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Carbon dioxide (CO2) emissions and associated climate change are thought to have caused a number 
of widespread marine anoxia and mass extinction events in the geologic past. However, how marine 
ecosystems respond to different CO2 emission patterns remains an important unresolved question. The 
geologic records of the Permian Period, which witnessed two mass extinctions associated with volcanic 
eruption (thus CO2 emissions) but with vastly different biological responses, provide a unique window to 
address this issue. Here, we present a long-term uranium isotope (δ238U) record using marine limestones 
covering the latest Early Permian through Middle to Late Permian. The δ238U values show two episodes 
of low values in the middle Capitanian and late Changhsingian, indicating two periods of expansion of 
marine anoxia during the Permian Period. We use a uranium isotope mass balance model to quantify 
the anoxic seafloor areas, and we further use a carbon cycle model (LOSCAR, Long-term Ocean Sediment 
Carbon Reservoir) based on observed δ13C of marine carbonates, sea surface temperature records, and 
ocean surface pH data to quantify the carbon emission rates across the two biocrises. The uranium 
isotope mass balance model reveals that the anoxic seafloor area is three times larger during the 
end-Permian mass extinction (EPME, covering ∼35% of the seafloor areas) than that during the end-
Guadalupian event (EGE, covering ∼10% of the seafloor areas). The CO2 emission rates across the two 
biocrises modeled from the LOSCAR model show that the carbon emission rate across the EPME was 
at least five times faster than that during the EGE, with the best-fit δ13C values of the input sources 
ranging from −8 to −12�, indicating a predominant volcanic CO2 source during the EPME, and close to 
−25� during the EGE. Comparing model results and observed proxy data led to the suggestion that the 
more severe ecosystem responses during the EPME, including higher extinction rate and larger extent of 
seafloor anoxia, are closely linked to the faster carbon emission rates compared to the EGE.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Hyperthermal events in the geological past hold essential 
lessons for improving our understanding of how key elements 
of the Earth’s environmental and biotic systems are affected by 
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rising greenhouse gas levels. The end-Permian mass extinction 
event (EPME; ∼252 Ma) and the end-Guadalupian extinction event 
(EGE; ∼259.5 Ma) are two hyperthermal events linked to profound 
volcanism and rising CO2 levels (Burgess et al., 2017; Chen and 
Xu, 2021), which perturbed the global carbon cycle, leading to 
widespread expansion of marine anoxia (Bond et al., 2019; Lau 
et al., 2016; White et al., 2018; Zhang et al., 2018a,b). The two 
episodes of CO2 emissions, however, are associated with vastly dif-
ferent ecosystem responses. The EPME was the largest extinction 
event in the Earth’s history associated with the extinction of ∼81% 
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of marine species (Fan et al., 2020) and ∼89% of terrestrial species 
(Viglietti et al., 2021). In contrast, the biodiversity loss during the 
EGE is less severe, more protracted, and evident in a limited num-
ber of fossil groups (e.g., fusulines) according to the latest studies 
(Fan et al., 2020; Shi et al., 2021). Despite less severe biological 
responses, the EGE was associated with the largest sea-level fall 
(Haq and Schutter, 2008), the lowest 87Sr/86Sr ratios during the 
Paleozoic (Korte et al., 2006), and worldwide hiatus (Shen et al., 
2019).

The triggers of these two extinction events have been attributed 
to two episodes of profound volcanic CO2 emissions related to 
the Siberian Traps Large Igneous Provinces (LIPs) (Burgess et al., 
2017; see also a recent study by Zhang et al. (2021) who sug-
gests volcanism from around the Palaeo-, Meso- and Neo-Tethys 
oceans may have played a role) and the Emeishan LIPs (Bond et 
al., 2019; Chen and Xu, 2021), respectively. These two episodes of 
volcanic CO2 emissions have perturbed global carbon and sulfur 
cycles, as evidenced by the large excursions in both δ13C and δ34S 
(e.g., Black et al., 2018; Shen et al., 2013; Yan et al., 2013). Despite 
a number of studies that have focused on the environmental and 
ecological changes across the EPME and the EGE, the driving mech-
anisms that led to their different biological responses are largely 
unexplored. This is, in part, because the majority of prior studies 
have focused on individual events, and a comprehensive compar-
ison between the two events is largely lacking. In this study, we 
investigate the link between volcanic CO2 emission rate and the 
severity of ecological and environmental deterioration across the 
EPME and the EGE by quantifying the timing, duration, and extent 
of marine redox chemistry changes and modeling the rate and size 
of CO2 emissions.

