Check for
Updates

Session 6: Parallel Algorithms and Data Structures

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Many Sequential Iterative Algorithms Can Be
Parallel and (Nearly) Work-efficient

Zheqi Shen Zijin Wan
UC Riverside UC Riverside
zheqi.shen@email.ucr.edu zwan018@ucr.edu

ABSTRACT

Some recent papers showed that many sequential iterative algo-
rithms can be directly parallelized, by identifying the dependences
between the input objects. This approach yields many simple and
practical parallel algorithms, but there are still challenges to achieve
work-efficiency and high-parallelism. Work-efficiency means that
the number of operations is asymptotically the same as the best
sequential solution. This can be hard for certain problems where
the number of dependences between objects is asymptotically more
than optimal sequential work, and we cannot even afford the cost
to generate them. To achieve high-parallelism, we always want
it to process as many objects as possible in parallel. The goal is
to achieve O(D) span for a problem with the deepest dependence
length D. We refer to this property as round-efficiency. This paper
presents work-efficient and round-efficient algorithms for a variety
of classic problems and propose general approaches to do so.

To efficiently parallelize many sequential iterative algorithms,
we propose the phase-parallel framework. The framework assigns a
rank to each object and processes the objects based on the order
of their ranks. All objects with the same rank can be processed in
parallel. To enable work-efficiency and high parallelism, we use two
types of general techniques. Type 1 algorithms aim to use range
queries to extract all objects with the same rank to avoid evaluating
all the dependences. We discuss activity selection, and Dijkstra’s
algorithm using Type 1 framework. Type 2 algorithms aim to wake
up an object when the last object it depends on is finished. We
discuss activity selection, longest increasing subsequence (LIS),
greedy maximal independent set (MIS), and many other algorithms
using Type 2 framework.

All of our algorithms are (nearly) work-efficient and round-
efficient, and some of them (e.g., LIS) are the first to achieve the
both. Many of them improve the previous best bounds. Moreover,
we implement many of them for experimental studies. On inputs
with reasonable dependence depth, our algorithms are highly paral-
lelized and significantly outperform their sequential counterparts.

CCS CONCEPTS

« Theory of computation — Parallel algorithms; Shared mem-
ory algorithms; Algorithm design techniques; Shortest paths.

® This work is licensed under a Creative Commons Attribution
BY International 4.0 License.

SPAA °22, July 11-14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9146-7/22/07.
https://doi.org/10.1145/3490148.3538574

Yan Gu Yihan Sun
UC Riverside UC Riverside
ygu@cs.ucr.edu yihans@cs.ucr.edu
KEYWORDS

parallel algorithms, phase-parallel framework, parallel program-
ming, sequential iterative algorithms, activity selection, longest
increasing subsequence, maximal independent set, independence
system

ACM Reference Format:

Zheqi Shen, Zijin Wan, Yan Gu, and Yihan Sun. 2022. Many Sequential Itera-
tive Algorithms Can Be Parallel and (Nearly) Work-efficient. In Proceedings
of the 34th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA °22), July 11-14, 2022, Philadelphia, PA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3490148.3538574

1 INTRODUCTION

There are two goals in designing efficient parallel algorithms: to
reduce work, and to improve parallelism. Work-efficiency, meaning
that the work (total number of operations) is asymptotically the
same as the best sequential solution, is crucial for practical parallel
algorithms. This is because nowadays and for the foreseeable future,
the number of processors in a machine (up to thousands) is roughly
polylogarithmic to input sizes. Hence, a parallel algorithm is less
practical if it blows up the work of the best sequential algorithm by
a polynomial factor. In this paper, we show (nearly) work-efficient
parallel algorithms for a list of classic problems.

Our work is motivated by a list of recent papers that directly
parallelize some sequential iterative algorithms (i.e., sequential
algorithms that iteratively process input objects) [10, 12, 13, 16—
18, 42, 47, 60, 64]. Their work-efficiency analysis usually directly
follows the original sequential algorithm. To achieve high paral-
lelism from a sequential iterative algorithm, the key is to identify
the dependences among “objects” (e.g., iterations, instructions, or
input objects), and process them in the proper order [10, 12, 13, 16—
18, 42, 45, 47, 49, 60, 64]. In particular, we want to avoid waiting
for “false dependences” and to process as many objects as possible
in parallel. Such relationships can be modeled as a directed acyclic
graph (DAG), referred to as the dependence graph (DG). Each ob-
ject corresponds to a vertex in the DG, and a directed edge from
vertex u to v means v can be executed only after u is finished, and
we say v relies on (or depends on) u.

There are two existing general frameworks to design parallel al-
gorithms using DGs, but they both have limitations. The first frame-
work is deterministic reservations [10] (also used in [64]). These
algorithms run in rounds, and in each round, check the unfinished
objects, execute the “ready” objects in parallel, and postpone the
rest to later rounds. This framework provides good parallelism—for
a DG of depth D, we only need O(D) rounds. In this paper, we
define a computation as round-efficient if it executes a DG with
depth D in O(D) span (longest dependence of instructions in the

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3490148.3538574
https://doi.org/10.1145/3490148.3538574
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3490148.3538574&domain=pdf&date_stamp=2022-07-11

Session 6: Parallel Algorithms and Data Structures

[4]3]2]1]8[7]615]| [8141713[9]1]5[2]6]

(n/2-1) downto 0 rml/nm e e 0 ;:rows_a:e
@ \f"“ ‘ dependences

a e P Initi;pivot

(b) 9 e Updated pivot

Figure 1: Examples of Longest Increasing Subsequence (LIS). (a) An
example where we have O(n?) dependences between objects for input size
n. (b) An example of how our algorithm processes LIS. Each object x chooses
a pivot among its predecessors (red arrows). We check the readiness of x
only when its pivot finishes. If x is still not ready, we update the pivot to
another unfinished object. This avoids checking all edges in the DG.

algorithm, formally defined in Sec. 2)!. Despite the round-efficiency,
deterministic reservations do not guarantee work-efficiency—the
work in the worst case is O(Dm), where m is the number of edges
of the DG (using a topological sort sequentially only takes O(m)
work). The second approach was proposed by Blelloch et al. [12] to
prove work-efficiency of DG-based algorithms, but it only applies
to when each vertex in the DG has a constant in-degree. As a result,
most of the existing algorithms do not fit in these two frameworks,
and each [12, 16-18] uses specific design and analysis to get the
work and span bounds (if any). Moreover, previous approaches
are edge-centric—all edges in the DGs are examined to find ready
vertices/objects. We observed that in many cases, even generating
all edges in the DG is work-inefficient. Consider the classic longest
increasing subsequence (LIS) problem that can be solved sequen-
tially in O(nlogn) work. In the worst case, the DG can contain
O(n?) edges (see an example in Fig. 1). It remains open whether
we can design work-efficient parallel algorithms with non-trivial
parallelism for many classic problems such as LIS, and even general
approaches to achieve so.

Contributions in this paper. We propose a general framework
and algorithms in this framework to parallelize sequential iterative
algorithms, many of them textbook greedy and dynamic programming
(DP) algorithms, that are (nearly) work-efficient and round-efficient.
Our approaches are vertex-centric, which avoid examining all edges
in the dependence graph. We define the rank for each vertex in the
DG (an input object or a subproblem), and we prove that rank fully
captures the earliest “phase” that an object can be processed in a
parallel algorithm. We believe that defining rank simplifies parallel
algorithm design for many problems. Based on rank, we propose
the phase-parallel algorithm framework, which processes all
objects based on the ordering of ranks, and round i processes all
objects with rank i in parallel. For example, the rank of an object in
the LIS problem is the LIS length ending at this object. The phase-
parallel algorithm will then process all objects with LIS size i in
round i, which finish in k rounds for an input sequence with LIS
length k. We present the list of problems discussed in the paper,
their ranks, and the cost bounds of our solutions in Tab. 1.

To achieve work-efficiency and round-efficiency, we propose two
types of general ideas, referred to as Type 1 and Type 2 algorithms.

1We note that round-efficiency does not guarantee optimal span, since round-efficiency
is with respect to a given DG. One can re-design a completely different algorithm that
has a shallower DG and a better span.

274

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

Type 1 algorithms aim to identify objects to be processed in
round i efficiently. To do this, we use range queries based on parallel
augmented trees [66] (see Sec. 2), which take polylogarithmic work,
instead of work proportional to the number of relevant edges in
the DG. This idea applies to many greedy or DP algorithms, and
our algorithms use range queries to find the maximal set of paral-
lelizable objects. Type 1 algorithms include activity selection, and
Dijkstra’s algorithm (we discuss more in the full version [62] of this
paper). We note that some of these ideas may have been known.
We do not claim them as the main contribution, but use them to
exemplify our framework.

Our Type 2 algorithms aim at waking up the ready objects at
the right time. Instead of checking the readiness of all objects in
each round (as was done in previous work), we hope to touch an
object only when it is (almost surely) ready. One of our approaches
is to assign a pivot px to each object x, which is an object x relies
on. Only when py finishes, we check if x is ready. If x is ready, we
process it in the next round. If not, we update x’s pivot to another
unfinished object it relies on. Fig. 1(b) shows an example of LIS.
Although there are many dependences (all edges) in the DG, each
object only picks one pivot (the red edges). When the pivot is ready,
the object itself is likely to be ready, but if not (e.g., (©) first picks
D), it selects a new pivot (the yellow edge from (5)). Therefore,
only a small fraction of edges in the DG (the red and yellow ones)
are evaluated, which saves work. Another approach is based on a
new structure to identify a ready object when its last predecessor
in DG finishes, which we apply to the greedy maximal independent
set (MIS) algorithm and other similar algorithms. Our approach is
based on a new data structure called TAS tree, which makes use of
the atomic test-and-set operation (formally defined in Sec. 2). For
MIS, our algorithm is work-efficient, and improves existing span
bound [13] from O(log® n) to O(log? n).

We believe that our framework applies to a broad set of problems.
We picked the examples by reviewing the problems in Cormen,
Leiserson, Rivest, and Stein [30]. All algorithms in this paper are
(nearly) work-efficient (only the LIS algorithm has an O(log? n)
factor of overhead), and round-efficient.

