L) . . .
Py Collage: Seamless Integration of Deep Learning Backends with

Automatic Placement

Byungsoo Jeon® Sunghyun Park* Peiyuan Liao

byungsoj@cs.cmu.edu spark@octoml.ai peiyuanl@andrew.cmu.edu
Carnegie Mellon University OctoML Carnegie Mellon University

Praxis Pioneering

Sheng Xu Tianqgi Chen Zhihao Jia

jackyxu1997@gmail.com tqchen@cmu.edu zhihao@cmu.edu

Amazon Web Services Carnegie Mellon University Carnegie Mellon University
OctoML
ABSTRACT CCS CONCEPTS

The strong demand for efficient and performant deployment of
Deep Learning (DL) applications prompts the rapid development of
arich DL ecosystem. To keep up with this fast advancement, it is cru-
cial for modern DL frameworks to efficiently integrate a variety of
optimized tensor algebra libraries and runtimes as their backends
and generate the fastest possible executable using these backends.
However, current DL frameworks require significant manual ef-
fort and expertise to integrate every new backend while failing
to unleash its full potential. Given the fast-evolving nature of the
DL ecosystem, this manual approach often slows down continuous
innovations across different layers; it prevents hardware vendors
from the fast deployment of their cutting-edge libraries, DL frame-
work developers must repeatedly adjust their hand-coded rules
to accommodate new versions of libraries, and machine learning
practitioners need to wait for the integration of new technologies
and often encounter unsatisfactory performance.

In this paper, we propose Collage, a DL framework that offers
seamless integration of DL backends. Collage provides an expres-
sive backend registration interface that allows users to precisely
specify the capability of various backends. By leveraging the speci-
fications of available backends, Collage automatically searches for
an optimized backend placement strategy for a given workload
and execution environment. Our evaluation shows that Collage
outperforms the best existing framework for each hardware by
1.26X%, 1.43X, 1.40x on average on NVIDIA’s RTX 2070 GPU, V100
GPU, and Intel’s Xeon 8259CL CPU, respectively. Collage has been
open-sourced ! and deployed in Apache TVM.

“Both authors contributed equally to this research.
*The work was done during their degree programs.
!https://github.com/cmu-catalyst/collage

This work is licensed under a Creative Commons Attribution International 4.0 License.
PACT °22, October 10-12, 2022, Chicago, IL, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9868-8/22/10.

https://doi.org/10.1145/3559009.3569651

« Software and its engineering — Compilers.

KEYWORDS

Machine Learning System, Compiler, Software Library

ACM Reference Format:

Byungsoo Jeon, Sunghyun Park, Peiyuan Liao, Sheng Xu, Tianqi Chen,
and Zhihao Jia. 2022. Collage: Seamless Integration of Deep Learning Back-
ends with Automatic Placement. In International Conference on Parallel
Architectures and Compilation Techniques (PACT °22), October 10-12, 2022,
Chicago, IL, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3559009.3569651

1 INTRODUCTION

Due to the explosive popularity of Deep Learning (DL) applications,
there are tremendous demands for performant and efficient soft-
ware/hardware stacks for DL computations. These strong demands
have driven both industry and academia to invest a significant
amount of effort in developing various hardware devices [1, 6, 40],
software libraries [3, 4, 7, 23, 43], compilers [12, 16, 17, 19, 20, 44,
47, 49, 56, 59, 70], and DL frameworks [9, 10, 24, 55, 58, 61]. Both
the hardware and software stacks for DL have been diversified,
resulting in a rich and fast-evolving ecosystem.

Within this ecosystem, today’s DL frameworks can leverage a
variety of optimized software libraries [23, 67] and runtimes [7, 43]
as their backends ? to deliver fast execution. Existing backends
can be grouped into two categories based on their capabilities. First,
operator kernel libraries [23, 43, 67] provide efficient low-level kernel
API for individual DL operators (e.g., convolution). These libraries
often support operator fusion, which combines multiple operators
into a single kernel based on certain fusion rules (e.g., cuDNN fusion
engine) [21, 23, 27, 48, 53, 73]. Second, graph inference libraries [3, 7]
take an entire DL model as input and produce efficient run-time
code. In addition to the optimizations that operator kernel libraries
provide, the graph inference libraries also consider graph-level
cross-kernel optimizations, such as memory optimizations [62].

There are strong demands for high-performance DL backends
in both industry and academia. However, seamless integration of
diverse and rapidly advancing DL backends requires addressing

*We define a backend as a kernel library or a runtime framework that takes DL
workloads as inputs and provides an optimized low-level target code.

PACT ’22, October 10-12, 2022, Chicago, IL, USA

DL Workloads

4

AN

Rule-based Heuristics

=TI op == “conv2d”: ! Susceptible to be outdated
it If cudnn_enabled: !
EXIStmg DL lower_to_cudnn_kernel
Frameworks i Elseif .. °
| Else if op == “batch_matmul”: -
‘ If cublas_enabled:

lower_to_cublas_kernel |
. o | Repeated manual efforts for
Execution N] updating heuristics

| Easy registration without expertise in
. i framework codebase and performance
landscape of diverse backends

—[A~

- l‘é ©>

Deliver fast and stable
performance

D
! CuDNN cuBLAS TensorRT |

4

Choose the
best backend

! Eliminate manual updates on

Execution M M heuristics in codebase

Figure 1: A comparison between existing DL frameworks
and Collage. Existing frameworks (top) use rule-based
heuristics to integrate different backends. In contrast, Col-
lage provides an automatic search algorithm to find opti-
mized placement of backends for a given hardware platform.
New backends can be easily integrated into Collage through
the backend registration interface.

two key challenges: (1) incorporating a wide variety of available
backends with different programming models and performance
characteristics, and (2) optimizing placement of backends to effec-
tively assign DL computations to various backends by leveraging
the performance advantages of each backend. We refer to this over-
all problem as backend integration problem.

To deal with the backend integration problem, existing DL frame-
works [10, 55] rely on rule-based heuristics manually designed by
experts (Figure 1). These heuristics often directly offload the entire
workload to a single backend (e.g., TensorRT) whenever applicable.
Otherwise, DL frameworks lower individual operators to different
backends based on a fixed priority-based strategy; for example, in
PyTorch, cuDNN has the highest priority for convolution, while
cuBLAS is the first choice for matrix multiplication.

However, even for the same type of operators, the optimal back-
end varies depending on the hardware (e.g., different types of GPUs)
and operator configuration (e.g., tensor shape, padding) as depicted
in Figure 2. As a result, the hand-coded heuristics in current DL
frameworks may leave substantial performance on the table. Be-
sides, existing frameworks require significant expertise in both
framework and performance landscape of diverse backends as de-
velopers need to directly modify the complex lowering heuristics
(e.g., more than ten thousand lines of code in PyTorch) in a frame-
work to introduce a new backend or reflect any backend updates.
These handcrafted heuristics are hard to maintain and keep up
with the rapid developments in backends. This is a major bottle-
neck for various machine learning personas, since the integration
workflow requires repetitive manual efforts to accommodate new
backends. This integration overhead hinders hardware vendors
from deploying their cutting-edge libraries and delays machine
learning practitioners from employing newest system-level sup-
ports.

518

Byungsoo and Sunghyun, et al.

:Test: CuDNN Best: TensorRT Best: TVM

s CuDNN B TesorRT mm TVM

o
o
5

Execution Time (ms)
&

o
o
o

0.00
lCl C2 C3 C4 C5 C6

C7 C8 (9 C10C11Cl12 C13 Cl14 C15|C16 C17 C18 C19 C20 C21 C22 Czil

Convolution Operators

Figure 2: Performance of various convolutions (C#) with dif-
ferent configurations (e.g., input tensor shape, kernel size)
in ResNext-50 on NVIDIA RTX 2070; Note that there is no
single backend that is the best for all convolutions.

