Parallel Cover Trees and their Applications

Yan Gu Zachary Napier
UC Riverside UC Riverside
ygu@cs.ucr.edu znapi001l@ucr.edu
ABSTRACT

The cover tree is the canonical data structure that efficiently main-
tains a dynamic set of points on a metric space and supports nearest
and k-nearest neighbor searches. For most real-world datasets with
reasonable distributions (constant expansion rate and bounded as-
pect ratio mathematically), single-point insertion, single-point dele-
tion, and nearest neighbor search (NNS) only cost logarithmically to
the size of the point set. Unfortunately, due to the complication and
the use of depth-first traversal order in the cover tree algorithms,
we were unaware of any parallel approaches for these cover tree
algorithms.

This paper shows highly parallel and work-efficient cover tree
algorithms that can handle batch insertions (and thus construc-
tion) and batch deletions. Assuming constant expansion rate and
bounded aspect ratio, inserting or deleting m points into a cover
tree with n points takes O(mlogn) expected work and polyloga-
rithmic span with high probability. Our algorithms rely on some
novel algorithmic insights. We model the insertion and deletion
process as a graph and use a maximal independent set (MIS) to
generate tree nodes without conflicts. We use three key ideas to
guarantee work-efficiency: the prefix-doubling scheme, a careful
design to limit the graph size on which we apply MIS, and a strat-
egy to propagate information among different levels in the cover
tree. We also use path-copying to make our parallel cover tree a
persistent data structure, which is useful in several applications.

Using our parallel cover trees, we show work-efficient (or near-
work-efficient) and highly parallel solutions for a list of problems
in computational geometry and machine learning, including Eu-
clidean minimum spanning tree (EMST), single-linkage clustering,
bichromatic closest pair (BCP), density-based clustering and its hi-
erarchical version, and others. To the best of our knowledge, many
of them are the first solutions to achieve work-efficiency and poly-
logarithmic span assuming constant expansion rate and bounded
aspect ratio.

CCS CONCEPTS

» Theory of computation — Shared memory algorithms; Data
structures design and analysis.

KEYWORDS

cover tree, parallel algorithms, parallel data structures, nearest
neighbor search, euclidean minimum spanning tree, single-linkage
clustering

® This work is licensed under a Creative Commons Attribution
BY International 4.0 License.

SPAA °22, July 11-14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9146-7/22/07.
https://doi.org/10.1145/3490148.3538581

Yihan Sun Letong Wang
UC Riverside UC Riverside
yihans@cs.ucr.edu lwang323@ucr.edu

ACM Reference Format:

Yan Gu, Zachary Napier, Yihan Sun, and Letong Wang. 2022. Parallel Cover
Trees and their Applications. In Proceedings of the 34th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA °22), July 11-14, 2022,
Philadelphia, PA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3490148.3538581

1 INTRODUCTION

Nearest neighbor search (NNS) on a metric space is one of the most
widely-used primitives in algorithm design, which has applications
in computational geometry, computer graphics, machine learning,
computer vision, and many other areas. Finding (or even approxi-
mating) nearest neighbor for general metrics requires linear time!.
However, the metrics in real-world applications and of practical in-
terest usually do exhibit nice properties that can be exploited. Some
widely-studied properties include the low expansion rate, which
indicates that the density of points in the metric space changes
smoothly, and bounded aspect ratio (defined in Sec. 2),

A canonical data structure that exploits such a property is the
cover tree [8], which is usually considered as the “standard” solution
for NNS on metric space, both theoretically and practically. Theo-
retically, the point-insert, point-delete, and NNS query only take
logarithmic time, assuming the metric space has constant expansion
rate and bounded aspect ratio. Practically, highly-optimized soft-
ware for cover trees from [8, 39] demonstrates good performance
on a large variety of real-world instances. Cover tree is simpler
than several related data structures around the time [23, 41, 44], but
it is only simple conceptually. Although cover trees were proposed
in 2006, many tricky details and corrections are discussed and made
in later works [26, 31, 43]. In fact, it was only until recently that
Elkin and Kurlin [31] corrected the single-update and query bounds,
which will be reviewed in Sec. 3.

A cover tree T organizes a set S of points in some metric space [8].
It consists of a number of levels. Every level consists of nodes, each
corresponding to a point in S. Note that a point can correspond
to multiple nodes across different levels. The cover tree is defined
to maintain three key invariants (formal definition in Sec. 3): (1)
Nesting: tree nodes at level i is a subset of nodes at level i — 1. (2)
Covering tree: for all i, each tree node at level i — 1 must be covered
by some tree nodes in level i within distance 2! (one corresponding
node at level i will be the parent of that at level i—1). (3) Separation:
any two tree nodes at level i are separated by distance 2!. We show
an illustration in Fig. 1. A cover tree for a set S of points is not
unique. As long as the three invariants hold, the logarithmic bound
for point insertion, deletion, and NNS query holds (assuming low
expansion rate and bounded aspect ratio).

Given the wide applications of cover trees, parallelizing it is
of interest both in theory and in practice. There are two major

A simple example is a uniform metric space [5] where all pairwise distances are
similar so that we can take no structural advantage [8].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3490148.3538581
https://doi.org/10.1145/3490148.3538581
https://doi.org/10.1145/3490148.3538581

/Level 2, radius=22

Level 1, radius=21

7Level 0, radius=2°

Figure 1: An example cover tree with 8 points in 3 levels. No points
are in other points’ circles at the same level (separation distance),
and each point is in at least one point’s circle at a higher level
(covering distance).

challenges in parallelizing it. The first one is the complication in the
algorithms mentioned above, especially in the analysis. The second
and main reason is that the existing cover tree algorithms are also
inherently sequential—both the insertion and the deletion are in a
depth-first order (see Alg. 1 and 2: the algorithms need to traverse
as deep as possible, and modify the cover tree during backtracking).
Hence, the result of a single-insert/delete can drastically change the
position of another operation. An example is presented in Fig. 2. The
two inserted nodes, even when they will be inserted to different
branches in the tree, can interact and conflict with each other.
Hence it is highly non-trivial to parallelize the original algorithm
to handle parallel insertions on two or more points. To solve such
conflicts, we need some proximity information for each point (e.g.,
the points close to it), but such information is not known before
the point is inserted into the cover tree. This chicken-and-egg issue
adds extra difficulty to parallelizing the cover tree. To the best of
our knowledge, we are only aware of two papers that “claimed”
that they parallelized the cover tree [39, 57]. Sharma and Joshi’s
algorithm [57] missed many details and it remains unclear what
their algorithms and the cost bounds are. Izbicki and Shelton’s
version [39] relaxed the separation property in cover trees. Hence,
their tree is more similar to a quadtree, and the cost of an NNS can
be linear as opposed to logarithmic in the original cover tree [38].
As a result, it has been open for 15 years on parallelizing the cover
tree proposed in 2006, while maintaining logarithmic query and
update costs.

Contribution in this paper. We show highly parallel and work-
efficient cover tree algorithms that can handle batch insertions
(and thus construction) in Alg. 4 and batch deletions in Alg. 5. In
particular, we show algorithms with the following bounds on work
(number of operations) and span (longest dependent operations,
formally defined in Sec. 2):

THEOREM 1.1. Assuming constant expansion rate and bounded
aspect ratio, inserting or deleting m points into a cover tree with n
points takes O(mlog n) expected work and polylogarithmic span with
high probability.

This also indicates that constructing a cover tree of size n takes
O(nlog n) expected work and polylogarithmic span with high prob-
ability. The more precise versions of the results are given in Thm. 4.9,
4.10 and 4.12. Our algorithms are work-efficient (modulo random-
ization) as they spend the same operations as the sequential al-
gorithm. NNS queries are naturally parallelized since they do not

modify the cover tree, but cluster queries, as discussed in many ap-
plications in Sec. 5, require batch-deletion on the persistent parallel
cover tree.

We note that designing the parallel algorithms for batch-insertion
and batch-deletion is highly non-trivial, both in algorithm design
and in analyzing the correctness and cost bounds. Our key idea is
that, instead of inserting or deleting the points using depth-first
traversal, we consider all points to be inserted or deleted at each
level as a whole, and process the levels either top-down (for in-
sertion) or bottom-up (for deletion). Take the batch insertion as
an example. To process a set of points S to be inserted at level i,
the main challenge is to identify a subset S’ of them that can be
added to this level, such that (1) they are well-separated and (2) all
other points in S will be covered either by the existing points at
this level or points in S’. Our key insight is to model the points as
a graph G to illustrate the pairwise conflict relationship (i.e., two
points cannot both be put at this level because they are too close
to each other). Then any maximal independent set (MIS) on this
graph gives a feasible set of points that can be inserted at this level,
while other points are guaranteed to be covered by some of the
selected points at this level. Using this MIS approach gives a valid
cover tree, but its efficiency is not straightforward—considering
constructing a cover tree by batch-inserting n points to an empty
tree. Constructing the graph G already takes at least O(n?) work,
but the sequential algorithm only uses O(nlogn) work. To make
our algorithm work-efficient and highly parallel, in addition, we
need to consider: (1) the prefix doubling approach such that the
“additional information” that each sub-batch adds to the cover tree
is limited (to bound the number of edges in G); (2) to minimize
the number of point pairs to check when constructing edges in G
and avoid checking pairwisely in the batch; and (3) to efficiently
propagate information between the levels. With detailed solutions
and justifications given in Sec. 4, we can show that with our design,
the additional work to resolve the conflicts caused by parallel in-
sertions (constructing G and running MIS on G) is asymptotically
bounded by the work of the sequential insertion, in expectation.
Also, using parallel MIS [4, 12] with polylogarithmic span enables
polylogarithmic span for the entire algorithm since a cover tree has
O(logn) levels assuming low expansion rate and bounded aspect
ratio. Putting all pieces together, our batch-insertion algorithm is
work-efficient and highly parallel, with the cost bounds given in
Thm. 4.9 and 4.10. Batch-deletion can be solved similarly, but it
does not require the prefix-doubling scheme.