The uranium isotopic composition of marine carbonates (δ238U) 
has been well-calibrated in modern settings and has been increas-
ingly used as a proxy to place quantitative constraints on the 
extent of global marine redox chemistry changes across key evo-
lutionary intervals in Earth’s history (Clarkson et al., 2018; White 
et al., 2018; Lau et al., 2016; Zhang et al., 2018a, 2020a). This is be-
cause the redox transformation of U(VI) to U(IV), which is driven 
by marine redox chemistry changes, is associated with a large ura-
nium isotopic fractionation (Andersen et al., 2017; Rolison et al., 
2017). During this redox transformation, the reduced and sparsely 
soluble U(IV) is preferentially enriched in the heavier 238U, which 
is driven by the nuclear volume effects (Bigeleisen, 1996). As a 
result, during periods of expanded marine anoxia, the enhanced 
reduction of U(VI) to U(IV) and the associated removal of 238U 
from the seawater will shift the δ238U of seawater towards lower 
values (Tissot and Dauphas, 2015; Zhang et al., 2020b). This phe-
nomenon has been observed in the modern Black Sea and many 
anoxic marine basins (e.g., Rolison et al., 2017). Because of the 
much longer residence time of U in the ocean than the mixing 
time of the ocean, the δ238U of the seawater is thought to be 
uniform as evidenced by the modern ocean, where δ238U mea-
surements from different ocean basins and across different water 
depths give nearly identical values (Chen et al., 2018; Holmden 
et al., 2015). Therefore, the δ238U of carbonate collected from one 
location have the potential to record the global marine redox con-
ditions. This notion has been supported by studies on the Permian-
Triassic boundary (Brennecka et al., 2011; Lau et al., 2016; Zhang 
et al., 2018a,b) and the Ediacaran-Cambrian transition (Zhang et 
al., 2018c; Tostevin et al., 2019), where multiple sections from dif-
ferent ocean basins during the same time yielded nearly identical 
δ238U trends.

In this study, we generated a long-term δ238U record using 
an expanded and successive Middle-Late Permian (Guadalupian-
Lopingian) limestone section from the Xikou section, Zhen’an 
County, Shaanxi Province, to examine the differences in the ma-
rine redox chemistry changes across the two Permian extinction 
2

intervals. We then use the Long-term Ocean-Atmosphere-Sediment 
CArbon cycle Reservoir (LOSCAR) model (Zeebe et al., 2009) to 
quantify the long- and short-term response of the Earth’s surface 
system to CO2 forcing. By linking the rate of CO2 injection, changes 
in marine redox chemistry, and the magnitude of marine biodiver-
sity loss, we attempt to foster our understanding of the linkages 
between CO2 emission rates and the ecosystem responses to dif-
ferent CO2 forcing.

2. Geological settings

The Xikou section (33.23◦ N, 109.38◦ E) was located in the 
north margin of the South China Block in the eastern Palaeotethys 
during the Permian (Fig. 1). The Permian sequences were divided 
into nine formations, named Sanlichong, Shimenya, Yazi, Wulipo, 
Shuixiakou, Xikou, Yundoutan, and Longdongchuan formations in 
ascending order (Ding et al., 1989). Thick-bedded limestones were 
developed from the Sanlichong to the Wulipo formations, and the 
first occurrences of Brevaxina, Neoschwagerina, and Presumatrina
were defined as the base of the Kungurian, the Roadian, and the 
Wordian stages, respectively (Wang et al., 2021). The Shuixiakou 
Formation contains middle- to thick-bedded limestone interbed-
ded with siltstones and belongs to the Capitanian according to 
the occurrence of Chenella (Cheng et al., 2019; Wang et al., 2021). 
The GLB is characterized by an abrupt lithofacies transition from 
shallow-marine bioclastic limestone to coastal coarse-grained sili-
ciclastic sandstone, corresponding to a rapid regression in South 
China caused by regional uplift associated with the eruption of 
the Emeishan LIPs. The Xikou Formation is composed of sand-
stone interbedded with limestone and siltstone. The occurrences 
of Kahlerina, Codonofusiella, and Reichelina suggest that the Xikou 
Formation can be ascribed to the Wuchiapingian stage. The Yund-
outan Formation is characterized by thick to massive bedded red-
dish limestones with abundant brachiopods, corals, crinoids, and 
sponges. The Longdongchuan Formation contains thick to massive 
bedded white limestones. The first occurrence of Clarkina wangi
was defined as the base of the Changhsingian stage. The Permian-
Triassic boundary was defined by the first occurrence of Hindeodus
parvus, in a 3.7 m-thick tuffaceous oolitic grainstone (Wang et al., 
2021), which was capped by a volcanic ash bed.

