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ABSTRACT

The strong demand for efficient and performant deployment of

Deep Learning (DL) applications prompts the rapid development of

a rich DL ecosystem. To keep upwith this fast advancement, it is cru-

cial for modern DL frameworks to efficiently integrate a variety of

optimized tensor algebra libraries and runtimes as their backends

and generate the fastest possible executable using these backends.

However, current DL frameworks require significant manual ef-

fort and expertise to integrate every new backend while failing

to unleash its full potential. Given the fast-evolving nature of the

DL ecosystem, this manual approach often slows down continuous

innovations across different layers; it prevents hardware vendors

from the fast deployment of their cutting-edge libraries, DL frame-

work developers must repeatedly adjust their hand-coded rules

to accommodate new versions of libraries, and machine learning

practitioners need to wait for the integration of new technologies

and often encounter unsatisfactory performance.

In this paper, we propose Collage, a DL framework that offers

seamless integration of DL backends. Collage provides an expres-

sive backend registration interface that allows users to precisely

specify the capability of various backends. By leveraging the speci-

fications of available backends, Collage automatically searches for

an optimized backend placement strategy for a given workload

and execution environment. Our evaluation shows that Collage

outperforms the best existing framework for each hardware by

1.26×, 1.43×, 1.40× on average on NVIDIA’s RTX 2070 GPU, V100

GPU, and Intel’s Xeon 8259CL CPU, respectively. Collage has been

open-sourced 1 and deployed in Apache TVM.

∗Both authors contributed equally to this research.
†The work was done during their degree programs.
1https://github.com/cmu-catalyst/collage
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1 INTRODUCTION

Due to the explosive popularity of Deep Learning (DL) applications,

there are tremendous demands for performant and efficient soft-

ware/hardware stacks for DL computations. These strong demands

have driven both industry and academia to invest a significant

amount of effort in developing various hardware devices [1, 6, 40],

software libraries [3, 4, 7, 23, 43], compilers [12, 16, 17, 19, 20, 44,

47, 49, 56, 59, 70], and DL frameworks [9, 10, 24, 55, 58, 61]. Both

the hardware and software stacks for DL have been diversified,

resulting in a rich and fast-evolving ecosystem.

Within this ecosystem, today’s DL frameworks can leverage a

variety of optimized software libraries [23, 67] and runtimes [7, 43]

as their backends 2 to deliver fast execution. Existing backends

can be grouped into two categories based on their capabilities. First,

operator kernel libraries [23, 43, 67] provide efficient low-level kernel

API for individual DL operators (e.g., convolution). These libraries

often support operator fusion, which combines multiple operators

into a single kernel based on certain fusion rules (e.g., cuDNN fusion

engine) [21, 23, 27, 48, 53, 73]. Second, graph inference libraries [3, 7]

take an entire DL model as input and produce efficient run-time

code. In addition to the optimizations that operator kernel libraries

provide, the graph inference libraries also consider graph-level

cross-kernel optimizations, such as memory optimizations [62].

There are strong demands for high-performance DL backends

in both industry and academia. However, seamless integration of

diverse and rapidly advancing DL backends requires addressing

2We define a backend as a kernel library or a runtime framework that takes DL
workloads as inputs and provides an optimized low-level target code.
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Figure 1: A comparison between existing DL frameworks

and Collage. Existing frameworks (top) use rule-based

heuristics to integrate different backends. In contrast, Col-

lage provides an automatic search algorithm to find opti-

mized placement of backends for a given hardware platform.

New backends can be easily integrated into Collage through

the backend registration interface.

two key challenges: (1) incorporating a wide variety of available

backends with different programming models and performance

characteristics, and (2) optimizing placement of backends to effec-

tively assign DL computations to various backends by leveraging

the performance advantages of each backend. We refer to this over-

all problem as backend integration problem.

To deal with the backend integration problem, existing DL frame-

works [10, 55] rely on rule-based heuristics manually designed by

experts (Figure 1). These heuristics often directly offload the entire

workload to a single backend (e.g., TensorRT) whenever applicable.

Otherwise, DL frameworks lower individual operators to different

backends based on a fixed priority-based strategy; for example, in

PyTorch, cuDNN has the highest priority for convolution, while

cuBLAS is the first choice for matrix multiplication.

However, even for the same type of operators, the optimal back-

end varies depending on the hardware (e.g., different types of GPUs)

and operator configuration (e.g., tensor shape, padding) as depicted

in Figure 2. As a result, the hand-coded heuristics in current DL

frameworks may leave substantial performance on the table. Be-

sides, existing frameworks require significant expertise in both

framework and performance landscape of diverse backends as de-

velopers need to directly modify the complex lowering heuristics

(e.g., more than ten thousand lines of code in PyTorch) in a frame-

work to introduce a new backend or reflect any backend updates.

These handcrafted heuristics are hard to maintain and keep up

with the rapid developments in backends. This is a major bottle-

neck for various machine learning personas, since the integration

workflow requires repetitive manual efforts to accommodate new

backends. This integration overhead hinders hardware vendors

from deploying their cutting-edge libraries and delays machine

learning practitioners from employing newest system-level sup-

ports.

Figure 2: Performance of various convolutions (C#) with dif-

ferent configurations (e.g., input tensor shape, kernel size)

in ResNext-50 on NVIDIA RTX 2070; Note that there is no

single backend that is the best for all convolutions.