Given the wide applications of NNS in computational geome-
try and machine learning, our new algorithms for cover tree give
the first work-efficient and highly parallel solutions to a list of
problems given in Sec. 5, again assuming low expansion rate and
bounded aspect ratio. While for many of the applications, we can
just replace the sequential cover tree with our parallel one, we high-
light our algorithm for Euclidian minimum spanning tree (EMST)
and single-linkage clustering. To support parallel cluster queries in
these applications, we need to make our cover tree a functional data
structure. For single-linkage clustering, which is one of the most
widely-used methods for hierarchical agglomerative clustering, we
combine our parallel EMST algorithm with a recent algorithm by
Wang et al. [66], and achieve the first nearly-work-efficient parallel
algorithm with polylogarithmic span.

/""u*:‘n'ﬁ-.

Figure 2: An example of the challenge for parallel insertion. Points A and B are already in the tree and we now want to insert points X and
Y. Figure (a) shows the original cover tree before the insertions, and figures (b) and (c) give the tree if either X or Y is inserted, respectively.
However, if both insertions are applied in parallel and independently, then the tree shown in figure (d) becomes invalid since points X and
Y are not separated in this level. In the sequential algorithm, figure (e) shows the final cover tree when we first insert X and then Y, and
figure (f) gives the tree after inserting point Y then X. Both versions are valid cover trees, but a correct parallel algorithm needs to identify
the potential conflict between point pairs like X and Y, and yield a correct output tree (either figure (e) or (f)). Our solution requires a few key
observations and an efficient parallel MIS (maximal independent set) algorithm as a subroutine, and is explained in more details in Sec. 4.1.

2 PRELIMINARIES

We use the term O(f(n)) with high probability (whp) in n to
indicate the bound O(k f(n)) holds with probability at least 1—1/n¥
for any k > 1. With clear context we drop “in n”. We use logn as a
short form of 1 +log,(n + 1).

Low-Expansion Metric Space. A metric (X, dx) is defined on a
set X and with a distance function d : X x X — R* that satisfies
properties: (1) dx(x,y) =0 © x =y for x,y € X, (2) dx(x,y) =
dx (y,x) for x,y € X, and (3) dx(x,y) < dx(x,z) + dx(zy) for
x,y,z € X. With clear context, we drop the superscript X.

Define Bx(p,r) = {x € X | d(p,x) < r} as the closed ball
centered at point p and containing all points in X at a distance of
at most r from p. With clear context, we drop X. We say a metric
has (p, ¢)-expansion [41] iff for all p € X and r > 0,

[B(p,r)| 2 p = |B(p,2r)| < c-|B(p,r)l.

The parameter c is referred to as the expansion rate of the metric
space, and we say a metric has a low or constant expansion rate
if ¢ = O(1). Usually we assume p is O(log |X|), which guarantees
constant expansions for most real-world datasets. Intuitively, low
expansion means a smooth distribution of the points, and rules out
the case where as the ball grows, we encounter a few points, then a
long distance with no points, then suddenly a tremendous number
of points. This case is also less likely in most real-world datasets.

THEOREM 2.1 (SAMPLING THEOREM [41]). Given a metric with
(p, ¢)-expansion, a uniformly random subset X’ with |X’| = m will
have (max(cp, O(log m)), 2c)-expansion with high probability to m.

We note that if we want to improve the probability to the size
of n, then the analysis in [41] implies that we just change O(log m)
in the parameter to O(log n).

This theorem shows that for low-expansion metric space, a sam-
ple of this space is also low-expansion. This is crucial for our ran-
domized batch-insertion algorithm in Sec. 4.1.

The query cost for cover trees relies on the expansion rate in-
cluding or excluding the query point(s). For simplicity, we still
use ¢ to denote the expansion rate after such modifications, if it

is increased. In particular, for single-point query and bichromatic
closest pairs, the query expansion rate includes the query point; for
Euclidean MST and single-linkage clustering, the query expansion
rate excludes the query points.

Bounded Aspect Ratio. Bounded aspect ratio is another common
assumption for real-world datasets. Aspect ratio is defined as A =
max{d(x,y)| x,yeX}
min{d(x,y)|x,yeX}
is bounded—if the input size is n, then the aspect ratio is n* for
some constant k > 0. For instance, the ratio of the Earth’s radius
to a sand’s radius is only about 101® ~ 233, Most of the real-world
applications have aspect ratios smaller than this value. Hence, for
big-data applications (usually n > 10°), it is reasonable to assume
A = n* for some constant k > 0, and log A = O(log n). The height
of a cover tree H(T) is [1 + log, A]. For theoretical accuracy, we
leave H(T) as a parameter when analyzing existing and our new
cover tree algorithms, while in practical applications we can assume
H(T) = O(log, A) = O(log n).

For simplicity, throughout this paper, we assume mind(x,y) = 1,
so aspect ratio is simplified as A = max d(x,y). Note that this is
only for the ease of description (e.g., the leaf level in a cover tree is
always level 0), and none of the previous cover tree algorithms or
our new ones rely on this assumption.

. A common assumption is that the aspect ratio

Functional Trees / Persistent Trees. Functional data structures
are data structures that are immutable (i.e., no operations modify
existing data), and thus any update operation will create a new
version instead of updating in place. For tree-based data structures,
recent work [10, 11, 27, 28, 61, 62] showed that using path-copying
is a both theoretically and practically efficient approach to support
functional trees. In particular, any update (including insertion or
deletion) will copy the full path from the root to the node (or nodes,
for multi-point queries) to be updated. In this way, we can maintain
copies of all history versions of the tree structure, which will be
useful for many applications in Sec. 5. An illustration of a persistent
tree using path-copying is presented in Fig. 3.

Insert Xinto T
A e

Figure 3: A functional cover tree using path copying. The blue
nodes and lines show the original cover tree T. When inserting a
new point X, it follows the path from A — B and will be finally
inserted as a child of B. A functional insertion will copy all nodes
on the path (i.e., A to A’ and B to B’), and insert them to the copied
nodes. The tree nodes in the original cover tree are immutable.
Finally, following the root of A’, we can find the cover tree T’
with the new point X inserted, and the original cover tree T is still
accessible by reading the root A.

Computational Model and Notations. We use the work-span
model for fork-join parallelism with binary forking to analyze par-
allel algorithms [11, 25], which is recently used in many papers on
parallel algorithms (a short list: [2, 6, 13, 14, 21, 22, 24, 29]).

We assume a set of threads that share a common memory. Each
thread supports standard RAM instructions, and a fork instruc-
tion that forks two new child threads. When a thread performs a
fork, the two child threads all start by running the next instruction,
and the original thread is suspended until all children terminate.
A computation starts with a single root thread and finishes when
that root thread finishes. An algorithm’s work is the total number
of instructions and the span (depth) is the length of the longest
sequence of dependent instructions in the computation. We can ex-
ecute the computation efficiently using a randomized work-stealing
scheduler both in theory and in practice [11, 17, 25].

Some subcomponents (MIS and semisort, see details below) used
in this paper need constant-cost atomic operation TESTANDSET(p),
which reads and attempts to set the boolean value pointed to by p
to true. It returns true if successful and false otherwise.

Parallel Maximal Independent Set. For a graph G = (V, E), an in-
dependent set is a set of vertices V/ C V, such that for any u,0 € V’,
(u,v) ¢ E. A maximal indepent set (MIS) is an independent set V’
where Vo € V,v ¢ V/, V/ U{o} is not an independent set. In parallel,
the problem can be solved in O(|E|) work and O(log3 |[V]) span whp.
Our recent work [58] improved the span to O(log |V|log dmax) whp
where dpgx is the maximum degree of any vertex in the graph G.
In this paper, we will use parallel MIS as a subcomponent.
Semisort. Given a sequence of key-value pairs, a semisort algo-
rithm reorders the element in the sequence such that elements with
the same key are contiguous [36]. In parallel, semisort can be solved
in O(n) expected work and O(log n) span whp [11].

3 COVER TREES

This section overviews the cover tree structure [8] and its various
properties shown in [8, 31, 43].

A cover tree consists of a number of levels that are indexed by
the integer i, which decreases as the levels are descended. Every
level consists of nodes, each of which corresponds to a unique point
in the data set S. Note that each point can correspond to multiple
nodes across different levels.

Let C; denote the set of points in S associated with the nodes at
level i. The cover tree is defined to maintain three key invariants:

(1) Nesting. C; C Cj—1. This means that a point that is associ-

ated with a node at one level is also associated with a node
at every level below it.

(2) Covering tree. For every p € C;_1, there exists a g € C;

such that d(p, q) < 2! and the node at level i associated with
q is a parent of the node at level i — 1 associated with p.

(3) Separation. For all distinct p, g € C;, d(p, q) > 2.

For simplicity, we assume d(p,q) > 1 for all p,q € S, so all
critical levels in the cover tree has i > 0.

Finally, we differentiate a few different versions using compres-
sion. The plain version stores the cover tree in [1 + log, A] levels,
so each point can show up at multiple levels. The tree height is
then H(T) = [1 + log, AT. To compress the tree, one can either
compress a tree node with one child (so the tree has at most 2n — 1
nodes) [8], or consider all tree nodes corresponding to the same
point as a supernode [31]. We use the plain version throughout this
paper since parallelizing cover trees is already very challenging.
Meanwhile, we believe that our techniques apply to the compressed
versions, and we leave that as future work.