A total of 85 micritic limestones were selected for δ238U analy-
ses. Those samples cover the Kungurian through the Induan stages. 
The age of individual sample was calculated by linear interpolation 
between age tie-points using the time scale of Shen et al. (2019), 
with some modifications from Wu et al. (2020) (Table 1).

Table 1
Time scale used in this study, the main scheme is after Shen et al. (2019), with 
some modifications after Wu et al. (2020).
Series Stages Age of the base 

(Ma)

Triassic Induan 251.902±0.024
Lopingian Changhsingian 254.14±0.07

Wuchiapingian 259.51±0.21

Guadalupian Capitanian 264.28±0.16
Wordian 266.9±0.4
Roadian 272.95±0.11

Cisuralian Kungurian 283.5±0.6
Artinskian 290.1±0.26
Sakmarian 293.52±0.17
Asselian 298.92±0.19



W.-q. Wang, F. Zhang, S. Zhang et al. Earth and Planetary Science Letters 602 (2023) 117940

Fig. 1. Paleogeography of the Changhsingian with the base map provided by Scotese (2021), showing the position of the studied section.
3. Methods

3.1. Major and trace elemental analyses

About 1 gram of powder was dissolved in 45 mL 0.5 M HCl for 
4-6 hours at room temperature. The supernatants were separated 
and dried on the hot plate and re-dissolved with concentrated 
HNO3 three times to remove any HCl, after which the sample was 
dissolved in 3 M HNO3. An aliquot of the stock solution was taken 
out and diluted to an estimated Ca concentration of 150 ppm. The 
1 ppb element spikes of In, Sc, Y, and Bi were added for mass cal-
ibration. The elemental concentration was measured on a Thermo 
Scientific Finnigan Element 2 ICP-MS at the Yale Metal Geochem-
istry Center (YMGC). The precision of the analysis for the elements 
is better than 5% based on the long-term reproducibility of internal 
standards.

3.2. Uranium isotopes analyses

An estimated amount of supernatant corresponding to 250 ng 
U was taken out from the stock solution and dried down and re-
dissolved in 3 mL 3 M HNO3. The uranium was extracted from the 
solution after adding 233U-236U double spikes using UTEVA resin 
following the method of Zhang et al. (2018a,b). Each sample was 
put through the UTEVA resin twice in order to remove the matrix 
ions completely. The final purified U was dissolved in 2% HNO3 and 
diluted to a U concentration of 50 ppb. The δ238U was measured 
by Thermo Fisher Scientific Neptune plus MC-ICP-MC at YMGC. 
Samples were analyzed through the sample-standard bracketing 
method using the reference material of CRM-145a (U concentration 
of 50 ppb), and two laboratory standards, Ricca and CRM-129a, 
were also measured every fifteen samples. Sample δ238U values 
were normalized by the average of the bracketing standards. The 
reproducibility of replicate measurements of δ238U for CRM-145a 
was 0.07� (2SD, N = 134). Two laboratory standards, Ricca and 
CRM 129a yield δ238U values of −0.20 ± 0.06� (2SD, N = 22) and 
−1.69 ± 0.07� (2SD, N = 22), respectively, which are in good 
agreement with published data (Chen et al., 2018; Zhang et al., 
2018a,b, 2020b).