In this paper, we aim to design a system that can provide seam-
less backend integration workflow with high performance. Building
such a solution requires addressing two key challenges. First, it is
non-trivial to integrate diverse backends with different characteris-
tics into a system while maintaining their full capabilities. Often
times, backend capability is intricate to capture accurately since
today’s DL backends generally support sophisticated operator fu-
sion with various constraints (e.g., fusing convolution ops with 3x3
kernel). Second, the search space of backend placement is extremely
large, whose size grows exponentially in the number of operators
in a DNN and the number of available backends. The search space
is also highly irregular due to diverse backend capabilities and
operator fusion patterns.

In Collage, we advocate for a new approach to tackling these
challenges, as shown in the bottom of Figure 1. Collage contains
two key components. First, to integrate diversified backends, Col-
lage provides a descriptive backend registration interface to specify
a backend’s capability based on its supported operator type (e.g.,
conv), configurations (e.g., kernel size), and its fusion rule. This
interface only requires basic understanding of our pattern language
and backend capability in contrast to existing frameworks that re-
quire considerable expertise in both the performance landscape of
varied backends and the coding skills for backend placement rules
in existing frameworks. Collage allows easy backend registration
for a new backend (e.g., 100 LoC for all possible operators) or a
new operator pattern support (e.g., 1 LoC in most cases). Second,
to efficiently optimize backend placement, Collage employs a two-
level optimization to deal with unique chacteristics of two backend
categories (i.e., operator kernel library and graph inference library).
Our system automatically explores possible matches between an
input computation graph and backend operator patterns to find op-
timized placements by taking available backends and an underlying
hardware into consideration.

To sum up, Collage significantly lowers the bar in the current
backend integration workflow by eliminating the need to modify
the placement heuristic. With simple registration from users, Col-
lage can immediately launch the automatic placement optimizer
without any intricate manual consideration for the capability of
new backend and its performance relation with other backends
across different workloads and hardware architectures.

This paper makes the following contributions:

Collage: Seamless Integration of Deep Learning Backends with Automatic Placement

Collage

PACT ’22, October 10-12, 2022, Chicago, IL, USA

Computation Graph (G) Backend Pattern Op-level Placement Optimizer (Sec 4.2) — Optimize backend placements with DP
Generators (Sec3) T T T ————T"————"—— -
Em | :
ony: Built-in Pattern Convl Convl N 00
[} [oeme] i e e e [N ey TS Y
N == Lo———====L B2 .
1, User-defined 1 Copr(G) = min(M ({conv1}, cuD) + M ({conv2,relu}, TRT) + M ({conv3 + add}, TVM) + M ({dense}, TVM),
Backend Pattern Abstraction (Sec 3) | Pattern Rules 1 M ({convl), TRT) + M ({conv3 + add}, TVM) + M ({conv2 + relu}, cuD) + M ({dense}, TRT),...)
1) Op pattern / * ' Graph Cost Single Op I 1
Teonv=is_op(nncom2d)(%, %) | / Op-level optimized placement l l > M er (
|# conv + element-wise operator (e.g., ReLU) | Ba:k.end Pattern I Graph Op Cost
I fused = conv.has_attr({"OpPattern": K_ELEM)) N Registry (Sec 3) Graph-level Placement Optimizer (Sec 4.3) - Fine-tune placements with evolutionary search

| add_pattern(backend= ‘cudnn’, pattern= fused) | N

______________ b cuDNN ey
2) Op pattern rule / 4 Conv +RelU ! | %D I Seed Pick best D%E Optimized
i tm_pattern_rule is a func that checks if the 'i / IL | #p| Backend
|M pattern rule can be applied on the input IR VM aae T T T T T Placement
| add_pattern_rule(backend= tvrr, Op-level optimized placement
| rule= tvm_pattern_rule) | s
_

Figure 3: System overview of Collage. By using our backend specification interface, users can efficiently register diverse back-
end patterns supported by diverse backends. Then, with its two-level optimization process, Collage automatically optimizes
backend placement for an underlying execution environment.

o We identify system and optimization challenges in integra-
tion of diversified DL backends and build Collage to tackle
these challenges.

e We provide a pattern-based interface for quick registration
of various backends and their updates with significantly less
user efforts and expertise in performance landscape of var-
ied backends and the placement heuristic in the framework
codebase.

e We develop a two-level search method to automatically op-
timize placement of diverse backends for a given hardware.

Our evaluation shows that Collage stably outperforms existing
DL frameworks across a variety of models and hardware architec-
tures by effectively mix-using multiple backends with their own
unique strengths. On average, Collage brings 1.26x, 1.43%, and
1.40% speedup on two different NVIDIA GPUs and an Intel CPU
respectively, compared to the best framework for each hardware.

2 OVERVIEW

Figure 3 illustrates the overarching design of Collage, which takes a
DNN model and the specifications of available backends as inputs,
and optimizes backend placement for the underlying hardware.
Note that Collage considers different sets of backends based on
a given target environment (e.g., Intel CPU, NVIDIA GPU) and
reflects performance characteristics of backends via the measurer
component (M). Collage consists of two key components.

Backend pattern abstraction. Existing backends provide a va-
riety of programming models for performing DL computations. To
decouple backend capability from the placement algorithm and
eliminate the manual effort for backend integration, we introduce
backend pattern, a new abstraction for capturing the capability of
varied backends. Specifically, a backend pattern defines a set of
operators and their possible fusion combinations (e.g., Conv+ReLU)
that can be deployed on each backend. Based on this pattern ab-
straction, Collage provides a straightforward interface to register a
backend and specify supported operator patterns.

519

Accurate specification is crucial to leverage the full capability of
diverse backends. To achieve this goal, Collage offers two levels of
abstraction. For simple patterns, Collage allows users to enumerate
the supported operator patterns. However, this approach may not
cover the full capability of backends with advanced operator fusion
engines [7, 21, 23, 53]. To enable more flexible specification, Collage
also allows users to bring their pattern rules that specify supported
operator kinds and complex operator fusion rules. When those
rules are provided, the pattern generator automatically identifies all
legitimate operator fusion patterns on a given computation graph
and adds them into the backend pattern registry. §3 provides details.

Backend placement optimizer. Once all available patterns
are registered in the pattern registry, Collage uses a two-level opti-
mization approach to discovering an optimized backend placement
strategy for a given execution environment. As existing operator
libraries offer operator-level point of view while graph inference li-
braries additionally apply cross-kernel optimizations, Collage takes
two different optimization strategies to exploit their differences.
First, the op-level placement optimizer explores promising candidates
for individual operators, without considering cross-kernel optimiza-
tions. By adopting a Dynamic Programming (DP) algorithm, the
op-level placement optimizer can efficiently find an optimized back-
end placement strategy within a minute. Second, the graph-level
placement optimizer fine-tunes the optimized backend placement
using evolutionary search [30]. This approach compensates for the
missing opportunities from the op-level placement optimizer by
examining the impact of cross-kernel optimizations. §4 discusses
the two optimizers in detail.

3 BACKEND PATTERN ABSTRACTION

As an important component of DL ecosystem, there are diverse
fast-evolving DL backends with different programming models and
performance characteristics. Depending on their target hardware
and design principles, each backend has its own unique strength
and coverage. In addition, many backends support various com-
plex operator fusion rules [7, 21, 21, 23, 53], which add significant
complexity in their integration with the full capability. Under the

51
52
53

PACT ’22, October 10-12, 2022, Chicago, IL, USA

import

[Method 1] Explicit pattern specification

Pattern language to describe conv2d + add + relu.
conv = is_op('conv2d")(wildcard(), wildcard())
conv_constr = conv.has_attr({"data_layout": "NCHW"})
conv_add = is_op('add')(conv_constr, wildcard())
conv_add_relu = is_op('relu')(conv_add)

Introduce new backend pattern to Collage.
collage.add_backend_pattern(backend="'cuDNN',
pattern=conv_add_relu)

[Method 2] Pattern rule specification
class MyPatternRule(collage.BasePatternRule):
Define variables
kFusable = 0
kElemwise = 1
...
Checker for the supported operators.
@staticmethoc
def op_rule(op):
if op.name == "dense":
Dense operator is always supported.
return True

elif op.name == "conv2d":
constraints can be verified as well.
return op.attr["data_layout"] == "NCHW"
... rest of the op rule ...

return False

Checker for fusion patterns.