3.1 Cover Tree Properties

Below are some important lemmas for cover trees that will be used
in designing algorithms for parallel cover trees.

LEmMA 3.1. For each point p, the number of points at level i which
falls into ball B(p, 27*%) is ¢>** for any non-negative integer k.

Proof. Let Q = B(p, 27*%) N C; (C; is the set of points at level i) be
the set of points described in Lem. 3.1. For all g € Q, since they are
all at level i, the balls B(q, 2i_1) must be disjoint. The idea is then
to bound the number of such disjoint balls around p. Now consider
all points within ball B(p, 2:*<*1), which is a superset of Q. We will
then discuss the number of disjoint balls B(q, 2:~!) one can pack
inside B(p, 27**1). For any q € Q, since q € B(p, 2*%), we have
d(p,q) < 2"**, and thus B(p, 2***1) C B(g, 21**?). Therefore,

|B(p,2i+’<+1)| < |B(q,2i+’<+2)| < C3+K|B(q,2i_1)|

Note that all balls B(g, 2/~ 1) must be contained in ball B(p, 2/+<+1).
This proves f[hat the total number of such points ¢ can be no more
than |B(p, 277%+1)|/|B(g, 271)| < 3%, o

We note that this lemma can be viewed as a simplified form of
the packing lemma in [31]. Since this form is exactly what is needed
to analyze our parallel cover tree, we provide this analysis here,
and hopefully it provides some insights to the readers on how the
expansion rate affects the properties of the cover tree. Based on
this lemma, it is easy to bound the number of children for any tree
node in a cover tree.

COROLLARY 3.2. The number of children of any tree node is < c¢*
in a cover tree.

Algorithm 1: Single-Point Insert(p, Q, k).

Algorithm 2: Single-Point Delete(p, {Qk, Qk+15 - Qoo }, k).

Input: The point p to be inserted, a cover set Q. and a level
k.

Output: A cover tree that includes the new point p.

1 Q « {Children(q) | g € O}
2 if d(p, Q) > 2X then return false
3 else

+ | Qe —{geQld(p.g) <2k}

5 if Insert(p, Qx_1, k — 1) = false then

6 if d(p,Qy) < 2X then

7 q < any point in Q. satisfying d(p, q) < 2k
8 Insert p into ¢’s children

9 return true and exit

10 else

11 ‘ return false

For a tree node at level i, all children are at level i — 1 and must
be in B(p, 2!). Plugging in k = 1 gives the stated bound. This is a
simple use case of Lem. 3.1, and in Sec. 4, we will extensively use it
to bound the work and span for the parallel cover tree algorithms.

LEMMA 3.3 (QUERY cosT [31]). A nearest neighbor query takes
O(c!OH (T)) work, and a k-nearest neighbor query takes O(c” (k +
¢3) logk - H(T)) work.

The analyses are given by Elkin and Kurlin in [31]. The nearest
neighbor query algorithm loops over all tree levels in a top-down
manner. At each level, it visits at most c® tree nodes. Then the
algorithm will check all their children, multiplying another c¢*. The
k-NN search can be analyzed similarly.

3.2 Sequential Cover Tree Algorithms

We now review a few useful sequential primitives on cover trees.
Elkin and Kurlin [31] recently pointed out some fatal issues in the
analysis of the original cover tree paper. Here, we formally analyze
the sequential algorithms first. We do not consider the analysis in
this section as a contribution of this paper, but we need the results
to correctly bound our parallel algorithms.

Single-point insertion. We present the single insertion algorithm
on the cover tree in Alg. 1, originally from [43].

It iterates over the levels of the tree from top to bottom, and at
each level it has a set Q; of nodes that p could possibly be a descen-
dent of. Specifically, any node within a distance of 2/*! from p is
a candidate. In the first iteration, Q; contains only the root node.
We construct a set Q;—1 for the next level down by taking all the
children of nodes in Q; and filtering out those that are not candi-
dates. We then make a recursive call with Q;_1, which represents an
attempt to insert p as a descendent of one of Q;_1. If that fails, then
nodes for p at any levels below i fulfill the separation condition, so
if a node at this level in Q; covers p, we can insert p as its child and
exit. If no such node covers p, then we return false.

THEOREM 3.4 (SINGLE INSERTION WORK). A single point insertion
uses O(c>H(T)) work.

Proof. The insertion algorithm traverses all levels in the tree, and
visits all tree nodes ¢; at level k — 1 if d(p,q;) < 2*, and their

Input: The point p to be deleted, a set of cover sets
{Ok, Ok41s --» Qoo }, and the current level k.
Output: The modified cover tree that excludes the point p.

1 Q « {Children(q) : q € O}

2 Qo1 — {g€Qd(p.g) <21}
Delete(p, {Qx—1, Ok, --» Qo }, k — 1)
4 if d(p, Q) = 0 then

©w

5 Remove p from Ci_; and from the children of Parent(p)
6 for p’ € Children(p) do

7 K —k-1

8 while d(p’, Q) > 2¥ do

9 Insert p’ into Cys (and Qp+)

10 K —k+1

1 q’ « any point in Q. satisfying d(p’,q’) < 2¥

12 Make ¢’ as the parent of p’

children q}. Note that all balls B(q;., 2k=1y must be in B(p, 2k+1y 50

based on Lem. 3.1, there can only be ¢> of such points. Hence, the
insertion algorithm uses O(c>H (T)) work. O

Here this bound seems tighter than the bound by Elkin and
Kurlin [31], given that their bound is O(c3H (T)). However, we
note that the definition of tree height in [31] is different from us—
their tree height only counts for non-empty levels while our tree
height includes all levels. Hence, either bound can be better, decided
by the input distribution.

Single-point deletion. The deletion algorithm again starts from
the top of the tree and goes down one level at a time, and again
at each iteration it starts with a set of nodes at this level Q; that
are within two times the covering distance of p. The recursive call
will remove p from every level below this level, and also find new
parents for the orphaned nodes. After the recursive call returns,
we only need to remove p from this level and find parents for the
newly orphaned nodes. For each orphaned node, it must be covered
by some node in Q, so we just check each Q in order, starting from
this level and going up the levels until we find the first level that
covers us. The only exception is when the root is deleted, and we
can process that separately. Then once we find the new parent of
the orphaned node, we will update the pointers.

LEMMA 3.5 (SINGLE DELETION WORK). A single point deletion uses
O(BH(T)) work.
Proof. Beygelzimer et al. [8] showed that in the deletion algorithm,
only one point from each level can promote more than two levels
(Line 8-10). At each level, the deleted point p has at most ¢* children,
which is compared to at most ¢* tree nodes in Qy for at most twice.
Given that the tree height is H(T), multiplying the three terms
gives the stated single deletion work bound. O

Traversing the cover tree. Another commonly used sequential
algorithm on cover trees is to traverse the tree w.r.t. a point p, in or-
der to extract all tree nodes covering p (based on the corresponding
radius at each level). The set of these nodes is simply the concate-
nation of all the sets Q’ in each iteration of Line 4. The algorithm is
given in Alg. 3. Similar to single insertion/deletion, we keep track of

Algorithm 3: Traverse(T, p) Notation Definition
Input: The cover tree T and the point p to be checked. General:
Output: A list of tree nodes N that contains tree nodes g; T The original cover tree
on level k such that d(p, q;) < 2F+1. S The batch that contains points to be inserted or
deleted
t N « {virtual-root} Di Referring to a point in S
2 Q « {T.root} qi Referring to an tree node in T
3 for k from root level to leaf level do Specific for batch-insert:
4 Q «—{qeQldp,q < 2k+1} S; The i-th inserted batch based on prefix doubling
s | N«NuU(Q Si TUSU---US;
6 Q « {Children(q) | g € Q’} P; The parent tree node p; € S should be inserted if
» return N done sequentially in isolation
I; The level p; € S should be inserted if done sequen-
the tree nodes that are sufficiently close to the point, in a top-down L Ealzl? I_SOI;U_OZ}
manner. The cost for traversal is the same as insertion since they k k « pi | e .
g, The “conflict set” for tree node g; € T thatis {p; €
touch the same set of tree nodes.

We note that the traversal cost is cheaper than an NNS on the
cover tree (Lem. 3.3). The reason is that NNS can visit nodes that
Alg. 3 does not visit. For instance, the tree node for the nearest
neighbor of a query point does not necessarily cover the query
point. Hence, a tighter work bound for Alg. 3 can be obtained.

4 THE PARALLEL COVER TREE ALGORITHM

In this section, we discuss the parallel cover tree algorithms. We
note that the queries on cover trees are already parallel since they
do not change the data structure, so multiple queries can directly
be applied simultaneously. Now we will introduce our algorithms
for batch insertion and batch deletion that are work-efficient and
have polylogarithmic span, assuming constant expansion rate and
bounded aspect ratio.

4.1 The Batch-Insertion Algorithm

The challenge of a parallel insertion algorithm is illustrated in Fig. 2.
In short, we want to identify all potential point pairs that would
violate the separation property if we inserted them independently,
while maintaining the work-efficiency. For instance, checking all
point pairs in a batch of size m will lead to O(m?) work, which
is suboptimal when m = w(logn) since the sequential insertion
takes O(mlog n) work. Hence, we need two key components in our
insertion algorithm (Alg. 4)—one is the maximal independent set
that enables parallel insertions and resolves the conflicts, and the
other is prefix doubling that guarantees work-efficiency.

