2006, while maintaining logarithmic query and

update costs.

Contribution in this paper. We show highly parallel and work-

efficient cover tree algorithms that can handle batch insertions

(and thus construction) in Alg. 4 and batch deletions in Alg. 5. In

particular, we show algorithms with the following bounds on work

(number of operations) and span (longest dependent operations,

formally defined in Sec. 2):

Theorem 1.1. Assuming constant expansion rate and bounded
aspect ratio, inserting or deleting𝑚 points into a cover tree with 𝑛

points takes𝑂 (𝑚 log𝑛) expected work and polylogarithmic span with
high probability.

This also indicates that constructing a cover tree of size 𝑛 takes

𝑂 (𝑛 log𝑛) expected work and polylogarithmic span with high prob-

ability. Themore precise versions of the results are given in Thm. 4.9,

4.10 and 4.12. Our algorithms are work-efficient (modulo random-

ization) as they spend the same operations as the sequential al-

gorithm. NNS queries are naturally parallelized since they do not

modify the cover tree, but cluster queries, as discussed in many ap-

plications in Sec. 5, require batch-deletion on the persistent parallel

cover tree.

We note that designing the parallel algorithms for batch-insertion

and batch-deletion is highly non-trivial, both in algorithm design

and in analyzing the correctness and cost bounds. Our key idea is

that, instead of inserting or deleting the points using depth-first

traversal, we consider all points to be inserted or deleted at each

level as a whole, and process the levels either top-down (for in-

sertion) or bottom-up (for deletion). Take the batch insertion as

an example. To process a set of points 𝑆 to be inserted at level 𝑖 ,

the main challenge is to identify a subset 𝑆 ′ of them that can be

added to this level, such that (1) they are well-separated and (2) all

other points in 𝑆 will be covered either by the existing points at

this level or points in 𝑆 ′. Our key insight is to model the points as

a graph 𝐺 to illustrate the pairwise conflict relationship (i.e., two

points cannot both be put at this level because they are too close

to each other). Then any maximal independent set (MIS) on this

graph gives a feasible set of points that can be inserted at this level,

while other points are guaranteed to be covered by some of the

selected points at this level. Using this MIS approach gives a valid

cover tree, but its efficiency is not straightforward—considering

constructing a cover tree by batch-inserting 𝑛 points to an empty

tree. Constructing the graph 𝐺 already takes at least 𝑂 (𝑛2) work,
but the sequential algorithm only uses 𝑂 (𝑛 log𝑛) work. To make

our algorithm work-efficient and highly parallel, in addition, we

need to consider: (1) the prefix doubling approach such that the

“additional information” that each sub-batch adds to the cover tree

is limited (to bound the number of edges in 𝐺); (2) to minimize

the number of point pairs to check when constructing edges in 𝐺

and avoid checking pairwisely in the batch; and (3) to efficiently

propagate information between the levels. With detailed solutions

and justifications given in Sec. 4, we can show that with our design,

the additional work to resolve the conflicts caused by parallel in-

sertions (constructing𝐺 and running MIS on 𝐺) is asymptotically

bounded by the work of the sequential insertion, in expectation.

Also, using parallel MIS [4, 12] with polylogarithmic span enables

polylogarithmic span for the entire algorithm since a cover tree has

Θ(log𝑛) levels assuming low expansion rate and bounded aspect

ratio. Putting all pieces together, our batch-insertion algorithm is

work-efficient and highly parallel, with the cost bounds given in

Thm. 4.9 and 4.10. Batch-deletion can be solved similarly, but it

does not require the prefix-doubling scheme.

Given the wide applications of NNS in computational geome-

try and machine learning, our new algorithms for cover tree give

the first work-efficient and highly parallel solutions to a list of

problems given in Sec. 5, again assuming low expansion rate and

bounded aspect ratio. While for many of the applications, we can

just replace the sequential cover tree with our parallel one, we high-

light our algorithm for Euclidian minimum spanning tree (EMST)

and single-linkage clustering. To support parallel cluster queries in

these applications, we need to make our cover tree a functional data

structure. For single-linkage clustering, which is one of the most

widely-used methods for hierarchical agglomerative clustering, we

combine our parallel EMST algorithm with a recent algorithm by

Wang et al. [66], and achieve the first nearly-work-efficient parallel

algorithm with polylogarithmic span.

A

A
B

A
B

Y

X

B

AB

A

A B

AB

A

AX B

AB

A

AY

B

AB

A

AX Y B

AB

A

AX

YX

B

AB

A

AY

YX

(a) (b) (c)

(d) (e) (f)

Y
X

Figure 2: An example of the challenge for parallel insertion. Points A and B are already in the tree and we now want to insert points X and

Y. Figure (a) shows the original cover tree before the insertions, and figures (b) and (c) give the tree if either X or Y is inserted, respectively.

However, if both insertions are applied in parallel and independently, then the tree shown in figure (d) becomes invalid since points X and

Y are not separated in this level. In the sequential algorithm, figure (e) shows the final cover tree when we first insert X and then Y, and

figure (f) gives the tree after inserting point Y then X. Both versions are valid cover trees, but a correct parallel algorithm needs to identify

the potential conflict between point pairs like X and Y, and yield a correct output tree (either figure (e) or (f)). Our solution requires a few key

observations and an efficient parallel MIS (maximal independent set) algorithm as a subroutine, and is explained in more details in Sec. 4.1.

2 PRELIMINARIES
We use the term 𝑂 (𝑓 (𝑛)) with high probability (whp) in 𝑛 to

indicate the bound𝑂 (𝑘 𝑓 (𝑛)) holds with probability at least 1−1/𝑛𝑘
for any 𝑘 ≥ 1. With clear context we drop “in 𝑛”. We use log𝑛 as a

short form of 1 + log
2
(𝑛 + 1).

Low-Expansion Metric Space. A metric (𝑋,𝑑𝑋) is defined on a

set 𝑋 and with a distance function 𝑑 : 𝑋 × 𝑋 → R∗ that satisfies
properties: (1) 𝑑𝑋 (𝑥,𝑦) = 0 ⇔ 𝑥 = 𝑦 for 𝑥,𝑦 ∈ 𝑋 , (2) 𝑑𝑋 (𝑥,𝑦) =
𝑑𝑋 (𝑦, 𝑥) for 𝑥,𝑦 ∈ 𝑋 , and (3) 𝑑𝑋 (𝑥,𝑦) ≤ 𝑑𝑋 (𝑥, 𝑧) + 𝑑𝑋 (𝑧,𝑦) for
𝑥,𝑦, 𝑧 ∈ 𝑋 . With clear context, we drop the superscript 𝑋 .

Define 𝐵𝑋 (𝑝, 𝑟) = {𝑥 ∈ 𝑋 | 𝑑 (𝑝, 𝑥) ≤ 𝑟 } as the closed ball

centered at point 𝑝 and containing all points in 𝑋 at a distance of

at most 𝑟 from 𝑝 . With clear context, we drop 𝑋 . We say a metric

has (𝜌, 𝑐)-expansion [41] iff for all 𝑝 ∈ 𝑋 and 𝑟 > 0,

|𝐵(𝑝, 𝑟) | ≥ 𝜌 =⇒ |𝐵(𝑝, 2𝑟) | ≤ 𝑐 · |𝐵(𝑝, 𝑟) |.
The parameter 𝑐 is referred to as the expansion rate of the metric

space, and we say a metric has a low or constant expansion rate

if 𝑐 = 𝑂 (1). Usually we assume 𝜌 is 𝑂 (log |𝑋 |), which guarantees

constant expansions for most real-world datasets. Intuitively, low

expansion means a smooth distribution of the points, and rules out

the case where as the ball grows, we encounter a few points, then a

long distance with no points, then suddenly a tremendous number

of points. This case is also less likely in most real-world datasets.

Theorem 2.1 (Sampling Theorem [41]). Given a metric with
(𝜌, 𝑐)-expansion, a uniformly random subset 𝑋 ′ with |𝑋 ′ | =𝑚 will
have (max(𝑐𝜌,𝑂 (log𝑚)), 2𝑐)-expansion with high probability to𝑚.

We note that if we want to improve the probability to the size

of 𝑛, then the analysis in [41] implies that we just change𝑂 (log𝑚)
in the parameter to 𝑂 (log𝑛).

This theorem shows that for low-expansion metric space, a sam-

ple of this space is also low-expansion. This is crucial for our ran-

domized batch-insertion algorithm in Sec. 4.1.

The query cost for cover trees relies on the expansion rate in-

cluding or excluding the query point(s). For simplicity, we still

use 𝑐 to denote the expansion rate after such modifications, if it

is increased. In particular, for single-point query and bichromatic

closest pairs, the query expansion rate includes the query point; for

Euclidean MST and single-linkage clustering, the query expansion

rate excludes the query points.

Bounded Aspect Ratio. Bounded aspect ratio is another common

assumption for real-world datasets. Aspect ratio is defined as Δ =
max{𝑑 (𝑥,𝑦) | 𝑥,𝑦∈𝑋 }
min{𝑑 (𝑥,𝑦) | 𝑥,𝑦∈𝑋 } . A common assumption is that the aspect ratio

is bounded—if the input size is 𝑛, then the aspect ratio is 𝑛𝜅 for

some constant 𝜅 > 0. For instance, the ratio of the Earth’s radius

to a sand’s radius is only about 10
10 ≈ 2

33
. Most of the real-world

applications have aspect ratios smaller than this value. Hence, for

big-data applications (usually 𝑛 ≥ 10
6
), it is reasonable to assume

Δ = 𝑛𝜅 for some constant 𝜅 > 0, and logΔ = 𝑂 (log𝑛). The height
of a cover treeH(𝑇) is ⌈1 + log

2
Δ⌉. For theoretical accuracy, we

leaveH(𝑇) as a parameter when analyzing existing and our new

cover tree algorithms, while in practical applications we can assume

H(𝑇) = 𝑂 (log
2
Δ) = 𝑂 (log𝑛).

For simplicity, throughout this paper, we assumemin𝑑 (𝑥,𝑦) = 1,

so aspect ratio is simplified as Δ = max𝑑 (𝑥,𝑦). Note that this is
only for the ease of description (e.g., the leaf level in a cover tree is

always level 0), and none of the previous cover tree algorithms or

our new ones rely on this assumption.

Functional Trees / Persistent Trees. Functional data structures
are data structures that are immutable (i.e., no operations modify

existing data), and thus any update operation will create a new

version instead of updating in place. For tree-based data structures,

recent work [10, 11, 27, 28, 61, 62] showed that using path-copying

is a both theoretically and practically efficient approach to support

functional trees. In particular, any update (including insertion or

deletion) will copy the full path from the root to the node (or nodes,

for multi-point queries) to be updated. In this way, we can maintain

copies of all history versions of the tree structure, which will be

useful for many applications in Sec. 5. An illustration of a persistent

tree using path-copying is presented in Fig. 3.

AB
C

C

DA
E

F

B
G H

A
A’

B’

Insert X into 𝑇

X

Figure 3: A functional cover tree using path copying. The blue

nodes and lines show the original cover tree 𝑇 . When inserting a

new point 𝑋 , it follows the path from 𝐴 → 𝐵 and will be finally

inserted as a child of 𝐵. A functional insertion will copy all nodes

on the path (i.e., 𝐴 to 𝐴′ and 𝐵 to 𝐵′), and insert them to the copied

nodes. The tree nodes in the original cover tree are immutable.

Finally, following the root of 𝐴′, we can find the cover tree 𝑇 ′

with the new point 𝑋 inserted, and the original cover tree 𝑇 is still

accessible by reading the root 𝐴.