-- cur_type: type of current fusion group
-- src: seed operator node
-- sink: post-dominator of src

@staticmethod
def fusion_rule(cur_type, src, sink):
If current fusion group contains
at least one conv/matmul (kFusable)
if cur_type == MyPatternRule.kFusable:
Helper functions can be defined.
def fchecker(node_pattern):
return (node_pattern MyPatternRule.kElemwise)
Check if every operator between src and sink.
Helper function can be passed as a checker.
if collage.check_path(src, sink, fchecker)):
return True
... rest of the fusion rule ...
return False

Introduce new pattern generation rule to Collage.
collage.add_backend_pattern_rule(backend="'TVM",
pattern_rule=MyPatternRule())

Listing 1: Example of the backend registration interface. To
register a new backend, users can directly enumerate pat-
terns or write a pattern rule that consists of valid operator
checker and fusion rule in Python classes.

hood, existing operator fusion engines often fuse operators based
on heuristic fusion rules that examine the type of each operator
and the relationship between different types. For instance, a fusion
engine may combine multiple operators across different branches
into a single kernel as long as they satisfy its fusion rule.

For an adoption of various backends, our system provides two
levels of abstraction: pattern and pattern rule. Pattern is a direct
way to specify all supported operator patterns in Collage’s pattern
language, which extends the Relay pattern language [60]. However,
supported patterns can be too complicated to explicitly specify. To
incorporate sophisticated patterns, pattern rules offer an expressive
way to specify a valid set of operator fusion rules in the form of
Python; users can use any Python features to describe complex fu-
sion algorithms. Each pattern rule is used to generate valid patterns
for the input workload with our automatic pattern generator. With

520

Byungsoo and Sunghyun, et al.

Pattern Rules

class pattern_rule(...):
// MyPatternRule in Listing 1

4

Computation Graph, G

Add Relu Dense
g e
Pattern Generator Walkthrough
1. Choose a seed node and check it with the pattern rule.

==

f If valid, generate a corresponding pattern

1 4 e.g., is_op(“conv”)(wildcard(), wildcard())
see

. E\xfnér;d the scope to the next post-dominator and check nodes
between them by using the pattern rule. Repeat until it fails.

N

3. Repeat 1&2 until visiting every node in G.

‘ Generated patterns
[Backend Pattern Registry |

Figure 4: Example illustrating how the backend pattern gen-
erator would automatically generate valid patterns with the
pattern rule presented in Listing 1.

two levels of abstraction, users can easily incorporate an additional
backend by specifying its patterns and pattern rules with an intu-
itive programming interface. By default, Collage provides built-in
patterns and pattern rules for popular backends [5, 7, 21, 23, 67].

Listing 1 presents an example of use-case scenarios. If a back-
end only supports a few simple patterns, users may enumerate
those patterns and add them directly to the backend pattern reg-
istry (line 3-12). Users can easily check the operators (line 5), their
configurations such as data layouts and kernel sizes (line 6), and the
the relationship between operators (line 7-8). A wildcard operator
is a special placeholder that matches any operator.

To fully support advanced backends [7, 21, 23, 53], users can
bring their pattern rules to incorporate more complicated patterns
with Collage’s pattern generator (line 14-53). To use this feature,
users need to provide operator checkers with their potential con-
straints (line 20-30) and a fusion rule (line 32-49) in the form of
Python methods. Then, the automatic pattern generator in Collage
will search for valid operator patterns satisfying these rules and add
them to the backend pattern registry before optimizing backend
placement.

Figure 4 exhibits how our pattern generator searches for legiti-
mate patterns using given pattern rules on an input computation
graph. By visiting every operator in an input computation graph,
the pattern generator investigates how far a pattern can grow with-
out breaking the pattern rule. For each operator, the pattern gen-
erator first validates whether the operator can be executed on a
backend (line 20-30). If valid, it enlarges the scope one step fur-
ther and validates whether a set of operators satisfies the fusion
rule (line 32-49). For instance, line 40-47 specify that the assumed
backend can fuse element-wise operators following an operator of
type kFusable, which includes convolution and matrix multiplica-
tion. Whenever a group of operators satisfying the rule is found, the
pattern generator produces a corresponding pattern and adds it to
the backend pattern registry. Then, it enlarges the scope of interests
one step further again to see if a bigger pattern can be found. This

Collage: Seamless Integration of Deep Learning Backends with Automatic Placement

approach allows Collage to incorporate advanced backends, such as
TVM, cuDNN, DNNL and TensorRT, without missing any pattern.

4 BACKEND PLACEMENT OPTIMIZATION

4.1 Problem Definition

Collage attacks the backend placement problem to find the best
use of available backends and maximize performance. Consider a
computation graph G and a set of backend patterns B in Collage’s
backend pattern registry. G is a Directed Acyclic Graph (DAG)
where each node represents a tensor operator (e.g., convolution,
matrix multiplication). b = (p,d) € B is a pair of an operator
pattern p and a backend identifier d, such as cuDNN, cuBLAS, etc.

With M matched subgraphs g; and backend patterns b; for
i€ {12 M}1et P(G) = {(gs, bi)lbi € B,UM, gi = G.gingj =
0 foralli,j € {1,2,---, M} where i # j} be a backend placement
strategy on a computation graph G and Cost(P(G)) be the exe-
cution time of a placement £(G). In this work, we aim to find a
backend placement strategy Pops that minimizes Cost(P(G)). This
problem can be formalized as follows:

Popt(G) = arg min Cost(P(G)) (1)
P(G)

4.2 Op-level Placement Optimizer

To efficiently evaluate numerous candidates with different place-
ment and prune the search space, Collage conducts an op-level
placement optimization as the first step. Its goal is to map all opera-
tors on the computation graph to the most efficient set of low-level
kernel implementations from available backends fast without con-
sidering cross-kernel optimizations in graph inference libraries. As
discussed earlier, the graph-level placement optimizer (§4.3) would
make up for the possible performance loss from this simplification.

With this simplification, low-level kernel executions become
independent to each other in a single device execution. Let s; and
s2 be subgraphs of G where s1 Usy = G, s1 N'sy = 0. Then, the
following additive relationship [37] between the run-time cost of
P(s1) and P(s2) can be used to determine Cost(P(G)):

Cost(P(G)) = Cost(P(s1)) + Cost(P(s2)) + € 2)

where € is a context switching cost (e.g, driver overhead), which is
nearly constant empirically. Note that Collage avoids data transfers
between different backends on the same device by only exchanging
data pointers to the tensors (e.g., s1 and s2) using the zero-copy
mechanism. With this cost model, it is possible to cheaply approxi-
mate the cost of a graph by partitioning a graph into smaller sub-
graphs and summing up their cost. Despite the efficient cost model,
excessively large number of possible placement strategies and a
variety of fusion patterns make search non-trivial.

To address this challenge, we propose a Dynamic Programming
(DP) method for optimizing backend placement at the operator level.
By using the additive relation (Equation 2), we deduce the following
recurrence relation of optimized backend placement P, (s) and its
cost Cop¢ (s) for any subgraph s C G. This breaks down a problem

521

PACT ’22, October 10-12, 2022, Chicago, IL, USA

Backend Patterns
¢

Computation Graph, G

DP Walkthrough: Pattern Matching / Optimized Cost Update

Initial frontier node queue, Q = {Conv1} // root node
1) Pop frontier node with the lowest depth (Conv1) from Q
2) Match backend patterns with subgraphs rooted at the frontier

Matched Patterns
Add |——>| Dense | » [€onv] [Conv][Conv]
[Conv+Relt |
[Conv+Relt |
[Conv+RelU+Add |

3) Add new frontier nodes to Q
New Q = {Conv2, RelU, Add, Dense}

4) Update optimized cost and backend placement
Copt({Conv1}) = min (Cop, ({Convl}),

min(M ({Conv1}, cuD), M ({Conv1}, TVM), M ({Conv1}, TRT))
Copt({Convl, ReLU}) = min(Cypp, ({Convl, RelU}),

min(M ({Conv1 + ReLU}, cuD), M ({Convl + ReLU}, TVM))
Copt({Conv1, ReLU, Add})
= min(Cop, ({Convl, ReLU, Add}), M ({Convl + ReLl + Add}, TRT))