In this paper, we aim to design a system that can provide seam-

less backend integration workflowwith high performance. Building

such a solution requires addressing two key challenges. First, it is

non-trivial to integrate diverse backends with different characteris-

tics into a system while maintaining their full capabilities. Often

times, backend capability is intricate to capture accurately since

today’s DL backends generally support sophisticated operator fu-

sion with various constraints (e.g., fusing convolution ops with 3x3

kernel). Second, the search space of backend placement is extremely

large, whose size grows exponentially in the number of operators

in a DNN and the number of available backends. The search space

is also highly irregular due to diverse backend capabilities and

operator fusion patterns.

In Collage, we advocate for a new approach to tackling these

challenges, as shown in the bottom of Figure 1. Collage contains

two key components. First, to integrate diversified backends, Col-

lage provides a descriptive backend registration interface to specify

a backend’s capability based on its supported operator type (e.g.,

conv), configurations (e.g., kernel size), and its fusion rule. This

interface only requires basic understanding of our pattern language

and backend capability in contrast to existing frameworks that re-

quire considerable expertise in both the performance landscape of

varied backends and the coding skills for backend placement rules

in existing frameworks. Collage allows easy backend registration

for a new backend (e.g., 100 LoC for all possible operators) or a

new operator pattern support (e.g., 1 LoC in most cases). Second,

to efficiently optimize backend placement, Collage employs a two-

level optimization to deal with unique chacteristics of two backend

categories (i.e., operator kernel library and graph inference library).

Our system automatically explores possible matches between an

input computation graph and backend operator patterns to find op-

timized placements by taking available backends and an underlying

hardware into consideration.

To sum up, Collage significantly lowers the bar in the current

backend integration workflow by eliminating the need to modify

the placement heuristic. With simple registration from users, Col-

lage can immediately launch the automatic placement optimizer

without any intricate manual consideration for the capability of

new backend and its performance relation with other backends

across different workloads and hardware architectures.

This paper makes the following contributions:
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Figure 3: System overview of Collage. By using our backend specification interface, users can efficiently register diverse back-

end patterns supported by diverse backends. Then, with its two-level optimization process, Collage automatically optimizes

backend placement for an underlying execution environment.

• We identify system and optimization challenges in integra-

tion of diversified DL backends and build Collage to tackle

these challenges.

• We provide a pattern-based interface for quick registration

of various backends and their updates with significantly less

user efforts and expertise in performance landscape of var-

ied backends and the placement heuristic in the framework

codebase.

• We develop a two-level search method to automatically op-

timize placement of diverse backends for a given hardware.

Our evaluation shows that Collage stably outperforms existing

DL frameworks across a variety of models and hardware architec-

tures by effectively mix-using multiple backends with their own

unique strengths. On average, Collage brings 1.26×, 1.43×, and

1.40× speedup on two different NVIDIA GPUs and an Intel CPU

respectively, compared to the best framework for each hardware.

2 OVERVIEW

Figure 3 illustrates the overarching design of Collage, which takes a

DNN model and the specifications of available backends as inputs,

and optimizes backend placement for the underlying hardware.

Note that Collage considers different sets of backends based on

a given target environment (e.g., Intel CPU, NVIDIA GPU) and

reflects performance characteristics of backends via the measurer

component (M). Collage consists of two key components.

Backend pattern abstraction. Existing backends provide a va-

riety of programming models for performing DL computations. To

decouple backend capability from the placement algorithm and

eliminate the manual effort for backend integration, we introduce

backend pattern, a new abstraction for capturing the capability of

varied backends. Specifically, a backend pattern defines a set of

operators and their possible fusion combinations (e.g., Conv+ReLU)

that can be deployed on each backend. Based on this pattern ab-

straction, Collage provides a straightforward interface to register a

backend and specify supported operator patterns.

Accurate specification is crucial to leverage the full capability of

diverse backends. To achieve this goal, Collage offers two levels of

abstraction. For simple patterns, Collage allows users to enumerate

the supported operator patterns. However, this approach may not

cover the full capability of backends with advanced operator fusion

engines [7, 21, 23, 53]. To enable more flexible specification, Collage

also allows users to bring their pattern rules that specify supported

operator kinds and complex operator fusion rules. When those

rules are provided, the pattern generator automatically identifies all

legitimate operator fusion patterns on a given computation graph

and adds them into the backend pattern registry. §3 provides details.

Backend placement optimizer. Once all available patterns

are registered in the pattern registry, Collage uses a two-level opti-

mization approach to discovering an optimized backend placement

strategy for a given execution environment. As existing operator

libraries offer operator-level point of view while graph inference li-

braries additionally apply cross-kernel optimizations, Collage takes

two different optimization strategies to exploit their differences.

First, the op-level placement optimizer explores promising candidates

for individual operators, without considering cross-kernel optimiza-

tions. By adopting a Dynamic Programming (DP) algorithm, the

op-level placement optimizer can efficiently find an optimized back-

end placement strategy within a minute. Second, the graph-level

placement optimizer fine-tunes the optimized backend placement

using evolutionary search [30]. This approach compensates for the

missing opportunities from the op-level placement optimizer by

examining the impact of cross-kernel optimizations. §4 discusses

the two optimizers in detail.