Computational Model and Notations. We use the work-span

model for fork-join parallelism with binary forking to analyze par-

allel algorithms [11, 25], which is recently used in many papers on

parallel algorithms (a short list: [2, 6, 13, 14, 21, 22, 24, 29]).

We assume a set of threads that share a common memory. Each

thread supports standard RAM instructions, and a fork instruc-

tion that forks two new child threads. When a thread performs a

fork, the two child threads all start by running the next instruction,
and the original thread is suspended until all children terminate.

A computation starts with a single root thread and finishes when

that root thread finishes. An algorithm’s work is the total number

of instructions and the span (depth) is the length of the longest

sequence of dependent instructions in the computation. We can ex-

ecute the computation efficiently using a randomized work-stealing

scheduler both in theory and in practice [11, 17, 25].

Some subcomponents (MIS and semisort, see details below) used

in this paper need constant-cost atomic operation TestAndSet(𝑝),
which reads and attempts to set the boolean value pointed to by 𝑝

to true. It returns true if successful and false otherwise.
ParallelMaximal Independent Set. For a graph𝐺 = (𝑉 , 𝐸), an in-
dependent set is a set of vertices𝑉 ′ ⊆ 𝑉 , such that for any𝑢, 𝑣 ∈ 𝑉 ′,
(𝑢, 𝑣) ∉ 𝐸. A maximal indepent set (MIS) is an independent set 𝑉 ′

where ∀𝑣 ∈ 𝑉 , 𝑣 ∉ 𝑉 ′,𝑉 ′∪{𝑣} is not an independent set. In parallel,

the problem can be solved in𝑂 (|𝐸 |) work and𝑂 (log3 |𝑉 |) spanwhp.
Our recent work [58] improved the span to𝑂 (log |𝑉 | log𝑑max) whp
where 𝑑max is the maximum degree of any vertex in the graph 𝐺 .

In this paper, we will use parallel MIS as a subcomponent.

Semisort. Given a sequence of key-value pairs, a semisort algo-
rithm reorders the element in the sequence such that elements with

the same key are contiguous [36]. In parallel, semisort can be solved

in 𝑂 (𝑛) expected work and 𝑂 (log𝑛) span whp [11].

3 COVER TREES
This section overviews the cover tree structure [8] and its various

properties shown in [8, 31, 43].

A cover tree consists of a number of levels that are indexed by

the integer 𝑖 , which decreases as the levels are descended. Every

level consists of nodes, each of which corresponds to a unique point

in the data set 𝑆 . Note that each point can correspond to multiple

nodes across different levels.

Let 𝐶𝑖 denote the set of points in 𝑆 associated with the nodes at

level 𝑖 . The cover tree is defined to maintain three key invariants:

(1) Nesting. 𝐶𝑖 ⊂ 𝐶𝑖−1. This means that a point that is associ-

ated with a node at one level is also associated with a node

at every level below it.

(2) Covering tree. For every 𝑝 ∈ 𝐶𝑖−1, there exists a 𝑞 ∈ 𝐶𝑖
such that 𝑑 (𝑝, 𝑞) ≤ 2

𝑖
and the node at level 𝑖 associated with

𝑞 is a parent of the node at level 𝑖 − 1 associated with 𝑝 .

(3) Separation. For all distinct 𝑝, 𝑞 ∈ 𝐶𝑖 , 𝑑 (𝑝, 𝑞) > 2
𝑖
.

For simplicity, we assume 𝑑 (𝑝, 𝑞) ≥ 1 for all 𝑝, 𝑞 ∈ 𝑆 , so all

critical levels in the cover tree has 𝑖 ≥ 0.

Finally, we differentiate a few different versions using compres-

sion. The plain version stores the cover tree in ⌈1 + log
2
Δ⌉ levels,

so each point can show up at multiple levels. The tree height is

then H(𝑇) = ⌈1 + log
2
Δ⌉. To compress the tree, one can either

compress a tree node with one child (so the tree has at most 2𝑛 − 1
nodes) [8], or consider all tree nodes corresponding to the same

point as a supernode [31]. We use the plain version throughout this

paper since parallelizing cover trees is already very challenging.

Meanwhile, we believe that our techniques apply to the compressed

versions, and we leave that as future work.

3.1 Cover Tree Properties
Below are some important lemmas for cover trees that will be used

in designing algorithms for parallel cover trees.

Lemma 3.1. For each point 𝑝 , the number of points at level 𝑖 which
falls into ball 𝐵(𝑝, 2𝑖+𝜅) is 𝑐3+𝜅 for any non-negative integer 𝜅.

Proof. Let 𝑄 = 𝐵(𝑝, 2𝑖+𝜅) ∩𝐶𝑖 (𝐶𝑖 is the set of points at level 𝑖) be
the set of points described in Lem. 3.1. For all 𝑞 ∈ 𝑄 , since they are

all at level 𝑖 , the balls 𝐵(𝑞, 2𝑖−1) must be disjoint. The idea is then

to bound the number of such disjoint balls around 𝑝 . Now consider

all points within ball 𝐵(𝑝, 2𝑖+𝜅+1), which is a superset of𝑄 . We will

then discuss the number of disjoint balls 𝐵(𝑞, 2𝑖−1) one can pack

inside 𝐵(𝑝, 2𝑖+𝜅+1). For any 𝑞 ∈ 𝑄 , since 𝑞 ∈ 𝐵(𝑝, 2𝑖+𝜅), we have
𝑑 (𝑝, 𝑞) ≤ 2

𝑖+𝜅
, and thus 𝐵(𝑝, 2𝑖+𝜅+1) ⊆ 𝐵(𝑞, 2𝑖+𝜅+2). Therefore,

|𝐵(𝑝, 2𝑖+𝜅+1) | ≤ |𝐵(𝑞, 2𝑖+𝜅+2) | ≤ 𝑐3+𝜅 |𝐵(𝑞, 2𝑖−1) |

Note that all balls𝐵(𝑞, 2𝑖−1)must be contained in ball𝐵(𝑝, 2𝑖+𝜅+1).
This proves that the total number of such points 𝑞 can be no more

than |𝐵(𝑝, 2𝑖+𝜅+1) |/|𝐵(𝑞, 2𝑖−1) | ≤ 𝑐3+𝜅 . □

We note that this lemma can be viewed as a simplified form of

the packing lemma in [31]. Since this form is exactly what is needed

to analyze our parallel cover tree, we provide this analysis here,

and hopefully it provides some insights to the readers on how the

expansion rate affects the properties of the cover tree. Based on

this lemma, it is easy to bound the number of children for any tree

node in a cover tree.

Corollary 3.2. The number of children of any tree node is ≤ 𝑐4

in a cover tree.

Algorithm 1: Single-Point Insert(𝑝 , 𝑄𝑘 , 𝑘).

Input: The point 𝑝 to be inserted, a cover set 𝑄𝑘 and a level

𝑘 .

Output: A cover tree that includes the new point 𝑝 .

1 𝑄 ← {Children(𝑞) | 𝑞 ∈ 𝑄𝑘 }
2 if 𝑑 (𝑝,𝑄) > 2

𝑘 then return false
3 else
4 𝑄𝑘−1 ← {𝑞 ∈ 𝑄 | 𝑑 (𝑝, 𝑞) ≤ 2

𝑘 }
5 if Insert(𝑝,𝑄𝑘−1, 𝑘 − 1) = false then
6 if 𝑑 (𝑝,𝑄𝑘) ≤ 2

𝑘 then
7 𝑞 ← any point in 𝑄𝑘 satisfying 𝑑 (𝑝, 𝑞) ≤ 2

𝑘

8 Insert 𝑝 into 𝑞’s children

9 return true and exit

10 else
11 return false

For a tree node at level 𝑖 , all children are at level 𝑖 − 1 and must

be in 𝐵(𝑝, 2𝑖). Plugging in 𝜅 = 1 gives the stated bound. This is a

simple use case of Lem. 3.1, and in Sec. 4, we will extensively use it

to bound the work and span for the parallel cover tree algorithms.

Lemma 3.3 (Query cost [31]). A nearest neighbor query takes
𝑂 (𝑐10H(𝑇)) work, and a 𝑘-nearest neighbor query takes 𝑂 (𝑐7 (𝑘 +
𝑐3) log𝑘 · H (𝑇)) work.

The analyses are given by Elkin and Kurlin in [31]. The nearest

neighbor query algorithm loops over all tree levels in a top-down

manner. At each level, it visits at most 𝑐6 tree nodes. Then the

algorithm will check all their children, multiplying another 𝑐4. The

𝑘-NN search can be analyzed similarly.

3.2 Sequential Cover Tree Algorithms
We now review a few useful sequential primitives on cover trees.

Elkin and Kurlin [31] recently pointed out some fatal issues in the

analysis of the original cover tree paper. Here, we formally analyze

the sequential algorithms first. We do not consider the analysis in

this section as a contribution of this paper, but we need the results

to correctly bound our parallel algorithms.

Single-point insertion. We present the single insertion algorithm

on the cover tree in Alg. 1, originally from [43].

It iterates over the levels of the tree from top to bottom, and at

each level it has a set𝑄𝑖 of nodes that 𝑝 could possibly be a descen-

dent of. Specifically, any node within a distance of 2
𝑖+1

from 𝑝 is

a candidate. In the first iteration, 𝑄𝑖 contains only the root node.

We construct a set 𝑄𝑖−1 for the next level down by taking all the

children of nodes in 𝑄𝑖 and filtering out those that are not candi-

dates. We then make a recursive call with𝑄𝑖−1, which represents an
attempt to insert 𝑝 as a descendent of one of𝑄𝑖−1. If that fails, then
nodes for 𝑝 at any levels below 𝑖 fulfill the separation condition, so

if a node at this level in𝑄𝑖 covers 𝑝 , we can insert 𝑝 as its child and

exit. If no such node covers 𝑝 , then we return false.

Theorem 3.4 (Single insertion work). A single point insertion
uses 𝑂 (𝑐5H(𝑇)) work.
Proof. The insertion algorithm traverses all levels in the tree, and

visits all tree nodes 𝑞𝑖 at level 𝑘 − 1 if 𝑑 (𝑝, 𝑞𝑖) ≤ 2
𝑘
, and their

Algorithm 2: Single-Point Delete(𝑝 , {𝑄𝑘 , 𝑄𝑘+1, ..., 𝑄∞}, 𝑘).
Input: The point 𝑝 to be deleted, a set of cover sets

{𝑄𝑘 , 𝑄𝑘+1, ..., 𝑄∞}, and the current level 𝑘 .

Output: The modified cover tree that excludes the point 𝑝 .

1 𝑄 ← {Children(𝑞) : 𝑞 ∈ 𝑄𝑘 }
2 𝑄𝑘−1 ← {𝑞 ∈ 𝑄 | 𝑑 (𝑝, 𝑞) ≤ 2

𝑘 }
3 Delete(𝑝 , {𝑄𝑘−1, 𝑄𝑘 , ..., 𝑄∞}, 𝑘 − 1)
4 if 𝑑 (𝑝,𝑄) = 0 then
5 Remove 𝑝 from 𝐶𝑘−1 and from the children of Parent(𝑝)

6 for 𝑝′ ∈ Children(𝑝) do
7 𝑘′ ← 𝑘 − 1
8 while 𝑑 (𝑝′, 𝑄𝑘 ′) > 2

𝑘 ′ do
9 Insert 𝑝′ into 𝐶𝑘 ′ (and 𝑄𝑘 ′)

10 𝑘′ ← 𝑘′ + 1
11 𝑞′ ← any point in 𝑄𝑘 ′ satisfying 𝑑 (𝑝′, 𝑞′) ≤ 2

𝑘 ′

12 Make 𝑞′ as the parent of 𝑝′

children 𝑞′
𝑗
. Note that all balls 𝐵(𝑞′

𝑗
, 2𝑘−1) must be in 𝐵(𝑝, 2𝑘+1), so

based on Lem. 3.1, there can only be 𝑐5 of such points. Hence, the

insertion algorithm uses 𝑂 (𝑐5H(𝑇)) work. □

Here this bound seems tighter than the bound by Elkin and

Kurlin [31], given that their bound is 𝑂 (𝑐8H(𝑇)). However, we
note that the definition of tree height in [31] is different from us—

their tree height only counts for non-empty levels while our tree

height includes all levels. Hence, either bound can be better, decided

by the input distribution.