5) Repeat 1) ~ 4) until Q is empty

Figure 5: Example of Dynamic Programming (DP) proce-
dures. By visiting over each frontier node, DP algorithm
matches backend patterns and update the optimized place-
ment and its cost. For simplicity, optimized placement up-
date is omitted.

of finding Pop+(G) into smaller problems of finding Pop;(s).
Popt(s) = papt(smin) U P(Imin)

0 ifs=0 ©)
Copt(s) = .
Copt(Smin) + M(P(gmin)) + € otherwise
where sp,in and gmin are
argmin {Copi(s') + M(P(g")) + €} (4)

s'Ug’=s,s'"Ng’=0

s’ represents a subgraph that is already examined while ¢’ is a
subgraph that is going to be evaluated with a measurer M(-), which
takes a backend placement strategy and returns its actual run-time
cost on the execution environment. We query the measurer at the
granularity of a backend pattern that matches with g/, which is
either single or multiple operators (operator fusion) that will be
lowered to a single low-level kernel. This approach ensures that
we always measure a single kernel and add it up to compute the
cost of larger subgraphs. To avoid the repetitive and expensive
measurement overhead (i.e., compilation + multiple runs on the
actual hardware), we cache the result to the log for the future usage.
With this approach, we can efficiently explore possible backend
placements and evaluate them.

PACT ’22, October 10-12, 2022, Chicago, IL, USA

Algorithm 1 Op-level Placement Optimization: DP

Input: Computation graph G and set of backend patterns 8
Output: Optimized placement Pyp:(G)

1: // vp: aroot of G, Q: a priority queue sorted by node depth
2 Q = {vo}

3: repeat

4 // vs is a frontier node

5. vs = Q.dequeue()

6 for b; € B do

7 // Find a subgraph g rooted at v, that matches b;

8 if g = get_match(vs, b;) then

9 /I F is a set of new frontier nodes after matching

10: for v; € ¥ do

11 if v; has never been added to Q then

12: Q.enqueue(v;)

13: end if

14: end for

15:

16: 11P(g9) ={(g,bi)}

17: // M is a measurer

18: /] S is a set of subgraphs, each of which includes all
nodes before v in post-order and does not include g

19: // € is a constant for context switching cost

20: fors; € S do

21: if Copt(sj U g) > Copt(sj) + M(P(g)) + € then

22: Copt(sj U g) = Copt(sj) + M(P(g9)) + €

23: Popt(sj U g) = Popt(sj) U P(g)

24: end if

25: end for

26: end if

27 end for

28: until Q = 0

29:

30: return Popr(G)

Figure 5 illustrates an simplified walkthrough example of our
DP method. By traversing a computation graph G, it solves smaller
problems of finding #pp¢(s) for a subgraph s C G and eventually
discovers Pop;(G). First, it puts a root node in the priority queue
as an initial frontier node; we define a frontier node as a node that
has the lowest depth among unvisited nodes on a path from the
root. Then it pops a frontier node with the lowest depth from the
queue and examines if any subgraph rooted at the current frontier
node can match any valid backend pattern. Once a matching is
found, we add new frontier nodes to the priority queue and measure
the cost of the subgraph matched with the backend pattern. If a
better placement strategy is found, we update the optimized cost
and backend placement strategy based on Equation (3). We repeat
these steps until the priority queue is empty. Given that graph
inference libraries, such as TensorRT, can also provide competitive
operator-level implementations (Figure 2), we also include them in
the op-level optimization. Algorithm 1 formalizes our DP method.

Time complexity. We derive the time complexity of Algorithm 1.

Let N be the number of nodes (operators) in computation graph

522

Byungsoo and Sunghyun, et al.

Evolutionary Search Walkthrough

I_Op-level Optimized Placement -i

|

| ! AR

| [Conva] oy [l %

| [Conva+Ada Jo{Dense] | (‘Corva +dd |- Dense |

Prune operators already assigned to graph library

Pruning

Backend Patterns

[[cubNN] [TvM] [TensorRT | seed
Op Library Graph Inference [Conva] [[conva3+Add | [Dense |— 000
Libra
s 0 - best op library chosen by DP / 1 — graph library
Search space S = {000, 001, 010, 011, 100, 101, 110, 111}
Crossover

Parents two crossover points Mutation & Selection

|Conv1|:| Conv3 + Add |'| Dense | '_I —————————————— 1
|

| Conv1| |Conv3+Add | |Dense|—>001
[conva]| [conva +Add]| [Dense | | .
lConvll | Conv3 + Add | I Dense |—>0 10

Children crossover |

[Conva]| [Conva+ Add ||| Dense | # [convi] [[conva+Add | [Dense |- 101

T = .7 4 - 1
|Conv1|:| Conv3 + Add |:| Dense | | [conva] [Conv3+Add | [Dense]—> 1 10

Figure 6: Example of Evolutionary Search (ES) procedure. Af-
ter pruning search space, it iterates over mutation, selection,
and crossover until it reaches saturation or time limit.

G, P be the average number of backend pattern matches per fron-
tier, F be the maximum possible number of frontiers for a single
match, and S be the maximum number of subgraphs in S (line
20). In Algorithm 1, the outermost while loop (line 3) takes O(N)
times to traverse each frontier node in G. For each frontier, there
can be O(P) matches (line 6-8). For each match, the algorithm
iterates over its F (line 10) and S (line 20) and takes O(F + S).
Therefore, the overall time complexity of our op-level placement
optimizer is O(NP(F + S)). In all workloads that we have inves-
tigated, N < 1000,P < 20,F < 10,S < 200. As a result, our DP
method optimizes placement within a minute by effectively pruning
candidates.

4.3 Graph-level Placement Optimizer

As the op-level placement optimization ignores the effect of cross-
kernel optimizations (e.g., scheduling and memory optimizations)
in graph inference libraries, Collage introduces the graph-level
placement optimizer to fine-tune the potentially sub-optimal back-
end placement strategies from the op-level. To do so, we need to
identify additional operators that are not assigned to graph infer-
ence libraries but can benefit from cross-kernel optimizations. Once
identified, we offload them to graph inference libraries to extract
further improvement. However, a key challenge we must address
in this approach is deciding which operators to offload to graph
inference libraries among a myriad of candidates..

To address this challenge, we represent each backend placement
strategy by using a sequence of digits. Each digit implies whether
to offload to graph inference libraries. Since our goal is to offload
more operators that can benefit from the cross-kernel optimization,
we exclude operators already mapped with a graph inference li-
brary from this encoding. This straightforward state representation
eliminates the complexity from various graph partitions and their

topology.

Collage: Seamless Integration of Deep Learning Backends with Automatic Placement

We adopt an evolutionary search algorithm [30] for graph-level
placement optimization. Figure 6 describes the procedure of our
evolutionary search method. For state representation, 0 indicates
keeping the decision of the op-level optimizer and 1 means overrid-
ing the decision and offloading it to a graph inference library (e.g.,
TensorRT). To facilitate the search process, we include the op-level
optimized placement strategy as one of the seeds to provide a good
starting point. The evolutionary algorithm iterates over rounds
of mutation, selection, and two-point crossover to fine-tune the
backend placement.

5 EVALUATION
This section aims to answer the following questions:

e Can Collage effectively optimize real-world DL model execu-
tion over diverse backends and target devices compared to
the existing DL frameworks? (§5.2)

e Is optimization time affordable? How much time does each
optimization take? (§5.3)

e Does adding more backends improve the performance of
Collage? (§5.4)

e How does backend placement optimized by Collage look
like? (§5.5)

5.1 Experimental Setup

Implementation. We built the core of Collage in the form of a
portable Python library and leveraged diverse backends in differ-
ent hardware architectures: cuDNN [23], cuBLAS [5], TVM [21],
TensorRT [7], MKL [67] and DNNL [3]. To orchestrate a runtime ex-
ecution with multiple backends, Collage uses DLPack to minimize
data movement (e.g., tensor) across different backend runtimes by
efficiently exchanging pointers of data with zero-copy approach [2].
Still, even such optimized communications incur certain run-time
overhead (e.g., deserialization overhead of the engine in graph in-
ference libraries [8]). Thus, Collage takes this run-time overhead
into account when measuring execution time of various placement
candidates. If such run-time overhead is too excessive, Collage will
choose another candidate with better performance. To leverage full
capabilities of backends, their supported patterns and pattern rules
are provided based on their official documentation and codebases.
Each backend specification with full operator supports only takes
about 100 LoC with Collage APL

Baselines. We examine TensorFlow (TF) [10], TF-XLA [9], Py-
Torch [55], TVM [21], and TensorRT [7] as DL framework baselines.
For TVM, we use AutoTVM to automatically generate the optimized
operator schedules for each target. Note that we also integrate Ten-
sorRT and TVM as high-performance graph inference libraries in
this experiment.