3 BACKEND PATTERN ABSTRACTION

As an important component of DL ecosystem, there are diverse

fast-evolving DL backends with different programming models and

performance characteristics. Depending on their target hardware

and design principles, each backend has its own unique strength

and coverage. In addition, many backends support various com-

plex operator fusion rules [7, 21, 21, 23, 53], which add significant

complexity in their integration with the full capability. Under the
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1 import collage
2

3 # [Method 1] Explicit pattern specification
4 # Pattern language to describe conv2d + add + relu.
5 conv = is_op('conv2d')(wildcard(), wildcard())
6 conv_constr = conv.has_attr({"data_layout": "NCHW"})
7 conv_add = is_op('add')(conv_constr, wildcard())
8 conv_add_relu = is_op('relu')(conv_add)
9

10 # Introduce new backend pattern to Collage.
11 collage.add_backend_pattern(backend='cuDNN',
12 pattern=conv_add_relu)
13

14 # [Method 2] Pattern rule specification
15 class MyPatternRule(collage.BasePatternRule):
16 # Define variables
17 kFusable = 0
18 kElemwise = 1
19 # ...
20 # Checker for the supported operators.
21 @staticmethod
22 def op_rule(op):
23 if op.name == "dense":
24 # Dense operator is always supported.
25 return True
26 elif op.name == "conv2d":
27 # constraints can be verified as well.
28 return op.attr["data_layout"] == "NCHW"
29 # ... rest of the op rule ...
30 return False
31

32 # Checker for fusion patterns.
33 # -- cur_type: type of current fusion group
34 # -- src: seed operator node
35 # -- sink: post-dominator of src
36 @staticmethod
37 def fusion_rule(cur_type, src, sink):
38 # If current fusion group contains
39 # at least one conv/matmul (kFusable)
40 if cur_type == MyPatternRule.kFusable:
41 # Helper functions can be defined.
42 def fchecker(node_pattern):
43 return (node_pattern == MyPatternRule.kElemwise)
44 # Check if every operator between src and sink.
45 # Helper function can be passed as a checker.
46 if collage.check_path(src, sink, fchecker)):
47 return True
48 # ... rest of the fusion rule ...
49 return False
50

51 # Introduce new pattern generation rule to Collage.
52 collage.add_backend_pattern_rule(backend='TVM',
53 pattern_rule=MyPatternRule())

Listing 1: Example of the backend registration interface. To

register a new backend, users can directly enumerate pat-

terns or write a pattern rule that consists of valid operator

checker and fusion rule in Python classes.

hood, existing operator fusion engines often fuse operators based

on heuristic fusion rules that examine the type of each operator

and the relationship between different types. For instance, a fusion

engine may combine multiple operators across different branches

into a single kernel as long as they satisfy its fusion rule.

For an adoption of various backends, our system provides two

levels of abstraction: pattern and pattern rule. Pattern is a direct

way to specify all supported operator patterns in Collage’s pattern

language, which extends the Relay pattern language [60]. However,

supported patterns can be too complicated to explicitly specify. To

incorporate sophisticated patterns, pattern rules offer an expressive

way to specify a valid set of operator fusion rules in the form of

Python; users can use any Python features to describe complex fu-

sion algorithms. Each pattern rule is used to generate valid patterns

for the input workload with our automatic pattern generator. With

Pattern Generator Walkthrough

Conv Add
Relu

Tanh
Relu Dense

Pattern Rules
class pattern_rule(…):

// MyPatternRule in Listing 1 

1. Choose a seed node and check it with the pattern rule.

2. Expand the scope to the next post-dominator and check nodes
between them by using the pattern rule. Repeat until it fails.

seed

seed sink seed sink
…

3. Repeat 1&2 until visiting every node in G.

Backend Pattern Registry
Generated patterns

If valid, generate a corresponding pattern
e.g., is_op(“conv”)(wildcard(), wildcard())

Figure 4: Example illustrating how the backend pattern gen-

erator would automatically generate valid patterns with the

pattern rule presented in Listing 1.

two levels of abstraction, users can easily incorporate an additional

backend by specifying its patterns and pattern rules with an intu-

itive programming interface. By default, Collage provides built-in

patterns and pattern rules for popular backends [5, 7, 21, 23, 67].

Listing 1 presents an example of use-case scenarios. If a back-

end only supports a few simple patterns, users may enumerate

those patterns and add them directly to the backend pattern reg-

istry (line 3-12). Users can easily check the operators (line 5), their

configurations such as data layouts and kernel sizes (line 6), and the

the relationship between operators (line 7-8). A wildcard operator

is a special placeholder that matches any operator.

To fully support advanced backends [7, 21, 23, 53], users can

bring their pattern rules to incorporate more complicated patterns

with Collage’s pattern generator (line 14-53). To use this feature,

users need to provide operator checkers with their potential con-

straints (line 20-30) and a fusion rule (line 32-49) in the form of

Python methods. Then, the automatic pattern generator in Collage

will search for valid operator patterns satisfying these rules and add

them to the backend pattern registry before optimizing backend

placement.