Our framework applies to many existing algorithms in [10, 12, 13,
16-18, 42, 47, 60, 64], improves the bounds for many of them (e.g.,
the greedy MIS algorithm), and provides a much simpler way to
understand these algorithms. As another example, our LIS algorithm
(Algorithm 3) has O(n) work and O(k) span for LIS length k. Parallel
LIS is widely studied [5, 43, 52, 53, 58, 59, 61, 67]. Our algorithm
is the first to achieve near-work-efficiency and round-efficiency,
which is advantageous especially for small output size. We review
the literature of parallel LIS in Sec. 5. Our algorithm is also simpler
and more practical. We are unaware of any implementations of
these previous algorithms with competitive performance to the
standard sequential LIS algorithm with O(nlog n) work.

We implement many of these algorithms, and test them as a
proof-of-concept to show how work- and round-efficiency affect
practical performance. Although there is parallel overhead and
our worst-case span is O(n), our work-efficient algorithms achieve
significant speedup over the sequential algorithm in a reasonably
large input parameter space. Our contributions include:

Session 6: Parallel Algorithms and Data Structures

e The phase-parallel framework to parallelize sequential iterative
algorithms based on the concept of rank defined in this paper.

e Two general techniques for phase-parallel algorithms to achieve
work-efficiency and round-efficiency, based on range queries and a
wake-up strategy to identify ready objects, respectively.

o The first nearly work-efficient (O(n) work) LIS algorithm with
round-efficiency (O(k) for LIS length k) and its implementation.

e A work-efficient greedy maximal independent set (MIS) al-
gorithm with O(log nlog dmax) span whp in the binary-forking
model (defined in Sec. 2), where n is the number of vertices and dqx
is the maximum degree in the graph. This improves the previous
best span bound of O(log n).

e Two algorithms for the activity selection problem. This is the
first parallel algorithm for this problem we know of. Although
not complicated, they reveal the connections of the two types of
algorithms in this paper. They are work-efficient and round-efficient.
For the unweighted version, we also provide an algorithm with
O(log n) span whp.

e Many other simple and interesting algorithms using our frame-
work, including Huffman tree, SSSP, unlimited knapsack, etc.

o Implementations and experimental studies of these algorithms.

2 PRELIMINARIES

Notations. For a sequence s, s; or s[i] denotes the i-th element,
and s; _j or s[i...j] denotes the i-th to the j-th elements in 5. We
use the term O(f(n)) with high probability (whp) in n to indicate
the bound O(k f(n)) holds with probability at least 1 — 1/ nk for any
k > 1. With clear context we drop “in n”.

Longest Increasing Subsequence (LIS). Given a sequence s1___p,
s{mm is a subsequence of s if s = sp,, where k1 < k2 < ...km.
Given a sequence s, the longest increasing subsequence (LIS)

* ; * *
problem finds the longest subsequence s of s where Vi, s} < s ;.

Dependence Graph. A sequential iterative algorithm processes
each input object in a given order. The dependence graph (DG)
represents the processing dependence of input objects. Each vertex
in the DG denotes an input object. An edge from x to y means
that object y can be processed only when x has been finished, and
we say y relies on x. We say an object is finished if it has been
processed, and unfinished otherwise. We say an object is ready if
all its predecessors in the DG have been finished. For two objects x
and y, where y relies on x and x is unfinished, we say x blocks y.

Parallel Computational Model. We use the work-span model on
the binary-forking model (with test_and_set) to analyze parallel
algorithms [12, 30] as is used in many recent papers 2,4, 6-8, 11, 14—
16, 18-21, 25-27, 36, 38, 46]. We assume a set of threads that share
a memory. Each thread supports standard RAM instructions and a
fork instruction that forks two new child threads. When a thread
performs a fork, the two child threads both start by running the
next instruction, and the original thread is suspended until both
children terminate. A computation starts with a single root thread
and finishes when that root thread finishes. We use atomic operation
test_and_set (TAS), which checks whether a memory location is
of zero, sets it to one if so, and return its old value. We say a TAS is
successful if it changes zero to one and unsuccessful otherwise.
One can use TAS to implement a join operation in the standard

275

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

fork-join model [12]. An algorithm’s work is the total number
of instructions, and the span (depth) is the length of the longest
sequence of dependent instructions in the computation. Note that
a parallel for-loop incurs O(log n) span because of binary-forking.
We can execute the computation efficiently using a randomized
work-stealing scheduler both in theory and in practice [12, 22, 30].

Parallel Data Structures. We now present useful theorems of
data structures for range-sum queries used in this paper. More
details are given in the full version of this paper [62]. The data
structures maintain a map of entries (key-values) sorted by the keys,
where keys can be either one or two dimensions. A range sum
query is defined by a key range (an interval in 1D or a rectangle
in 2D) and augmentation, which defines how the “sum”, called the
augmented value, should be computed. One example is to report
the sum (or min/max) of values in the given key range. Formally,
suppose the map maintains key-value pairs of type K X V, we
define the augmented value of type A by an augmented structure
consisting of two functions and the identity of A.

e Base function g : K X V — A, which maps an entry (key-value)
to an augmented value.

o (Associative) Combine function f : AX A +— A, which combines
(adds) two augmented values into a new augmented value.

e The identity Iy € A of f on A. (A, f,I4) is a monoid.

In the value-sum example above, the base function g = (k,v) - v,
the combine function f = (a1, az) = aj + az, and Iy = 0. We first
present a useful theorem about range sum queries.

TuEOREM 2.1. For k € {1, 2}, there exist data structures that can
answer k-D range sum query in O(logk n) time, can be constructed
by (or be flattened into) a sorted sequence of entries in O(n logk_1 n)
work and O(Iogk n) span, and allow for batch update (e.g., insertion,
deletion and value updates) in O(m logk n) work and O(Iogk n) span,
where n is the number of input entries, and m < n is the batch size.
We assume constant cost for the base and combine functions.

This can be achieved using parallel augmented balanced binary
search trees (PA-BST) [66] with algorithms in [9, 12, 34, 66]. For 2D
range sum queries, we use a 2D range tree using PA-BSTs [65, 66].

We also use multi-map, where multiple entries can have the same
key, and a search on a key will return all values with this key (Note
that this query is different from the 1D or 2D range query defined
above, so this uses a different data structure from range trees stated
above). By using PA-BST, we have the following theorem [9].

THEOREM 2.2. For n key-values, there exists a data structure that
can search or update (insert or delete) a batch of entries in O(mlog n)
work and O(log mlogn) span, where m < n is the total number of
elements found or updated in the batch.

3 PHASE-PARALLEL ALGORITHMS

In this section, we introduce our key concept: phase-parallel al-
gorithms, and show a general approach to design phase-parallel
algorithms to maximize parallelism based on the rank function.
Since our idea is sophisticated, we first show the pseudocode in
Algorithm 1 and describe the high-level idea.

To seek parallelism in many sequential iterative algorithms, we
define the rank(-) of each object to capture the dependences among

Session 6: Parallel Algorithms and Data Structures

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Feasible Condition for objects x and y rank(x) Type Work Span

Activity Selecti Th i ber of non-

chvity Selection — and y do not overlap ¢ max%mum num ero Anon 1&2 O(nlogn) O(rank(S)log n)
(general) overlapping activities ending at x
Unlimited Solut‘ion to weight y can contain- x/?v*, where w* is the minimum . O(Wn) O(rank(s) log(w* n)
Knapsack solution to the subproblem of weight x weight
Huffman Tree y’s Huffman code is a prefix of x Subtree height of x 1 O(nlogn) O(rank(S)log n)
Dijkstra’s Hop distance from x to the source

. maxq ey d(v))
Algorithm x is on the shortest path to y Ehortest path tree 1 O(mlogn) O(imineeE (o) logn
rank(x) = d(x)/minecg w(e)

LIS y>x The length of LIS ending at x 2 O(nlog® n)f O(rank(S) log? n)*
Activity Selecti Th i ber of non-

¢ 1v1. ySeecton and y do not overlap ¢ max?mum num ero .non 2 O(nlogn) O(log n)f
(unweighted) overlapping activities ending at x
MIS J a path from x to y s.t. the priorities on ~ The the longest chain size ending at O(n + m) Ollog? n)'

the path are monotonically increasing

vertex x with increasing priorities

Table 1: The problems, their definitions of rank, the work and span of our solutions for the given problems. In feasible conditions, we assume y
is later than x. n = |S| is the input size. For graphs, n is the number of vertices and m is the number of edges. d(v) in SSSP is the shortest distance of v from
the source and w(e) is the weight of edge e. W in the knapsack problem is the weight limit. rank means a relaxed rank (see Sec. 4.2). ¥: with high probability.

them, which indicates the earliest phase an object can be ready.
With a properly defined rank function, Algorithm 1 processes all
objects (in parallel) of rank i in round i. We call the set of objects
processed in round i (T; in Algorithm 1) the frontier of round i.
Table 1 shows how rank is defined for the problems in this paper.
For example, in the LIS problem, an object’s rank is the size of the
LIS ending at this object. Therefore, Algorithm 1 finds and processes
all objects with LIS size 1 in parallel, then those with LIS size 2,
etc. Throughout the section, we use the LIS problem as an example
to help understand the abstract concepts. Next, we formalize the
phase-parallel algorithms. We note that all of our algorithms are
reasonably simple. The goal of the formalization is to extend our
idea to general independence systems, which generalizes to more
DP and greedy algorithms.

Algorithm 1: The phase-parallel algorithm

Input: S, and rank(x) that implies

101

2 while S # 0 do

3 Find the set T; that contains all objects with rank i
4 Process all objects in T; in parallel

5 S« S\T;

6 Update the status of objects in S if necessary

7 i—i+1

An independence system is a pair (S,), where S is a finite set
and ¥ is a collection of subsets of S (called the independent sets
or feasible sets) with the following properties:

(1) The empty set is feasible, i.e., 0 € F.
(2) (Hereditary property) A subset of a feasible set is feasible,
ie,foreachY C X,wehave X e ¥ — Y e ¥F.

A feasible set for the LIS problem is any increasing subsequence.
Given an independence system (S,), a sequential order of it is
a permutation of all objects in S, usually specified by the input. For
an object x € S, let Z5(x) be the index of x w.r.t. its sequential order.
We say an object x is earlier than y if Zs(x) < Is(y), and later
otherwise. Let x45 = {y € S: Is(y) < Is(x)} be the downward
closure of x, i.e., all objects no later than x. With clear context, we
drop the superscripts and use Z(x) and x!. We use S; as the object

276

in S with index i. In LIS, the index Z (x) of an object x is its position
in the input sequence S, and xV is the prefix of S up to x.