Workload. We evaluate five popular real-world DL inference
workloads that cover a wide range of application. BERT [25] is a
transformer-based language model that achieved the state-of-the-
art performance on a spectrum of natural language processing tasks.
DCGAN [57] is an extension of the GAN [32] with an unsupervised
representation learning mainly for image generation. NasNet-A
[75] is one of the most popular machine-generated DL workloads
that show strong performance on popular image recognition tasks.
3D-ResNet50 [33] is an extension of widely adopted ResNet50 [34]

523

PACT ’22, October 10-12, 2022, Chicago, IL, USA

for 3D image tasks such as action recognition. ResNeXt50 [68]
introduces a grouped convolution to ResNet50 architecture and
improves its model accuracy and computational complexity for
image recognition.

Each workload has its own characteristics in terms of its opera-
tors and structure. Most of recent models for language application
such as BERT are basically a series of the Transformer layers that
consist of batch matrix multiplication, layer normalization, soft-
max, etc. On the other hand, models for vision application such as
ResNeXt50 and NasNet-A has a series of layers that has operators
including convolutions and non-linear activation functions (e.g.,
ReLU). In these models, operator configuration (e.g., number of
channels and hidden nodes) varies across different layers as you see
in Figure 2, which leads to performance diversity of DL backends.

5.2 End-to-end Evaluation

To discuss the effectiveness of our approach, we evaluate the end-
to-end performance of Collage against the baseline frameworks;
note that we omit error bars from our figures because we observe
marginal standard deviation (less than 3%) for all results. Note that
the performance of TF-XLA is missing for some pairs of workload
and targets (e.g., 3D-ResNet50 and NVIDIA GPU) because it has
issues with some 3D convolutions for GPU targets and certain
image resizing operators.

Figure 7a and Figure 7b presents the end-to-end normalized
throughput of Collage and existing DL frameworks on two different
NVIDIA GPU architectures, Tesla V100 and GeForce RTX2070. Nor-
malized throughput is the throughput of each framework normal-
ized by the throughput of Collage. Overall, Collage consistently pro-
duces the most efficient executable across different workloads and
hardware architectures: In terms of geometric mean, Collage out-
performs the state-of-the-arts by 1.43x on V100 and 1.26X on RTX
2070, respectively. This improvement comes from Collage’s back-
end placement optimization that effectively leverages the unique
strength of various backends.

Figure 7c exhibits the experimental results on the Intel CPU.
Likewise, Collage showcases the most stable performance across
different workloads on this Xeon architecture while beating the
state-of-the-arts by 1.40x in the geometric mean. However, on
BERT and 3D-ResNet50, TF-XLA and TF are faster possibly due to
their optimizations customized for Intel CPU such as data layout op-
timization with non-uniform memory access, which is orthogonal
to backend placement.

As the representative case, different batch sizes are also examined
with ResNeXt50 on V100. Figure 8 indicates that Collage consistently
outperforms the state-of-the-art frameworks across different batch
sizes as well.

Since backends and their performance vary depending on the
underlying execution environment, backend placement should be
carefully customized by considering their performance landscape.
Our experimental results indicate that Collage can stably offer a
faster DL execution than existing frameworks with the rigid hand-
written heuristics across different hardware architectures.

PACT ’22, October 10-12, 2022, Chicago, IL, USA

I TF-XLA s TF I PyTorch

. TVM

Byungsoo and Sunghyun, et al.

I TensorRT

310
go.a
£0.6
g0.4
£0.2
0.0

BERT

DCGAN

NasNet-A

I Collage

3D-ResNet50 ResNeXt50 GeoMean

(a) NVIDIA Tesla V100

. TF . TF-XLA I PyTorch

. TVM

I TensorRT

I Collage

Normalized Throughput

2B e o e
oN ®do ®o

BERT DCGAN NasNet-A 3D-ResNet50 ResNeXt50 GeoMean
(b) NVIDIA GeForce RTX 2070
. TVM I TF-XLA Il PyTorch . TF I Collage

3

ey

21.0

E 0.8

- 0.6

[0}

N0.4

©

£0.2

20.0!

BERT DCGAN NasNet-A 3D-ResNet50 ResNeXt50 GeoMean

(c) Intel Xeon Platinum 8259CL

Figure 7: End-to-end performance of state-of-the-arts DL frameworks and Collage in five real-life workloads on NVIDIA GPUs
and Intel CPU. Throughput of each framework is normalized by the throughput of Collage. Following backends are employed
for each framework according to target hardware and its capabilities: NVIDIA GPU (cuDNN, cuBLAS, TVM, TensorRT), Intel

CPU (MKL, DNNL, TVM).

. TF . TF-XLA N PyTorch . VM I TensorRT Il Collage

o o o B
> o o o

Normalized Throughput
o
N

o

BatchSize=1

BatchSize=4 BatchSize=8 BatchSize=16
Figure 8: End-to-end performance with different batch sizes
in ResNeXt50 on NVIDIA V100. Normalized throughput is

the throughput normalized by the throughput of Collage.

5.3 Optimization Time

To evaluate the overhead from our automated optimizer, this subsec-
tion studies the overall optimization cost of the two-level approach.
For this section, we use NVIDIA V100 as our target.

524

Figure 9 shows the breakdown of our operator-level optimiza-
tion time. If the optimization is launched from scratch, the entire
optimization process takes up to two minutes. This optimization
time consists of two parts: measurement of the operator cost and
overhead from the DP algorithm. Due to the high evaluation cost,
the optimization time is dominated by the profiling overhead. How-
ever, as discussed in §4.2, the repetitive profiling for operator cost
can be avoided by saving the cost of each operator. When the cost
of every operator is profiled in advance, our op-level placement
optimization takes less than a minute on all of the five networks.

Figure 10 exhibits how our graph-level placement optimization
gradually improves from the op-level placement optimization over
time. The evolutionary searcher could boost the performance by
leveraging more cross-kernel optimizations as it goes through sev-
eral generations of mutations and crossovers. In BERT and DCGAN,
the effect of cross-kernel optimization is quite notable and thus,
our graph-level placement optimizer accelerate its execution by
1.09 — 1.20x from the op-level optimization. For the rest of the

Collage: Seamless Integration of Deep Learning Backends with Automatic Placement

20

mmm DP I Op Profiling
120
100
_. 80
o
[}
g 60
E
40

o

BERT DCGAN \asNeth 3 D_p\esNe‘SO ResNexts0

Figure 9: The breakdown of op-level placement optimiza-
tion time. On average, profiling overhead for operator cost
measurements takes up 68% of the entire optimization time.
Note that profiling is only necessary for unseen operators.
Once the cost of a new operator is measured, its informa-
tion will be saved in the logging database in Collage to avoid
the repetitive profiling. If profiling log is available, op-level
optimizer only takes less than a minute.

—— BERT —— NasNet-A —— ResNeXt50
——— DCGAN —— 3D-ResNet50
1.20
o
>
g 115
[}
(e
v 1.10
o
=
=
© 1.05
[}
o4
1.00
10 20 30 40 50 60

Optimization Time (Mins)

Figure 10: Performance improvement of graph-level place-
ment optimization over time. The y-axis presents the
speedup relative to the op-level placement optimization.

workloads, graph-level placement optimization cannot improve
any further since the placement from the op-level optimization is
already hard to beat. Overall, most of workloads are observed to
reach the saturation within thirty minutes.