Single-point deletion. The deletion algorithm again starts from

the top of the tree and goes down one level at a time, and again

at each iteration it starts with a set of nodes at this level 𝑄𝑖 that

are within two times the covering distance of 𝑝 . The recursive call

will remove 𝑝 from every level below this level, and also find new

parents for the orphaned nodes. After the recursive call returns,

we only need to remove 𝑝 from this level and find parents for the

newly orphaned nodes. For each orphaned node, it must be covered

by some node in 𝑄 , so we just check each 𝑄 in order, starting from

this level and going up the levels until we find the first level that

covers us. The only exception is when the root is deleted, and we

can process that separately. Then once we find the new parent of

the orphaned node, we will update the pointers.

Lemma 3.5 (Single deletion work). A single point deletion uses
𝑂 (𝑐8H(𝑇)) work.
Proof. Beygelzimer et al. [8] showed that in the deletion algorithm,

only one point from each level can promote more than two levels

(Line 8–10). At each level, the deleted point 𝑝 has at most 𝑐4 children,

which is compared to at most 𝑐4 tree nodes in𝑄𝑘 ′ for at most twice.

Given that the tree height is H(𝑇), multiplying the three terms

gives the stated single deletion work bound. □

Traversing the cover tree. Another commonly used sequential

algorithm on cover trees is to traverse the tree w.r.t. a point 𝑝 , in or-

der to extract all tree nodes covering 𝑝 (based on the corresponding

radius at each level). The set of these nodes is simply the concate-

nation of all the sets𝑄 ′ in each iteration of Line 4. The algorithm is

given in Alg. 3. Similar to single insertion/deletion, we keep track of

Algorithm 3: Traverse(𝑇 , 𝑝)
Input: The cover tree 𝑇 and the point 𝑝 to be checked.

Output: A list of tree nodes 𝑁 that contains tree nodes 𝑞𝑖

on level 𝑘 such that 𝑑 (𝑝, 𝑞𝑖) < 2
𝑘+1

.

1 𝑁 ← {virtual-root}
2 𝑄 ← {𝑇 .root}
3 for 𝑘 from root level to leaf level do
4 𝑄 ′ ← {𝑞 ∈ 𝑄 | 𝑑 (𝑝, 𝑞) < 2

𝑘+1}
5 𝑁 ← 𝑁 ∪𝑄 ′
6 𝑄 ← {Children(𝑞) | 𝑞 ∈ 𝑄 ′}
7 return 𝑁

the tree nodes that are sufficiently close to the point, in a top-down

manner. The cost for traversal is the same as insertion since they

touch the same set of tree nodes.

We note that the traversal cost is cheaper than an NNS on the

cover tree (Lem. 3.3). The reason is that NNS can visit nodes that

Alg. 3 does not visit. For instance, the tree node for the nearest

neighbor of a query point does not necessarily cover the query

point. Hence, a tighter work bound for Alg. 3 can be obtained.

4 THE PARALLEL COVER TREE ALGORITHM
In this section, we discuss the parallel cover tree algorithms. We

note that the queries on cover trees are already parallel since they

do not change the data structure, so multiple queries can directly

be applied simultaneously. Now we will introduce our algorithms

for batch insertion and batch deletion that are work-efficient and

have polylogarithmic span, assuming constant expansion rate and

bounded aspect ratio.

4.1 The Batch-Insertion Algorithm
The challenge of a parallel insertion algorithm is illustrated in Fig. 2.

In short, we want to identify all potential point pairs that would

violate the separation property if we inserted them independently,

while maintaining the work-efficiency. For instance, checking all

point pairs in a batch of size 𝑚 will lead to 𝑂 (𝑚2) work, which
is suboptimal when 𝑚 = 𝜔 (log𝑛) since the sequential insertion
takes𝑂 (𝑚 log𝑛) work. Hence, we need two key components in our

insertion algorithm (Alg. 4)—one is the maximal independent set

that enables parallel insertions and resolves the conflicts, and the

other is prefix doubling that guarantees work-efficiency.

To tackle the possible conflicts between point pairs, we note the

following fact:

Lemma 4.1. For every point pair 𝑝𝑖 and 𝑝 𝑗 that are both inserted
at level 𝑖 as single insertions and violate the separation property, for
𝑝𝑖 ’s parent 𝑝 𝑓 , we have 𝑑 (𝑝 𝑓 , 𝑝 𝑗) < 3 · 2𝑖 .
Proof. Since 𝑝𝑖 and 𝑝 𝑗 violate the separation property, we know

𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2
𝑖
. Since 𝑝𝑖 is 𝑝 𝑓 ’s child, 𝑑 (𝑝𝑖 , 𝑝 𝑓) < 2

𝑖+1
. Combin-

ing with the triangle inequality, we have 𝑑 (𝑝 𝑓 , 𝑝 𝑗) ≤ 𝑑 (𝑝𝑖 , 𝑝 𝑗) +
𝑑 (𝑝𝑖 , 𝑝 𝑓) < 3 · 2𝑖 . □

Therefore, our insertion algorithm identifies these conflict pairs

by first using Alg. 3 on Line 7 to traverse the existing tree for each

point 𝑝𝑖 ∈ 𝑆 and record the tree node 𝑞 𝑗 with 𝑑 (𝑝𝑖 , 𝑞 𝑗) < 2
𝑘+1

Notation Definition
General:

𝑇 The original cover tree

𝑆 The batch that contains points to be inserted or

deleted

𝑝𝑖 Referring to a point in 𝑆

𝑞𝑖 Referring to an tree node in 𝑇

Specific for batch-insert:

𝑆𝑖 The 𝑖-th inserted batch based on prefix doubling

𝑆𝑖 𝑇 ∪ 𝑆0 ∪ · · · ∪ 𝑆𝑖
𝑃𝑖 The parent tree node 𝑝𝑖 ∈ 𝑆 should be inserted if

done sequentially in isolation

𝑙𝑖 The level 𝑝𝑖 ∈ 𝑆 should be inserted if done sequen-

tially in isolation

𝐿𝑘 𝐿𝑘 ← {𝑝𝑖 | 𝑙𝑖 = 𝑘}
Π𝑞𝑖 The “conflict set” for tree node 𝑞𝑖 ∈ 𝑇 that is {𝑝 𝑗 ∈

𝑆 | 𝑑 (𝑞𝑖 , 𝑝 𝑗) < 2
𝑘+1}, where 𝑞 𝑗 is at the 𝑘-th level

Specific for batch-delete:

𝐴𝑖 Point 𝑝𝑖 ’s ancestor at the level being processed

𝐿𝑘 All tree nodes that should be deleted at level 𝑘

𝑋 The current set of uncovered (orphaned) tree nodes

due to deletions

Π𝑞𝑖 The “conflict set” for tree node 𝑞𝑖 ∈ 𝑇 that is {𝑞 𝑗 ∈
𝑋 | 𝑑 (𝑞𝑖 , 𝑞 𝑗) < 2

𝑘+1}, where 𝑞 𝑗 is at the 𝑘-th level

Table 1: Notations used in parallel cover trees and analysis.

where 𝑞 𝑗 is at the 𝑘-th level. At the same time, Alg. 3 also computes

the level 𝑙𝑖 and the parent tree node 𝑃𝑖 when a single point 𝑝𝑖 ∈ 𝑆
is inserted into the cover tree in the sequential algorithm.

Once we have 𝑙𝑖 and all pairs (𝑞 𝑗 , 𝑝𝑖), we can semisort them and

get 𝐿𝑘 that contains all points to be inserted at level 𝑘 (Line 9), and

Π𝑞 𝑗
that is the set of inserted points covered by tree node 𝑞 𝑗 with

distance 2
𝑘+1

(Line 8), where 𝑘 is the level that tree node 𝑞 𝑗 is in.

After all the preprocessing, we come to the interesting part of this

algorithm: inserting all nodes at each level in top-down order. An

illustration for this step is given in Fig. 4. Consider we are processing

level 𝑘 now. For each point 𝑝𝑖 ∈ 𝐿𝑘 to be inserted, for all tree node

𝑞 𝑗 at the 𝑘-th level, we know 𝑑 (𝑝𝑖 , 𝑞 𝑗) > 2
𝑘
since otherwise 𝑝𝑖 will

be inserted in 𝑞 𝑗 ’s subtree in a deeper level. Meanwhile, we know

there exists at least one tree node 𝑞 𝑗 with 𝑑 (𝑝𝑖 , 𝑞 𝑗) ≤ 2
𝑘+1

since

otherwise 𝑝𝑖 can be inserted at a higher level. Hence, all points in

𝐿𝑘 must be in the annuli with distance 2
𝑘
and 2

𝑘+1
centered at tree

nodes at level 𝑘 , as shown in the grey region in Fig. 4.

We then build the graph 𝐺 to decide the feasible points to be

added at level 𝑘 . We in parallel enumerate each point 𝑝𝑖 ∈ 𝐿𝑘 and

check all possible conflict pairs (Line 12). As indicated by Lem. 4.1,

we only need to enumerate the points in Π𝑃𝑖 ∩ 𝐿𝑘 (𝑃𝑖 is 𝑝𝑖 ’s parent

if 𝑝𝑖 is inserted as a single point) since Π𝑃𝑖 captures all points

𝑝 𝑗 with 𝑑 (𝑝𝑖 , 𝑝 𝑗) < 3 · 2𝑘 (Line 13). We then on Line 14 check if

𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2
𝑘
(violating the separation property), and if so, we add

an edge between these two points in 𝐺 (Line 15). Such an example

graph is shown on the top-right in Fig. 4.

Once the graph𝐺 is constructed, we will run a maximal indepen-

dent set (MIS) algorithm on 𝐺 and let 𝐼 to be output that contains

Algorithm 4: BatchInsert(𝑇 , 𝑆).
Input: A cover tree 𝑇 and a set of node 𝑆 .

Output: The new cover tree 𝑇 ′ that includes all nodes in 𝑆 .

1 Randomly shuffle points in 𝑆 and partition them into groups

of 𝑆0, 𝑆1, . . . 𝑆log |𝑆 |−1, s.t. |𝑆0 | = 1 and |𝑆𝑖 | = 2
𝑖−1

for 𝑖 > 0

2 for 𝑖 ← 0 to log |𝑆 | − 1 do
3 BatchInsertHelper(𝑇 , 𝑆𝑖)

4 Function BatchInsertHelper(𝑇 , 𝑆)

5 Let 𝐶 ← ∅ be a set of pairs of (𝑞 𝑗 , 𝑝𝑖).
6 parallel foreach 𝑝𝑖 ∈ 𝑆 do
7 Run Traverse(𝑇 , 𝑝𝑖). For each node 𝑞 𝑗 ∈ 𝑇 with

𝑑 (𝑝𝑖 , 𝑞 𝑗) < 2
𝑘+1

where 𝑞 𝑗 is at the 𝑘-th level, add

the pair (𝑞 𝑗 , 𝑝𝑖) to 𝐶 . Set 𝑃𝑖 and 𝑙𝑖 to the node that

𝑝𝑖 sould be a child of and 𝑙𝑖 to the level 𝑝𝑖 should

be inserted if done sequentially in isolation.