To tackle the possible conflicts between point pairs, we note the
following fact:

LEMMA 4.1. For every point pair p; and p; that are both inserted
at level i as single insertions and violate the separation property, for
pi’s parent pr, we haved(pg,pj) <3 - 2k,

Proof. Since p; and p; violate the separation property, we know
d(pi,pj) < 2. Since p; is py’s child, d(pi,pr) < 2i*1 Combin-
ing with the triangle inequality, we have d(pf, pj) < d(pi,pj) +
d(p,,pf) < 3.2 O

Therefore, our insertion algorithm identifies these conflict pairs
by first using Alg. 3 on Line 7 to traverse the existing tree for each
point p; € S and record the tree node g; with d(p;,q;) < 2k+1

S|1d(qi.pj) < 2K*1}, where g; is at the k-th level
Specific for batch-delete:

A; Point p;’s ancestor at the level being processed
Ly All tree nodes that should be deleted at level k
X The current set of uncovered (orphaned) tree nodes

due to deletions
The “conflict set” for tree node g; € T that is {q; €
X |d(qi.qj) < 2k+11 where qj is at the k-th level

g,

i

Table 1: Notations used in parallel cover trees and analysis.

where g; is at the k-th level. At the same time, Alg. 3 also computes
the level [; and the parent tree node P; when a single point p; € §
is inserted into the cover tree in the sequential algorithm.

Once we have [; and all pairs (q;, p;), we can semisort them and
get L that contains all points to be inserted at level k (Line 9), and
I1g, that is the set of inserted points covered by tree node g; with

distance 2k+1 (Line 8), where k is the level that tree node g; is in.

After all the preprocessing, we come to the interesting part of this
algorithm: inserting all nodes at each level in top-down order. An
illustration for this step is given in Fig. 4. Consider we are processing
level k now. For each point p; € L to be inserted, for all tree node
q; at the k-th level, we know d(p;, q;) > 2k since otherwise pi will
be inserted in g;’s subtree in a deeper level. Meanwhile, we know
there exists at least one tree node g; with d(p;,q;) < 2k+1 since
otherwise p; can be inserted at a higher level. Hence, all points in
L;. must be in the annuli with distance 2k and 2%*1 centered at tree
nodes at level k, as shown in the grey region in Fig. 4.

We then build the graph G to decide the feasible points to be
added at level k. We in parallel enumerate each point p; € Ly and
check all possible conflict pairs (Line 12). As indicated by Lem. 4.1,
we only need to enumerate the points in IIp, N Ly (P; is p;’s parent
if p; is inserted as a single point) since Ilp, captures all points
pj with d(pi, pj) <3 - 2K (Line 13). We then on Line 14 check if
d(pi,pj) < 2k (violating the separation property), and if so, we add
an edge between these two points in G (Line 15). Such an example
graph is shown on the top-right in Fig. 4.

Once the graph G is constructed, we will run a maximal indepen-
dent set (MIS) algorithm on G and let I to be output that contains

Algorithm 4: BatchInsert(T, S).

Input: A cover tree T and a set of node S.
Output: The new cover tree T’ that includes all nodes in S.

1 Randomly shuffle points in S and partition them into groups
of S0, 51, . .. Slog|5|-1> 8-t [So| = 1 and |S;] = 21 fori > 0

2 fori « 0tolog|S|—1do

3 ‘ BarcuINSERTHELPER(T, S;)

'S

Function BATCHINSERTHELPER(T, S)

5 Let C « 0 be a set of pairs of (q;, p;).

6 parallel foreach p; € S do

7 Run TRAVERSE(T, p;). For each node q; € T with
d(pi,qj) < 2k+1 where qj is at the k-th level, add
the pair (q;, pi) to C. Set P; and I; to the node that
pi sould be a child of and /; to the level p; should
be inserted if done sequentially in isolation.

8 Semisort C by q; and set I1g; < {p; | (g;,pi) € C}

9 Semisort nodes in S based on [;, and let
Ly —{pi | i =k}
10 for k from the root level to leaf level do
11 Initialize a graph G as (Lg, 0)
12 parallel foreach p; € L; do
13 parallel foreach p; € IIp, N Li do
1 if d(pi,pj) < 2 then
15 ‘ Create an edge between p; and p;
16 Compute the MIS of G and let I be the selected
vertices
17 Insert the point p; € I to the cover tree based on P;
from level k to level 0 (leaf level)
18 parallel foreach p; € I do
19 parallel foreach p; € Ilp, do
20 Letk’ = |-10g2 d(pi,pj)]
21 if K — 1 < k then
22 for k from k’ — 1to k — 1 do
23 Add pj to Ilg;, where g; is a node at
level k corresponding to p;
24 if k' < Ij then
25 Pj « the tree node for p; at level k’
26 Remove p; from Ly,
27 Add pj to Lys
28 lj —k

the selected vertices (Line 16). In Fig. 4, I = {Q, S, V, W}. All points
in I can be inserted into the cover tree at level k (Line 17), while at
least one of its selected neighbors will cover every other point.
After we build the tree nodes for the points in I, we have two
more tasks. For each selected vertex in I, we generate the conflict
sets for all inserted tree nodes corresponding to this point, executed
on Line 23 based on the definition of the conflict sets. It is easy to
see that all points in these conflict sets generated by the point p;
must be in IIp,. The second task is that we need to check if the
newly inserted points invalidate the current insert positions P; of
some uninserted points p; in S. Consider a point p; that is very
close to a newly inserted point p; (say d(pi, p;) = 1). In this case,

BQWAVCS

Figure 4: The parallel insertion process in a certain level. In this example,
points A, B, and C have already been inserted and are siblings in this level,
and the other points are in the inserted batch. Here the solid circles identify
the separating distance d, long dash circles are the covering distance 2d,
and the short dash circles indicate the distance of 3d. All inserted nodes
in this level must be in the annuli marked in gray (otherwise they either
will not be covered by A, B, or C, or will go to lower levels). We check all
point pairs in each short dash circle with distance 3d, and add an edge if
their distance is no more than d. A graph on the top-right corresponds to
the points P to W. We run an MIS on this graph, and assume points Q, S, V,
and W are selected. These four nodes will be inserted to the tree as shown
on the bottom-right, and other points P, R, T, and U will be distributed to
either of their selected neighbors, and wait to be inserted in the next round.

the original position for p; can violate the separation property if it
is not in the leaf level. We need to check this and adjust it to a valid
insertion position if needed (on Line 25), and we refer to this as
the redistribution step. We will later show that the work for these
two steps are bounded by the cost to construct the graph G and the
sequential insertion cost.

We will start by showing the correctness of this algorithm.

LEmMMA 4.2. All possible conflict point pairs (i.e., violating separa-
tion) are captured by Ilp, on Line 13.

Proof. Let p; be a point we are inserting and let p; be any other
point we are inserting, and let P; and P; be the nodes that would be
the parents of p; and p; respectively if we inserted each by itself.
Suppose two inserted node p; and p; under P; and P; violate the
separation property at some level [and d(p;, pj) < 2l Let I; be
the level of P;, so l; > I. Then d(P;, p;) < d(Pi, pi) +d(pi,pj) <
2li 4ol < 2li 4 oli=1 = 3.2Li=1 < 2li+1 Hence, pjisalsoinIlp,. O

We then inductively show that by the end of an iteration of
Line 10, T is valid a cover tree (e.g., all g, and P; for each uninserted
point in S satisfy the definitions in Tab. 1 for the T), then T is also
valid after running another iteration of this loop. In these lemmas,
T refers to the tree at the end of this iteration, and T’ refers to the
tree at the end of the previous iteration.

LEMMA 4.3. At end of an iteration of Line 10, T is a valid cover
tree.

Proof. First, we show that the covering property is satisfied. Con-
sider a point p; that is in T at the end of this round. If it is already
in T’, then the covering property is satisfied since neither its level
or parent were changed. Otherwise, we inserted p; in this round

under P;. By definition, P; covers p;, so the covering property is
satisfied.

Next we show that the separation property is satisfied for each
pair of nodes in each level. Consider two tree nodes g; and g; in
the same level in T. If they are already in T’, then the separation
property is already satisfied. If g; ¢ T’ and q; € T, then the
separation property is satisfied, because if we inserted g; into T’ in
the sequential algorithm, it would insert into the location separated
from gqj, since otherwise we either identify this when running the
traverse algorithm on Line 7, or ¢; will go to g;’s subtree on Line 23
in the round that the corresponding point of q; is inserted. The
separation property is also satisfied when neither g; nor g; are in
T’, because the MIS selected I to be a set of points such that no two
points are closer than 2k,

The covering and separation properties are satisfied, so T is a
valid cover tree. O

LEMMA 4.4. At end of an iteration of Line 10, each Ilg; is correct.

Proof. For every newly inserted node g;, on Line 23 we set [1g, =
{pj € lp, | d(pi,pj) < 2K'+1} where k’ is gi’s level. By definition,
g, € {pj € S1d(pi,pj) < 2k'+1} Since IIp, C S, we have already
checked all points in IIp,. Let p; € S\ Ilp,. From the definition
of a conflict set, d(pj, P;) > 2k+2_ Using the triangle inequality,
d(pj.pi) = d(Pi,pj) — d(Pipi) > 2K+ — 2k+1 = gkl 5 ok,
Therefore {p; € S|d(pi,pj) < 2k'+1y ¢ g, and Iy, is correct. O

LEMMA 4.5. At end of an iteration of Line 10, Pj and l; for each
uninserted point p; is correct.