Due to the lack of the efficient cost model that can factor in the
cross-kernel optimization effect, graph-level placement optimiza-
tion has expensive evaluation overhead that leads to the longer
optimization time compared to the op-level. Given that our op-level
placement optimizer can identify high-performance backend place-
ment for the most workloads within just a minute, we recommend
the graph-level placement optimization as the optional tool for the
users interested in squeezing the last drop of performance.

5.4 Backend Ablation Study

To assess the impact of integrating backends, we conduct an abla-
tion study by adding backends one-by-one to Collage.

525

PACT ’22, October 10-12, 2022, Chicago, IL, USA

Figure 11 shows the experimental result on V100. Overall, Col-
lage monotonically improves performance as we integrate more
backends. This reinforces the importance of smart mixed-use of mul-
tiple backends and also corroborates the robustness of our backend
placement optimization. It is worth noting that the performance im-
provement from a new backend varies depending on a network. In
the case of BERT and DCGAN, we see relatively consistent enhance-
ment from each backend. This is because Collage identifies a way to
utilize every backend for the different part of the workload depend-
ing on its own unique strength. In case of NasNet-A and ResNeXt50,
TVM offers the majority of the performance improvement while
cuDNN significantly benefits Collage for the 3D-ResNet50.

These observations show that Collage can stably improve perfor-
mance by having more backends. By leveraging the unique strength
of available backends, our automated optimizer delivers the per-
formance with a set of backends that surpasses or guarantees the
performance with its subset.

5.5 Case Study of Backend Operator Placement

To understand the source of performance improvement from Col-
lage, we examine two representative workloads in detail. Figure 12
illustrates Collage’s final backend placement for ResNeXt50 and
BERT on V100.

Even within a single network, we observe that the same type of
operator is mapped to different backends due to the performance
diversity depending on its configuration, such as data shape and
kernel size, and the operator fusion with its neighbor nodes. For ex-
ample, batch matrix multiplication operators in BERT are assigned
to two different backends (cuBLAS and TVM) while convolution
operators in ResNeXt50 are assigned to three different backends
(cuDNN, TVM, and TensorRT). Interestingly, the graph inference
library (e.g., TensorRT) can be a competitive choice even for a
single operator as observed with some convolution operators in
ResNeXt50.

This figure also demonstrates that Collage is capable of leverag-
ing various fusion patterns from each backend. For instance, we
discover a variety of operator fusion patterns selected by Collage
such as Conv+ReLU, Conv+Add+ReLU, and Add+ReLU. Although
it is omitted from this figure for simplicity, we observe the fusion
pattern involved with more than ten operators. Again, as in a single
operator, Collage chooses the different backends for the identical fu-
sion pattern of Conv+Relu in ResNeXt50 because the best backend
choice varies depending on specific operator configurations.

This study confirms that Collage can accelerate DL workload
execution by leveraging diverse operator patterns from multiple
backends given their performance characteristics.

6 RELATED WORK

Diversified Backend Ecosystem. To extract the best performance
from the underlying hardware, there have been substantial efforts to
design high-performance DL backends. Hardware vendors have re-
leased various specialized optimized libraries and inference engines.
NVIDIA has actively developed cuDNN [23] to deliver optimized im-
plementations of DL operators, cuBLAS [5] to offer efficient BLAS
kernels, and TensorRT [7] to create fast execution plans for DL
workloads. Particularly, TensorRT considers various graph-wide

PACT ’22, October 10-12, 2022, Chicago, IL, USA

I Collage (TVM) [Collage (TVM,cuB)

I Collage (TVM,cuB,cuD)

Byungsoo and Sunghyun, et al.

I Collage (TVM,cuB,cuD,TRT)

o N D O ®® O

Normalized Throughput
© © © © o ¢

BERT DCGAN

NasNet-A

3D-ResNet50 ResNeXt50 GeoMean

Figure 11: End-to-end performance of Collage with different number of backends on NVIDIA Tesla V100. Each throughput is
normalized by the throughput of Collage (TVM,cuB,cuD,TRT). TVM, cuB, cuD, and TRT represents TVM, cuBLAS, cuDNN, and

TensorRT.

BERT

ResNeXt50

Conv + ReLU
Conv + Add + RelU

[Batch matmul | [Batch Matmul | [Batch Matmul |
T
Input

Backends
[Ccupnn] |

] [TensorRT | [cuBlAs |

VM

Figure 12: Representative backend placements discovered by
Collage on V100 (Figure 7a). Note that Collage leverages var-
ious backends given their unique strength to enhance per-
formance.

cross-kernel optimizations for scheduling, memory footprint and
etc. Meanwhile, Intel has released oneDNN [3] for optimized DL
operator kernels and OpenVINO [4] as an inference engine for Intel
CPUs. AMD also has driven MIOpen [43], an open source GPU
library for DL primitives.

Today’s DL frameworks exploit tensor compilers [12, 14, 16, 17,
19-21, 29, 35, 41, 44, 45, 47, 49, 56, 58, 59, 65, 66, 70, 72] as their back-
ends to generate operator kernels for various target devices. While
some tensor compilers rely on manual scheduling [16, 58, 72], auto-
matic approaches [12, 14, 17, 20-22, 41, 41, 44, 49, 56, 58, 59, 66, 70]
has been actively studied to optimize tensor operator kernels for a
given DL workload and device. For instance, Tensor Comprehen-
sion [66] uses black-box auto-tuning to optimize CUDA kernels
along with polyhedral optimizations. To speed up the optimiza-
tion time, cost model has been also widely examined together with
automated approaches [22, 42, 70, 72].

By providing an expressive registration interface and automatic
placement optimizer, Collage enables seamless integration of a wide

526

variety of DL backends without any expertise in complex perfor-
mance dynamics of varied backends.

DL Frameworks. To provide easy and powerful platform of
running a variety of DL workloads, different frameworks have been
continuously released and improved. Google maintains Tensor-
Flow [10] and XLA [9] to optimize the execution on various hard-
ware devices including TPUs [40]. Facebook develops Pytorch [55]
that supports dynamic eager execution for usability while pre-
serving compelling DL execution performance. For NVIDIA GPUs,
TensorRT [7] is developed as a runtime framework that optimizes
DL model execution. As an open-source C++ library and compiler
suite for CPUs, Intel has launched nGraph [24]. Also, TVM [21]
offers the efficient compilation pipeline that is designed to support
diverse hardware devices and DL workloads. On the other hand,
Glow [61] is proposed to efficiently generate the optimized code
for multiple targets of heterogeneous hardware. While such ex-
isting DL frameworks employ handwritten rules to integrate new
backend, Collage reduces the manual effort with the backend pat-
tern abstraction and extracts further performance gain with the
automated backend placement.

Operator Fusion. Fusion is one of the most efficient techniques
to optimize DL workloads by combining multiple high-level opera-
tors on the computation graph into a single kernel. To maximize
the benefit, advanced fusion techniques [9, 11, 15, 18, 21, 26, 27, 29,
41, 46, 48, 53, 63, 73] introduce their own unique fusion rules to
apply this optimization beyond a few special cases. For instance,
by iterating over every operator, TVM seeks for an opportunity
to merge each operator with its neighbors by using the union-
find algorithm [21]. To efficiently explore the fusion opportunities,
DNNFusion [53] employs a detailed classification of operation type
and makes the fusion decisions. To identify the best fusion plan,
FusionStitching [73] conducts Just-In-Time tuning. NVIDIA has
actively improved the fusion engine in cuDNN to merge certain
patterns of operators at runtime [23]. Internally, TensorRT [7] also
actively apply the fusion to optimize the memory access and sched-
uling overhead. By offering the highly flexible user interface for
the pattern rules, Collage can support such complicated fusion pat-
terns from a variety of such backends. With fusion patterns and
their rules, Collage naturally considers diverse fusion possibilities
in multiple backends.