Figure 4 exhibits how our pattern generator searches for legiti-

mate patterns using given pattern rules on an input computation

graph. By visiting every operator in an input computation graph,

the pattern generator investigates how far a pattern can grow with-

out breaking the pattern rule. For each operator, the pattern gen-

erator first validates whether the operator can be executed on a

backend (line 20-30). If valid, it enlarges the scope one step fur-

ther and validates whether a set of operators satisfies the fusion

rule (line 32-49). For instance, line 40-47 specify that the assumed

backend can fuse element-wise operators following an operator of

type kFusable, which includes convolution and matrix multiplica-

tion. Whenever a group of operators satisfying the rule is found, the

pattern generator produces a corresponding pattern and adds it to

the backend pattern registry. Then, it enlarges the scope of interests

one step further again to see if a bigger pattern can be found. This
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approach allows Collage to incorporate advanced backends, such as

TVM, cuDNN, DNNL and TensorRT, without missing any pattern.

4 BACKEND PLACEMENT OPTIMIZATION

4.1 Problem Definition

Collage attacks the backend placement problem to find the best

use of available backends and maximize performance. Consider a

computation graph G and a set of backend patterns B in Collage’s

backend pattern registry. G is a Directed Acyclic Graph (DAG)

where each node represents a tensor operator (e.g., convolution,

matrix multiplication). b = (p,d) ∈ B is a pair of an operator

pattern p and a backend identifier d , such as cuDNN, cuBLAS, etc.

With M matched subgraphs дi and backend patterns bi for

i ∈ {1, 2, · · ·M}, let P(G) = {(дi ,bi )|bi ∈ B,
⋃M
i=1 дi = G,дi ∩дj =

∅ for all i, j ∈ {1, 2, · · · ,M} where i � j} be a backend placement

strategy on a computation graph G and Cost(P(G)) be the exe-

cution time of a placement P(G). In this work, we aim to find a

backend placement strategy Popt that minimizesCost(P(G)). This

problem can be formalized as follows:

Popt (G) = argmin
P(G)

Cost(P(G)) (1)

4.2 Op-level Placement Optimizer

To efficiently evaluate numerous candidates with different place-

ment and prune the search space, Collage conducts an op-level

placement optimization as the first step. Its goal is to map all opera-

tors on the computation graph to the most efficient set of low-level

kernel implementations from available backends fast without con-

sidering cross-kernel optimizations in graph inference libraries. As

discussed earlier, the graph-level placement optimizer (§4.3) would

make up for the possible performance loss from this simplification.

With this simplification, low-level kernel executions become

independent to each other in a single device execution. Let s1 and
s2 be subgraphs of G where s1 ∪ s2 = G, s1 ∩ s2 = ∅. Then, the

following additive relationship [37] between the run-time cost of

P(s1) and P(s2) can be used to determine Cost(P(G)):

Cost(P(G)) = Cost(P(s1)) +Cost(P(s2)) + ϵ (2)

where ϵ is a context switching cost (e.g, driver overhead), which is

nearly constant empirically. Note that Collage avoids data transfers

between different backends on the same device by only exchanging

data pointers to the tensors (e.g., s1 and s2) using the zero-copy

mechanism. With this cost model, it is possible to cheaply approxi-

mate the cost of a graph by partitioning a graph into smaller sub-

graphs and summing up their cost. Despite the efficient cost model,

excessively large number of possible placement strategies and a

variety of fusion patterns make search non-trivial.

To address this challenge, we propose a Dynamic Programming

(DP) method for optimizing backend placement at the operator level.

By using the additive relation (Equation 2), we deduce the following

recurrence relation of optimized backend placement Popt (s) and its
cost Copt (s) for any subgraph s ⊂ G. This breaks down a problem

Figure 5: Example of Dynamic Programming (DP) proce-

dures. By visiting over each frontier node, DP algorithm

matches backend patterns and update the optimized place-

ment and its cost. For simplicity, optimized placement up-

date is omitted.

of finding Popt (G) into smaller problems of finding Popt (s).

Popt (s) = Popt (smin ) ∪ P(дmin )

Copt (s) =

{
0 if s = ∅

Copt (smin ) +M(P(дmin )) + ϵ otherwise

(3)

where smin and дmin are

argmin
s ′∪д′=s ,s ′∩д′=∅

{Copt (s
′) +M(P(д′)) + ϵ}

(4)

s ′ represents a subgraph that is already examined while д′ is a
subgraph that is going to be evaluated with a measurerM(·), which

takes a backend placement strategy and returns its actual run-time

cost on the execution environment. We query the measurer at the

granularity of a backend pattern that matches with д′, which is

either single or multiple operators (operator fusion) that will be

lowered to a single low-level kernel. This approach ensures that

we always measure a single kernel and add it up to compute the

cost of larger subgraphs. To avoid the repetitive and expensive

measurement overhead (i.e., compilation + multiple runs on the

actual hardware), we cache the result to the log for the future usage.