We say two objects x and y are incompatible if AE € F, s.t.
x € E and y € E, and compatible otherwise. We say an object x is
compatible with a set E C Sif E U {x} € ¥. Mapping this to LIS,
two objects x and y (later than x) are compatible iff x < y.

Given an object x, we use F(x) = {E€ F : E C x},x € E} to
denote all feasible sets with the last object as x, and the Maximum
Feasible Set (MFS)> MFS(x) = arg maXgeq(x) |E| as the largest
set among ¥ (x). For many DP problems, MFS is usually related
to the DP value of the object. For example, in LIS, the MFS(x) is
the LIS ending at x € S. For a set S, we also define the MFS as
the largest feasible subset of S. We define the rank of a set or an
object as rank(-) = |MFS(-)|. In LIS, ¥ (x) refers to all increasing
subsequences ending at object x. The MFS of an input sequence is
the LIS of the sequence. rank(x) is the size of LIS ending with x.

Given an independence system (S,), a sequential iterative
algorithm A on S processes each object S; in S iteratively based
on the sequential order, with the goal to optimize some value of all
(or some) feasible sets. Since a processed object usually corresponds

to a subproblem on Sil, they are sometimes called the states in
dynamic programming problems. For example, in LIS, processing
object S; is to compute the LIS up to (and including) object S;.

To parallelize a sequential iterative algorithm, note that an object
does not need to wait for all earlier objects to finish, but only
a subset of them. Let £(x) be all objects that x rely on, i.e., all
predecessors of x in the DG. For LIS, P(x) = {y : T (y) < I (x),y <
x}. When all objects in P(x) finish, x is ready. Also, if two objects
do not rely on each other in the DG, they can be processed in
parallel. These two simple observations have been used in existing
parallel algorithms and frameworks (e.g., [13, 16, 16-18, 47, 64]).
In this paper, we formalize the problem for a class of algorithms
based on an independence system and point out that identifying
the ready objects can be captured by the ranks of the objects. We
define phase-parallel as follows.

Definition 3.1. Given an independence system (S,), a sequen-
tial iterative algorithm on S is phase-parallel if it has the following

This is also known as the maximum independent set (MIS). In this paper, to avoid
confusion with the greedy MIS algorithm in Sec. 5.3, we use the term MFS.

Session 6: Parallel Algorithms and Data Structures

property: an object x € S relies on y € S in the parallel dependence
graph if and only if:
(1). (Ordering) I (y) < I (x).
(2). (Compatibility) VE € F(y), we have EU {x} € ¥, i.e,, any
feasible set containing y and only objects up to y are also
compatible with x.

This means computing the state (processing an object) x only
relies on previous states in x¥ compatible with x. This indicates
optimal substructure property [30], where the best solution at x can
be obtained by optimal solutions before x.

To achieve maximum parallelism, our goal is to find the largest
possible set of objects to process in parallel. We first show that all
objects with the same rank (MFS size) can be processed in parallel.

THEOREM 3.2. Given a phase-parallel algorithm A on the inde-
pendence system (S, F), if rank(x) = rank(y), then x and y cannot
rely on each other in the parallel dependence graph.

ProoOF. Assume to the contrary that y relies on x (the other case
is symmetric). Consider the MFS of y. By definition MFS(y) U {x}
is also feasible, which means rank(x) > rank(y) + 1. O

Thm. 3.2 leads to the following conclusion, based on which we
propose Algorithm 1.

COROLLARY 3.3. In a dependence graph, if x relies on y, rank(x) >
rank(y). All objects with the same rank can be processed in parallel.

THEOREM 3.4. The rank of an object in a phase-parallel algorithm
is its depth in the DG.

ProoF. (Sketch) From the compatibility property of the phase-
parallel algorithm, we know the rank (MFS size) of an object must
be 1 plus the maximum MFS size of its predecessors. By induction,
we can prove the given theorem. O

Theorem 3.4 verifies the strategy of Algorithm 1, which means
we are just processing the objects based on their depth in the DG.

In this paper, we propose novel and efficient ways to process
phase-parallel algorithms. The challenges lie in achieving work-
efficiency with non-trivial parallelism. As mentioned, although the
high-level idea of processing all ready objects (thus achieving round-
efficiency) in a round has been used in existing work, most of them
need to check all edges in the DG. In many cases, the number of
edges can be asymptotically more than efficient work. We propose
two general ideas to reduce work in phase-parallel algorithms. Type
1 algorithms (Sec. 4) find the frontier in each round efficiently using
a range query in polylogarithmic cost. Type 2 algorithms (Sec. 5)
wake up all ready objects by the finished ones at the right time.
Both cases avoid checking all edges in the DG.

4 TYPE 1 ALGORITHMS USING EFFICIENT
FRONTIER IDENTIFYING

Type 1 algorithms exhibit the property where each object maintains
a value, and all objects with the same rank have their values in a
contiguous range. We will use PA-BST to maintain these values
and use a range search to efficiently find the frontier. We show
activity selection and Dijkstra’s algorithm in this paper, and more
(unlimited knapsack and Huffman tree) in the full version [62].
Many of them are straightforward. We do not claim all of them

277

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

as the main contributions, but use them as simple examples to
understand our framework.

4.1 Activity Selection

Activity selection is a textbook example of greedy or dynamic
programming algorithms [30]. Given a set of activities S = {A;} de-
fined by their start time s;, end time e; and weight w;, the problem
is to find a feasible subset of non-overlapping activities to max-
imize the total weight. When all activities have a unit weight, a
simple earliest-end greedy strategy can solve the problem [30], i.e.,
repeatedly selecting the earliest ending activity and removing all
incompatible (overlapped) activities. The general version (arbitrary
weight) can be solved by the dynamic programming recurrence:

dpli] = max dp[j] +w; 1)

€;<s;

The sequential order (and the index) is defined by the end time.
We assume all activities are pre-sorted by their end time. A feasible
set is a set of non-overlapping activities. dp[i], or the DP value of
activity i, means the highest possible weight by using the first i
activities, which must include A;. Naively computing Eq. (1) needs
0(n?) work. Since the condition in Eq. (1) is a range of end time, se-
quentially, the work can be reduced to O(nlog n) using augmented
range queries. In parallel, an activity A; depends on all activities
ending before A; starts (see an illustration in Fig. 2), which leads
to O(n?) dependences in the worst case. Note that the rank of A;
by definition is the maximum size of the feasible set containing A;
and only the first i activities. We first present the following lemma.

LEmMA 4.1. All activities overlapping the earliest-end activity A;
has rank 1. After removing all activities with rank no more than k,
suppose the earliest-end activity is Aj, then all remaining activities
that overlaps with Aj has rank k + 1.

Proor. We first prove all activities overlapping the earliest-end
activity A; must have rank 1. Recall the rank of an activity x is the
maximum number of compatible activities we can select from x and
earlier activities, which must include x. For an activity overlapping
Ay, ifits rankis larger than 1, there must exist another activity y that
is earlier than x and compatible with x. This means y ends before
x starts, which contradicts the assumption that the earliest-end
activity overlaps with x.

We next prove that after removing all activities of rank no more
than k, if the current earliest-end activity is A;, all activities over-
lapping A; should have rank k + 1. Let S’ be the set of activities
removed, which have rank no more than k. Assume to the contrary
that one of such activity A; has rank r > k + 1. Then there must
be an activity Ay finishing earlier than A;, and have rank r’ > k.
Therefore, Aj» ¢ S’ since we only remove activities with rank no
more than k. However, this contradicts the assumption that A; is
the earliest-end activity in S\S’, and A; already overlaps A;. O

Based on the lemma and the phase-parallel framework, we can
design an algorithm (Algorithm 2). To enable work-efficiency, we
use a range query to find the largest parallelizable frontier. The
algorithm uses two PA-BSTs Time and Tpp. Tiime maintains all
unprocessed activities sorted by their start time and augmented on
the minimum end time, which is used to identify the frontiers. Tpp

Session 6: Parallel Algorithms and Data Structures

Algorithm 2: Type-1 activity selection algorithm

Input: All activities’ start time s;, end time e; and weight w;

1 Build PA-BSTs Tyime on key-values (s;, e;), augmented on the
minimum end time, and Tpp on key-values (e;, dp[i]), augmented
on the maximum DP value

2 while Ty # 0 do

3 Find the earliest-end activity x by the augmented value of Tjjpe

4 (T, T") « split(Trime, €x) // All activities starting
before e, form the current frontier T

parallel_for_each activity i € T do

‘ dpli] = w; + Tpp.range(—co, s;)
Update all DP values of activities in T in Tpp in parallel
Ttime < T'// remove finished objects

®© N o w

maintains all activities sorted by their end time and augmented on
the largest DP value, which is used to determine max; <s, dp[j] in
the DP recurrence. In each round, we find the earliest-end activity x
by reading the augmented value of Tyjme. Then we split Tyime based
on ey. Those starting no later than e, will be split out as the frontier
and will be processed in parallel. Since Tyjme is indexed on start
time, SpL1T takes O(log n) work. When processing activity i, we use
Tpp to extract the highest DP value among all activities with end
time in range (—oo, s;], and use it to update the DP value of i in Tpp.
The work for processing m objects in the frontier is O(mlog n) for
the augmented range query, and O(mlogn) for updating the DP
values in Tpp. This leads to the following theorem.

THEOREM 4.2. Type 1 activity selection algorithm takes O(nlog n)
work and O(rank(S) log n) span, where S is the input set and n = |S|.

4.2 Algorithms with Relaxed Rank

In some problems, it is hard to find (or use) the exact rank of the
objects, in which case we use a relaxed rank, defined as follows.

Definition 4.3. Given a phase-parallel algorithm A on the inde-
pendence system (S,), a function rank(x) on x € S is a relaxed
rank on object x if

e Vx € S, rank(x) < rank(x).
e For x,y € S where x relies on y in the dependence graph,
rank(x) > rank(y).