4. Results

4.1. Elemental concentrations

The stratigraphical distribution of U concentration was shown 
in Fig. 2, the elemental concentration of Mo, Fe, Mn, Sr, Al, and 
Rb were summarized in Fig. 3, and the detailed elemental con-
centrations were provided in Appendix 1. The U concentration of 
the samples ranges from 0.1 to 7.2 ppm (Fig. 2), and most of the 
3

samples (75%) contain U < 2 ppm. The Mo concentration varies 
between 1 ppb and 460 ppb with an average of 55 ± 71 ppb (1SD, 
N = 81; Fig. 3). The Fe concentration of the samples ranges from 
13 ppm to 11289 ppm, with an average of 627 ± 1618 ppm (1SD, 
N = 81). The average Mn, Sr, Al, and Rb concentrations are 186 
± 194 ppm (1SD, N = 81), 647 ± 642 ppm (1SD, N = 81), 125 
± 155 ppm (1SD, N = 81), and 0.2 ± 0.2 ppm (1SD, N = 81), 
respectively.

4.2. The δ238U of carbonates

The δ238U values from our study vary between −0.79� and 
0.11�, with an average value of −0.25 ± 0.18� (N = 85, 1SD; 
Fig. 2). The δ238U values stay relatively constant from the fusulinid 
Misellina minor Zone (about 0.4 km in the lithologic column in 
Fig. 2; correlates to the late Kungurian) to the Neoschwagerina
craticulifera-Verbeekina verbeeki Zone (about 0.8 km in the lithologic 
column in Fig. 2; correlates to the Wordian). There are two nega-
tive shifts in δ238U values in the stratigraphic records, which are 
within the fusulinid Chenella changanchiaoensis and Colania douville
- Kahlerina pachytheca zones (about 0.9 km to 1.2 km in the litho-
logic column in Fig. 2; correlates to the early to middle Capitanian, 
prior to the EGE), in the Shuixiakou Formation, and the conodont 
Clarkina changxingensis Zone (about 3.1 km to 3.3 km in the litho-
logic column in Fig. 2; correlates to late Changhsingian, before the 
PTB), in the Longdongchuan Formation, respectively.

5. Discussions

5.1. Fidelity of the δ238U data in recording the Middle-Late Permian 
Ocean redox chemistry

Diagenetic processes may alter the original chemical signals 
of carbonates. In the past several decades, several diagenetic in-
dicators have been developed and applied to evaluate the over-
all preservation of carbonate rocks (Brand and Veizer, 1980; Gil-
leaudeau et al., 2019). In this study, we use those conventional 
geochemical indicators to test if the δ238U values of the samples 
analyzed in this study record any non-marine signals.

5.1.1. Evaluation of the detrital contamination
The input of detrital U may influence the δ238U values. It can be 

evaluated by Al concentrations and U/Al and Rb/Sr ratios (Zhang et 
al., 2018b, 2020b). Generally, the Al concentrations of the studied 
samples are low and do not co-vary with the δ238U values (r =
−0.18, p > 0.05). Most of our samples (74%, N = 60) yield U/Al 
ratios significantly higher than the upper continental crust ratio of 
∼0.331 ppm/wt.% (Rudnick and Gao, 2014). Furthermore, there are 
no apparent correlations between δ238U values and U/Al (Table 2), 
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Fig. 2. The lithologic column, biostratigraphic zones, δ238U results, and U concentration of the studied section. The red points represent samples that pass the diagenetic 
screening, and the gray points represent samples that may be diagenetically altered. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)
indicating that the observed δ238U trends are unlikely related to 
detrital U inputs. In addition, all the samples have Rb/Sr ratios less 
than 0.01 (Fig. 4) and do not show any correlation with the δ238U 
values (r = 0.08; p > 0.05), indicating that the digestion protocol 
did not involve U related to clay minerals.

5.1.2. Evaluation of meteoric diagenetic alteration
Meteoric diagenesis tends to increase Mn and Fe, and decrease 

Sr concentration of carbonates (Brand and Veizer, 1980). How-
ever, prior studies have used various thresholds of these proxies to 
screen for diagenesis (Derry et al., 1992; Kaufman and Knoll, 1995; 
Lau et al., 2016; Zhang et al., 2018b; Wang et al., 2022). For exam-
ple, samples with Fe < 1000 ppm and Fe < 3000 ppm are both 
used in previous studies (Denison et al., 1994; Derry et al., 1992), 
and Mn/Sr ratios ranging from 1 to 10 are used in different studies 
(Kaufman and Knoll, 1995; Lau et al., 2016; Zhang et al., 2018b). 
4