Proof. Let P} and I’ be the values of P; and [; at the end of the
previous iteration. First note that, if [; < l;., the separation property
is satisfied between p;’s nodes and all nodes in T’.

If pj ¢ Ilp, for any p; € I, then we leave P; = PJ’. and [; =
I.pj ¢ Tp, means d(p;,Pi) > 2k+2_ By the triangle inequality,
d(pj.pi) > d(pi, P;) — d(pj, P;) > 2K+2 — ok+1 = gk+1 ok+1 5 ol
since [j < k, so p; is separated from all nodes for all p;. [; < lj’., 1)
it is separated from all nodes in T”. Lastly P; = P} trivially satisfies
the covering property.

If pj € Ilp, for any p; € I, then either d(p;, p;) < 25 for some
pi € Tord(pj,pi) > 25 for all pi € I. Each of the two cases are
discussed in the next two paragraphs.

If d(pj, pi) > 25 for all pi € I, we leave Pj = P]’. and [j = l;..
d(pj,pi) > 2l = 2b means separation is satisfied between all nodes

for p; and all nodes for all p; € I. The remaining nodes in T are
the nodes that were already in T’, and because [i < l}, all nodes
for p; are separated from all nodes in T”. P’, satisfied the covering
property, so P; satisfies the covering property. Therefore P; and [;
are correct.

Ifd(p;, pi) < 2" for some p; € I, then we pick L; = [log, d(p;, pi)]
and set P; to p;’s node at level [; + 1. This means 2li < d(pj,pi) <
2l so Pj covers pj and that p; is separated from all nodes for
pi- For all p, € I'\ {p;}, the triangle inequality gives d(p;, pp) =
d(pi, pr) — d(pj, pi) = 2K — 2k=1 = 2k=1 5 2l 5o separation is
satisifed with all the other newly inserted nodes. Lastly, [; < l;.,)

separation is satisfied with all nodes in T’. Therefore P; and I; are
correct. a

LEMMA 4.6. The new cover tree is a valid cover tree.

Proof. This follows by induction using Lem. 4.3 to 4.5 and by as-
suming the correctness of the traverse algorithm. At the start of
the algorithm, T is given as a valid cover tree. The loop around
Line 7 computes each P; and Iy, correctly, so the invariant holds
at the beginning of the first iteration. By induction on the previous
three lemmas, the invariant holds at the beginning and end of any
iteration. Nothing happens after the last iteration, so T is a valid
cover tree at the end of the algorithm. O

However, just doing the above-mentioned steps does not guar-
antee work-efficiency. Considering a tree T with just one root node
and |S| = n. Then for some tree node p; in level k cover set IT, N Ly
may contain O(n) nodes, and checking them pairwise on Line 14
incurs O(n?) work. To reduce the work in these incremental con-
struction algorithms, a common approach is prefix doubling [14-
16, 59]. Here we can do the same: partition the batch S into log, [S|
groups, and insert each group in turn. This guarantees that the cur-
rent cover tree always has at least the same number of (randomly
chosen) points as the group to insert. As a result, each of the cover
set (ITp, N Ly on Line 13) has limited size: constant on average and
logarithmic whp.

LEMMA 4.7. For each point p, the number of p’s neighbors in G

(Line 16) is O(1) in expectation and O(log n) whp.
Proof. Now consider all neighbor points of p, and denote them
as N(p). They must all be in the current batch S; (Line 3) to be
inserted, and N(p) € B, (p, 2k) (k is the current level). Note that
not all points in Bg, (p, 2k) are in N(p) since the points inserted
in the previous i — 1 batches may “capture” some of the points in
B, (p, Zk) (Line 25) so they will be inserted to lower levels. This
will only help reducing the neighbor set size (i.e., making N(p)
smaller).

We now analyze the size of N(p) in expectation and with high
probability. Let $; = So U --- U S;, and we have Bg, (p, 2k) ¢
Bs,(p, 2K). Let N'(p) C Bs, (p, 2K) be the set of points that are
not captured by points in the original tree T (excluding points in
S; with parents at or below the k-th level). The argument is that
if any of the points in N’(p) are in the previous i — 1 batches (i.e.,
N’(p) # N(p)), then p cannot be inserted at level k, but lower
than that. This is based on the separation property of the cover
tree, and indicates N’ (p) = N(p) if p is processed at the k-th level.
Given how S; is sampled, we show that [N (p)| is small. Each point
in N’(p) has at most half the probability of being in S;. We first
consider the high probability guarantee for s = |[N(p)|. For each
point ¢ € N’(p), Pr[q € N(p)] < 1/2.1f s > clogn, then

Pe[|N(p)] = IND)I| € = = —

2_5 = gclogn
which indicates that the number of p’s neighbors in G is O(log n)
whp. The expected neighbor size is [N” (p)|-Pr[|N’(p)| = IN(p)|] =
O(1). Note that the results holds for all levels for the point p, if it
is redistributed and processed in multiple levels (on Line 25). O

—C

COROLLARY 4.8. The size of the setI1p, N Ly being check on Line 13
is O(c®) in expectation and O(c® log n) whp.

We can simply multiply the bounds in Lem. 3.1 with ¥ = 1 and
Lem. 4.7 and get Col. 4.8. To efficiently acquire the neighbor set
of a vertex (i.e., IIp, N L; on Line 13), we can generate IIp, N Ly
once ITp, is generated on Line 7. We note that Ly can change when
new tree nodes are generated, but we can maintain it lazily: every
time when we loop over the points in L, we skip those that are
removed. We note that the work is only O(m%H (T)) to check all
points at S in every level for a batch of m inserted points, which is
asymptotically bounded by other parts in this algorithm.

We now analyze the work and span bounds for the parallel batch-
insertion algorithm.

THEOREM 4.9. The batch insertion algorithm (Alg. 4) can correctly
insert a set of points S into a cover tree T using O(c>m¥H (T)) expected
work and O(H (T) log m(log ¢ + log mloglog n)) span whp, where

m=|S|,n=|T|, and m < n.

Proof. The correctness of this algorithm is already shown in Lem. 4.6.

First of all, Thm. 2.1 shows that after a constant number of sam-
plings, the expansion rate of the metric (X, Dx) only changed by
at most a constant fraction, which will be hidden by the asymptotic
notation. In all of our analyses, we apply union bound (Boole’s
inequality) on high probability bounds, which means our analysis
only requires sampling for one round.

For the traversal on Line 7, the work and span for each query
is given in Sec. 3.2, multiplied that by m gives the total work for
all points. The output size is no more than the work, so semisort-
ing them takes O(c>m%H (T)) expected work and O(log ¢ + logm +
loglog n) span whp. Then for the cover tree construction, based on
Col. 4.8, building the graph G requires O(c®>m) expected work for all
levels, and computing the MIS on G uses O(m) expected work. Also,
according to Lem. 4.7 since the maximum degree for each node is
O(log n), computing the MIS at each level has O(log mloglog n)
span whp [58], and the total span for all levels is O(H (T) (log ¢ +
log mloglogn)) span whp. Adding the new tree nodes has the same
work and span bounds as the step to generate MIS.

Finally, let’s analyze the work and span to construct the IT sets for
new tree nodes (the parallel-for loop on Line 18). While there can be
many points in ITp,, we note that if we look at a specific point g, if
we first insert S\ {q} and then insert g, we will run exactly the same
checks, but in the traversal part (Line 7). We know the traversal
work is O(¢>H (T)) per node in the batch, which also bounds the
work for constructing the conflict sets here. To parallelize this step,
we can generate all the pairs and semisort them, which is work-
efficient in expectation and has span asymptotically bounded by
the MIS steps.

Hence, the work of the batch insertion algorithm is bounded by
the traversal step, and span is bounded by the MIS step. In addition,
we have the prefix-doubling step that partitions the batch into
log |S| sub-batches. Prefix-doubling does not cause additional work,
but will increase the span by a factor of O(log m). Combining them
together gives the stated bounds in the theorem. O

When assuming constant expansion rate (c = O(1)) and bounded
aspect ratio (H(T) = O(logn)), Alg. 4 has O(mlogn) expected
work and O(log nlog? mloglogn) span whp. Constructing cover
trees can also be parallelized using the same algorithm and analysis.

Algorithm 5: BatchDelete(T, S).

Input: A cover tree T and a set of node S.
Output: The new cover tree T’ that excludes all nodes in S.

1 parallel foreach p; € S do

2 Run TRAVERSE(T, p;) that tracks all nodes g; € T with
d(pi,qj) < 2K+ where g is at the k-th level, and
record tree nodes g for all levels p; isin T

3 Semisort pairs (¢j, p;) and let Ly = {gx | (Gx, pi) exists}

4 X=0

5 for k from the leaf level to root level do

6 Remove all tree nodes in Lg, and let Y be the children

set of these nodes

7 X—XUY

8 parallel foreach g; € X do

9 if a (undeleted) tree node g; at level k covers g;
then
10 ‘ remove g; from X and redirect g;’s parent to g;

1 Semisort pairs (g;, g;) (from Line 2) where ¢q; € X and
qj is at the (k + 1)-th level, and let

Mg, = {qi | (q.:) exists}

12 Initialize a graph G = (X, 0)

13 parallel foreach g; € X do

14 Let A; be g;’s original ancestor at level k + 1

15 parallel foreach q; € 14, do

16 if d(gi,q;) < 2F then

17 ‘ Create an edge between g; and g;

18 Compute the MIS of G and let I be the selected vertices
19 Duplicate and insert the tree node g; € I at level k

20 Redirect the tree node q; € X \ I to be the child of a new
node g; € I that covers g; (i.e., (i, q;) is an edge in G)
21 X1

22 if X # () then

23 Pick an arbitrary node g; € X, duplicate it, set it as the
root, and link all other nodes as ¢;’s children

THEOREM 4.10. Constructing a cover tree that contains n points
takes O(c>nH (T)) expected work and the span of O(H (T) log n(log c+
log nloglogn)) whp.