Then Algorithm 1 can process all objects with the same relaxed
rank in each round. Note that the trivial relaxed rank is the index
of each object 7 (x), which gives no parallelism in Algorithm 1.
Therefore, when we use the relaxed rank, we need careful analysis
to show non-trivial parallelism.

Dijkstra’s Algorithm. Dijkstra’s algorithm [37] solves the single-
source shortest paths (SSSP) problem on a weighted graph. As a
sequential iterative algorithm, Dijkstra processes the vertices in the
order of their distances to the source and relaxes their neighbors.
SSSP is very challenging in the parallel setting. Dijkstra is work-
efficient and relaxes each edge exactly once. However, it is hard to
parallelize because each round only processes one vertex. Bellman-
Ford has better parallelism but significantly more work. Almost all
state-of-the-art parallel SSSP algorithms (e.g., A-stepping [57] and
p-stepping [39]) achieve high parallelism by using more work.
The DG of the SSSP problem is conceptually the shortest path
tree. The rank of a vertex v is the hop distance from v to s in the

278

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

shortest path tree. However, the algorithm itself is unaware of the
explicit structure of DG before the shortest paths are computed.
Hence, the exact rank of each object is hard to acquire. Let w* be the
smallest edge weight in the graph, and d(v) the actual distance of
0. We define a relaxed rank for a vertex rank(v) = [d(v)/w*]. This
is because distances within a window of w* cannot rely on each
other (relaxation increases the distance by at least w*). Therefore,
each frontier can be extracted using a range query. Interestingly,
we observe that this is (conceptually) similar to using A = w* in
A-stepping [57]. Using PA-BST to maintain the distances of all
vertices, we have the following result.

THEOREM 4.4. There exists a parallel algorithm that solves SSSP
problem on a graph G = (V, E) using O(|E|log |V'|) work and
O(rank(V) log |V|) span, where rank(V') is the ratio of the maximum
shortest path in the graph and the smallest edge weight.

We note that there can be other ways to define the relaxed rank
of the Dijkstra’s algorithm [31, 50], which enable different bounds
to the phase-parallel algorithms. In the paper we simply discuss
the version based on the smallest edge weight, since it can be easily
tested using a A-stepping-based implementation.

In our experiments in Sec. 6, we use the A-stepping implementa-
tion in [39] with A = w* to test the performance of this idea. On
low-diameter graphs with reasonably large w*, setting A = w* gives
the best performance among all choices of parameter A because of
the work-efficiency.

5 TYPE 2 ALGORITHMS WITH WAKE-UP
STRATEGIES

In phase-parallel algorithms, an object is ready when all its predeces-
sors P(x) finish. Previous approaches require explicitly generating
P(x) for each x € S [12, 16-18, 64] (achieving work-efficiency only
when |P(x)| = O(1)), checking the readiness of all objects every
round [10] (not necessarily work-efficient), or based on dual-binary
search [13, 47] (incurs overhead in span). To avoid exhaustedly
checking the readiness of every object, Type 2 algorithms aim to
wake up an object x when the last object in P(x) finishes.

We propose two wake-up strategies. Our first approach, which
we believe is very interesting, is to avoid explicitly generating P (x),
and check the readiness of an object x when x is likely to be ready.
To do so, we attach each object x to an unfinished object px € P(x),
called the pivot, which blocks x. We redo the check only when py is
ready, which bounds the number of total checks to be O(log |P(x)|)
whp. We show activity selection and longest increasing sequence
(LIS) as examples, and more applications in the full version.

The second approach applies to algorithms that can afford to
generate P(x) for each x € S. Our idea is to build an asynchronous
structure using test_and_set to precisely identify when the last
object in P(x) is ready, and achieve better span. We present the
greedy MIS algorithm as an example in Sec. 5.3, and more discus-
sions in the full version of the paper.

5.1 Activity Selection

We now revisit the activity selection problem and present an algo-
rithm using Type 2 framework. Recall the DP recurrence dp[i] =
maxe; <s; dp[j]+wi. Therefore, A; is ready when all other activities

Session 6: Parallel Algorithms and Data Structures

—
—> Dependence

éllllilllg Rank
== :—> Chosen Pivot
4. 3 @) 1
| s W4
Xy Z 3

Figure 2: Illustration of the activity selection problem.
Left: The start and end time of 7 activities (ordered by end time).

Right: The dependences between activities. Rank 1 activities
start before x (shown in blue). Rank 2 activities start before
y (shown in green). Rank 3 activities start before z (shown in
purple). Red dependences are the pivots chosen in the Type
2 algorithm. The pivot of an object is the compatible activity

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

(a). Dependences a < b: a chooses b as pivot
= Dependence ° Points processed in this round
[52]31]45]26]61]10[39] 18{442 <= Chosen pivot ° Points with wakeup attempt

a; (number=rank) @; (number=index) &i (number=index)

G, N “3 5 5
? o |2 3,03 |13 3
P Rank3|t F : ° {)j ° 7‘/%
oy % 1+ 5 o
D ! 2 °
Rank 1'» Fgank 2 1 4 6 8 8
i > > i
(b). Ranks (c). Bottom-leftarea (d). Round 1 (e). Round 2

Figure 3: Illustration of the LIS algorithm. (a). Objects, their dependences, and the
random pivot chosen. (b). Ranks of the objects represented as 2D points (i, a;). (c). Objects
(points) and their bottom-left area. A point with rank i only has points with rank < i in its
bottom-left area. (d). Points processed (D, @), @, (6)) and waking-up attempts in round 1.
) wakes up). @ wakes up (D. (© attempts to wake up @) and (9), but (9) is not ready.

before it with the latest start time. A rank-r object has a pivot
with rank r — 1.

with end time before s; have been processed. Our idea is to let each
activity x find a pivot px, where finishing processing py indicates
the readiness of x. We prove the following lemma.

LEMMA 5.1. Given activity Ay, let activity Ap, = arg maxa;.e; <s,. Si
be the latest-start activity among all activities ending before Ay starts
(i.e., those earlier than Ax and compatible with Ay), and call Ap, the
pivot activity of Ax. Then rank(Ax) = rank(Ap,.) + 1.

Proor. By definition, Ay depends on Ay because Ay is com-
patible with all MFS ending with A, . This indicates |[MFS(Ap,)| =
rank(Ap,) < rank(Ax) = |[MFS(Ay)|. We then show MFS(A,,) U
{Ax}isan MFS of Ay. Assume to the contrary that t = | MFS(Ay)| >
|MFS(Ap,.)| + 1. Consider such an MFS T = MFS(Ax) where |T| = ¢.
Let activity Ag be the activity with the latest starting time in
T — {Ax}. We first prove Ay ¢ T — {Ax, Ag}. This is because
if Ay, € T — {Ax,Ag}, Ap, should have an earlier starting time
than Ay (by definition of Ag), which contradicts the definition of
Ap,.. Similarly, all other activities in T — {Ax } have earlier end time
than s.. By the definition of A, A starts no later than Ay, (Ap, is
the latest starting activity before Ay and compatible with Ay). This
means that Ay, is also compatible with (and later than) T—{Ay, Ay }.
MFS(Ap,) 2 (T = {Ax, Ax}) U {Ap, }| = t — 1, contradicting the
assumption of t = |[MFS(Ay)| > |[MFS(Ap,)| + 1. O

We show an example of pivot activities in Fig. 2. Lem. 5.1 implies
that the pivot activity py of any activity x must be processed in
the previous round of when x is processed. In other words, once
px is finished, we can wake up x and process it in the next round.
In this case, we can first let all activities find their pivot via binary
searches, which is O(log n) work per activity. We use a tree Tpjyor
as a multi-map to store all pairs (px, x). We start with processing
all activities with rank 1. For each activity y in the current frontier,
after processing them, we find all pairs (y, z) € Tpivor and put all
such z in the next frontier (they will be wakened up). An activity
can be processed (computing its DP value) similarly as in Type 1
by using a PA-BST Tpp. We have the following theorem.

THEOREM 5.2. Type 2 activity selection algorithm takes O(nlog n)
work and O(rank(S) log n) span, where S is the input set and n = |S|.

An O(log n) span algorithm for unweighted activity selection.
Based on Lem. 5.1, we can further design a parallel algorithm with

279

(e). Points processed (3), (D, ®) and waking-up attempts in round 2.

better span for the unweighted activity selection problem, where
each activity has a unit weight (w; = 1). Note that this is equivalent
to computing the rank of each activity. Based on Lem. 5.1, we can
rewrite the DP recurrence for the unweighted version as:

dpli] = dpljl + 1 : Aj is the pivot activity of A;

This simplifies the dependence graph to a tree structure, where
each activity only relies on its pivot. The rank of each activity is
also its depth in this tree, which can be computed using a standard
tree contraction [18] in O(n) work and O(log n) span whp.

THEOREM 5.3. The unweighted activity selection problem can be
solved in O(nlog n) work and O(log n) span whp.

5.2 Longest Increasing Subsequence (LIS)

We propose a parallel algorithm for the longest increasing subse-
quence (LIS) problem using our phase-parallel framework. Given a
sequence a, LIS asks for the longest subsequence in a that is strictly
increasing. LIS is widely studied, and its parallel solutions have
been studied in [5, 43, 48, 52, 53, 58, 59, 61, 67]. Most of these algo-
rithms [43, 52, 58, 59, 61, 67] introduced polynomial overhead in
work, and Alem and Rahman’s algorithm [5] has ©(n) span. Krusche
and Tiskin’s BSP algorithm [53] translates to O(n) work and é(nz/ 3)
span, which is the only nearly-work-efficient algorithm with sublin-
ear span. This algorithm relies on complicated techniques from [68],
and has no implementation. In fact, we are unaware of any previous
parallel LIS implementation with competitive performance to the
standard sequential O(nlog n) LIS algorithm.

Sequentially, LIS can be computed using the dynamic program-
ming (DP) recurrence as follows. Let dp[i], called the DP value, be
the LIS length of a; . ; ending with a;. Then

dpli] = max(1, _max_ dp[j] +1) @)
Jj<i,aj<a;

We can iteratively compute dp[i] and maintain any search struc-
ture to find max;<j,q;<q; dplj] in O(log n) work. Our phase-parallel
LIS algorithm parallelizes this sequential algorithm and achieves
nearly work-efficiency and round-efficiency. Moreover, our algo-
rithm is implementable and we show experimental study in Sec. 6.3.
Here we maximize LIS length, but our algorithm can be generalized
to the weighted case where objects have different weights.