The samples in this study generally contain low Fe concentrations 
(Fig. 3), with 89% of samples containing Fe < 1000 ppm and 95% 
of samples < 3000 ppm (Denison et al., 1994). However, we ob-
served that those samples with higher Fe concentrations (> 3000 
ppm) have similar δ238U values as those with lower Fe contents 
(Fig. 3). All the measured samples contain Mn/Sr ratios of less than 
10 (Fig. 4), and 88% of the samples yield Mn/Sr ratios < 1. Consid-
ering Fe and Mn concentrations depend on the redox chemistry 
of the sedimentary environment; we, therefore, checked the co-
variation between the δ238U values and these diagenetic indicators 
to investigate if the samples are influenced by meteoric diagenesis. 
Cross correlation analysis shows that there are no apparent corre-
lations between δ238U values and Mn, Sr, Fe, concentrations and 
Mn/Sr ratios (Fig. 4; |r| < 0.3 for all proxies; p > 0.05 for Mn and 
Mn/Sr, p < 0.01 for Sr and Fe), confirming overall good preserva-
tion of the samples analyzed in this study.
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Fig. 3. Cross-plots between δ238U and Mo, Fe, Mn, Sr, Al, and Rb concentrations, showing no co-variation between these proxies.
5.1.3. Evaluation of the influence of dolomitization on the δ238U values
Dolomitization can occur through multiple different processes 

and may impact the original δ238U signals, depending on the style 
and timing of this process (Gilleaudeau et al., 2019). We used Sr 
concentration, Sr/Ca ratio, and Mg/Ca molar ratio to evaluate the 
influence of dolomitization on δ238U values (Figs. 3, 4). The δ238U 
values of our samples show weak correlation with Sr concentra-
tions (r = −0.34; p < 0.01) and Sr/Ca ratios (r = −0.36; p < 0.01), 
and no correlation with Mg/Ca ratios (r < 0.1; p > 0.05; Table 2), 
indicating negligible influence of dolomitization on the δ238U val-
ues.

5.1.4. Evaluation of local pore water redox chemistry
Reducing porewater conditions associated with the degradation 

of organic matter within marine sediments will induce U isotope 
fractionation during the reduction of U(VI) to U(IV) (Andersen et 
al., 2017). We evaluate this process using U and Mo contents. The 
U contents do not co-vary with δ238U values as seen in Fig. 2. In 
addition, the Pearson correlation statistical analysis between δ238U 
values and U and Mo contents shows that there are no significant 
correlations between them (r < 0.2, p > 0.05 for U; r < 0.2, p 
> 0.05 for Mo; Table 2), indicating that the δ238U values are not 
significantly affected by local pore water redox chemistry.
5

Table 2
Statistical analysis testing the diagenetic influence on the δ238U record. We provided 
the Pearson Correlation Coefficient r value and related significance level (p value), 
all the r values between δ238U and diagenetic proxies are less than 0.4, suggesting 
only weak or no covariation between these proxies.
Xikou section Pearson test 

(r value)
Significance level 
(p value)

δ238U vs. U content 0.14 0.20
δ238U vs. Mn/Sr 0.11 0.31
δ238U vs. Mn content −0.15 0.18
δ238U vs. Sr content −0.34 0.002
δ238U vs. U/Al 0.21 0.06
δ238U vs. Th content −0.18 0.11
δ238U vs. Al content −0.18 0.09
δ238U vs. Mo content −0.17 0.12
δ238U vs. Fe content −0.29 0.008
δ238U vs. Rb/Sr −0.07 0.50
δ238U vs Mg/Ca 0.19 0.43
δ238U vs Sr/Ca −0.36 <0.01
δ238U vs Rb −0.20 0.06

Finally, the riverine U accounts for > 90% of U inputs to the 
oceans, with an average δ238U value of −0.26� (Andersen et al., 
2017; Tissot and Dauphas, 2015). Considering the fact that the 
major marine U sinks (i.e., anoxic and suboxic sedimentary sinks) 
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Fig. 4. Cross-plots between δ238U and U/Al, Rb/Sr, Mn/Sr, and Mg/Ca ratios, showing no co-variation between these proxies.

Table 3
2σ uncertainty used in the uranium isotope mass balance model.