With this approach, we can efficiently explore possible backend

placements and evaluate them.
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Algorithm 1 Op-level Placement Optimization: DP

Input: Computation graph G and set of backend patterns B

Output: Optimized placement Popt (G)

1: // v0: a root of G, Q: a priority queue sorted by node depth

2: Q = {v0}
3: repeat

4: // vs is a frontier node
5: vs = Q.dequeue()

6: for bi ∈ B do

7: // Find a subgraph д rooted at vs that matches bi
8: if д = get_match(vs , bi ) then
9: // F is a set of new frontier nodes after matching

10: for vj ∈ F do

11: if vj has never been added to Q then

12: Q.enqueue(vj )
13: end if

14: end for

15:

16: // P(д) = {(д,bi )}
17: //M is a measurer

18: // S is a set of subgraphs, each of which includes all

nodes before vs in post-order and does not include д
19: // ϵ is a constant for context switching cost

20: for sj ∈ S do

21: if Copt (sj ∪ д) > Copt (sj ) +M(P(д)) + ϵ then

22: Copt (sj ∪ д) = Copt (sj ) +M(P(д)) + ϵ
23: Popt (sj ∪ д) = Popt (sj ) ∪ P(д)
24: end if

25: end for

26: end if

27: end for

28: until Q = ∅

29:

30: return Popt (G)

Figure 5 illustrates an simplified walkthrough example of our

DP method. By traversing a computation graph G, it solves smaller

problems of finding Popt (s) for a subgraph s ⊂ G and eventually

discovers Popt (G). First, it puts a root node in the priority queue

as an initial frontier node; we define a frontier node as a node that

has the lowest depth among unvisited nodes on a path from the

root. Then it pops a frontier node with the lowest depth from the

queue and examines if any subgraph rooted at the current frontier

node can match any valid backend pattern. Once a matching is

found, we add new frontier nodes to the priority queue and measure

the cost of the subgraph matched with the backend pattern. If a

better placement strategy is found, we update the optimized cost

and backend placement strategy based on Equation (3). We repeat

these steps until the priority queue is empty. Given that graph

inference libraries, such as TensorRT, can also provide competitive

operator-level implementations (Figure 2), we also include them in

the op-level optimization. Algorithm 1 formalizes our DP method.

Time complexity.Wederive the time complexity of Algorithm 1.

Let N be the number of nodes (operators) in computation graph

Figure 6: Example of Evolutionary Search (ES) procedure. Af-

ter pruning search space, it iterates overmutation, selection,

and crossover until it reaches saturation or time limit.

G, P be the average number of backend pattern matches per fron-

tier, F be the maximum possible number of frontiers for a single

match, and S be the maximum number of subgraphs in S (line

20). In Algorithm 1, the outermost while loop (line 3) takes O(N )

times to traverse each frontier node in G. For each frontier, there

can be O(P) matches (line 6-8). For each match, the algorithm

iterates over its F (line 10) and S (line 20) and takes O(F + S).
Therefore, the overall time complexity of our op-level placement

optimizer is O(NP(F + S)). In all workloads that we have inves-

tigated, N < 1000, P < 20, F < 10, S < 200. As a result, our DP

method optimizes placement within a minute by effectively pruning

candidates.

4.3 Graph-level Placement Optimizer

As the op-level placement optimization ignores the effect of cross-

kernel optimizations (e.g., scheduling and memory optimizations)

in graph inference libraries, Collage introduces the graph-level

placement optimizer to fine-tune the potentially sub-optimal back-

end placement strategies from the op-level. To do so, we need to

identify additional operators that are not assigned to graph infer-

ence libraries but can benefit from cross-kernel optimizations. Once

identified, we offload them to graph inference libraries to extract

further improvement. However, a key challenge we must address

in this approach is deciding which operators to offload to graph

inference libraries among a myriad of candidates..

To address this challenge, we represent each backend placement

strategy by using a sequence of digits. Each digit implies whether

to offload to graph inference libraries. Since our goal is to offload

more operators that can benefit from the cross-kernel optimization,

we exclude operators already mapped with a graph inference li-

brary from this encoding. This straightforward state representation

eliminates the complexity from various graph partitions and their

topology.
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We adopt an evolutionary search algorithm [30] for graph-level

placement optimization. Figure 6 describes the procedure of our

evolutionary search method. For state representation, 0 indicates

keeping the decision of the op-level optimizer and 1 means overrid-

ing the decision and offloading it to a graph inference library (e.g.,

TensorRT). To facilitate the search process, we include the op-level

optimized placement strategy as one of the seeds to provide a good

starting point. The evolutionary algorithm iterates over rounds

of mutation, selection, and two-point crossover to fine-tune the

backend placement.

5 EVALUATION

This section aims to answer the following questions:

• Can Collage effectively optimize real-world DL model execu-

tion over diverse backends and target devices compared to

the existing DL frameworks? (§5.2)

• Is optimization time affordable? How much time does each

optimization take? (§5.3)

• Does adding more backends improve the performance of

Collage? (§5.4)

• How does backend placement optimized by Collage look

like? (§5.5)

5.1 Experimental Setup

Implementation. We built the core of Collage in the form of a

portable Python library and leveraged diverse backends in differ-

ent hardware architectures: cuDNN [23], cuBLAS [5], TVM [21],

TensorRT [7], MKL [67] and DNNL [3]. To orchestrate a runtime ex-

ecution with multiple backends, Collage uses DLPack to minimize

data movement (e.g., tensor) across different backend runtimes by

efficiently exchanging pointers of data with zero-copy approach [2].

Still, even such optimized communications incur certain run-time

overhead (e.g., deserialization overhead of the engine in graph in-

ference libraries [8]). Thus, Collage takes this run-time overhead

into account when measuring execution time of various placement

candidates. If such run-time overhead is too excessive, Collage will

choose another candidate with better performance. To leverage full

capabilities of backends, their supported patterns and pattern rules

are provided based on their official documentation and codebases.