Session 6: Parallel Algorithms and Data Structures

An object a; is ready once all objects a; with j < i,a; < a; are
ready. In our phase-parallel framework, the rank of an object a; is
the size of the LIS ending with a; (its DP value). An object a; only
depends on objects with a smaller rank. After all objects with rank r
have finished, all objects with rank r + 1 must be ready. The main
challenge is to avoid processing all dependencies since there can be
©(n?) of them. Interestingly, the problem exhibits a nice geometric
property. If we draw each object as a 2D coordinate (i, a;), all the
objects that a; relies on are the points to its lower-left area (see
Fig. 3). Therefore we can determine if an object x is ready using a
2D range query on the number of unfinished objects to its lower-left
area. Similarly, the DP value of x can be obtained by querying the
maximum DP value among all objects in its lower-left area (and
plus one). Both queries can be done by a augmented 2D range tree
(see Sec. 2). This gives a simple algorithm, where in each round, we
can run a 2D range query to every unfinished object to identify the
ready ones, and then compute their DP values. However, this can
still incur Q(n?) work in the worst case.

To achieve work-efficiency, we would like to wake up an object
only when it is almost ready. Unlike activity selection, we found it
hard to find an exact pivot for each object x that has rank rank(x)—1.
Instead, our strategy is to randomly pick an unfinished object in
P(x) as x’s pivot, which can be efficiently supported by an aug-
mented 2D range tree. When the pivot of x is processed, we attempt
to wake up x by checking whether all objects in P(x) (those in
its lower-left corner) are finished. If so, x is ready, and we query
the maximum DP value in £(x) to compute x’s DP value. Other-
wise, x is not waked up successfully, and selects another random
unfinished object in its lower-left corner as the new pivot. In each
round, all ready objects will attempt to wake up all objects using x
as the pivot. This inductively guarantees that objects with rank i
(LIS length i) are waked up and processed in round i.

Our algorithm is in Algorithm 3. Each object corresponds to a
point, defined on its x-coordinate (its index i), and y-coordinate (a;).
We also maintain its DP value dp (initialized to +o0). We create a
virtual point p[0] as a starting point with index 0 and value —oo.

We use a range tree Tyqnge to maintain all the points in the 2D
planar, augmenting on a triple (noo, dp*, x*), which records for the
current subtree, the number of unfinished points ne, the maximum
DP value dp*, and an x-coordinate x* (an index). If the maximum DP
value dp* is co, which means that there exist unfinished elements
in this subtree, then the index x* is selected uniformly at random
from the unfinished objects. Otherwise, x* is used to record the
index to achieve the maximum DP value, which can be used to
reconstruct the LIS if needed. To maintain such augmented values,
the combine function simply adds up ne (Lines 18 and 19), and
takes a maximum on dp* (Line 15) on the two augmented values a;
and ay. If dp® is not +o0, x* can be simply set to be the argument
to achieve the highest DP value (Line 19). Otherwise, x* is selected
from the x* value of either a; or az, and the probability is decided
by t; : t2, where t1 and 7 are the number of unfinished objects (the
Noo values) in a; and ay, respectively (Line 17). By doing this, x* is
selected uniformly at random from both a; and az. We also use a
multi-map Tpiver to maintain the pivot-object pairs.

The algorithm starts from a frontier of the virtual point p[0].
Initially, Tpivor stores (0, i) as the initial pivot for all i. In each round,
the algorithm processes each object x in the frontier in parallel.

280

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

Algorithm 3: The parallel LIS algorithm

Input: A sequence a[1..n] with comparison function <
Output: The LIS length of a[-]

1 Struct Point contains
2 intx, y

3 int dp

4 Point p[1..n]

pl0] « (0, =0, 0) // insert virtual point @
¢ parallel_for_each a[i] € a do pl[i] = (i, ali], +o0)

// x = index, y = a[x]

// The DP value

[z

N

RangeTree<Point> Ty with

8 <x (p1, p2): return p;.x < py.x

9 <y (p1, p2): return p;.y < pr.y

// he: # of unfinished points (dp value o)
// dp*: max dp value in subtree

// x*: index (x) of max dp value

10 augmented value: (n, dp*, x*)
11 base(p):
12 if p.dp = +co then return (1, p.x, p.dp)
13 else return (0, p.x, p.dp)
14 combine(ay, ay): // combine two aug values
15 m ¢ arg max;e(y,y a;.dp"
/* When max dp value is +oo, choose a uniformly
random one as the potential pivot */
16 if ap,.dp" = +co then
17 t «random(1, 2) with probability a;.ne : az.ne
18 return (aj.ne + dz.Neo, +0, az.x™)
19 return (0, a,,.dp*, am .x)

Construct Trange from pl-]
Multi-map Tpivor = {(0, i) : i = 1..n} // pivot pairs (px,x)
22 frontier = {0}
while frontier # 0 do
‘ frontier = WAKEUP(frontier)
25 return max;(p[i].dp)

Function WAKeUP(frontier)
27 todo « Tpiyor.multi_find(frontier)
28 parallel_for_each g € todo do

29 (Lk, i) Tmnge~range(q~x9 q-y)

30 if k # +oco then
31 q.dp—k+1
32 mark g as next_frontier

33 else mark (i, g) as new_pivot_pair // not ready yet

34 Pack points marked as next_frontier into frontier*

35 Pack points marked as new_pivot_pair into pivot*
36 Tpivor -multi_insert(pivot™)
37 Update dp values for g € frontier” in Tyange

38 return frontier*

We first find all objects g such that (x,q) € Tpivor, Which are all
objects with pivots in the frontier (Line 27). We attempt to wake
up such object g by searching in Tysnge the half-open rectangle
with top-right point as g (Line 29), getting triple (_, k, i), where k is
maximum dp” in the query range and i is the x* value. If k # +c0
(Line 30), meaning no unfinished object in ¢’s lower-left area, then
q is ready and we set the DP value of g as 1 + k (Line 31). Otherwise
(ne # 0), there are still unfinished objects in g’s lower-left area,
and we reset ¢’s pivot as i, which is selected uniformly at random
from all unfinished objects in the queried range.

Session 6: Parallel Algorithms and Data Structures

At the end of a round, all newly-generated pivot-object pairs
are inserted into Tpjyo; in parallel (Line 35-36). All newly finished
objects are packed into next frontier (Line 34). The DP values of
the newly finished objects are updated in Tygnge (Line 37). We use
the following lemma to prove the work of the algorithm and prove
it in the full version of this paper [62].

LEmMMA 5.4. Construct a sequence x; as follows. Let xo = 1, and x;
be a uniformly random number selected from x;_1 ton. Let k be the
first element s.t. x = n. Then k = O(log n) whp.

LEMMA 5.5. For each object x in the input sequence of size n, Al-
gorithm 3 will attempt to wake up x for O(log n) times whp.

Proor. For an object x, let S be the sequence of objects before x
and smaller than x sorted by rank. Let the first pivot of x be the p-th
object in S, which is selected uniformly at random from S. When
Sp finishes, all objects in S with rank smaller than S, must have
finished, and the next pivot is selected uniformly at random from
Spr..n, where p” > p. Similar process applies to later pivot selections.
Therefore, the number of pivots selected for x is no more than the
length of sequence in Lemma 5.4, which is O(log n) whp.]

THEOREM 5.6. Algorithm 3 computes the LIS of a sequence of size
n in O(nlog® n) work and O(r log? n) span whp, where r is the rank
(LIS length) of the input sequence.

Proor. First, all initialization including constructing the range
tree has work O(nlogn) and span O(log? n). Assume in round i
there are n; objects in the todo list, which are the objects that we
attempt to wake up. Line 27 finds at most n; objects from Tp;yo With
O(n; log? n) work. Each range query costs O(log? n), and thus the
total cost in the parallel for-loop in Line 28 is O(n; log? n). Line 34
packs at most n; objects with work O(n;). Line 35 and 36 pack and
insert at most n; elements to Tpiyo, and thus costs O(n; log2 n). Line
37 updates at most n; objects to Trange, and thus costs O(n; log2 n).
In summary, each round of function wakeup has work O(n; log? n).
From Lemma 5.5, we know that), n; = O(nlog n). This proves that
the total work of Algorithm 3 is O(nlog> n) whp.

By definition of rank, the number of rounds in Algorithm 3 is
r. In each round, the span bounds of range queries (Line 29), pack
(Lines 34-35), and update Tpiyor and Trange (Lines 36 and 37) are all
O(log? n). Therefore, the total span is O(r log? n). O

5.3 Greedy MIS and Related Applications

In this section, we propose a new parallel MIS (maximal indepen-
dent set) algorithm. Parallel MIS is widely-studied [3, 13, 23, 24,
28, 29, 32, 33, 41, 42, 56]. Given a graph G = (V,E), an indepen-
dent set A C V is a subset of vertices where Yu,v € A, (u,v) ¢ E.
An MIS is an independent set A where Vo € V,v ¢ A, AU {v}
is not an independent set. The widely-adopted greedy MIS algo-
rithm [13, 23, 28, 29, 42, 56] starts with assigning each vertex a
random priority and greedily selecting the vertices based on the
priority (highest to lowest). The MIS is initialized as an empty set.
When processing vertex v, we add v to the MIS if none of ©’s neigh-
bor is selected in the MIS, and skip v otherwise. We say a vertex
is available if none of its neighbors are selected in the current
MIS, and unavailable otherwise. Blelloch et al. parallelized the

281

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

algorithm [13]. Note that a vertex is ready when it has a higher
priority than all its available neighbors. We say a neighbor of v is a
blocking neighbor if it has a higher priority than v. When all v’s
blocking neighbors become unavailable, v is ready. In each round,
the parallel algorithm processes all ready vertices in parallel by
adding them to the MIS, and removing their neighbors (marking as
unavailable). An illustration is shown in Fig. 4(a).