8 Semisort 𝐶 by 𝑞 𝑗 and set Π𝑞 𝑗
← {𝑝𝑖 | (𝑞 𝑗 , 𝑝𝑖) ∈ 𝐶}

9 Semisort nodes in 𝑆 based on 𝑙𝑖 , and let

𝐿𝑘 ← {𝑝𝑖 | 𝑙𝑖 = 𝑘}
10 for 𝑘 from the root level to leaf level do
11 Initialize a graph 𝐺 as (𝐿𝑘 , ∅)
12 parallel foreach 𝑝𝑖 ∈ 𝐿𝑘 do
13 parallel foreach 𝑝 𝑗 ∈ Π𝑃𝑖 ∩ 𝐿𝑘 do
14 if 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2

𝑘 then
15 Create an edge between 𝑝𝑖 and 𝑝 𝑗

16 Compute the MIS of 𝐺 and let 𝐼 be the selected

vertices

17 Insert the point 𝑝𝑖 ∈ 𝐼 to the cover tree based on 𝑃𝑖
from level 𝑘 to level 0 (leaf level)

18 parallel foreach 𝑝𝑖 ∈ 𝐼 do
19 parallel foreach 𝑝 𝑗 ∈ Π𝑃𝑖 do
20 Let 𝑘′ = ⌈log

2
𝑑 (𝑝𝑖 , 𝑝 𝑗)⌉

21 if 𝑘′ − 1 < 𝑘 then
22 for ¯𝑘 from 𝑘′ − 1 to 𝑘 − 1 do
23 Add 𝑝 𝑗 to Π𝑞 𝑗

, where 𝑞 𝑗 is a node at

level
¯𝑘 corresponding to 𝑝𝑖

24 if 𝑘′ < 𝑙 𝑗 then
25 𝑃 𝑗 ← the tree node for 𝑝𝑖 at level 𝑘

′

26 Remove 𝑝 𝑗 from 𝐿𝑙 𝑗
27 Add 𝑝 𝑗 to 𝐿𝑘 ′

28 𝑙 𝑗 ← 𝑘′

the selected vertices (Line 16). In Fig. 4, 𝐼 = {𝑄, 𝑆,𝑉 ,𝑊 }. All points
in 𝐼 can be inserted into the cover tree at level 𝑘 (Line 17), while at

least one of its selected neighbors will cover every other point.

After we build the tree nodes for the points in 𝐼 , we have two

more tasks. For each selected vertex in 𝐼 , we generate the conflict

sets for all inserted tree nodes corresponding to this point, executed

on Line 23 based on the definition of the conflict sets. It is easy to

see that all points in these conflict sets generated by the point 𝑝𝑖
must be in Π𝑃𝑖 . The second task is that we need to check if the

newly inserted points invalidate the current insert positions 𝑃 𝑗 of

some uninserted points 𝑝 𝑗 in 𝑆 . Consider a point 𝑝 𝑗 that is very

close to a newly inserted point 𝑝𝑖 (say 𝑑 (𝑝𝑖 , 𝑝 𝑗) = 1). In this case,

C

P
Q

R
S

T

U
V

W

P
Q S

A

V

WQ

R

S

T

U

V

W

A

A

B

B

C

C

A

B

Figure 4: The parallel insertion process in a certain level. In this example,

points A, B, and C have already been inserted and are siblings in this level,

and the other points are in the inserted batch. Here the solid circles identify

the separating distance 𝑑 , long dash circles are the covering distance 2𝑑 ,

and the short dash circles indicate the distance of 3𝑑 . All inserted nodes

in this level must be in the annuli marked in gray (otherwise they either

will not be covered by A, B, or C, or will go to lower levels). We check all

point pairs in each short dash circle with distance 3𝑑 , and add an edge if

their distance is no more than 𝑑 . A graph on the top-right corresponds to

the points P to W. We run an MIS on this graph, and assume points Q, S, V,

and W are selected. These four nodes will be inserted to the tree as shown

on the bottom-right, and other points P, R, T, and U will be distributed to

either of their selected neighbors, and wait to be inserted in the next round.

the original position for 𝑝 𝑗 can violate the separation property if it

is not in the leaf level. We need to check this and adjust it to a valid

insertion position if needed (on Line 25), and we refer to this as

the redistribution step. We will later show that the work for these

two steps are bounded by the cost to construct the graph𝐺 and the

sequential insertion cost.

We will start by showing the correctness of this algorithm.

Lemma 4.2. All possible conflict point pairs (i.e., violating separa-
tion) are captured by Π𝑃𝑖 on Line 13.

Proof. Let 𝑝𝑖 be a point we are inserting and let 𝑝 𝑗 be any other

point we are inserting, and let 𝑃𝑖 and 𝑃 𝑗 be the nodes that would be

the parents of 𝑝𝑖 and 𝑝 𝑗 respectively if we inserted each by itself.

Suppose two inserted node 𝑝𝑖 and 𝑝 𝑗 under 𝑃𝑖 and 𝑃 𝑗 violate the

separation property at some level 𝑙 and 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2
𝑙
. Let 𝑙𝑖 be

the level of 𝑃𝑖 , so 𝑙𝑖 > 𝑙 . Then 𝑑 (𝑃𝑖 , 𝑝 𝑗) ≤ 𝑑 (𝑃𝑖 , 𝑝𝑖) + 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤
2
𝑙𝑖 + 2𝑙 ≤ 2

𝑙𝑖 + 2𝑙𝑖−1 = 3 · 2𝑙𝑖−1 < 2
𝑙𝑖+1

. Hence, 𝑝 𝑗 is also in Π𝑃𝑖 . □

We then inductively show that by the end of an iteration of

Line 10,𝑇 is valid a cover tree (e.g., allΠ𝑞𝑖 and 𝑃𝑖 for each uninserted

point in 𝑆 satisfy the definitions in Tab. 1 for the 𝑇), then 𝑇 is also

valid after running another iteration of this loop. In these lemmas,

𝑇 refers to the tree at the end of this iteration, and 𝑇 ′ refers to the

tree at the end of the previous iteration.

Lemma 4.3. At end of an iteration of Line 10, 𝑇 is a valid cover
tree.

Proof. First, we show that the covering property is satisfied. Con-

sider a point 𝑝𝑖 that is in 𝑇 at the end of this round. If it is already

in 𝑇 ′, then the covering property is satisfied since neither its level

or parent were changed. Otherwise, we inserted 𝑝𝑖 in this round

under 𝑃𝑖 . By definition, 𝑃𝑖 covers 𝑝𝑖 , so the covering property is

satisfied.

Next we show that the separation property is satisfied for each

pair of nodes in each level. Consider two tree nodes 𝑞𝑖 and 𝑞 𝑗 in

the same level in 𝑇 . If they are already in 𝑇 ′, then the separation

property is already satisfied. If 𝑞𝑖 ∉ 𝑇 ′ and 𝑞 𝑗 ∈ 𝑇 ′, then the

separation property is satisfied, because if we inserted 𝑞𝑖 into 𝑇
′
in

the sequential algorithm, it would insert into the location separated

from 𝑞 𝑗 , since otherwise we either identify this when running the

traverse algorithm on Line 7, or 𝑞𝑖 will go to 𝑞 𝑗 ’s subtree on Line 23

in the round that the corresponding point of 𝑞 𝑗 is inserted. The

separation property is also satisfied when neither 𝑞𝑖 nor 𝑞 𝑗 are in

𝑇 ′, because the MIS selected 𝐼 to be a set of points such that no two

points are closer than 2
𝑘
.

The covering and separation properties are satisfied, so 𝑇 is a

valid cover tree. □

Lemma 4.4. At end of an iteration of Line 10, each Π𝑞𝑖 is correct.

Proof. For every newly inserted node 𝑞𝑖 , on Line 23 we set Π𝑞𝑖 =

{𝑝 𝑗 ∈ Π𝑃𝑖 | 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2
𝑘 ′+1}, where 𝑘′ is 𝑞𝑖 ’s level. By definition,

Π𝑞𝑖 ⊆ {𝑝 𝑗 ∈ 𝑆 | 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2
𝑘 ′+1}. Since Π𝑃𝑖 ⊆ 𝑆 , we have already

checked all points in Π𝑃𝑖 . Let 𝑝 𝑗 ∈ 𝑆 \ Π𝑃𝑖 . From the definition

of a conflict set, 𝑑 (𝑝 𝑗 , 𝑃𝑖) > 2
𝑘+2

. Using the triangle inequality,

𝑑 (𝑝 𝑗 , 𝑝𝑖) ≥ 𝑑 (𝑃𝑖 , 𝑝 𝑗) − 𝑑 (𝑃𝑖 , 𝑝𝑖) > 2
𝑘+2 − 2

𝑘+1 = 2
𝑘+1 > 2

𝑘 ′+1
.

Therefore {𝑝 𝑗 ∈ 𝑆 | 𝑑 (𝑝𝑖 , 𝑝 𝑗) ≤ 2
𝑘 ′+1} ⊆ Π𝑞𝑖 andΠ𝑞𝑖 is correct. □

Lemma 4.5. At end of an iteration of Line 10, 𝑃 𝑗 and 𝑙 𝑗 for each
uninserted point 𝑝 𝑗 is correct.

Proof. Let 𝑃 ′
𝑗
and 𝑙 ′

𝑗
be the values of 𝑃 𝑗 and 𝑙 𝑗 at the end of the

previous iteration. First note that, if 𝑙 𝑗 ≤ 𝑙 ′
𝑗
, the separation property

is satisfied between 𝑝 𝑗 ’s nodes and all nodes in 𝑇 ′.
If 𝑝 𝑗 ∉ Π𝑃𝑖 for any 𝑝𝑖 ∈ 𝐼 , then we leave 𝑃 𝑗 = 𝑃 ′

𝑗
and 𝑙 𝑗 =

𝑙 ′
𝑗
. 𝑝 𝑗 ∉ Π𝑃𝑖 means 𝑑 (𝑝 𝑗 , 𝑃𝑖) > 2

𝑘+2
. By the triangle inequality,

𝑑 (𝑝 𝑗 , 𝑝𝑖) ≥ 𝑑 (𝑝𝑖 , 𝑃𝑖) − 𝑑 (𝑝 𝑗 , 𝑃𝑖) > 2
𝑘+2 − 2𝑘+1 = 2

𝑘+1
. 2

𝑘+1 > 2
𝑙 𝑗

since 𝑙 𝑗 ≤ 𝑘 , so 𝑝 𝑗 is separated from all nodes for all 𝑝𝑖 . 𝑙 𝑗 ≤ 𝑙 ′
𝑗
, so

it is separated from all nodes in 𝑇 ′. Lastly 𝑃 𝑗 = 𝑃 ′
𝑗
trivially satisfies

the covering property.

If 𝑝 𝑗 ∈ Π𝑃𝑖 for any 𝑝𝑖 ∈ 𝐼 , then either 𝑑 (𝑝 𝑗 , 𝑝𝑖) ≤ 2
𝑙 ′𝑗
for some

𝑝𝑖 ∈ 𝐼 or 𝑑 (𝑝 𝑗 , 𝑝𝑖) > 2
𝑙 ′𝑗
for all 𝑝𝑖 ∈ 𝐼 . Each of the two cases are

discussed in the next two paragraphs.

If 𝑑 (𝑝 𝑗 , 𝑝𝑖) > 2
𝑙 ′𝑗
for all 𝑝𝑖 ∈ 𝐼 , we leave 𝑃 𝑗 = 𝑃 ′

𝑗
and 𝑙 𝑗 = 𝑙 ′

𝑗
.