Each backend specification with full operator supports only takes

about 100 LoC with Collage API.

Baselines.We examine TensorFlow (TF) [10], TF-XLA [9], Py-

Torch [55], TVM [21], and TensorRT [7] as DL framework baselines.

For TVM, we use AutoTVM to automatically generate the optimized

operator schedules for each target. Note that we also integrate Ten-

sorRT and TVM as high-performance graph inference libraries in

this experiment.

Workload. We evaluate five popular real-world DL inference

workloads that cover a wide range of application. BERT [25] is a

transformer-based language model that achieved the state-of-the-

art performance on a spectrum of natural language processing tasks.

DCGAN [57] is an extension of the GAN [32] with an unsupervised

representation learning mainly for image generation. NasNet-A

[75] is one of the most popular machine-generated DL workloads

that show strong performance on popular image recognition tasks.

3D-ResNet50 [33] is an extension of widely adopted ResNet50 [34]

for 3D image tasks such as action recognition. ResNeXt50 [68]

introduces a grouped convolution to ResNet50 architecture and

improves its model accuracy and computational complexity for

image recognition.

Each workload has its own characteristics in terms of its opera-

tors and structure. Most of recent models for language application

such as BERT are basically a series of the Transformer layers that

consist of batch matrix multiplication, layer normalization, soft-

max, etc. On the other hand, models for vision application such as

ResNeXt50 and NasNet-A has a series of layers that has operators

including convolutions and non-linear activation functions (e.g.,

ReLU). In these models, operator configuration (e.g., number of

channels and hidden nodes) varies across different layers as you see

in Figure 2, which leads to performance diversity of DL backends.

5.2 End-to-end Evaluation

To discuss the effectiveness of our approach, we evaluate the end-

to-end performance of Collage against the baseline frameworks;

note that we omit error bars from our figures because we observe

marginal standard deviation (less than 3%) for all results. Note that

the performance of TF-XLA is missing for some pairs of workload

and targets (e.g., 3D-ResNet50 and NVIDIA GPU) because it has

issues with some 3D convolutions for GPU targets and certain

image resizing operators.

Figure 7a and Figure 7b presents the end-to-end normalized

throughput of Collage and existing DL frameworks on two different

NVIDIA GPU architectures, Tesla V100 and GeForce RTX2070. Nor-

malized throughput is the throughput of each framework normal-

ized by the throughput of Collage. Overall, Collage consistently pro-

duces the most efficient executable across different workloads and

hardware architectures: In terms of geometric mean, Collage out-

performs the state-of-the-arts by 1.43× on V100 and 1.26× on RTX

2070, respectively. This improvement comes from Collage’s back-

end placement optimization that effectively leverages the unique

strength of various backends.

Figure 7c exhibits the experimental results on the Intel CPU.

Likewise, Collage showcases the most stable performance across

different workloads on this Xeon architecture while beating the

state-of-the-arts by 1.40× in the geometric mean. However, on

BERT and 3D-ResNet50, TF-XLA and TF are faster possibly due to

their optimizations customized for Intel CPU such as data layout op-

timization with non-uniform memory access, which is orthogonal

to backend placement.

As the representative case, different batch sizes are also examined

with ResNeXt50 onV100. Figure 8 indicates thatCollage consistently

outperforms the state-of-the-art frameworks across different batch

sizes as well.

Since backends and their performance vary depending on the

underlying execution environment, backend placement should be

carefully customized by considering their performance landscape.

Our experimental results indicate that Collage can stably offer a

faster DL execution than existing frameworks with the rigid hand-

written heuristics across different hardware architectures.
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(a) NVIDIA Tesla V100

(b) NVIDIA GeForce RTX 2070

(c) Intel Xeon Platinum 8259CL

Figure 7: End-to-end performance of state-of-the-arts DL frameworks and Collage in five real-life workloads on NVIDIA GPUs

and Intel CPU. Throughput of each framework is normalized by the throughput of Collage. Following backends are employed

for each framework according to target hardware and its capabilities: NVIDIA GPU (cuDNN, cuBLAS, TVM, TensorRT), Intel

CPU (MKL, DNNL, TVM).

Figure 8: End-to-end performance with different batch sizes

in ResNeXt50 on NVIDIA V100. Normalized throughput is

the throughput normalized by the throughput of Collage.

5.3 Optimization Time

To evaluate the overhead from our automated optimizer, this subsec-

tion studies the overall optimization cost of the two-level approach.

For this section, we use NVIDIA V100 as our target.

Figure 9 shows the breakdown of our operator-level optimiza-

tion time. If the optimization is launched from scratch, the entire

optimization process takes up to two minutes. This optimization

time consists of two parts: measurement of the operator cost and

overhead from the DP algorithm. Due to the high evaluation cost,

the optimization time is dominated by the profiling overhead. How-

ever, as discussed in §4.2, the repetitive profiling for operator cost

can be avoided by saving the cost of each operator. When the cost

of every operator is profiled in advance, our op-level placement

optimization takes less than a minute on all of the five networks.