The main challenge in the algorithm is to find ready vertices
efficiently. A previous approach [13] hooks each unfinished vertex
v to an unfinished neighbor with the highest priority as the pivot.
Only when v’s pivot is finished, it applies a dual binary search,
which either finds the next pivot or decides that v is ready. Com-
bining the results in [13] and [42], the work is O(m) and the span is
O(log® n) whp. The high span comes from the O(log? n) dual binary
search that can apply in each round (O(log n) steps each requiring
an O(log n)-span min-reduce). There exist other algorithms such as
Prism [51] which is work-efficient with O(log? n) span. However,
it assumes to know the number of processors in the algorithm, and
a strong constant-time atomic operation fetch-and-decrease.

In this paper, we show a new, asynchronous approach that im-
proves span, while maintaining work-efficiency for parallel MIS.
The key idea is to wake up a vertex only when the last blocking
neighbor is finished. We use the atomic operation test_and_set
(TAS), and build a complete binary tree, called the TAS tree, for
each vertex, and use it to check if all the blocking neighbors are
finished. Let the TAS tree of v be Ty,. Each leaf in T;, corresponds
to a blocking neighbor u of v (i.e., with a higher priority than v).
We set a flag (initialized to zero) in each leaf to show if u has been
unavailable. Each internal node in the TAS tree also maintains a
flag: it is one when at least one subtree is fully unavailable, and zero
otherwise. For example, in Fig. 4(b), (9 maintains four blocking
neighbors in its TAS tree. Note that when all leaves in the T, are one
(unavailable), v is ready to be added to the MIS. We want to use the
flag to reflect the unavailability of the subtree. More precisely, for
each subtree ¢, when the last flag in t becomes one, the information
should be carried to t’s parent.

The pseudocode of our MIS algorithm is given in Algorithm 4.
The algorithm starts with constructing the TAS trees (initialized
to zero for all tree nodes), and finding all vertices with an empty
TAS tree (the ready ones). We start with processing these vertices
in parallel. When processing a vertex, we will mark each of its
neighbors u as unavailable. We further need to notify all the TAS
trees containing u that u is now unavailable. For each of the TAS
trees, we set u’s flag in the leaf to be one (Line 12). This information
is prorogated up along the path to set the flag of its parent, call it
p, to be one by TAS (Line 17). If the TAS succeeds, it means that
the other branch of p’s subtree is not fully finished yet, and we can
just quit. For example, in Fig. 4, after we process (2) in round 1, we
set (7) and @ as unavailable in @’s TAS tree. Both of them will
TAS their parent and succeed, so they quit. When the TAS fails, it
means that p’s flag is already one, so the other branch has been fully
unavailable. Since the current subtree at p is also fully unavailable,
we will continue to attempt mark p’s parent using TAS recursively.
For example, in Fig. 4, when we mark @ as unavailable in (9’s TAS
tree, we first TAS its parent. As it was set by @ previously, the TAS
fails. We then continue to its parent (the root). This TAS succeeds.

Session 6: Parallel Algorithms and Data Structures

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

r Processed ("7 11 12 13 7 11 12 13 7 11 12 13 7 11 12 13)
':m“”d: ONONORONORORONOMOEONONNONOROND
rocesse
in round 2 ©) @ @ 0 @ 0

#) Processed 0) (1) TAS* TAS*(])
14 “in round 3 Initially Marking 7 and TAS vV TAS x
Marked 13 unavailable Markipg 12 Markipg 11
\(a). Parallel MIS algorithm unavailable) | (b). TAS tree of vertex 14 unavailable unavailable

Figure 4: Illustration of the greedy maximal independent set (MIS) algorithm. (a). The input graph (numbers are priorities) and the round in which
each vertex is processed in the algorithm. (b). The TAS tree of @ in the graph in (a) from the initial status to when marking some leaves unavailable. v'=
successful TAS. X = unsuccessful TAS. When there is an unsuccessful TAS at the root, the entire TAS tree is finished.

Algorithm 4: The parallel MIS algorithm.

Input: A graph G = (V, E) with priority p : V - Z.
Output: Maximal Independent Set of G

1 parallel_for_each v € V do

2 T, « the TAS tree for v

3 Maintain the list of TAS trees that contains each vertex

4 status[v] « undecided

5 parallel_for_each v € V do

6 ‘ if T, is empty then WAKEUP(v) // no blocking neighbor
7 return all v € V marked as selected

8 Func WAKEUP(v)

9 status[v] « selected

10 parallel_for_each u € N(v) do

1 status[u] < removed

12 parallel_for_each TAS tree T, contains u do
13 if status[v] # removed then

14 x « the leaf of u in T,

15 x.flag « true

16 p < parent(x)

17 while test_and_set(p.flag) successful do
18 if p is the root of T}, then

19 WAaAKEUP(v)

20 Break

21 p « parent(p)

When a TAS at the root of any TAS tree Ty, fails, the entire subtree
is now unavailable, so v is ready to be waked up (Line 19), and we
will repeat this process for v. For example, when we mark @) as
unavailable, we TAS its parent and fail, and continue to the parent,
which is the root. This TAS also fails, which means the entire tree
is unavailable. Therefore, @ can be waked up.

THEOREM 5.7. Algorithm 4 generates the greedy maximal inde-
pendent set of G = (V, E) in O(m) work and O(log nlog dmax) span
whp, where n = |V|, m = |E|, and dpqax is the maximum degree in G.

We note that our new MIS algorithm is fully asynchronous:
no round-based synchronization is used. Although this does not
directly follow our phase-parallel algorithm, it also uses the same
idea of our Type 2 framework, where we wish to identify the last
finished object in P (x) and wake up x at that time. The rank of
each vertex v can be viewed as the longest chain with decreasing
priority starting from v. We now analyze the cost of this algorithm.

We show the proof of Thm. 5.7 in the full version of this pa-
per [62]. In the worst case when dyqx = n, the span of Algorithm 4
is O(log? n), which improves previous result by a factor of O(log n).
Comparing to Prism [51], our approach requires no knowledge on
the number of processors and is completely in the fork-join model.
The efficiency of our algorithm comes from the simple idea TAS

282

tree data structure. We note that using tree-like structure to do
counting is used in previous work [40, 44], but our algorithm is
different in that we make the observation that in the MIS algorithm,
the information needed is whether all blocking neighbors all fin-
ish, instead of the number of unfinished blocking neighbors. This
simplifies the problem and enables better span bound.

Graph Coloring and Matching. Several iterative graph algorithms
that share the similar approach can be improved using the same

technique. For graph coloring, Jones and Plassmann [49] showed

the greedy algorithm that can be parallelized using the similar ap-
proach in [13]. Hasenplaugh et al. [47] analyzed a list of heuristics

that vary the greedy order of the vertices and can lead to different

span bounds and output quality. For graph matching, Blelloch et

al. [13] showed a parallel greedy algorithm that is very similar to the

MIS algorithm in the same paper. By replacing the original wake-up

strategy in [13] with our new approach, we can improve the span

by O(log n). We note that the parallel graph-matching algorithm

cannot be fully asynchronous since each edge’s readiness relies

on two vertices, which needs to be checked after synchronization.
Hence, a synchronization is required between the rounds, but that

does not change the span bound. The analysis by Hasenplaugh

et al. [47] assumes atomic decrement-and-fetch operations which

is usually not included on the family of the binary-forking mod-
els [12]. Using the technique in this paper can achieve the same

bounds without this assumption.

Other Algorithms. Many algorithms in [12, 16-18] have con-
stant size P(x) for all x € S. Blelloch et al. [12] showed that

test_and_set can be used to check the readiness in this case. Here

we note that this can be considered as a special case for our TAS

trees, just with constant sizes. These applications include random

permutation, list ranking, and tree contraction [12, 64]; convex hull

and Delaunay triangulation [16-18]. Although we do not improve

the bounds of these algorithms, we show the interconnections

among all these algorithms, and an additional angle to review these

problems and algorithms.

6 EXPERIMENTS

In addition to the new theoretical results, we also implemented
many proposed algorithms based on our phase-parallel frameworks,
including activity selection (both Type 1 and Type 2), Huffman tree,
SSSP, and LIS. We use our experiments as proofs-of-concept to show
how work-efficiency and round-efficiency affect performance in
practice. We run our experiments on a 96-core (192 hyperthreads)
machine with four Intel Xeon Gold 6252 CPUs, and 1.5 TiB of main
memory. Our implementation is in C++ with Cilk Plus [55]. For the
parallel results, we use all cores and fully interleave the memory

Session 6: Parallel Algorithms and Data Structures

= Type1 |
1200 A —=—Type 1 10004 ® Type2 N
1000 A —e— Type 2 - —A— Classic seq Vs
—_ 1 A —A— Classic seq| © Linear scale K
¢ 800 \ o
@ A 2
& = |
:600— N g 100 /.,,l
£ 400/ ML g F
= —AA
200+ &
olanseenee®y 10 : —
102 10° 10* 10° 10° 12 5 10 1520
Output size n (x10%)

(a). n = 10°, varying rank (b). r = 45000, varying input size

Figure 5: Experiments on activity selection. (a). fix input size n = 10°

and vary the rank of the input. (b). fix rank r = 45000 and vary the input size.

“Classic seq” is the classic sequential DP algorithm. “Linear scale” shows the
slope of linearly growing line.

among NUMA areas using numactl -i all. We use r as the input rank.
All reported numbers are the averages of the last five runs among
six repeated experiments. Due to page limitation, we put some
extra experimental results and discussions about LIS and Huffman
tree in the full version of this paper [62].

6.1 Activity Selection

We implement Type 1 and Type 2 algorithms for activity selection.
We also implement a sequential version based on the DP recurrence
in Eq. (1) for comparison. For each activity, we set a random start
time and a length based on a truncated normal distribution. We con-
trol the mean and standard deviation of this distribution to control
the rank of the input data. The weights are generated uniformly at
random in [1, 232).

Fig. 5(a) shows the running time of all tested algorithms on 10°
input activities with various ranks. Both our Type 1 and Type 2 al-
gorithms have very similar performance and outperform the classic
sequential algorithm up to rank of 4 x 10°. Note that the running
time of our algorithm increases as the rank increases because our
algorithms have span proportional to the rank. Also, when the rank
is large, each round in the algorithm only deals with a small number
of objects, which also harms parallelism. Even so, the running time
of our algorithm seems to grow sublinearly with the rank. This
is because with about 200 threads, the work should still dominate
the cost, and both our algorithms are work-efficient. Interestingly,
the performance of the classic sequential algorithm improves with
increasing input rank. This is because in the sequential algorithm,
when the rank is large, the range query of an activity x (see Eq. (1))
will likely find an activity close to x, which exhibits better cache
locality. For small ranks, our algorithms can be up to 80x faster
than the sequential algorithm. For rank of O(y/n), our algorithm is
still about 14x than the classic sequential algorithm.