Collage: Seamless Integration of Deep Learning Backends with Automatic Placement

Graph Rewriting. To accelerate a DL execution, DL frame-
works can rewrite an input computation graph by considering a
number of graph substitution rules. Most DL frameworks such as
TensorFlow [10], TensorRT [7], and TVM [21] rely on the greedy ap-
proach by opportunistically applying a few important hand-coded
rules. In contrast, MetaFlow [38] suggests an automated graph
rewriting approach that optimizes an input graph using backtrack-
ing search. TASO [37] extends MetaFlow’s backtracking search
and further automates graph substitution generation for every new
input graph. To further improve graph substitution search effi-
ciency, sampling-based approach [28] has also been explored. To
overcome the inefficiency in making sequential rewriting decisions,
[69] proposes e-graph and equality saturation method. As these
graph rewriting techniques are orthogonal to Collage, Collage can
improve the performance of a rewritten computation graph by
optimizing the backend placement.

Device Placement. There are two major categories of work
that investigates how to place DL operators across devices. One
category is to learn a placement policy [31, 50, 51] that places
each operator onto one of given set of devices and generalize it to
new workloads via transfer learning [13, 54, 74]. Another category
is to algorithmically find good graph partitions of DL workloads
and their schedules [36, 39, 52, 64, 71]; for example, FlexFlow [39]
uses stochastic search method with delta simulation to partition a
single operator into multiple computation and place them on de-
vices. Compared to device placement, backend placement itself has
its unique challenges of modeling complicated and fast-evolving
operator fusion patterns and constraints from diverse backends
in addition to different backend characteristics (e.g., cross-kernel
optimization of graph inference library). To tackle this challenge,
Collage provides an expressive backend pattern abstraction and a
two-level optimizer, each level of which considers different charac-
teristics of backends. Our work is complementary to existing device
placement works.

7 CONCLUSION

This work investigates an efficient DL backend integration system,
called Collage. For the seamless integration of various backends,
Collage offers an user interface that allows the flexible specification
of diverse backend capabilities. To find the best uses of available
backends, Collage introduces a two-level optimization method and
automatically customizes the best possible backend placement for
the underlying execution environment. The experimental results
demonstrate that Collage outperforms the best manual approach
in the state-of-the-arts DL framework by up to 1.43X on average
over real-life DL models and various hardware architectures. More
importantly, unlike existing approaches, it offers stable performance
across diverse hardware architectures and models by selecting the
most beneficial backends for each part of workload.

ACKNOWLEDGEMENT

We would like to thank members of Catalyst group at CMU for
their helpful comments on our work and manuscript. We would
also like to thank the anonymous PACT reviewers for constructive

527

PACT ’22, October 10-12, 2022, Chicago, IL, USA

feedbacks. This work was partially supported by the National Sci-
ence Foundation under grant number CNS-2147909 and the Real
Time Machine Learning (RTML) DARPA project.

REFERENCES
(1]

[2]
[3]

[n.d.]. Apple Neural Engine (ANE). https://www.apple.com/newsroom/2020/11/
apple-unleashes-m1/. Accessed: 2021-08-25.

[n.d.]. DLPack: Open In Memory Tensor Structure. https://github.com/dmlc/
dlpack. Accessed: 2022-04-05.

[n.d.]. Intel OneDNN. https://software.intel.com/content/www/us/en/develop/
tools/oneapi/components/onednn.html. Accessed: 2021-09-27.

[n.d.]. Intel OpenVINO. https://software.intel.com/content/www/us/en/develop/
tools/openvino-toolkit.html. Accessed: 2021-09-27.

[n.d.]. NVIDIA cuBLAS. https://developer.nvidia.com/cublas. Accessed: 2021-08-
05.

[n.d.]. NVIDIA Deep Learning Accelerator (NVDLA). http://nvdla.org/. Accessed:
2021-08-25.

[n.d.]. NVIDIA TensorRT. https://developer.nvidia.com/tensorrt.
2021-08-05.

[n.d.]. NVIDIA TensorRT Deserialization. https://docs.nvidia.com/deeplearning/
tensorrt/developer-guide/index.html. Accessed: 2022-06-09.

[n.d.]. Tensorflow XLA. https://www.tensorflow.org/xla. Accessed: 2021-09-27.
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th { USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265-283.
Amirali Abdolrashidi, Qiumin Xu, Shibo Wang, Sudip Roy, and Yanqi Zhou. 2019.
Learning to fuse. In NeurIPS ML for Systems Workshop.

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaél Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, and Jonathan Ragan-Kelley. 2019. Learning to optimize Halide with tree
search and random programs. ACM Trans. Graph. 38, 4 (2019), 121:1-121:12.
Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi
Mao, and Mohammad Alizadeh. 2018. Placeto: Efficient progressive device place-
ment optimization. In NIPS Machine Learning for Systems Workshop.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:
An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. 303-316.
Arash Ashari, Shirish Tatikonda, Matthias Boehm, Berthold Reinwald, Keith
Campbell, John Keenleyside, and P Sadayappan. 2015. On optimizing machine
learning workloads via kernel fusion. ACM SIGPLAN Notices 50, 8 (2015), 173~
182.

Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. 2019. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 193-205.

Cedric Bastoul, Zhen Zhang, Harenome Razanajato, Nelson Lossing, Adilla
Susungi, Javier de Juan, Etienne Filhol, Baptiste Jarry, Gianpietro Consolaro, and
Renwei Zhang. 2022. Optimizing GPU Deep Learning Operators with Polyhedral
Scheduling Constraint Injection. In 2022 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 313-324.

Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Alexandre V Evfimievski,
and Prithviraj Sen. 2018. On optimizing operator fusion plans for large-scale
machine learning in systemml. arXiv preprint arXiv:1801.00829 (2018).
Anupama Chandrasekhar, Gang Chen, Po-Yu Chen, Wei-Yu Chen, Junjie Gu,
Peng Guo, Shruthi Hebbur Prasanna Kumar, Guei-Yuan Lueh, Pankaj Mistry, Wei
Pan, et al. 2019. Igc: The open source intel graphics compiler. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, 254~
265.

Lorenzo Chelini, Tobias Gysi, Tobias Grosser, Martin Kong, and Henk Corporaal.
2020. Automatic generation of multi-objective polyhedral compiler transforma-
tions. In Proceedings of the ACM International Conference on Parallel Architectures
and Compilation Techniques. 83-96.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated end-to-end optimizing compiler for deep learning. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({ OSDI}
18). 578-594.

Tiangi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to optimize
tensor programs. arXiv preprint arXiv:1805.08166 (2018).

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

Accessed:

[12

(13

[14]

=
i)

[16

[17

=
&

[19

[20

[21

[22

[23

PACT ’22, October 10-12, 2022, Chicago, IL, USA

[24]

[25

[26]

[27]

[28

[29

[30]

[31

[32]

[33]

[34

[35]

[36]

[37

[38

[39

[40]

[41]

[42

[43

[44]

[45]

Scott Cyphers, Arjun K Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew
Brookhart, Avijit Chakraborty, Will Constable, Christian Convey, Leona Cook,
Omar Kanawi, et al. 2018. Intel ngraph: An intermediate representation, compiler,
and executor for deep learning. arXiv preprint arXiv:1801.08058 (2018).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Greg Diamos, Shubho Sengupta, Bryan Catanzaro, Mike Chrzanowski, Adam
Coates, Erich Elsen, Jesse Engel, Awni Hannun, and Sanjeev Satheesh. 2016.
Persistent rnns: Stashing recurrent weights on-chip. In International Conference
on Machine Learning. PMLR, 2024-2033.

Tarek Elgamal, Shangyu Luo, Matthias Boehm, Alexandre V Evfimievski, Shirish
Tatikonda, Berthold Reinwald, and Prithviraj Sen. 2017. SPOOF: Sum-Product
Optimization and Operator Fusion for Large-Scale Machine Learning.. In CIDR.
Jingzhi Fang, Yanyan Shen, Yue Wang, and Lei Chen. 2020. Optimizing DNN
computation graph using graph substitutions. Proceedings of the VLDB Endowment
13, 12 (2020), 2734-2746.

Pratik Fegade, Tiangi Chen, Phillip Gibbons, and Todd Mowry. 2021. Cortex: A
Compiler for Recursive Deep Learning Models. Proceedings of Machine Learning
and Systems 3 (2021).