𝑑 (𝑝 𝑗 , 𝑝𝑖) > 2
𝑙 ′𝑗 = 2

𝑙 𝑗
means separation is satisfied between all nodes

for 𝑝 𝑗 and all nodes for all 𝑝𝑖 ∈ 𝐼 . The remaining nodes in 𝑇 are

the nodes that were already in 𝑇 ′, and because 𝑙 𝑗 ≤ 𝑙 ′
𝑗
, all nodes

for 𝑝 𝑗 are separated from all nodes in 𝑇 ′. 𝑃 ′
𝑗
satisfied the covering

property, so 𝑃 𝑗 satisfies the covering property. Therefore 𝑃 𝑗 and 𝑙 𝑗
are correct.

If𝑑 (𝑝 𝑗 , 𝑝𝑖) ≤ 2
𝑙 ′𝑗
for some 𝑝𝑖 ∈ 𝐼 , thenwe pick 𝑙 𝑗 = ⌈log2 𝑑 (𝑝 𝑗 , 𝑝𝑖)⌉

and set 𝑃 𝑗 to 𝑝𝑖 ’s node at level 𝑙 𝑗 + 1. This means 2
𝑙 𝑗 < 𝑑 (𝑝 𝑗 , 𝑝𝑖) ≤

2
𝑙 𝑗+1

, so 𝑃 𝑗 covers 𝑝 𝑗 and that 𝑝 𝑗 is separated from all nodes for

𝑝𝑖 . For all 𝑝ℎ ∈ 𝐼 \ {𝑝𝑖 }, the triangle inequality gives 𝑑 (𝑝 𝑗 , 𝑝ℎ) ≥
𝑑 (𝑝𝑖 , 𝑝ℎ) − 𝑑 (𝑝 𝑗 , 𝑝𝑖) ≥ 2

𝑘 − 2
𝑘−1 = 2

𝑘−1 > 2
𝑙 𝑗
, so separation is

satisifed with all the other newly inserted nodes. Lastly, 𝑙 𝑗 ≤ 𝑙 ′
𝑗
, so

separation is satisfied with all nodes in 𝑇 ′. Therefore 𝑃 𝑗 and 𝑙 𝑗 are
correct. □

Lemma 4.6. The new cover tree is a valid cover tree.

Proof. This follows by induction using Lem. 4.3 to 4.5 and by as-

suming the correctness of the traverse algorithm. At the start of

the algorithm, 𝑇 is given as a valid cover tree. The loop around

Line 7 computes each 𝑃𝑖 and Π𝑞𝑖 correctly, so the invariant holds

at the beginning of the first iteration. By induction on the previous

three lemmas, the invariant holds at the beginning and end of any

iteration. Nothing happens after the last iteration, so 𝑇 is a valid

cover tree at the end of the algorithm. □

However, just doing the above-mentioned steps does not guar-

antee work-efficiency. Considering a tree𝑇 with just one root node

and |𝑆 | = 𝑛. Then for some tree node 𝑝𝑖 in level 𝑘 cover set Π𝑝𝑖 ∩𝐿𝑘
may contain 𝑂 (𝑛) nodes, and checking them pairwise on Line 14

incurs 𝑂 (𝑛2) work. To reduce the work in these incremental con-

struction algorithms, a common approach is prefix doubling [14–

16, 59]. Here we can do the same: partition the batch 𝑆 into log
2
|𝑆 |

groups, and insert each group in turn. This guarantees that the cur-

rent cover tree always has at least the same number of (randomly

chosen) points as the group to insert. As a result, each of the cover

set (Π𝑝𝑖 ∩ 𝐿𝑘 on Line 13) has limited size: constant on average and

logarithmic whp.

Lemma 4.7. For each point 𝑝 , the number of 𝑝’s neighbors in 𝐺

(Line 16) is 𝑂 (1) in expectation and 𝑂 (log𝑛) whp.
Proof. Now consider all neighbor points of 𝑝 , and denote them

as 𝑁 (𝑝). They must all be in the current batch 𝑆𝑖 (Line 3) to be

inserted, and 𝑁 (𝑝) ∈ 𝐵𝑆𝑖 (𝑝, 2𝑘) (𝑘 is the current level). Note that

not all points in 𝐵𝑆𝑖 (𝑝, 2𝑘) are in 𝑁 (𝑝) since the points inserted
in the previous 𝑖 − 1 batches may “capture” some of the points in

𝐵𝑆𝑖 (𝑝, 2𝑘) (Line 25) so they will be inserted to lower levels. This

will only help reducing the neighbor set size (i.e., making 𝑁 (𝑝)
smaller).

We now analyze the size of 𝑁 (𝑝) in expectation and with high

probability. Let 𝑆𝑖 = 𝑆0 ∪ · · · ∪ 𝑆𝑖 , and we have 𝐵𝑆𝑖 (𝑝, 2𝑘) ⊆
𝐵𝑆𝑖 (𝑝, 2

𝑘). Let 𝑁 ′ (𝑝) ⊆ 𝐵𝑆𝑖 (𝑝, 2
𝑘) be the set of points that are

not captured by points in the original tree 𝑇 (excluding points in

𝑆𝑖 with parents at or below the 𝑘-th level). The argument is that

if any of the points in 𝑁 ′ (𝑝) are in the previous 𝑖 − 1 batches (i.e.,
𝑁 ′ (𝑝) ≠ 𝑁 (𝑝)), then 𝑝 cannot be inserted at level 𝑘 , but lower

than that. This is based on the separation property of the cover

tree, and indicates 𝑁 ′ (𝑝) = 𝑁 (𝑝) if 𝑝 is processed at the 𝑘-th level.

Given how 𝑆𝑖 is sampled, we show that |𝑁 (𝑝) | is small. Each point

in 𝑁 ′ (𝑝) has at most half the probability of being in 𝑆𝑖 . We first

consider the high probability guarantee for 𝑠 = |𝑁 (𝑝) |. For each
point 𝑞 ∈ 𝑁 ′ (𝑝), Pr[𝑞 ∈ 𝑁 (𝑝)] ≤ 1/2. If 𝑠 > 𝑐 log𝑛, then

Pr

[��𝑁 ′ (𝑝)�� = |𝑁 (𝑝) |] ≤ 1

2
𝑠
=

1

2
𝑐 log𝑛

= 𝑛−𝑐

which indicates that the number of 𝑝’s neighbors in 𝐺 is 𝑂 (log𝑛)
whp. The expected neighbor size is |𝑁 ′ (𝑝) | ·Pr[|𝑁 ′ (𝑝) | = |𝑁 (𝑝) |] =
𝑂 (1). Note that the results holds for all levels for the point 𝑝 , if it
is redistributed and processed in multiple levels (on Line 25). □

Corollary 4.8. The size of the set Π𝑃𝑖 ∩𝐿𝑘 being check on Line 13
is 𝑂 (𝑐5) in expectation and 𝑂 (𝑐5 log𝑛) whp.

We can simply multiply the bounds in Lem. 3.1 with 𝜅 = 1 and

Lem. 4.7 and get Col. 4.8. To efficiently acquire the neighbor set

of a vertex (i.e., Π𝑃𝑖 ∩ 𝐿𝑘 on Line 13), we can generate Π𝑃𝑖 ∩ 𝐿𝑘
once Π𝑃𝑖 is generated on Line 7. We note that 𝐿𝑘 can change when

new tree nodes are generated, but we can maintain it lazily: every

time when we loop over the points in 𝐿𝑘 , we skip those that are

removed. We note that the work is only 𝑂 (𝑚H(𝑇)) to check all

points at 𝑆 in every level for a batch of𝑚 inserted points, which is

asymptotically bounded by other parts in this algorithm.

We now analyze the work and span bounds for the parallel batch-

insertion algorithm.

Theorem 4.9. The batch insertion algorithm (Alg. 4) can correctly
insert a set of points 𝑆 into a cover tree𝑇 using𝑂 (𝑐5𝑚H(𝑇)) expected
work and 𝑂 (H (𝑇) log𝑚(log 𝑐 + log𝑚 log log𝑛)) span whp, where
𝑚 = |𝑆 |, 𝑛 = |𝑇 |, and𝑚 ≤ 𝑛.

Proof. The correctness of this algorithm is already shown in Lem. 4.6.

First of all, Thm. 2.1 shows that after a constant number of sam-

plings, the expansion rate of the metric (𝑋, 𝐷𝑋) only changed by

at most a constant fraction, which will be hidden by the asymptotic

notation. In all of our analyses, we apply union bound (Boole’s

inequality) on high probability bounds, which means our analysis

only requires sampling for one round.

For the traversal on Line 7, the work and span for each query

is given in Sec. 3.2, multiplied that by𝑚 gives the total work for

all points. The output size is no more than the work, so semisort-

ing them takes 𝑂 (𝑐5𝑚H(𝑇)) expected work and 𝑂 (log 𝑐 + log𝑚 +
log log𝑛) span whp. Then for the cover tree construction, based on

Col. 4.8, building the graph𝐺 requires𝑂 (𝑐5𝑚) expected work for all
levels, and computing the MIS on𝐺 uses𝑂 (𝑚) expected work. Also,
according to Lem. 4.7 since the maximum degree for each node is

𝑂 (log𝑛), computing the MIS at each level has 𝑂 (log𝑚 log log𝑛)
span whp [58], and the total span for all levels is 𝑂 (H (𝑇) (log 𝑐 +
log𝑚 log log𝑛)) span whp. Adding the new tree nodes has the same

work and span bounds as the step to generate MIS.

Finally, let’s analyze the work and span to construct theΠ sets for

new tree nodes (the parallel-for loop on Line 18). While there can be

many points in Π𝑃𝑖 , we note that if we look at a specific point 𝑞, if

we first insert 𝑆 \{𝑞} and then insert 𝑞, we will run exactly the same

checks, but in the traversal part (Line 7). We know the traversal

work is 𝑂 (𝑐5H(𝑇)) per node in the batch, which also bounds the

work for constructing the conflict sets here. To parallelize this step,

we can generate all the pairs and semisort them, which is work-

efficient in expectation and has span asymptotically bounded by

the MIS steps.

Hence, the work of the batch insertion algorithm is bounded by

the traversal step, and span is bounded by the MIS step. In addition,

we have the prefix-doubling step that partitions the batch into

log |𝑆 | sub-batches. Prefix-doubling does not cause additional work,
but will increase the span by a factor of𝑂 (log𝑚). Combining them

together gives the stated bounds in the theorem. □

When assuming constant expansion rate (𝑐 = 𝑂 (1)) and bounded
aspect ratio (H(𝑇) = Θ(log𝑛)), Alg. 4 has 𝑂 (𝑚 log𝑛) expected
work and 𝑂 (log𝑛 log2𝑚 log log𝑛) span whp. Constructing cover

trees can also be parallelized using the same algorithm and analysis.

Algorithm 5: BatchDelete(𝑇 , 𝑆).
Input: A cover tree 𝑇 and a set of node 𝑆 .

Output: The new cover tree 𝑇 ′ that excludes all nodes in 𝑆 .