Fig. 5(b) shows the running time of all tested algorithms on dif-
ferent input sizes with a fixed rank of r = 45000. For other values of
the rank, we see similar trends, so we just show r = 45000 as an ex-
ample. Our algorithm scales well to large input sizes. The sequential
algorithm grows superlinearly with the input size n, which matches
the theoretical cost O(nlog n). As shown in Fig. 5(b), our algorithm
grows much slower with n (almost linearly). This is because when
n increases, the number of activities to be processed within each
round also increases, which overall enables better parallelism. We
believe that this indicates the potential of our algorithm to scale to
even larger data and more threads.

283

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

3.0
15 .
log,w ~25 log,w
-] o o 017
R @ o o
o —0—0 17 1z -

o1.0] & ps Sa i T20 A A A AAB
K o _o o & o v ¥y -y19
— - ¥—y 19 £ V

) S A >4
[LI v 3 = v
£ Ty ¢ 13 1.5 > > b2
F0.5 A = >

]

]
» 1
]
1

1.0 .
16 17 18 19 20 21 22 23 24 25 26
log,A log,A

(a). Twitter (TW) (b). Friendster (FT)
Figure 6: Experiments on parallel SSSP. (a). Running time on graph
Twitter (41.7 millions of vertices and 1.47 billions of directed edges). (b).
Running time on graph Friendster (65.6 millions of vertices and 3.61 billions
of undirected edges). We use A-stepping implementation from [39] with
different values of A and w* (the smallest edge weight in the graph). Values
on the right are the values of log, w*. The maximum edge weight is 223

16 17 18 19 2‘0 21 22 23 24 25 26

On all tests, Type 1 algorithm outperforms the Type 2 algorithm
by up to 35%. This is because in the Type 2 algorithm, we need to
first find pivots for all activities, while in the Type 1 algorithm, we
directly start with processing all ready activities, and use a range
query to find the frontier. Nevertheless, the two algorithms still
have very similar performance and both outperform the classic
sequential algorithm for reasonably large input rank.

6.2 Parallel SSSP

Background. SSSP is a challenging problem in the parallel set-
ting. As mentioned, Dijkstra is work-efficient but hard to paral-
lelize. Bellman-Ford has better parallelism but significantly more
work. Even so, parallel Bellman-Ford has good performance on
low-diameter graphs such as social networks [39, 63] due to better
parallelism. In practice, many heuristics were proposed aiming to
achieve a tradeoff between work and parallelism. For example, the
A-stepping algorithm [57] determines the correct shortest distances
of vertices in increments of A of the tentative distances. In step i, the
algorithm will find and settle down all the vertices with distances
in [iA, (i + 1)A]. A-stepping is highly practical and widely used but
its performance is very sensitive to the parameter A [39].
Our experiments. As mentioned in Sec. 4.2, our phase-parallel al-
gorithm settles down all vertices within tentative distance [iw*, (i +
1)w*], where w* is the smallest edge weight. This is conceptually
the same as using A = w* in A-stepping [57]. Therefore, we run ex-
periments using the A-stepping implementation by Dong et al. [39]
to test our idea. We note that this is not exactly the same as our
algorithm as the implementation does not use a tree-based data
structure to extract the frontier>, but is still “work-efficient” w.r.t.
the number of total relaxations. We note that empirically, the I/O
cost in processing and relaxing edges is usually the main cost in
practical parallel SSSP algorithms. Our results highly match our
theory. We tested two graph benchmarks, Twitter [54] and Friend-
ster [69]. Both of them are real-world large-scale social networks
with small diameters.

In our experiments, we fix the largest edge weight as wpyax =
223, vary the w* from 27 to 2?2, and set the weight uniformly at
random in this range for each edge*. For each edge weight range,

3In fact, almost none of the parallel SSSP implementation uses tree-based structures
to maintain distances due to their worse cache locality than flat arrays.

“This setting is similar to weighted BFS [35] (which is trivially work-efficient). The
difference is that after normalizing, the edge weight in our problem are not necessarily
integers as in weighted BFS.

Session 6: Parallel Algorithms and Data Structures

we run A-stepping with A varying from 216 to 22°. We show the
running time in Fig. 6. For both graphs, the best choice of A almost
exactly matches w* (differ by at most 2x), when w* is close to Wpgx.
This verifies the importance of work-efficiency in practical SSSP
algorithms. When w* gets even smaller, using A = w* does not
perform well, which is also as expected—despite work-efficiency,
using a small A limits the frontier size, hence we cannot fully exploit
parallelism. This also reveals the work-parallelism (or work-round)
tradeoff. In all, when wyqx/w* is within 32, using our algorithm
(i.e, A = w*) gives reasonably good performance.

It is worth noting that we also tried the same algorithm on
large-diameter graphs, such as some road graphs [1]. Probably
not surprisingly, even on w* = wyax/2, A = w* did not give the
best performance. This is because on such graphs, the frontier size
is usually small, and the performance is usually limited by the
lack of parallelism. In this case, avoiding extra work does not help
much in improving performance (and even harms the performance
since the parallelism gets worse). Many state-of-the-art implemen-
tations [39, 70] optimize performance on such (large-diameter)
graphs by sacrificing more work to get better parallelism.

6.3 Parallel LIS

When implementing our LIS algorithm, we use nested arrays to
represent augmented range trees to improve locality. We also use a
heuristic when choosing pivots—instead of choosing a uniformly
random pivot, we choose the right-most unfinished point as the
pivot, according to the intuition that points to the right are more
likely to be processed in later rounds. We also implemented a stan-
dard O(nlog n) sequential version based on Eq. (2).

We test input data of 108 with different ranks (LIS sizes). We
present results for LIS implementations in Fig. 7 and Fig. 8. We also
vary the input rank, which is the LIS size. We use two different data
patterns. The first one is roughly k segments of data, and we call it
the segment pattern. The data values are roughly decreasing with
random noise within each segment and roughly increasing across
the segments. The LIS size is about k. The other pattern is generated
by an increasing line a; = t X i + b;, where b; is a random variable
chosen from a uniform distribution. We call it the line pattern. By
changing the slope t and the distribution of b, we can also control
the rank of the input data. We visualize the input data pattern in
the full version of this paper [62].

We show our running time as well as the average number of
wake-up attempts for all objects. On the two different data patterns,
our algorithm is faster before the rank r is up to about 100, and per-
form worse than the sequential algorithm afterward. Note that our
algorithm has an O(log? n) overhead in work. When the parallelism
is not sufficient to compensate for the overhead in work, the per-
formance may drop. Interestingly, though our algorithm is getting
slower as the rank increases which matches theory, the standard
sequential algorithm is getting faster. We believe the improvement
in the sequential algorithm is also caused by better locality because
the range query for an object x will find an object close to x.

We note that our algorithm still shows very good scalability—in
most tests, our self-speedup is more than 40x. The poor perfor-
mance with the large rank comes from the work-inefficiency. Even
the polylogarithmic overhead (log?) can be more than the number

284

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

=— Time (classic seq) 5 P ég

- Time (parallel) a4 Pl _— 50 o
~100 3 * e " 403
S] o3 o ®
8 “ s - 303
] . . .24/ o &
E | 2 ' 20 ©
= . < —m— Avg. wake-up|| ¢

10_* ° 1 —®— Self-speedup
1 10 100 1000 10000 1 10 100 1000 10000
Output size Output size
(a). Time (b). Average wake-up and self-speedup

Figure 7: Experiments on LIS (segment). We fix input size n = 10
and use the segment pattern, with varying the output size. “Classic seq”
is the classic sequential DP algorithm.

©— Time (parallel) 8 - "
v o
~100 *~° S * 50 2
%3 od] o m oo 0400
‘3",' o é 4 L] I// g
o o s P
; o« / 30w
-E P . . E’ 2 u $
= L S < ./ = Avg. wake-up
#— Self-speedup
10+ 20
1 10 100 1000 10000 1 10 100 1000 10000
Output size Output size
(a). Time (b). Average wake-up and self-speedup

Figure 8: Experiments on LIS (line). We fix input size n = 10® and
use the line pattern, with varying the output size. “Classic seq” is the
classic sequential DP algorithm.

of available processors on our machine. Indeed, our algorithm’s se-
quential running time (on one core) is much more than the standard
sequential algorithm. Therefore, when k is large, the parallelism
cannot compensate the overhead due to work-inefficiency.

We also observed that the average number of wake-ups is very
small. In all our tests, the maximum value is 8 times, which is
less than log n shown in Lem. 5.5. This is partially enabled by our
heuristic. Especially for the segment pattern, when choosing the
right-most unfinished object as the pivot, it is almost always the
last blocking object to wait. We believe our algorithm is scalable
to more cores, but we are also interested in improving the work
bound to closer to work-efficient. Reducing work-bound should be
promising to improve practical performance.

7 CONCLUSION AND FUTURE WORK

In this paper, we used the phase-parallel framework with general
techniques to parallelize sequential iterative algorithms with cer-
tain dependences, and designed work-efficient and round-efficient
algorithms for a variety of classic problems. Our results improved
the previous theoretical bounds for many of them (e.g., the LIS
and MIS algorithms). We also implemented these algorithms. Our
results illustrated how work-efficiency and round-efficiency affect
performance in practice (which matches our theory). For reasonable
(not too large) input ranks, our work-efficient algorithms achieved
good parallelism and outperformed the sequential algorithms. One
interesting future direction is to reduce the O(log? n) overhead in
the work of the LIS algorithm, which is also likely to improve its
practical performance. We leave this as future work.

ACKNOWLEDGEMENT
This work is supported by NSF grant CCF-2103483.

Session 6: Parallel Algorithms and Data Structures

REFERENCES

(1]

[9

=

[10

[11]

[12

[13

[14]

[15]

[16]

[17

(18]

[19]
[20]

[21]

[22]
[23]

[24]

[25

[26]

[27

[28]

[29]

Openstreetmap © openstreetmap contributors. https://www.openstreetmap.org/,
2010.