With the same assumptions, the work is O(nlogn) in expecta-
tion, and the span is O(log® nloglog n) whp.

4.2 The Batch-Deletion Algorithm

We now discuss the parallel batch-deletion algorithm. It is inter-
esting that, unlike many other data structures, batch-deletion is
easier than batch-insertion—the hardest part in the nearest search
structure is to locate the updated points. For insertion, if too many
points are added, their proximity information and nearest neighbors
cannot be directly given since they can be in the inserted points.
However, for deletion, the original cover tree can provide sufficient
proximity information for the points either in the batch or not,
since they are all in the cover tree before batch-deletion. Hence, for
deletion, we do not need prefix doubling, and can finish the entire
batch-deletion in one round.

The key observation for batch-deletion is that, for each undeleted
point, if its directed parent is also not deleted, then this local struc-
ture still satisfies the cover tree properties and can remain un-
changed. For each deleted point p, if p is a leaf, it can be directly
removed; otherwise, it may uncover p’s direct child, who needs
to be either redistributed to another undeleted point in the same
level, or promoted to the current level. Meanwhile, multiple points
can be promoted to the same level. Similar to the batch-insertion
algorithm, we need to run an MIS for all uncovered points at one
level, and then decide those that get promoted and the others that
will then be covered.

Based on these key insights, our parallel batch-deletion algorithm
is shown in Alg. 5. The first step is similar to that in the insertion
algorithm—we first run the traverse algorithm to track all tree nodes
that cover each point with twice the covering distances, and the
tree nodes in all levels each point in the tree. We then semisort the
output key-value pairs to transpose the keys and values, and these
precomputed results will be used later in the algorithm.

Then we start to process each level, delete the nodes in the given
batch while maintaining the cover tree properties. This is from
Line 4. We denote the uncovered points at each level using the set
X, and initially, when we start to process the leaf level, X is empty.
For each level, we first delete the tree nodes corresponding to the
nodes in the delete batch, which may uncover some nodes denoted
as the set Y (Line 6). We then merge the set Y with the uncovered
points in X from the previous level. We first check if other tree
nodes at this level can cover these points, and if so, we redirect
them to these nodes, and remove them from the set X. Otherwise,
we need to promote them to the higher level, but we cannot do so
for all points in X since that might violate the separation property.
Similar to the batch-insert algorithm, for each point p; € X, we
check all possible conflict points in X N Ilp,, and create an edge
if the distance is within 2 (k is the current level). Then we run
the parallel MIS algorithm on the graph, promote the selected ones
to level k, and redirect the unselected ones to selected points as
parents. Then we repeat this process and move one level up, until
we finish all levels. Note that it is possible that X is not empty after
we process the root level. In this case, we can use an arbitrary point
from X as the new root at level k + 1, and it can cover all other
points since the covering distance is doubled.

LEmMA 4.11. Alg. 5 correctly deletes the batch of points in S from
a cover treeT.

Proof. The correctness proof is similar to the batch insertion algo-
rithm, and we can in turn show that all invariants are still main-
tained after each loop iteration on Line 5.

All tree nodes are deleted in a bottom-up direction—all leaf nodes
first, then their parents, and eventually the root. The invariants of
our parallel batch deletion algorithm is that after processing the
k-th level (on Line 5), all remaining tree nodes on the k-th level and
their subtrees are valid cover trees, and all uncovered tree nodes
are captured in the set X.

The analysis is similar to Lem. 4.1 to 4.5 of the insertion algorithm,
and we only highlight the difference here. The main difference
here in the deletion is that for each uncovered node g; € X, the
conflict set is automatically covered by IT4, where A; is g;’s ancestor
at level k + 1. Hence, we do not need the complicated technique

to propagate the information between levels, but we can directly
generate I14, at each level (on Line 11). Other than this, the rest of
the correctness proof is identical, including the radius of the conflict
sets, the completeness of the conflict sets, and why computing MIS
gives a valid tree node set at each level. O

THEOREM 4.12. The batch deletion algorithm (Alg. 4) can correctly
delete a set of points S into a cover tree T using O(c’mH(T)) expected
work and O(H (T) log c(log ¢ + logm)) span whp, where m = |S|
andn = |T|.

Proof of Thm. 4.12. Lem. 4.11 shows the correctness of Alg. 5. We
now consider the work of Alg. 5. There are two major parts that
require the most work, one is to try other tree nodes at level k to
cover vertices in X (the loop on Line 8), and the other is to construct
and run MIS on the conflict graph G. For the first part, for each level,
we can remove at most m tree nodes, which uncover at most c*m
tree nodes (Col. 3.2). Plus another O(c*m) nodes from the previous
level (will be shown later), |X| = O(c*m). For each node g; € X,
let A; be g;’s ancestor at level k + 1. Then, g; will be checked with
level k nodes in B(A;, 2k+1), so there can only be ¢* of these nodes
(using Lem. 3.1 and k = 1). Hence, the work of this part is O(c8m)
per level, and O(c®m%H (T)) for all levels. For the second part to
construct and run MIS on the conflict graph G, the neighbor size of
each node g; is no more than ¢3, which is similar to the insertion
algorithm but with no randomization and asymptotical notation.
This is because all neighbors of g; in G must in B(A;, 2k+1) at level
k — 1, so the number of total candidates is bounded (using Lem. 3.1
and x = 2). Hence, the total number of edges in G at a certain level is
bounded by O(c®|X|) = O(c’m). After running the MIS, there can
only be O(c*m) selected tree nodes in I (Lem. 3.1 and x = 1), and
the rest will be covered by the promoted nodes. Combining both
parts together gives O(c’m%H(T)) expected work (the randomized
bound is due to semisort). Similar to the insertion algorithm, the
span of the deletion algorithm is bounded by computing the MIS
on G. Given the graph has O(c*m) vertices and dyqx = ¢® (largest
degree), computing the MIS has O(log c(log ¢ + log m)) span whp,
and we need to repeat it for all H(T) levels. This gives the stated
bounds in Thm. 4.12. O

When assuming constant expansion rate (¢ = O(1)) and bounded
aspect ratio (H(T) = O(logn)), Alg. 5 has O(mlogn) expected
work and O(log nlog m) span whp.

5 APPLICATIONS

We can use the parallel cover tree to parallelize a list of algorithms
in computational geometry and data science, which rely on nearest
neighbor search.

5.1 Euclidean Minimum Spanning Tree

Given a set of n points S € R, the Euclidean Minimum Spanning
Tree (EMST) problem finds the lowest weight spanning tree in the
complete graph on S with edge weights given by the Euclidean
distances between points. EMST is one of the earliest and widely
studied problems in computational geometry and graph, as Otakar
Boruvka gave an algorithm [18] when designing electricity and
telegram networks in the 1920s. It is also widely used in applica-
tions such as approximating traveling salesman problem (TSP) [38],

Algorithm 6: The parallel EMST algorithm

Input: A set P = {p1,p2, ..., pn} of points in R4

Output: The EMST T
1 Construct the cover tree D on P
2 S {{p1}. {p2}..... {pn}}
3T« 0

4 while [S| > 1do
5 parallel foreach C; € S do

6 ‘ {pi» qi) < CLUSTER-QUERY(C;)

7 Let T/ = Ui {{pi,qi)} and T « TU T’

8 Merge the clusters using the tree edges in T’ and update
S

9 return T

10 function CLUSTER-QUERY(C)
1 D’ «— D .B-DELETE(C)
12 parallel foreach p; € C do

13 qi — D’ .QUERY(p;)

14 di < d(qi, pi)

15 i* = argmin; d;// Using a parallel reduce
16 return (p;+, gj*)

document clustering [67], analysis of gene expression data [30],
wireless network connectivity [45], percolation analyses [9], and
modeling of turbulent flows [60].

Given the importance of EMST, many implementations are avail-
able (e.g., [7, 19, 49, 52]), although few of them have non-trivial
theoretical guarantees (0(n?) work). Among them, Shamos and
Hoey [56] showed algorithms based on Voronoi diagrams, and the
work is O(nlogn) on 2D, but O(n?logn) on 3 or higher dimen-
sions. Yao’s algorithm [68] has O((nlogn)!®) work on 3D and
O(nz_z_k_1 logl_z_k_1 n) work on arbitrary dimension. It is widely
conjectured that on 3 or higher dimensions, no EMST algorithms
exist with o(n'8) work.

However, most real-world datasets are not the worst case, and
usually have small expansion constants and bounded aspect ratios.
Hence, March et al. [49] in 2010 showed an algorithm that computes
the EMST based on Boraivka’s MST algorithm [18], and uses a cover
tree [8] to search for the nearest neighbor of a cluster in each step of
Bortivka. When assuming a slightly stronger expansion constant
and bounded aspect ratio, March et al. [49] showed that the EMST
can be constructed using O(n log nloglogn) work.

Our new parallel algorithm. Now with the new parallel cover
tree, we can show a highly-parallelized EMST algorithm, as shown
in Alg. 6. The main body of this algorithm is the classic Boravka’s
MST algorithm (Line 2-9), and the details can be found in text-
books (e.g., [40]). We can also construct the cover tree D in parallel
(Thm. 4.10). However, the non-trivial part is for the parallel cluster
queries. Unlike most cases that parallel queries are easy, parallel
cluster queries need to first delete all points in the cluster from the
cover tree D, then it queries the nearest neighbor for all p € C
in P, and finally restores D by inserting points in C back. Hence,
even with the batch-delete algorithm (Alg. 5), we cannot directly
apply multiple queries simultaneously.