Figure 10 exhibits how our graph-level placement optimization

gradually improves from the op-level placement optimization over

time. The evolutionary searcher could boost the performance by

leveraging more cross-kernel optimizations as it goes through sev-

eral generations of mutations and crossovers. In BERT and DCGAN,

the effect of cross-kernel optimization is quite notable and thus,

our graph-level placement optimizer accelerate its execution by

1.09 − 1.20× from the op-level optimization. For the rest of the
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Figure 9: The breakdown of op-level placement optimiza-

tion time. On average, profiling overhead for operator cost

measurements takes up 68% of the entire optimization time.

Note that profiling is only necessary for unseen operators.

Once the cost of a new operator is measured, its informa-

tion will be saved in the logging database in Collage to avoid

the repetitive profiling. If profiling log is available, op-level

optimizer only takes less than a minute.

Figure 10: Performance improvement of graph-level place-

ment optimization over time. The y-axis presents the

speedup relative to the op-level placement optimization.

workloads, graph-level placement optimization cannot improve

any further since the placement from the op-level optimization is

already hard to beat. Overall, most of workloads are observed to

reach the saturation within thirty minutes.

Due to the lack of the efficient cost model that can factor in the

cross-kernel optimization effect, graph-level placement optimiza-

tion has expensive evaluation overhead that leads to the longer

optimization time compared to the op-level. Given that our op-level

placement optimizer can identify high-performance backend place-

ment for the most workloads within just a minute, we recommend

the graph-level placement optimization as the optional tool for the

users interested in squeezing the last drop of performance.

5.4 Backend Ablation Study

To assess the impact of integrating backends, we conduct an abla-

tion study by adding backends one-by-one to Collage.

Figure 11 shows the experimental result on V100. Overall, Col-

lage monotonically improves performance as we integrate more

backends. This reinforces the importance of smart mixed-use of mul-

tiple backends and also corroborates the robustness of our backend

placement optimization. It is worth noting that the performance im-

provement from a new backend varies depending on a network. In

the case of BERT and DCGAN, we see relatively consistent enhance-

ment from each backend. This is because Collage identifies a way to

utilize every backend for the different part of the workload depend-

ing on its own unique strength. In case of NasNet-A and ResNeXt50,

TVM offers the majority of the performance improvement while

cuDNN significantly benefits Collage for the 3D-ResNet50.

These observations show that Collage can stably improve perfor-

mance by having more backends. By leveraging the unique strength

of available backends, our automated optimizer delivers the per-

formance with a set of backends that surpasses or guarantees the

performance with its subset.

5.5 Case Study of Backend Operator Placement

To understand the source of performance improvement from Col-

lage, we examine two representative workloads in detail. Figure 12

illustrates Collage’s final backend placement for ResNeXt50 and

BERT on V100.

Even within a single network, we observe that the same type of

operator is mapped to different backends due to the performance

diversity depending on its configuration, such as data shape and

kernel size, and the operator fusion with its neighbor nodes. For ex-

ample, batch matrix multiplication operators in BERT are assigned

to two different backends (cuBLAS and TVM) while convolution

operators in ResNeXt50 are assigned to three different backends

(cuDNN, TVM, and TensorRT). Interestingly, the graph inference

library (e.g., TensorRT) can be a competitive choice even for a

single operator as observed with some convolution operators in

ResNeXt50.

This figure also demonstrates that Collage is capable of leverag-

ing various fusion patterns from each backend. For instance, we

discover a variety of operator fusion patterns selected by Collage

such as Conv+ReLU, Conv+Add+ReLU, and Add+ReLU. Although

it is omitted from this figure for simplicity, we observe the fusion

pattern involved with more than ten operators. Again, as in a single

operator, Collage chooses the different backends for the identical fu-

sion pattern of Conv+Relu in ResNeXt50 because the best backend

choice varies depending on specific operator configurations.

This study confirms that Collage can accelerate DL workload

execution by leveraging diverse operator patterns from multiple

backends given their performance characteristics.

6 RELATEDWORK

DiversifiedBackendEcosystem.To extract the best performance

from the underlying hardware, there have been substantial efforts to

design high-performance DL backends. Hardware vendors have re-

leased various specialized optimized libraries and inference engines.

NVIDIA has actively developed cuDNN [23] to deliver optimized im-

plementations of DL operators, cuBLAS [5] to offer efficient BLAS

kernels, and TensorRT [7] to create fast execution plans for DL

workloads. Particularly, TensorRT considers various graph-wide
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Figure 11: End-to-end performance of Collage with different number of backends on NVIDIA Tesla V100. Each throughput is

normalized by the throughput of Collage (TVM,cuB,cuD,TRT). TVM, cuB, cuD, and TRT represents TVM, cuBLAS, cuDNN, and

TensorRT.

Figure 12: Representative backend placements discovered by

Collage on V100 (Figure 7a). Note that Collage leverages var-

ious backends given their unique strength to enhance per-

formance.

cross-kernel optimizations for scheduling, memory footprint and

etc. Meanwhile, Intel has released oneDNN [3] for optimized DL

operator kernels and OpenVINO [4] as an inference engine for Intel

CPUs. AMD also has driven MIOpen [43], an open source GPU

library for DL primitives.