U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of work stealing.
Theoretical Computer Science (TCS), 35(3), 2002.

Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn. Beeping a
maximal independent set. Distributed computing, 26(4):195-208, 2013.

K. Agrawal, J. T. Fineman, K. Lu, B. Sheridan, J. Sukha, and R. Utterback. Provably
good scheduling for parallel programs that use data structures through implicit
batching. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2014.

M. R. Alam and M. S. Rahman. A divide and conquer approach and a work-
optimal parallel algorithm for the lis problem. Information Processing Letters,
113(13):470-476, 2013.

N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey, and
J. Shun. Parallel algorithms for asymmetric read-write costs. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2016.

N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey,
and J. Shun. Implicit decomposition for write-efficient connectivity algorithms.
In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018.
G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran, S. Chen, and
M. Kozuch. Provably good multicore cache performance for divide-and-conquer
algorithms. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008.

G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered sets. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally deterministic
parallel algorithms can be fast. In ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP), 2012.

G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri. Scheduling
irregular parallel computations on hierarchical caches. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2011.

G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2020.

G.E.Blelloch, J. T. Fineman, and J. Shun. Greedy sequential maximal independent
set and matching are parallel on average. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2012.

G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache among threads. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2004.
G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious
algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2010.

G. E. Blelloch, Y. Gu,]J. Shun, and Y. Sun. Parallel write-efficient algorithms and
data structures for computational geometry. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2018.

G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallelism in randomized incremental
algorithms. 7. ACM, 2020.

G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Randomized incremental convex hull is
highly parallel. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2020.

G. E. Blelloch and M. Reid-Miller. Fast set operations using treaps. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 1998.

G. E. Blelloch and M. Reid-Miller. Pipelining with futures. Theory of Computing
Systems (TOCS), 32(3), 1999.

G. E. Blelloch, H. V. Simhadri, and K. Tangwongsan. Parallel and I/O efficient
set covering algorithms. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2012.

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. . ACM, 46(5):720-748, 1999.

N. Calkin and A. Frieze. Probabilistic analysis of a parallel algorithm for finding
maximal independent sets. Random Structures & Algorithms, 1(1):39-50, 1990.
S. Chatterjee, R. Gmyr, and G. Pandurangan. Sleeping is efficient: Mis in o (1)-
rounds node-averaged awake complexity. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 99-108, 2020.

R. Chowdhury, P. Ganapathi, Y. Tang, and J. J. Tithi. Provably efficient scheduling
of cache-oblivious wavefront algorithms. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 339-350, 2017.

R. A. Chowdhury, V. Ramachandran, F. Silvestri, and B. Blakeley. Oblivious
algorithms for multicores and networks of processors. Journal of Parallel and
Distributed Computing, 73(7):911-925, 2013.

R. Cole and V. Ramachandran. Resource oblivious sorting on multicores. ACM
Transactions on Parallel Computing (TOPC), 3(4), 2017.

S. A. Cook. A taxonomy of problems with fast parallel algorithms. Inf. Control,
64, March 1985.

D. Coppersmith, P. Raghavan, and M. Tompa. Parallel graph algorithms that
are efficient on average. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 260-269. IEEE, 1987.

285

(30]

(31]

(32]

(33]

&
=

[35

[36

(37]

(38]

W
20,

[40

[41]

[42]

[43

[44]

=
i)

[46

[47

(48]

[50

[51

[52

[53

(54]

[56

[57]

(58]

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms
(3rd edition). MIT Press, 2009.

A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of dijkstra’s
shortest path algorithm. In International Symposium on Mathematical Foundations
of Computer Science, pages 722-731. Springer, 1998.

J. Dahlum, S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck. Acceler-
ating local search for the maximum independent set problem. In International
symposium on experimental algorithms, pages 118-133. Springer, 2016.

S. Daum, M. Ghaffari, S. Gilbert, F. Kuhn, and C. Newport. Maximal indepen-
dent sets in multichannel radio networks. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 335-344, 2013.

L. Dhulipala, G. E. Blelloch, Y. Gu, and Y. Sun. Pac-trees: Supporting parallel and
compressed purely-functional collections. In ACM Conference on Programming
Language Design and Implementation (PLDI), 2022.

L. Dhulipala, G. E. Blelloch, and J. Shun. Julienne: A framework for parallel graph
algorithms using work-efficient bucketing. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2017.

L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons, and
J. Shun. Semi-asymmetric parallel graph algorithms for nvrams. Proceedings of
the VLDB Endowment (PVLDB), 13(9), 2020.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1), 1959.

D. Dinh, H. V. Simhadri, and Y. Tang. Extending the nested parallel model to the
nested dataflow model with provably efficient schedulers. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2016.

X.Dong, Y. Gu, Y. Sun, and Y. Zhang. Efficient stepping algorithms and imple-
mentations for parallel shortest paths. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2021.

C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms.
Journal of the ACM (JACM), 44(6):779-805, 1997.

J. T. Fineman, C. Newport, M. Sherr, and T. Wang. Fair maximal independent
sets. In IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 712-721. IEEE, 2014.

M. Fischer and A. Noever. Tight analysis of parallel randomized greedy mis. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2152-2160, 2018.
Z. Galil and K. Park. Parallel algorithms for dynamic programming recurrences
with more than O(1) dependency. }. Parallel Distrib. Comput., 21(2), 1994.

J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient synchronization primi-
tives for large-scale cache-coherent multiprocessors. In Proceedings of the third
international conference on Architectural support for programming languages and
operating systems, pages 64-75, 1989.

P. Gruevski, W. Hasenplaugh, D. Lugato, and J. J. Thomas. Laika: Efficient in-
place scheduling for 3d mesh graph computations. In Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures, pages 415-426, 2018.
Y. Gu, O. Obeya, and J. Shun. Parallel in-place algorithms: Theory and practice. In
SIAM Symposium on Algorithmic Principles of Computer Systems (APOCS), pages
114-128, 2021.

W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson. Ordering heuristics
for parallel graph coloring. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2014.

S. Im, B. Moseley, and X. Sun. Efficient massively parallel methods for dynamic
programming. In ACM Symposium on Theory of Computing (STOC), pages 798
811, 2017.

M. T. Jones and P. E. Plassmann. A parallel graph coloring heuristic. 14(3):654-669,
1993.

M. Kainer and J. L. Traff. More parallelism in dijkstra’s single-source shortest
path algorithm. arXiv preprint arXiv:1903.12085, 2019.

T. Kaler, W. Hasenplaugh, T. B. Schardl, and C. E. Leiserson. Executing dynamic
data-graph computations deterministically using chromatic scheduling. ACM
Transactions on Parallel Computing (TOPC), 3(1):1-31, 2016.

P. Krusche and A. Tiskin. Parallel longest increasing subsequences in scalable
time and memory. In International Conference on Parallel Processing and Applied
Mathematics, pages 176-185. Springer, 2009.

P. Krusche and A. Tiskin. New algorithms for efficient parallel string comparison.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
209-216, 2010.

H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a
news media? In Proceedings of the 19th international conference on World wide
web, pages 591-600, 2010.

C.E. Leiserson. Cilk. In D. A. Padua, editor, Encyclopedia of Parallel Computing.
Springer, 2011.

M. Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM 7. on Computing, 15, 1986.

U. Meyer and P. Sanders. A-stepping: a parallelizable shortest path algorithm.
Journal of Algorithms, 49(1):114-152, 2003.

T. Nakashima and A. Fujiwara. Parallel algorithms for patience sorting and
longest increasing subsequence. In International Conference in Networks, Parallel
and Distributed Processing and Applications, pages 7-12, 2002.

https://www.openstreetmap.org/

Session 6: Parallel Algorithms and Data Structures

[59] T. Nakashima and A. Fujiwara. A cost optimal parallel algorithm for patience
sorting. Parallel processing letters, 16(01):39-51, 2006.

[60] X.Pan, D. Papailiopoulos, S. Oymak, B. Recht, K. Ramchandran, and M. I. Jordan.

Parallel correlation clustering on big graphs. In Advances in Neural Information
Processing Systems (NIPS), pages 82-90, 2015.

[61] D.Semé. A cgm algorithm solving the longest increasing subsequence problem.

In International Conference on Computational Science and Its Applications, pages
10-21. Springer, 2006.

[62] Z.Shen, Z. Wan, Y. Gu, and Y. Sun. Many sequential iterative algorithms can be
parallel and (nearly) work-efficient. arXiv preprint arXiv:2205.13077, 2022.

[63] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing framework
for shared memory. In ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), 2013.

[64] J. Shun, Y. Gu, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Sequential
random permutation, list contraction and tree contraction are highly parallel. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 431-448, 2015.

SPAA 22, July 11-14, 2022, Philadelphia, PA, USA

[65] Y. Sun and G. E. Blelloch. Parallel range, segment and rectangle queries with

augmented maps. In SIAM Symposium on Algorithm Engineering and Experiments
(ALENEX), pages 159-173, 2019.

Y. Sun, D. Ferizovic, and G. E. Blelloch. Pam: Parallel augmented maps. In ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP), 2018.

G. Thierry, M. Jean-Frédéric, and S. David. A work-optimal cgm algorithm for the
lis problem. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 330-331, 2001.

A. Tiskin. Fast distance multiplication of unit-monge matrices. Algorithmica,
71(4):859-888, 2015.

[69] J. Yang and J. Leskovec. Defining and evaluating network communities based on

ground-truth. Knowledge and Information Systems, 42(1):181-213, 2015.

Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe. Graphit: A
high-performance graph dsl. Proceedings of the ACM on Programming Languages,
2(OOPSLA):1-30, 2018.

	Abstract
	1 Introduction
	2 Preliminaries
	3 phase-parallel Algorithms
	4 Type 1 Algorithms using Efficient Frontier Identifying
	4.1 Activity Selection
	4.2 Algorithms with Relaxed Rank

	5 Type 2 Algorithms with Wake-up Strategies
	5.1 Activity Selection
	5.2 Longest Increasing Subsequence (LIS)
	5.3 Greedy MIS and Related Applications

	6 Experiments
	6.1 Activity Selection
	6.2 Parallel SSSP
	6.3 Parallel LIS

	7 Conclusion and Future Work
	References