1 parallel foreach 𝑝𝑖 ∈ 𝑆 do
2 Run Traverse(𝑇 , 𝑝𝑖) that tracks all nodes 𝑞 𝑗 ∈ 𝑇 with

𝑑 (𝑝𝑖 , 𝑞 𝑗) < 2
𝑘+1

where 𝑞 𝑗 is at the 𝑘-th level, and

record tree nodes 𝑞 𝑗 ′ for all levels 𝑝𝑖 is in 𝑇

3 Semisort pairs (𝑞 𝑗 , 𝑝𝑖) and let 𝐿𝑘 = {𝑞𝑘 | (𝑞𝑘 , 𝑝𝑖) exists}
4 𝑋 = ∅
5 for 𝑘 from the leaf level to root level do
6 Remove all tree nodes in 𝐿𝑘 , and let 𝑌 be the children

set of these nodes

7 𝑋 ← 𝑋 ∪ 𝑌
8 parallel foreach 𝑞𝑖 ∈ 𝑋 do
9 if a (undeleted) tree node 𝑞 𝑗 at level 𝑘 covers 𝑞𝑖

then
10 remove 𝑞𝑖 from 𝑋 and redirect 𝑞𝑖 ’s parent to 𝑞 𝑗

11 Semisort pairs (𝑞 𝑗 , 𝑞𝑖) (from Line 2) where 𝑞𝑖 ∈ 𝑋 and

𝑞 𝑗 is at the (𝑘 + 1)-th level, and let

Π𝑞 𝑗
= {𝑞𝑖 | (𝑞 𝑗 , 𝑞𝑖) exists}

12 Initialize a graph 𝐺 = (𝑋, ∅)
13 parallel foreach 𝑞𝑖 ∈ 𝑋 do
14 Let 𝐴𝑖 be 𝑞𝑖 ’s original ancestor at level 𝑘 + 1
15 parallel foreach 𝑞 𝑗 ∈ Π𝐴𝑖

do
16 if 𝑑 (𝑞𝑖 , 𝑞 𝑗) ≤ 2

𝑘 then
17 Create an edge between 𝑞𝑖 and 𝑞 𝑗

18 Compute the MIS of 𝐺 and let 𝐼 be the selected vertices

19 Duplicate and insert the tree node 𝑞𝑖 ∈ 𝐼 at level 𝑘
20 Redirect the tree node 𝑞 𝑗 ∈ 𝑋 \ 𝐼 to be the child of a new

node 𝑞𝑖 ∈ 𝐼 that covers 𝑞 𝑗 (i.e., (𝑞𝑖 , 𝑞 𝑗) is an edge in 𝐺)

21 𝑋 ← 𝐼

22 if 𝑋 ≠ ∅ then
23 Pick an arbitrary node 𝑞𝑖 ∈ 𝑋 , duplicate it, set it as the

root, and link all other nodes as 𝑞𝑖 ’s children

Theorem 4.10. Constructing a cover tree that contains 𝑛 points
takes𝑂 (𝑐5𝑛H(𝑇)) expected work and the span of𝑂 (H (𝑇) log𝑛(log 𝑐+
log𝑛 log log𝑛)) whp.

With the same assumptions, the work is 𝑂 (𝑛 log𝑛) in expecta-

tion, and the span is 𝑂 (log3 𝑛 log log𝑛) whp.

4.2 The Batch-Deletion Algorithm
We now discuss the parallel batch-deletion algorithm. It is inter-

esting that, unlike many other data structures, batch-deletion is

easier than batch-insertion—the hardest part in the nearest search

structure is to locate the updated points. For insertion, if too many

points are added, their proximity information and nearest neighbors

cannot be directly given since they can be in the inserted points.

However, for deletion, the original cover tree can provide sufficient

proximity information for the points either in the batch or not,

since they are all in the cover tree before batch-deletion. Hence, for

deletion, we do not need prefix doubling, and can finish the entire

batch-deletion in one round.

The key observation for batch-deletion is that, for each undeleted

point, if its directed parent is also not deleted, then this local struc-

ture still satisfies the cover tree properties and can remain un-

changed. For each deleted point 𝑝 , if 𝑝 is a leaf, it can be directly

removed; otherwise, it may uncover 𝑝’s direct child, who needs

to be either redistributed to another undeleted point in the same

level, or promoted to the current level. Meanwhile, multiple points

can be promoted to the same level. Similar to the batch-insertion

algorithm, we need to run an MIS for all uncovered points at one

level, and then decide those that get promoted and the others that

will then be covered.

Based on these key insights, our parallel batch-deletion algorithm

is shown in Alg. 5. The first step is similar to that in the insertion

algorithm—we first run the traverse algorithm to track all tree nodes

that cover each point with twice the covering distances, and the

tree nodes in all levels each point in the tree. We then semisort the

output key-value pairs to transpose the keys and values, and these

precomputed results will be used later in the algorithm.

Then we start to process each level, delete the nodes in the given

batch while maintaining the cover tree properties. This is from

Line 4. We denote the uncovered points at each level using the set

𝑋 , and initially, when we start to process the leaf level, 𝑋 is empty.

For each level, we first delete the tree nodes corresponding to the

nodes in the delete batch, which may uncover some nodes denoted

as the set 𝑌 (Line 6). We then merge the set 𝑌 with the uncovered

points in 𝑋 from the previous level. We first check if other tree

nodes at this level can cover these points, and if so, we redirect

them to these nodes, and remove them from the set 𝑋 . Otherwise,

we need to promote them to the higher level, but we cannot do so

for all points in 𝑋 since that might violate the separation property.

Similar to the batch-insert algorithm, for each point 𝑝𝑖 ∈ 𝑋 , we

check all possible conflict points in 𝑋 ∩ Π𝑃𝑖 , and create an edge

if the distance is within 2
𝑘
(𝑘 is the current level). Then we run

the parallel MIS algorithm on the graph, promote the selected ones

to level 𝑘 , and redirect the unselected ones to selected points as

parents. Then we repeat this process and move one level up, until

we finish all levels. Note that it is possible that 𝑋 is not empty after

we process the root level. In this case, we can use an arbitrary point

from 𝑋 as the new root at level 𝑘 + 1, and it can cover all other

points since the covering distance is doubled.

Lemma 4.11. Alg. 5 correctly deletes the batch of points in 𝑆 from
a cover tree 𝑇 .

Proof. The correctness proof is similar to the batch insertion algo-

rithm, and we can in turn show that all invariants are still main-

tained after each loop iteration on Line 5.

All tree nodes are deleted in a bottom-up direction—all leaf nodes

first, then their parents, and eventually the root. The invariants of

our parallel batch deletion algorithm is that after processing the

𝑘-th level (on Line 5), all remaining tree nodes on the 𝑘-th level and

their subtrees are valid cover trees, and all uncovered tree nodes

are captured in the set 𝑋 .

The analysis is similar to Lem. 4.1 to 4.5 of the insertion algorithm,

and we only highlight the difference here. The main difference

here in the deletion is that for each uncovered node 𝑞𝑖 ∈ 𝑋 , the

conflict set is automatically covered byΠ𝐴𝑖
where𝐴𝑖 is𝑞𝑖 ’s ancestor

at level 𝑘 + 1. Hence, we do not need the complicated technique

to propagate the information between levels, but we can directly

generate Π𝐴𝑖
at each level (on Line 11). Other than this, the rest of

the correctness proof is identical, including the radius of the conflict

sets, the completeness of the conflict sets, and why computing MIS

gives a valid tree node set at each level. □

Theorem 4.12. The batch deletion algorithm (Alg. 4) can correctly
delete a set of points 𝑆 into a cover tree𝑇 using𝑂 (𝑐9𝑚H(𝑇)) expected
work and 𝑂 (H (𝑇) log 𝑐 (log 𝑐 + log𝑚)) span whp, where 𝑚 = |𝑆 |
and 𝑛 = |𝑇 |.

Proof of Thm. 4.12. Lem. 4.11 shows the correctness of Alg. 5. We

now consider the work of Alg. 5. There are two major parts that

require the most work, one is to try other tree nodes at level 𝑘 to

cover vertices in𝑋 (the loop on Line 8), and the other is to construct

and runMIS on the conflict graph𝐺 . For the first part, for each level,

we can remove at most𝑚 tree nodes, which uncover at most 𝑐4𝑚

tree nodes (Col. 3.2). Plus another𝑂 (𝑐4𝑚) nodes from the previous

level (will be shown later), |𝑋 | = 𝑂 (𝑐4𝑚). For each node 𝑞𝑖 ∈ 𝑋 ,

let 𝐴𝑖 be 𝑞𝑖 ’s ancestor at level 𝑘 + 1. Then, 𝑞𝑖 will be checked with

level 𝑘 nodes in 𝐵(𝐴𝑖 , 2
𝑘+1), so there can only be 𝑐4 of these nodes

(using Lem. 3.1 and 𝜅 = 1). Hence, the work of this part is 𝑂 (𝑐8𝑚)
per level, and 𝑂 (𝑐8𝑚H(𝑇)) for all levels. For the second part to

construct and run MIS on the conflict graph𝐺 , the neighbor size of

each node 𝑞𝑖 is no more than 𝑐5, which is similar to the insertion

algorithm but with no randomization and asymptotical notation.

This is because all neighbors of 𝑞𝑖 in 𝐺 must in 𝐵(𝐴𝑖 , 2
𝑘+1) at level

𝑘 − 1, so the number of total candidates is bounded (using Lem. 3.1

and𝜅 = 2). Hence, the total number of edges in𝐺 at a certain level is

bounded by 𝑂 (𝑐5 |𝑋 |) = 𝑂 (𝑐9𝑚). After running the MIS, there can

only be 𝑂 (𝑐4𝑚) selected tree nodes in 𝐼 (Lem. 3.1 and 𝜅 = 1), and

the rest will be covered by the promoted nodes. Combining both

parts together gives 𝑂 (𝑐9𝑚H(𝑇)) expected work (the randomized

bound is due to semisort). Similar to the insertion algorithm, the

span of the deletion algorithm is bounded by computing the MIS

on 𝐺 . Given the graph has 𝑂 (𝑐4𝑚) vertices and 𝑑max = 𝑐5 (largest

degree), computing the MIS has 𝑂 (log 𝑐 (log 𝑐 + log𝑚)) span whp,
and we need to repeat it for allH(𝑇) levels. This gives the stated
bounds in Thm. 4.12. □

When assuming constant expansion rate (𝑐 = 𝑂 (1)) and bounded
aspect ratio (H(𝑇) = Θ(log𝑛)), Alg. 5 has 𝑂 (𝑚 log𝑛) expected
work and 𝑂 (log𝑛 log𝑚) span whp.

5 APPLICATIONS
We can use the parallel cover tree to parallelize a list of algorithms

in computational geometry and data science, which rely on nearest

neighbor search.

5.1 Euclidean Minimum Spanning Tree
Given a set of 𝑛 points 𝑆 ∈ R𝑑 , the Euclidean Minimum Spanning

Tree (EMST) problem finds the lowest weight spanning tree in the

complete graph on 𝑆 with edge weights given by the Euclidean

distances between points. EMST is one of the earliest and widely

studied problems in computational geometry and graph, as Otakar

Borůvka gave an algorithm [18] when designing electricity and

telegram networks in the 1920s. It is also widely used in applica-

tions such as approximating traveling salesman problem (TSP) [38],

Algorithm 6: The parallel EMST algorithm

Input: A set 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} of points in R𝑑
Output: The EMST 𝑇

1 Construct the cover tree D on 𝑃

2 𝑆 ← {{𝑝1}, {𝑝2}, . . . , {𝑝𝑛}}
3 𝑇 ← ∅
4 while |𝑆 | > 1 do
5 parallel foreach 𝐶𝑖 ∈ 𝑆 do
6 ⟨𝑝𝑖 , 𝑞𝑖 ⟩ ← Cluster-Query(𝐶𝑖)
7 Let 𝑇 ′ = ∪𝑖 {⟨𝑝𝑖 , 𝑞𝑖 ⟩} and 𝑇 ← 𝑇 ∪𝑇 ′
8 Merge the clusters using the tree edges in 𝑇 ′ and update

𝑆
9 return 𝑇

10 function Cluster-Query(𝐶)
11 D′ ← D .B-Delete(𝐶)
12 parallel foreach 𝑝𝑖 ∈ 𝐶 do
13 𝑞𝑖 ← D′ .Query(𝑝𝑖)
14 𝑑𝑖 ← 𝑑 (𝑞𝑖 , 𝑝𝑖)
15 𝑖∗ = argmin𝑖 𝑑𝑖// Using a parallel reduce

16 return ⟨𝑝𝑖∗ , 𝑞𝑖∗ ⟩

document clustering [67], analysis of gene expression data [30],

wireless network connectivity [45], percolation analyses [9], and

modeling of turbulent flows [60].