Our solution is based on persistent trees, which means that up-
dates do not destroy the input data structure, but yield a new ver-
sion as the output. Several recent papers [10, 11, 28, 61, 62] showed
that we can design persistent parallel trees using path-copying,
which are shown efficient both theoretically and practically. Hence,
in CLUSTER-QUERY, we copy another version D’ of the original
cover tree D using path-copying. In this way, each CLUSTER-QUERY
works on a separate version and is not affected by other parallel
queries and updates.

THEOREM 5.1. The Euclidean Minimum Spanning Tree (EMST)
on n points can be computed in O(nlog? n) work in expectation and
O(log® nloglogn) span whp, assuming constant cluster expansion,
constant dimension, and bounded aspect ratio.

Proof. For the work bound, each node is in O(log n) cluster-queries
in total for all Bortivka rounds, and cost per node per query is
O(logn) in deletion (Line 11) and query (Line 13) in expectation.
Taking the product gives O(nlog? n) work in expectation.

For the span bound, constructing the cover tree has the cost
of O(log® nloglogn) whp, and the batch-deletion (Line 11) costs
O(log? n) span whp each, for O(log n) calls in total.

All other steps in this algorithm are the standard Boruvka steps,
and their costs [69] are asymptotically bounded by the cover tree
costs. Combining them gives the stated bounds in the theorem. O

5.2 Single-Linkage Clustering

Given a set P of n points, hierarchical agglomerative clustering (HAC)
starts from every single point as a cluster, and merges two clus-
ters with the global minimum pairwise distance for n — 1 iter-
ations, creating a hierarchy for the input points. As a clustering
method, hierarchical clustering is a widely used unsupervised learn-
ing approach [1, 46, 51], with numerous other applications such
as building phylogenetic trees in bioinformatics [50], construct-
ing low-dimension search structures in computer graphics [35, 64],
identifying geographic districts in GIS [32, 54] and navigation in
robotics [3].

Hierarchical clustering is a high-level framework for clustering
a set of objects. When plugging in the cluster distance function
(linkage function) D(X,Y) (X,Y are two clusters), one can get a
specific algorithm, and the output is clearly defined. The simplest
and probably the most widely-used linkage function is minimum,
defined as Dy, (X, Y) = min{d(x,y) | x € X,y € Y} forx,y € P and
a metric d. When we use Dy, as the linkage function, the resulting
clustering is referred to as single-linkage clustering.

A theoretically-efficient parallel algorithm for hierarchical clus-
tering is a long-standing open problem—even for the simplest single-
linkage clustering in Euclidean space, we are unaware of any previ-
ous parallel algorithms using o(n?) work and o(n) span for d > 3,
even with assumptions such as low expansion rate.

Using the persistent parallel cover tree, in Sec. 5.1 we show how
to generate Euclidean MST using the work and span shown in
Thm. 5.1. We note that a recent work by Wang et al. [66] introduced
an efficient parallel algorithm that converts an EMST to the dendro-
gram (cluster tree), which is the output for single-linkage clustering,
in O(nlogn) expected work and O(log? nloglogn) span whp. The
classic algorithms used Kruskal’s algorithm to generate the den-
drogram, which is inherently sequential. This new algorithm is

quite sophisticated, and uses algorithmic techniques such as the
Euler tour, semisorting, and a tricky divide-and-conquer approach.
However, this algorithm remains not only theoretically efficient,
but also has good practical performance [66]. Combining the new
algorithm for EMST as shown in Alg. 6, we get the following result.

THEOREM 5.2. The Single-linkage clustering on n objects can be
computed in O(nlog? n) expected work and O(log® nloglogn) span
whp, assuming constant cluster expansion, bounded aspect ratio, and
the pairwise distance function can be computed in O(1) work.

5.3 Bichromatic Closest Pair (BCP)

Given two sets P; and Py, the goal of bichromatic closest pair (BCP)
is to find the closest pair (p1, p2), such that p; € Py, p2 € Py, and
d(p1, p2) < d(p},p}) | Vp] € P1,Vp), € Pa.

WLOG, let’s assume |P1| = m < n = |P2|. We construct a cover
tree for P1, and query the nearest neighbor for every point in Py
in parallel. Plugging in Thm. 4.10 and Lem. 3.3 gives O(mlogn)
expected work and O(log® n log log n) span whp, assuming constant
cluster expansion and bounded aspect ratio.

5.4 Density-Based Clustering

The density-based spatial clustering of applications with noise (DB-
SCAN) problem takes as input n points ¥ = {py, ..., pn—1}, a dis-
tance function d, and two parameters € and minPts [33]. A point
p is a core point if and only if |B(p, €)| > minPts. We denote the
set of core points as C. DBSCAN computes and outputs subsets of
P, referred to as clusters. Each point in C is in exactly one cluster,
and two points p, g € C are in the same cluster if and only if there
exists a list of points p1 = p,p2, ..., pr—1. Px = q in C such that
d(pi-1,pi) < e. For all non-core points p € P \ C, p belongs to
cluster C; if p € B(q, €) for any ¢ € C N C;. A non-core point be-
longing to at least one cluster is called a border point and a non-core
point belonging to no clusters is called a noise point. In the analysis,
we usually assume that minPtsis a constant, and in practice, we
usually pick minPts = 10.

Wang et al. [65] recently showed how to parallelize DBSCAN.
Unfortunately, due to the lack of an efficient parallel data struc-
ture for nearest neighbor search, their algorithms can only achieve
O(n?) work and polylogarithmic span, or O((nlog n)4/3) expected
work for d = 3 and O(n?~(2/(1d/21+1))+8) expected work for any
constant § > 0 for d > 3, bottlenecked by computing bichromatic
closest pairs (BCP). Using the above results for BCP gives O(nlogn)
expected work and O(log® nloglogn) span whp to compute DB-
SCAN. Here the assumptions include: minPts and expansion rate
are constant, aspect ratio is bounded, and a pairwise distance can
be computed in constant time.

Hierarchical Density-Based Clustering. The output for hierar-
chical clustering (HDBSCAN) is a dendrogram (cluster tree), similar
to single-linkage clustering. The only difference is that HDBSCAN
has the parameter minPts, so a point needs to first compute its
minPts-nearest neighbors. This can be achieved efficiently by con-
structing a cover tree in parallel, querying for all points, and then
using single-linkage clustering on top of it. Using the same as-
sumptions in DBSCAN, HDBSCAN can be computed in O(n log? n)
expected work and O(log? nloglog n) span whp.

5.5 k-NN Graph Construction

k-NN graphs are widely used in machine learning, such as graph
clustering [34, 42, 47, 48], manifold learning [63], outlier detec-
tion [37], and proximity search [20, 53, 55]. Given a point set P
in a metric space, a k-NN graph is a directed graph G = (V,E),
where V = P and (p,q) € E if q is one of p’s k-nearest neigh-
bor in V — {p}. We first construct the cover tree on P, then ap-
ply k-NN queries on all the points in P in parallel, and finally
construct the k-NN graph according to the query results. Using
our parallel cover tree, we can get O(knlog k log n) expected work
and O(logn - (klogk + log? nloglogn)) span whp by combining
Thm. 4.10 and Lem. 3.3. Here we again assume constant expansion
rate and bounded aspect ratio.

6 CONCLUSIONS

In this paper, we show parallel algorithms for batch insertions and
batch deletions on cover trees, which are work-efficient and have
polylogarithmic span. The key challenge is that the operations on
the sequential cover tree, as well as many other sequential data
structures with similar functionality, are processed in a depth-first
manner that is inherently sequential. We show a few algorithmic
ideas in this paper, and we highlight the technique to construct
conflict graphs and compute the feasible set of tree nodes using max-
imal independent set (MIS) on the graphs. This technique enables
a depth-first algorithm to be executed in a breadth-first order. We
believe that this idea may of independent interest, and we will study
if we can apply it to parallelize other sequential algorithms and
data structures. One of such examples is the metric skip lists [41],
which provide similar (but randomized) query and update costs to
cover trees but do not need to assume bounded aspect ratio. We
also plan to study other graph algorithms with similar challenges,
and practical nearest-neighbor search algorithms and see if we can
show theoretical guarantees parameterized by the expansion rate.

Acknowledgement.

ACKNOWLEDGEMENT
This work is supported by NSF grant CCF-2103483.

REFERENCES

[1] C.C. Aggarwal and C. K. Reddy. Data clustering: Algorithms and applications.
Chapman&Hall/CRC Data mining and Knowledge Discovery series, Londra, 2014.

[2] K. Agrawal, J. T. Fineman, K. Lu, B. Sheridan, J. Sukha, and R. Utterback. Provably
good scheduling for parallel programs that use data structures through implicit
batching. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2014.

[3] O. Arslan, D. P. Guralnik, and D. E. Koditschek. Coordinated robot navigation
via hierarchical clustering. IEEE Transactions on Robotics, 32(2):352-371, 2016.

[4] A. Authors. Many sequential iterative algorithms can be parallel and (almost)

work-efficient. (unpublished work, submitted to SPAA 2022), 2022.

J. Bell. The uniform metric on product spaces. Lecture Notes, University of Toronto.

[6] N.Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey,
and J. Shun. Implicit decomposition for write-efficient connectivity algorithms.
In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018.