Today’s DL frameworks exploit tensor compilers [12, 14, 16, 17,

19–21, 29, 35, 41, 44, 45, 47, 49, 56, 58, 59, 65, 66, 70, 72] as their back-

ends to generate operator kernels for various target devices. While

some tensor compilers rely on manual scheduling [16, 58, 72], auto-

matic approaches [12, 14, 17, 20–22, 41, 41, 44, 49, 56, 58, 59, 66, 70]

has been actively studied to optimize tensor operator kernels for a

given DL workload and device. For instance, Tensor Comprehen-

sion [66] uses black-box auto-tuning to optimize CUDA kernels

along with polyhedral optimizations. To speed up the optimiza-

tion time, cost model has been also widely examined together with

automated approaches [22, 42, 70, 72].

By providing an expressive registration interface and automatic

placement optimizer, Collage enables seamless integration of a wide

variety of DL backends without any expertise in complex perfor-

mance dynamics of varied backends.

DL Frameworks. To provide easy and powerful platform of

running a variety of DL workloads, different frameworks have been

continuously released and improved. Google maintains Tensor-

Flow [10] and XLA [9] to optimize the execution on various hard-

ware devices including TPUs [40]. Facebook develops Pytorch [55]

that supports dynamic eager execution for usability while pre-

serving compelling DL execution performance. For NVIDIA GPUs,

TensorRT [7] is developed as a runtime framework that optimizes

DL model execution. As an open-source C++ library and compiler

suite for CPUs, Intel has launched nGraph [24]. Also, TVM [21]

offers the efficient compilation pipeline that is designed to support

diverse hardware devices and DL workloads. On the other hand,

Glow [61] is proposed to efficiently generate the optimized code

for multiple targets of heterogeneous hardware. While such ex-

isting DL frameworks employ handwritten rules to integrate new

backend, Collage reduces the manual effort with the backend pat-

tern abstraction and extracts further performance gain with the

automated backend placement.

Operator Fusion. Fusion is one of the most efficient techniques

to optimize DL workloads by combining multiple high-level opera-

tors on the computation graph into a single kernel. To maximize

the benefit, advanced fusion techniques [9, 11, 15, 18, 21, 26, 27, 29,

41, 46, 48, 53, 63, 73] introduce their own unique fusion rules to

apply this optimization beyond a few special cases. For instance,

by iterating over every operator, TVM seeks for an opportunity

to merge each operator with its neighbors by using the union-

find algorithm [21]. To efficiently explore the fusion opportunities,

DNNFusion [53] employs a detailed classification of operation type

and makes the fusion decisions. To identify the best fusion plan,

FusionStitching [73] conducts Just-In-Time tuning. NVIDIA has

actively improved the fusion engine in cuDNN to merge certain

patterns of operators at runtime [23]. Internally, TensorRT [7] also

actively apply the fusion to optimize the memory access and sched-

uling overhead. By offering the highly flexible user interface for

the pattern rules, Collage can support such complicated fusion pat-

terns from a variety of such backends. With fusion patterns and

their rules, Collage naturally considers diverse fusion possibilities

in multiple backends.
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Graph Rewriting. To accelerate a DL execution, DL frame-

works can rewrite an input computation graph by considering a

number of graph substitution rules. Most DL frameworks such as

TensorFlow [10], TensorRT [7], and TVM [21] rely on the greedy ap-

proach by opportunistically applying a few important hand-coded

rules. In contrast, MetaFlow [38] suggests an automated graph

rewriting approach that optimizes an input graph using backtrack-

ing search. TASO [37] extends MetaFlow’s backtracking search

and further automates graph substitution generation for every new

input graph. To further improve graph substitution search effi-

ciency, sampling-based approach [28] has also been explored. To

overcome the inefficiency in making sequential rewriting decisions,

[69] proposes e-graph and equality saturation method. As these

graph rewriting techniques are orthogonal to Collage, Collage can

improve the performance of a rewritten computation graph by

optimizing the backend placement.

Device Placement. There are two major categories of work

that investigates how to place DL operators across devices. One

category is to learn a placement policy [31, 50, 51] that places

each operator onto one of given set of devices and generalize it to

new workloads via transfer learning [13, 54, 74]. Another category

is to algorithmically find good graph partitions of DL workloads

and their schedules [36, 39, 52, 64, 71]; for example, FlexFlow [39]

uses stochastic search method with delta simulation to partition a

single operator into multiple computation and place them on de-

vices. Compared to device placement, backend placement itself has

its unique challenges of modeling complicated and fast-evolving

operator fusion patterns and constraints from diverse backends

in addition to different backend characteristics (e.g., cross-kernel

optimization of graph inference library). To tackle this challenge,

Collage provides an expressive backend pattern abstraction and a

two-level optimizer, each level of which considers different charac-

teristics of backends. Our work is complementary to existing device

placement works.

7 CONCLUSION

This work investigates an efficient DL backend integration system,

called Collage. For the seamless integration of various backends,

Collage offers an user interface that allows the flexible specification

of diverse backend capabilities. To find the best uses of available

backends, Collage introduces a two-level optimization method and

automatically customizes the best possible backend placement for

the underlying execution environment. The experimental results

demonstrate that Collage outperforms the best manual approach

in the state-of-the-arts DL framework by up to 1.43× on average

over real-life DL models and various hardware architectures. More

importantly, unlike existing approaches, it offers stable performance

across diverse hardware architectures and models by selecting the

most beneficial backends for each part of workload.
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