Given the importance of EMST, many implementations are avail-

able (e.g., [7, 19, 49, 52]), although few of them have non-trivial

theoretical guarantees (𝑜 (𝑛2) work). Among them, Shamos and

Hoey [56] showed algorithms based on Voronoi diagrams, and the

work is 𝑂 (𝑛 log𝑛) on 2D, but 𝑂 (𝑛2 log𝑛) on 3 or higher dimen-

sions. Yao’s algorithm [68] has 𝑂 ((𝑛 log𝑛)1.8) work on 3D and

𝑂 (𝑛2−2−𝑘−1 log1−2−𝑘−1 𝑛) work on arbitrary dimension. It is widely

conjectured that on 3 or higher dimensions, no EMST algorithms

exist with 𝑜 (𝑛1.8) work.
However, most real-world datasets are not the worst case, and

usually have small expansion constants and bounded aspect ratios.

Hence, March et al. [49] in 2010 showed an algorithm that computes

the EMST based on Borůvka’s MST algorithm [18], and uses a cover
tree [8] to search for the nearest neighbor of a cluster in each step of

Borůvka. When assuming a slightly stronger expansion constant

and bounded aspect ratio, March et al. [49] showed that the EMST

can be constructed using 𝑂 (𝑛 log𝑛 log log𝑛) work.
Our new parallel algorithm. Now with the new parallel cover

tree, we can show a highly-parallelized EMST algorithm, as shown

in Alg. 6. The main body of this algorithm is the classic Borůvka’s

MST algorithm (Line 2–9), and the details can be found in text-

books (e.g., [40]). We can also construct the cover treeD in parallel

(Thm. 4.10). However, the non-trivial part is for the parallel cluster

queries. Unlike most cases that parallel queries are easy, parallel

cluster queries need to first delete all points in the cluster from the

cover tree D, then it queries the nearest neighbor for all 𝑝 ∈ 𝐶

in D, and finally restores D by inserting points in 𝐶 back. Hence,

even with the batch-delete algorithm (Alg. 5), we cannot directly

apply multiple queries simultaneously.

Our solution is based on persistent trees, which means that up-

dates do not destroy the input data structure, but yield a new ver-

sion as the output. Several recent papers [10, 11, 28, 61, 62] showed

that we can design persistent parallel trees using path-copying,

which are shown efficient both theoretically and practically. Hence,

in Cluster-Query, we copy another version D′ of the original

cover treeD using path-copying. In this way, each Cluster-Query

works on a separate version and is not affected by other parallel

queries and updates.

Theorem 5.1. The Euclidean Minimum Spanning Tree (EMST)
on 𝑛 points can be computed in 𝑂 (𝑛 log2 𝑛) work in expectation and
𝑂 (log3 𝑛 log log𝑛) span whp, assuming constant cluster expansion,
constant dimension, and bounded aspect ratio.

Proof. For the work bound, each node is in𝑂 (log𝑛) cluster-queries
in total for all Borůvka rounds, and cost per node per query is

𝑂 (log𝑛) in deletion (Line 11) and query (Line 13) in expectation.

Taking the product gives 𝑂 (𝑛 log2 𝑛) work in expectation.

For the span bound, constructing the cover tree has the cost

of 𝑂 (log3 𝑛 log log𝑛) whp, and the batch-deletion (Line 11) costs

𝑂 (log2 𝑛) span whp each, for 𝑂 (log𝑛) calls in total.

All other steps in this algorithm are the standard Borůvka steps,

and their costs [69] are asymptotically bounded by the cover tree

costs. Combining them gives the stated bounds in the theorem. □

5.2 Single-Linkage Clustering
Given a set 𝑃 of𝑛 points, hierarchical agglomerative clustering (HAC)
starts from every single point as a cluster, and merges two clus-

ters with the global minimum pairwise distance for 𝑛 − 1 iter-

ations, creating a hierarchy for the input points. As a clustering

method, hierarchical clustering is a widely used unsupervised learn-

ing approach [1, 46, 51], with numerous other applications such

as building phylogenetic trees in bioinformatics [50], construct-

ing low-dimension search structures in computer graphics [35, 64],

identifying geographic districts in GIS [32, 54] and navigation in

robotics [3].

Hierarchical clustering is a high-level framework for clustering

a set of objects. When plugging in the cluster distance function

(linkage function) 𝐷 (𝑋,𝑌) (𝑋,𝑌 are two clusters), one can get a

specific algorithm, and the output is clearly defined. The simplest

and probably the most widely-used linkage function is minimum,

defined as 𝐷𝑚 (𝑋,𝑌) = min{𝑑 (𝑥,𝑦) | 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 } for 𝑥,𝑦 ∈ 𝑃 and

a metric 𝑑 . When we use 𝐷𝑚 as the linkage function, the resulting

clustering is referred to as single-linkage clustering.
A theoretically-efficient parallel algorithm for hierarchical clus-

tering is a long-standing open problem—even for the simplest single-

linkage clustering in Euclidean space, we are unaware of any previ-

ous parallel algorithms using 𝑜 (𝑛2) work and 𝑜 (𝑛) span for 𝑑 > 3,

even with assumptions such as low expansion rate.

Using the persistent parallel cover tree, in Sec. 5.1 we show how

to generate Euclidean MST using the work and span shown in

Thm. 5.1. We note that a recent work byWang et al. [66] introduced

an efficient parallel algorithm that converts an EMST to the dendro-

gram (cluster tree), which is the output for single-linkage clustering,

in 𝑂 (𝑛 log𝑛) expected work and 𝑂 (log2 𝑛 log log𝑛) span whp. The
classic algorithms used Kruskal’s algorithm to generate the den-

drogram, which is inherently sequential. This new algorithm is

quite sophisticated, and uses algorithmic techniques such as the

Euler tour, semisorting, and a tricky divide-and-conquer approach.

However, this algorithm remains not only theoretically efficient,

but also has good practical performance [66]. Combining the new

algorithm for EMST as shown in Alg. 6, we get the following result.

Theorem 5.2. The Single-linkage clustering on 𝑛 objects can be
computed in 𝑂 (𝑛 log2 𝑛) expected work and 𝑂 (log3 𝑛 log log𝑛) span
whp, assuming constant cluster expansion, bounded aspect ratio, and
the pairwise distance function can be computed in 𝑂 (1) work.

5.3 Bichromatic Closest Pair (BCP)
Given two sets 𝑃1 and 𝑃2, the goal of bichromatic closest pair (BCP)

is to find the closest pair (𝑝1, 𝑝2), such that 𝑝1 ∈ 𝑃1, 𝑝2 ∈ 𝑃2, and
𝑑 (𝑝1, 𝑝2) ≤ 𝑑 (𝑝′

1
, 𝑝′

2
) | ∀𝑝′

1
∈ 𝑃1,∀𝑝′

2
∈ 𝑃2.

WLOG, let’s assume |𝑃1 | =𝑚 ≤ 𝑛 = |𝑃2 |. We construct a cover

tree for 𝑃1, and query the nearest neighbor for every point in 𝑃2
in parallel. Plugging in Thm. 4.10 and Lem. 3.3 gives 𝑂 (𝑚 log𝑛)
expected work and𝑂 (log3 𝑛 log log𝑛) spanwhp, assuming constant

cluster expansion and bounded aspect ratio.

5.4 Density-Based Clustering
The density-based spatial clustering of applications with noise (DB-

SCAN) problem takes as input 𝑛 points P = {𝑝0, . . . , 𝑝𝑛−1}, a dis-
tance function 𝑑 , and two parameters 𝜖 and minPts [33]. A point

𝑝 is a core point if and only if |𝐵(𝑝, 𝜖) | ≥ minPts. We denote the

set of core points as C. DBSCAN computes and outputs subsets of

P, referred to as clusters. Each point in C is in exactly one cluster,

and two points 𝑝, 𝑞 ∈ C are in the same cluster if and only if there

exists a list of points 𝑝1 = 𝑝, 𝑝2, . . . , 𝑝𝑘−1, 𝑝𝑘 = 𝑞 in C such that

𝑑 (𝑝𝑖−1, 𝑝𝑖) ≤ 𝜖 . For all non-core points 𝑝 ∈ P \ C, 𝑝 belongs to

cluster 𝐶𝑖 if 𝑝 ∈ 𝐵(𝑞, 𝜖) for any 𝑞 ∈ C ∩𝐶𝑖 . A non-core point be-

longing to at least one cluster is called a border point and a non-core
point belonging to no clusters is called a noise point. In the analysis,

we usually assume that minPtsis a constant, and in practice, we

usually pick minPts = 10.

Wang et al. [65] recently showed how to parallelize DBSCAN.

Unfortunately, due to the lack of an efficient parallel data struc-

ture for nearest neighbor search, their algorithms can only achieve

𝑂 (𝑛2) work and polylogarithmic span, or 𝑂 ((𝑛 log𝑛)4/3) expected
work for 𝑑 = 3 and 𝑂 (𝑛2−(2/(⌈𝑑/2⌉+1))+𝛿) expected work for any

constant 𝛿 > 0 for 𝑑 > 3, bottlenecked by computing bichromatic

closest pairs (BCP). Using the above results for BCP gives𝑂 (𝑛 log𝑛)
expected work and 𝑂 (log3 𝑛 log log𝑛) span whp to compute DB-

SCAN. Here the assumptions include: minPts and expansion rate

are constant, aspect ratio is bounded, and a pairwise distance can

be computed in constant time.

Hierarchical Density-Based Clustering. The output for hierar-
chical clustering (HDBSCAN) is a dendrogram (cluster tree), similar

to single-linkage clustering. The only difference is that HDBSCAN

has the parameter minPts, so a point needs to first compute its

minPts-nearest neighbors. This can be achieved efficiently by con-

structing a cover tree in parallel, querying for all points, and then

using single-linkage clustering on top of it. Using the same as-

sumptions in DBSCAN, HDBSCAN can be computed in𝑂 (𝑛 log2 𝑛)
expected work and 𝑂 (log2 𝑛 log log𝑛) span whp.

5.5 𝑘-NN Graph Construction
𝑘-NN graphs are widely used in machine learning, such as graph

clustering [34, 42, 47, 48], manifold learning [63], outlier detec-

tion [37], and proximity search [20, 53, 55]. Given a point set 𝑃

in a metric space, a 𝑘-NN graph is a directed graph 𝐺 = (𝑉 , 𝐸),
where 𝑉 = 𝑃 and (𝑝, 𝑞) ∈ 𝐸 if 𝑞 is one of 𝑝’s 𝑘-nearest neigh-

bor in 𝑉 − {𝑝}. We first construct the cover tree on 𝑃 , then ap-

ply 𝑘-NN queries on all the points in 𝑃 in parallel, and finally

construct the 𝑘-NN graph according to the query results. Using

our parallel cover tree, we can get 𝑂 (𝑘𝑛 log𝑘 log𝑛) expected work

and 𝑂 (log𝑛 · (𝑘 log𝑘 + log2 𝑛 log log𝑛)) span whp by combining

Thm. 4.10 and Lem. 3.3. Here we again assume constant expansion

rate and bounded aspect ratio.