Félix-Antoine Fortin, Frangois-Michel De Rainville, Marc-André Gardner Gardner,
Marc Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary algorithms made
easy. The Journal of Machine Learning Research 13, 1 (2012), 2171-2175.
Yuanxiang Gao, Li Chen, and Baochun Li. 2018. Spotlight: Optimizing device
placement for training deep neural networks. In International Conference on
Machine Learning. PMLR, 1676-1684.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (2020), 139-144.

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. 2018. Can Spatiotemporal
3D CNNs Retrace the History of 2D CNNs and ImageNet?. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6546-6555.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Geonhwa Jeong, Gokcen Kestor, Prasanth Chatarasi, Angshuman Parashar, Po-
An Tsai, Sivasankaran Rajamanickam, Roberto Gioiosa, and Tushar Krishna.
2021. Union: A unified HW-SW Co-Design ecosystem in MLIR for evaluating
tensor operations on spatial accelerators. In 2021 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE, 30-44.
Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. 2018. Exploring Hidden
Dimensions in Parallelizing Convolutional Neural Networks.. In ICML. 2279—
2288.

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: optimizing deep learning computation with automatic
generation of graph substitutions. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 47-62.

Zhihao Jia, James Thomas, Tod Warszawski, Mingyu Gao, Matei Zaharia, and
Alex Aiken. 2019. Optimizing dnn computation with relaxed graph substitutions.
SysML 2019 (2019).

Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model Paral-
lelism for Deep Neural Networks.. In Proceedings of Machine Learning and Systems,
A. Talwalkar, V. Smith, and M. Zaharia (Eds.), Vol. 1. 1-13. https://proceedings.
mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture. 1-12.
Wookeun Jung, Thanh Tuan Dao, and Jaejin Lee. 2021. DeepCuts: a deep learning
optimization framework for versatile GPU workloads. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation. 190-205.

Samuel Kaufman, Phitchaya Mangpo Phothilimthana, and Mike Burrows. 2019.
Learned TPU cost model for XLA tensor programs. In Proc. Workshop ML Syst.
NeurIPS. 1-6.

Jehandad Khan, Paul Fultz, Artem Tamazov, Daniel Lowell, Chao Liu, Michael
Melesse, Murali Nandhimandalam, Kamil Nasyrov, Ilya Perminov, Tejash Shah,
et al. 2019. MIOpen: An open source library for deep learning primitives. arXiv
preprint arXiv:1910.00078 (2019).

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1-29.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. Mlir: Scaling compiler infrastructure for domain specific
computation. In 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2-14.

528

[46

[47

[48

N
)

[50

[51

[52

o
=

[54

[55]

‘o
S

[57

[58

[59

(61

[62

o
&

[64]

[65

Byungsoo and Sunghyun, et al.

Ao Li, Bojian Zheng, Gennady Pekhimenko, and Fan Long. 2022. Automatic
horizontal fusion for GPU kernels. In 2022 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). IEEE, 14-27.

Guei-Yuan Lueh, Kaiyu Chen, Gang Chen, Joel Fuentes, Wei-Yu Chen, Fangwen Fu,
Hong Jiang, Hongzheng Li, and Daniel Rhee. 2021. C-for-metal: high performance
SIMD programming on intel GPUs. In 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). IEEE, 289-300.

Lingxiao Ma, Zhigiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei Cui, Wenx-
iang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. 2020. Rammer: Enabling
Holistic Deep Learning Compiler Optimizations with rTasks. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20). USENIX As-
sociation, 881-897. https://www.usenix.org/conference/osdi20/presentation/ma
Linjian Ma, Jiayu Ye, and Edgar Solomonik. 2020. AutoHOOT: Automatic high-
order optimization for tensors. In Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques. 125-137.

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V Le, and
Jeff Dean. 2018. A hierarchical model for device placement. In International
Conference on Learning Representations.

Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng
Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. 2017.
Device placement optimization with reinforcement learning. In International
Conference on Machine Learning. PMLR, 2430-2439.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 1-15.

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. 2021. DNN-
Fusion: accelerating deep neural networks execution with advanced operator
fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 883-898.

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli,
and Oriol Vinyals. 2020. Reinforced Genetic Algorithm Learning for Optimizing
Computation Graphs. In International Conference on Learning Representations.
https://openreview.net/forum?id=rkxDoJBYPB

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026-8037.

Phitchaya Mangpo Phothilimthana, Amit Sabne, Nikhil Sarda, Karthik Srini-
vasa Murthy, Yanqi Zhou, Christof Angermueller, Mike Burrows, Sudip Roy,
Ketan Mandke, Rezsa Farahani, et al. 2021. A Flexible Approach to Autotuning
Multi-Pass Machine Learning Compilers. In 2021 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE, 1-16.

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
Acm Sigplan Notices 48, 6 (2013), 519-530.

Ari Rasch, Richard Schulze, and Sergei Gorlatch. 2019. Generating portable
high-performance code via multi-dimensional homomorphisms. In 2019 28th
International Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE, 354-369.

Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame,
Tiangi Chen, and Zachary Tatlock. 2018. Relay: A new ir for machine learning
frameworks. In Proceedings of the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages. 58—68.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Leven-
stein, et al. 2018. Glow: Graph lowering compiler techniques for neural networks.
arXiv preprint arXiv:1805.00907 (2018).

Omais Shafi, Chinmay Rai, Rijurekha Sen, and Gayathri Ananthanarayanan.
2021. Demystifying TensorRT: Characterizing Neural Network Inference Engine
on Nvidia Edge Devices. In 2021 IEEE International Symposium on Workload
Characterization (ISWC). 226-237. https://doi.org/10.1109/IISWC53511.2021.
00030

Muthian Sivathanu, Tapan Chugh, Sanjay S Singapuram, and Lidong Zhou. 2019.
Astra: Exploiting predictability to optimize deep learning. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems. 909-923.

Jakub M Tarnawski, Amar Phanishayee, Nikhil Devanur, Divya Mahajan, and
Fanny Nina Paravecino. 2020. Efficient algorithms for device placement of dnn
graph operators. Advances in Neural Information Processing Systems 33 (2020),
15451-15463.

Leonard Truong, Rajkishore Barik, Ehsan Totoni, Hai Liu, Chick Markley, Ar-
mando Fox, and Tatiana Shpeisman. 2016. Latte: A language, compiler, and
runtime for elegant and efficient deep neural networks. In Proceedings of the 37th

Collage: Seamless Integration of Deep Learning Backends with Automatic Placement

[66

[67

[68

[70

71

[72

(73

[74

[75

]

]

]

]

]

ACM SIGPLAN Conference on Programming Language Design and Implementation.
209-223.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phi™. Springer, 167-188.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. 2017.
Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max Willsey,
Sudip Roy, and Jacques Pienaar. 2021. Equality Saturation for Tensor Graph
Superoptimization. arXiv:cs.Al/2101.01332

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
and Jon Stoica. 2020. Ansor: Generating High-Performance Tensor Programs
for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Joseph E Gonzalez, et al.
2022. Alpa: Automating Inter-and Intra-Operator Parallelism for Distributed
Deep Learning. arXiv preprint arXiv:2201.12023 (2022).

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. Flexten-
sor: An automatic schedule exploration and optimization framework for tensor
computation on heterogeneous system. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 859-873.

Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen Zhu, Kai Zhu, Wenyi
Zhao, Lansong Diao, Jun Yang, and Wei Lin. 2020. Fusionstitching: boosting
memory intensive computations for deep learning workloads. arXiv preprint
arXiv:2009.10924 (2020).

Yangqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter C Ma, Qiumin
Xu, Ming Zhong, Hanxiao Liu, Anna Goldie, Azalia Mirhoseini, et al. 2019. Gdp:
Generalized device placement for dataflow graphs. arXiv preprint arXiv:1910.01578
(2019).

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2018. Learning
Transferable Architectures for Scalable Image Recognition. https://arxiv.org/
pdf/1707.07012.pdf

529

PACT ’22, October 10-12, 2022, Chicago, IL, USA