Parameter Median 2σ Reference

δ238Usw loess fit −0.54� 0.06 to 0.13� This study
Offset between δ238U of 

calcite and the ocean
0.26� 0.1� Romaniello et al., 2013; 

Chen et al. (2018)
δ238Uriver −0.3� 0.04� Zhang et al. (2020b)
Nsw, 0 9.36 × 1012 mol 0 Zhang et al. (2020b)
Uranium flux from river 

inputs (Jriver)
4 × 107 mol yr−1 0 Zhang et al. (2020b)

Uranium flux from anoxic 
sediment (Janox)

6 × 106 mol yr−1 0 Zhang et al. (2020b)

Kanox 1.41 × 10−19 0 Zhang et al. (2020b)
Koxic 4.82 × 10−21 0 Zhang et al. (2020b)
preferentially take up the heavier U isotopes (i.e., 238U) from sea-
water, the predicted δ238U value of ancient seawater, when the 
sources and sinks are balanced under a steady-state, will always 
be lower than (or equal to) that of the riverine input (Andersen 
et al., 2017; Lau et al., 2016). Therefore, we consider samples with 
δ238U values higher than 0.1� (i.e., −0.26� + (0.26� ± 0.1�)) 
to not record contemporaneous seawater δ238U signal (Chen et al., 
2018; Romaniello et al., 2013; Tissot and Dauphas, 2015). Here, the 
value of 0.26� ±0.1� represents an offset that is induced during 
early diagenetic processes and is applied to convert the carbonate 
δ238U values to contemporaneous seawater δ238U values according 
to Romaniello et al. (2013) and Chen et al. (2018).

In summary, our samples display no systematic correlation be-
tween the δ238U excursions and indicators of detrital contami-
nation (Al concentration, U/Al, and Rb/Sr ratios), meteoric diage-
netic alteration (Mn/Sr ratios and Fe concentration), dolomitiza-
tion (Sr concentration, Mg/Ca, and Sr/Ca ratios), and local pore 
water redox chemistry (U and Mo contents) that may produce 
a δ238U offset from contemporaneous seawater (Fig. 4). There-
fore, the δ238U trends observed in the stratigraphic records can 
be reasonably interpreted as representative of secular changes in 
open marine δ238U trends in the Permian seawater. Below, we ex-
6

plore the quantitative implications of our δ238U record, although 
we acknowledge that additional studies from other coeval sections 
would strengthen our arguments.

5.2. Quantitative estimation of seafloor anoxia across the EPME and the 
EGE

We use a simple uranium isotope mass balance model to quan-
tify the extent of seafloor anoxia across the PTB and the EGE 
following Lau et al. (2016) and Zhang et al. (2020b). Briefly, the 
model assumes U has a single major source (riverine inputs) to the 
oceans and two major sedimentary outputs (oxic and anoxic sinks) 
from the oceans (parameterization of the fluxes are detailed in Ta-
ble 3). The dynamic uranium inventory in the seawater (Nsw ) was 
computed using the methods described in Zhang et al. (2020b). 
The changing rate of Nsw and its isotopic composition can be de-
scribed by ordinary differential equations by applying the law of 
mass balance (Lau et al., 2016; Zhang et al., 2020b):
dNSW

dt
= Jriv − Janox − Joxic (1)

d(NSW ∗ δ238Usw) = Jriv ∗ δ238Uriv − Janox ∗ δ238Uanox

dt
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− Joxic ∗ δ238Uoxic (2)

δ238Uanox = δ238Usw + �anox (3)

δ238Uoxic = δ238Usw + �oxic (4)

The fluxes of anoxic and oxic sink ( Janox and Joxic) can be de-
fined assuming a first-order dependence on the seawater U reser-
voir:

Janox = Kanox ∗ NSW ∗ Aanox (5)

Joxic = Koxic ∗ NSW ∗ Aoxic (6)

The overall seafloor areas overlain by anoxic bottom waters 
( fanox) can be expressed by:

fanox = Aanox

Aocean
(7)

where the subscript ‘sw’ is for seawater, ‘riv’ is for riverine input, 
‘anox’ is for anoxic settings, and ‘oxic’ is for oxic settings. �anox
and �oxic denote the isotopic differences between seawater and 
anoxic sinks and oxic sinks, respectively; Aanox and Aocean denote 
seafloor areas overlain by anoxic waters and the entire seafloor ar-
eas of the ocean, respectively, where Aocean = Aanox + Aoxic; fanox
corresponds to the fraction of total seafloor area overlain by anoxic 
waters at a given time, and K is the removal rate, which depends 
on the setting where U is removed.