6 CONCLUSIONS
In this paper, we show parallel algorithms for batch insertions and

batch deletions on cover trees, which are work-efficient and have

polylogarithmic span. The key challenge is that the operations on

the sequential cover tree, as well as many other sequential data

structures with similar functionality, are processed in a depth-first

manner that is inherently sequential. We show a few algorithmic

ideas in this paper, and we highlight the technique to construct

conflict graphs and compute the feasible set of tree nodes usingmax-

imal independent set (MIS) on the graphs. This technique enables

a depth-first algorithm to be executed in a breadth-first order. We

believe that this idea may of independent interest, and we will study

if we can apply it to parallelize other sequential algorithms and

data structures. One of such examples is the metric skip lists [41],

which provide similar (but randomized) query and update costs to

cover trees but do not need to assume bounded aspect ratio. We

also plan to study other graph algorithms with similar challenges,

and practical nearest-neighbor search algorithms and see if we can

show theoretical guarantees parameterized by the expansion rate.

Acknowledgement.

ACKNOWLEDGEMENT
This work is supported by NSF grant CCF-2103483.

REFERENCES
[1] C. C. Aggarwal and C. K. Reddy. Data clustering: Algorithms and applications.

Chapman&Hall/CRC Data mining and Knowledge Discovery series, Londra, 2014.
[2] K. Agrawal, J. T. Fineman, K. Lu, B. Sheridan, J. Sukha, and R. Utterback. Provably

good scheduling for parallel programs that use data structures through implicit

batching. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2014.

[3] O. Arslan, D. P. Guralnik, and D. E. Koditschek. Coordinated robot navigation

via hierarchical clustering. IEEE Transactions on Robotics, 32(2):352–371, 2016.
[4] A. Authors. Many sequential iterative algorithms can be parallel and (almost)

work-efficient. (unpublished work, submitted to SPAA 2022), 2022.
[5] J. Bell. The uniform metric on product spaces. Lecture Notes, University of Toronto.
[6] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey,

and J. Shun. Implicit decomposition for write-efficient connectivity algorithms.

In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018.
[7] J. L. Bentley and J. H. Friedman. Fast algorithms for constructing minimal

spanning trees in coordinate spaces. IEEE Trans. on Comput., 27(02):97–105, 1978.
[8] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In

International Conference on Machine Learning (ICML), pages 97–104, 2006.
[9] S. P. Bhavsar and R. J. Splinter. The superiority of the minimal spanning tree

in percolation analyses of cosmological data sets. Monthly Notices of the Royal
Astronomical Society, 282(4):1461–1466, 1996.

[10] G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered sets. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

[11] G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algorithms in

the binary-forking model. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2020.

[12] G. E. Blelloch, J. T. Fineman, and J. Shun. Greedy sequential maximal independent

set and matching are parallel on average. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2012.

[13] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious

algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2010.

[14] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallel write-efficient algorithms and

data structures for computational geometry. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2018.

[15] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallelism in randomized incremental

algorithms. J. ACM, 2020.

[16] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Randomized incremental convex hull is

highly parallel. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2020.

[17] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. J. ACM, 46(5):720–748, 1999.

[18] O. Boruvka. O jistém problému minimálním. Práce Mor. Prırodved. Spol. v Brne
(Acta Societ. Scienc. Natur. Moravicae), 3(3):37–58, 1926.

[19] S. Chatterjee, M. Connor, and P. Kumar. Geometric minimum spanning trees

with geofilterkruskal. In International Symposium on Experimental Algorithms
(SEA), pages 486–500. Springer, 2010.

[20] E. Chávez and E. Sadit Tellez. Navigating k-nearest neighbor graphs to solve

nearest neighbor searches. In Advances in Pattern Recognition, pages 270–280,
2010.

[21] R. Chowdhury, P. Ganapathi, Y. Tang, and J. J. Tithi. Provably efficient scheduling

of cache-oblivious wavefront algorithms. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 339–350, 2017.

[22] R. A. Chowdhury, V. Ramachandran, F. Silvestri, and B. Blakeley. Oblivious

algorithms for multicores and networks of processors. Journal of Parallel and
Distributed Computing, 73(7):911–925, 2013.

[23] K. L. Clarkson et al. Nearest-neighbor searching and metric space dimensions.

Nearest-neighbor methods for learning and vision: theory and practice, pages 15–59,
2006.

[24] R. Cole and V. Ramachandran. Resource oblivious sorting on multicores. ACM
Transactions on Parallel Computing (TOPC), 3(4), 2017.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(3rd edition). MIT Press, 2009.

[26] R. R. Curtin. Improving dual-tree algorithms. PhD thesis, Georgia Institute of

Technology, 2015.

[27] L. Dhulipala, G. E. Blelloch, Y. Gu, and Y. Sun. Pac-trees: Supporting parallel and

compressed purely-functional collections. In ACM Conference on Programming
Language Design and Implementation (PLDI), 2022.

[28] L. Dhulipala, G. E. Blelloch, and J. Shun. Low-latency graph streaming using com-

pressed purely-functional trees. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 918–934, 2019.

[29] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons, and

J. Shun. Semi-asymmetric parallel graph algorithms for nvrams. Proceedings of
the VLDB Endowment (PVLDB), 13(9), 2020.

[30] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and

display of genome-wide expression patterns. Proceedings of the National Academy
of Sciences, 95(25):14863–14868, 1998.

[31] Y. Elkin and V. Kurlin. A new compressed cover tree guarantees a near linear

parameterized complexity for all 𝑘-nearest neighbors search in metric spaces.

arXiv preprint:2111.15478, 2021.
[32] D. Eppstein, M. T. Goodrich, D. Korkmaz, and N. Mamano. Defining equitable

geographic districts in road networks via stable matching. In Proceedings of
the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 1–4, 2017.

[33] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for

discovering clusters a density-based algorithm for discovering clusters in large

spatial databases with noise. In KDD, 1996.
[34] P. Franti, O. Virmajoki, and V. Hautamaki. Fast agglomerative clustering using a

k-nearest neighbor graph. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(11):1875–1881, 2006.

[35] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch. Efficient BVH construction via

approximate agglomerative clustering. In High-Performance Graphics (HPG),
2013.

[36] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 24–34,
2015.

[37] V. Hautamaki, I. Karkkainen, and P. Franti. Outlier detection using k-nearest

neighbour graph. In International Conference on Pattern Recognition, volume 3,

pages 430–433, 2004.

[38] M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning

trees. Operations Research, 18(6):1138–1162, 1970.

[39] M. Izbicki and C. Shelton. Faster cover trees. In International Conference on
Machine Learning (ICML), pages 1162–1170. PMLR, 2015.

[40] J. JaJa. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.

[41] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics.

In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 741–750, 2002.

[42] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using

dynamic modeling. Computer, 32(8):68–75, 1999.
[43] T. Kollar. Fast nearest neighbors, 2006.

[44] R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity

search. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 798–807. Citeseer, 2004.

[45] D. Li, X. Jia, and H. Liu. Energy efficient broadcast routing in static ad hoc

wireless networks. IEEE Transactions on Mobile Computing, 3(2):144–151, 2004.
[46] G. Lin, C. Nagarajan, R. Rajaraman, and D. P. Williamson. A general approach for

incremental approximation and hierarchical clustering. SIAM J. on Computing,
39(8):3633–3669, 2010.

[47] M. Lucińska and S. T. Wierzchoń. Spectral clustering based on k-nearest neighbor

graph. In Computer Information Systems and Industrial Management, pages 254–
265, 2012.

[48] M. Maier, M. Hein, and U. Von Luxburg. Optimal construction of k-nearest-

neighbor graphs for identifying noisy clusters. Theoretical Computer Science,
410(19):1749–1764, 2009.

[49] W. March, P. Ram, and A. Gray. Fast Euclidean minimum spanning tree: Algo-

rithm, analysis, and applications. In KDD, 2010.
[50] S. J. Matthews and T. L. Williams. Mrsrf: an efficient mapreduce algorithm for

analyzing large collections of evolutionary trees. BMC bioinformatics, 11(S1):S15,
2010.

[51] B. Moseley, S. Vassilvtiskii, and Y. Wang. Hierarchical clustering in general

metric spaces using approximate nearest neighbors. In International Conference
on Artificial Intelligence and Statistics, pages 2440–2448. PMLR, 2021.

[52] G. Narasimhan and M. Zachariasen. Geometric minimum spanning trees via

well-separated pair decompositions. J. Experimental Algorithmics, 6:6–es, 2001.
[53] R. Paredes and E. Chávez. Using the k-nearest neighbor graph for proximity

searching in metric spaces. In String Processing and Information Retrieval, pages
127–138, 2005.

[54] J. P. Praene, B. Malet-Damour, M. H. Radanielina, L. Fontaine, and G. Riviere.

Gis-based approach to identify climatic zoning: A hierarchical clustering on

principal component analysis. Building and Environment, 164:106330, 2019.
[55] T. B. Sebastian and B. B. Kimia. Metric-based shape retrieval in large databases.

In International Conference on Pattern Recognition (ICPR), 2002.
[56] M. I. Shamos and D. Hoey. Closest-point problems. In IEEE Symposium on

Foundations of Computer Science (FOCS), pages 151–162. IEEE, 1975.
[57] M. Sharma and R. Joshi. Design and implementation of cover tree algorithm on

cuda-compatible gpu. International Journal of Computer Applications, 975:8887,
2010.

[58] Z. Shen, Z. Wan, Y. Gu, and Y. Sun. Many sequential iterative algorithms can

be parallel and (nearly) work-efficient. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2022.

[59] J. Shun, Y. Gu, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Sequential

random permutation, list contraction and tree contraction are highly parallel. In

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 431–448, 2015.
[60] S. Subramaniam and S. Pope. A mixing model for turbulent reactive flows based

on euclidean minimum spanning trees. Combustion and Flame, 115(4):487–514,
1998.

[61] Y. Sun and G. E. Blelloch. Parallel range, segment and rectangle queries with

augmented maps. In SIAM Symposium on Algorithm Engineering and Experiments
(ALENEX), pages 159–173, 2019.

[62] Y. Sun, D. Ferizovic, and G. E. Blelloch. Pam: Parallel augmented maps. In ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP), 2018.

[63] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework

for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.
[64] B. Walter, K. Bala, M. Kulkarni, and K. Pingali. Fast agglomerative clustering for

rendering. In IEEE Symposium on Interactive Ray Tracing, pages 81–86, 2008.
[65] Y. Wang, Y. Gu, and J. Shun. Theoretically-efficient and practical parallel dbscan.

In ACM SIGMOD International Conference on Management of Data (SIGMOD),
pages 2555–2571, 2020.

[66] Y. Wang, S. Yu, Y. Gu, and J. Shun. Fast parallel algorithms for euclidean minimum

spanning tree and hierarchical spatial clustering. In ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 1982–1995, 2021.

[67] P. Willett. Recent trends in hierarchic document clustering: a critical review.

Information processing & management, 24(5):577–597, 1988.
[68] A. C.-C. Yao. On constructing minimum spanning trees in k-dimensional spaces

and related problems. SIAM J. on Computing, 11(4):721–736, 1982.
[69] W. Zhou. A practical scalable shared-memory parallel algorithm for computing

minimum spanning trees. Master’s thesis, Karlsruhe Institute of Technology,

2017.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Cover Trees
	3.1 Cover Tree Properties
	3.2 Sequential Cover Tree Algorithms

	4 The Parallel Cover Tree Algorithm
	4.1 The Batch-Insertion Algorithm
	4.2 The Batch-Deletion Algorithm

	5 Applications
	5.1 Euclidean Minimum Spanning Tree
	5.2 Single-Linkage Clustering
	5.3 Bichromatic Closest Pair (BCP)
	5.4 Density-Based Clustering
	5.5 k-NN Graph Construction

	6 Conclusions
	References