[7] J. L. Bentley and J. H. Friedman. Fast algorithms for constructing minimal
spanning trees in coordinate spaces. IEEE Trans. on Comput., 27(02):97-105, 1978.

[8] A.Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In
International Conference on Machine Learning (ICML), pages 97-104, 2006.

[9] S.P.Bhavsar and R. J. Splinter. The superiority of the minimal spanning tree
in percolation analyses of cosmological data sets. Monthly Notices of the Royal
Astronomical Society, 282(4):1461-1466, 1996.

[10] G.E.Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered sets. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

—
i)

[11

[12

[13]

[14]

[16

[17]
[18]

[19]

[20]

[21]

[22]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[37]

[38]

G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2020.

G. E. Blelloch, J. T. Fineman, and J. Shun. Greedy sequential maximal independent
set and matching are parallel on average. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2012.

G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious
algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2010.

G. E. Blelloch, Y. Gu,]J. Shun, and Y. Sun. Parallel write-efficient algorithms and
data structures for computational geometry. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2018.

G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallelism in randomized incremental
algorithms. 7. ACM, 2020.

G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Randomized incremental convex hull is
highly parallel. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2020.

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. J. ACM, 46(5):720-748, 1999.

O. Boruvka. O jistém problému minimalnim. Prace Mor. Prirodved. Spol. v Brne
(Acta Societ. Scienc. Natur. Moravicae), 3(3):37-58, 1926.

S. Chatterjee, M. Connor, and P. Kumar. Geometric minimum spanning trees
with geofilterkruskal. In International Symposium on Experimental Algorithms
(SEA), pages 486-500. Springer, 2010.

E. Chavez and E. Sadit Tellez. Navigating k-nearest neighbor graphs to solve
nearest neighbor searches. In Advances in Pattern Recognition, pages 270-280,
2010.

R. Chowdhury, P. Ganapathi, Y. Tang, and J. J. Tithi. Provably efficient scheduling
of cache-oblivious wavefront algorithms. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 339-350, 2017.

R. A. Chowdhury, V. Ramachandran, F. Silvestri, and B. Blakeley. Oblivious
algorithms for multicores and networks of processors. Journal of Parallel and
Distributed Computing, 73(7):911-925, 2013.

K. L. Clarkson et al. Nearest-neighbor searching and metric space dimensions.
Nearest-neighbor methods for learning and vision: theory and practice, pages 15-59,
2006.

R. Cole and V. Ramachandran. Resource oblivious sorting on multicores. ACM
Transactions on Parallel Computing (TOPC), 3(4), 2017.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(3rd edition). MIT Press, 2009.

R. R. Curtin. Improving dual-tree algorithms. PhD thesis, Georgia Institute of
Technology, 2015.

L. Dhulipala, G. E. Blelloch, Y. Gu, and Y. Sun. Pac-trees: Supporting parallel and
compressed purely-functional collections. In ACM Conference on Programming
Language Design and Implementation (PLDI), 2022.

L. Dhulipala, G. E. Blelloch, and J. Shun. Low-latency graph streaming using com-
pressed purely-functional trees. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 918-934, 2019.

L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons, and
J. Shun. Semi-asymmetric parallel graph algorithms for nvrams. Proceedings of
the VLDB Endowment (PVLDB), 13(9), 2020.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proceedings of the National Academy
of Sciences, 95(25):14863-14868, 1998.

Y. Elkin and V. Kurlin. A new compressed cover tree guarantees a near linear
parameterized complexity for all k-nearest neighbors search in metric spaces.
arXiv preprint:2111.15478, 2021.

D. Eppstein, M. T. Goodrich, D. Korkmaz, and N. Mamano. Defining equitable
geographic districts in road networks via stable matching. In Proceedings of
the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 1-4, 2017.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters a density-based algorithm for discovering clusters in large
spatial databases with noise. In KDD, 1996.

P. Franti, O. Virmajoki, and V. Hautamaki. Fast agglomerative clustering using a
k-nearest neighbor graph. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(11):1875-1881, 2006.

Y. Gu, Y. He, K. Fatahalian, and G. Blelloch. Efficient BVH construction via
approximate agglomerative clustering. In High-Performance Graphics (HPG),
2013.

Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 24-34,
2015.

V. Hautamaki, I. Karkkainen, and P. Franti. Outlier detection using k-nearest
neighbour graph. In International Conference on Pattern Recognition, volume 3,
pages 430-433, 2004.

M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research, 18(6):1138-1162, 1970.

(39]

[40
[41]

[42]

o
=

[52]

(53]

[54]

[59]

[60]

[61

[62]
[63]

[64

[65

M. Izbicki and C. Shelton. Faster cover trees. In International Conference on
Machine Learning (ICML), pages 1162-1170. PMLR, 2015.

J. JaJa. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.
D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 741-750, 2002.

G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using
dynamic modeling. Computer, 32(8):68-75, 1999.

T. Kollar. Fast nearest neighbors, 2006.

R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity
search. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 798-807. Citeseer, 2004.

D. Li, X. Jia, and H. Liu. Energy efficient broadcast routing in static ad hoc
wireless networks. IEEE Transactions on Mobile Computing, 3(2):144-151, 2004.
G. Lin, C. Nagarajan, R. Rajaraman, and D. P. Williamson. A general approach for
incremental approximation and hierarchical clustering. SIAM J. on Computing,
39(8):3633-3669, 2010.

M. Luciniska and S. T. Wierzchon. Spectral clustering based on k-nearest neighbor
graph. In Computer Information Systems and Industrial Management, pages 254—
265, 2012.

M. Maier, M. Hein, and U. Von Luxburg. Optimal construction of k-nearest-
neighbor graphs for identifying noisy clusters. Theoretical Computer Science,
410(19):1749-1764, 2009.

W. March, P. Ram, and A. Gray. Fast Euclidean minimum spanning tree: Algo-
rithm, analysis, and applications. In KDD, 2010.

S. J. Matthews and T. L. Williams. Mrsrf: an efficient mapreduce algorithm for
analyzing large collections of evolutionary trees. BMC bioinformatics, 11(S1):S15,
2010.

B. Moseley, S. Vassilvtiskii, and Y. Wang. Hierarchical clustering in general
metric spaces using approximate nearest neighbors. In International Conference
on Artificial Intelligence and Statistics, pages 2440-2448. PMLR, 2021.

G. Narasimhan and M. Zachariasen. Geometric minimum spanning trees via
well-separated pair decompositions. J. Experimental Algorithmics, 6:6—es, 2001.
R. Paredes and E. Chavez. Using the k-nearest neighbor graph for proximity
searching in metric spaces. In String Processing and Information Retrieval, pages
127-138, 2005.

J. P. Praene, B. Malet-Damour, M. H. Radanielina, L. Fontaine, and G. Riviere.
Gis-based approach to identify climatic zoning: A hierarchical clustering on
principal component analysis. Building and Environment, 164:106330, 2019.

T. B. Sebastian and B. B. Kimia. Metric-based shape retrieval in large databases.
In International Conference on Pattern Recognition (ICPR), 2002.

M. L. Shamos and D. Hoey. Closest-point problems. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 151-162. IEEE, 1975.

M. Sharma and R. Joshi. Design and implementation of cover tree algorithm on
cuda-compatible gpu. International Journal of Computer Applications, 975:8887,
2010.

Z. Shen, Z. Wan, Y. Gu, and Y. Sun. Many sequential iterative algorithms can
be parallel and (nearly) work-efficient. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2022.

J. Shun, Y. Gu, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Sequential
random permutation, list contraction and tree contraction are highly parallel. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 431-448, 2015.

S. Subramaniam and S. Pope. A mixing model for turbulent reactive flows based
on euclidean minimum spanning trees. Combustion and Flame, 115(4):487-514,
1998.

Y. Sun and G. E. Blelloch. Parallel range, segment and rectangle queries with
augmented maps. In SIAM Symposium on Algorithm Engineering and Experiments
(ALENEX), pages 159-173, 2019.

Y. Sun, D. Ferizovic, and G. E. Blelloch. Pam: Parallel augmented maps. In ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP), 2018.

J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.

B. Walter, K. Bala, M. Kulkarni, and K. Pingali. Fast agglomerative clustering for
rendering. In IEEE Symposium on Interactive Ray Tracing, pages 81-86, 2008.

Y. Wang, Y. Gu, and J. Shun. Theoretically-efficient and practical parallel dbscan.
In ACM SIGMOD International Conference on Management of Data (SIGMOD),
pages 2555-2571, 2020.

Y. Wang, S. Yu, Y. Gu, and J. Shun. Fast parallel algorithms for euclidean minimum
spanning tree and hierarchical spatial clustering. In ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 1982-1995, 2021.

P. Willett. Recent trends in hierarchic document clustering: a critical review.
Information processing & management, 24(5):577-597, 1988.

A. C.-C. Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM J. on Computing, 11(4):721-736, 1982.

W. Zhou. A practical scalable shared-memory parallel algorithm for computing
minimum spanning trees. Master’s thesis, Karlsruhe Institute of Technology,
2017.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Cover Trees
	3.1 Cover Tree Properties
	3.2 Sequential Cover Tree Algorithms

	4 The Parallel Cover Tree Algorithm
	4.1 The Batch-Insertion Algorithm
	4.2 The Batch-Deletion Algorithm

	5 Applications
	5.1 Euclidean Minimum Spanning Tree
	5.2 Single-Linkage Clustering
	5.3 Bichromatic Closest Pair (BCP)
	5.4 Density-Based Clustering
	5.5 k-NN Graph Construction

	6 Conclusions
	References