Under the steady-state assumption, the resulting mass balance 
can be expressed as:

δ238Usw = δ238Uriv

− fanox ∗ Kanox ∗ �anox + (1− fanox) ∗ Koxic ∗ �oxic

fanox ∗ Kanox + (1− fanox) ∗ Koxic
(8)

and the extent of anoxia (the parts of the ocean with anoxic 
seafloor) can be obtained simply by solving for fanox from Equa-
tion (8):

fanox = δ238Uriv ∗ Koxic − δ238Uoxic ∗ Koxic

δ238Uriv ∗ (Koxic − Kanox) − δ238Uoxic ∗ Koxic + δ238Uanox ∗ Kanox

(9)

The 95% confidence intervals for anoxic seafloor areas ( fanox) 
considering the analytical error of 0.07� and the uncertainty of 
the anoxic fractionation factor (�anox from 0.68 to 0.99; Basu 
et al., 2014; Stirling et al., 2015; Stylo et al., 2015) were deter-
mined using a Monte Carlo approach with 10,000 realizations. In 
order to estimate the Permian seawater δ238U values, a mean di-
agenetic offset of 0.26 ± 0.1� was subtracted from the marine 
carbonate δ238U records because early diagenetic processes (i.e., 
before the carbonate muds become rocks) are known to induce 
a positive offset averaging 0.26 ± 0.1� compared to the over-
lying seawater (Chen et al., 2018; Romaniello et al., 2013; Tissot 
et al., 2018). Before making U-model calculations, we first inter-
polated and smoothed the measured δ238U data using a LOWESS 
fit method with a span parameter value of 0.2 based on a cross-
validation analysis. Considering that our study focuses on the pre-
EPME intervals to provide background information leading to the 
EPME, and limited δ238U data across the EPME were analyzed, we 
compiled the literature data across the EPME (note that there are 
no published δ238U data across the EGE in the literature) to make 
a more compelling estimate of seafloor anoxia (Brennecka et al., 
2011; Lau et al., 2016; Zhang et al., 2018a,b) (Fig. 5B).

The model results show that the fanox stayed constant from 
the Kungurian ( fanox value of ∼5%) to the Wordian stages and 
increased substantially from the early to the middle Capitanian, 
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reaching a peak value during the EGE interval ( fanox value of 
∼10%) (Fig. 5B). During the middle to late Capitanian, the fanox
value decreased slowly and returned to the background level 
of the Permian in the early Wuchiapingian. The Wuchiapingian 
and most of the Changhsingian saw a steady ocean redox condi-
tion. The anoxic seafloor areas expanded sharply during the latest 
Changhsingian and fanox reached a peak value of ∼35% during the 
EPME (Fig. 5B, E). The estimated peak fanox at the EGE ranges from 
5% to 15% (95% confidence interval), while the peak fanox at the 
EPME ranges from 29% to 39% (95% confidence interval), suggest-
ing statistically significant difference between the sea floor anoxia 
event during the two biocrises. The anoxic seafloor areas during 
the EPME are three times larger (35% vs. 10%) than that during 
the EGE, while the duration of the anoxia during the EPME was 
significantly shorter (<0.1 Myr vs. >3 Myr) than that during the 
EGE (Fig. 5). These two episodes of marine anoxia expansion have 
also been independently documented by δ238U records of low-
magnesium calcite (LMC) in articulate brachiopod shells (Wang et 
al., 2022).

The two oceanic anoxic events coincided with the Emeishan LIP 
and the Siberian Traps LIP, respectively. The earliest intrusion asso-
ciated with the Emeishan LIP was dated at 263 ± 3 Ma (Zhou et 
al., 2008), while the extrusive phase was dated to be 260.1 ± 1.2 
Ma (Li et al., 2017). The termination age of the massive Emeishan 
flood basalts was 259.1 ± 0.5 Ma (Zhong et al., 2014) or 259.51 ±
0.21 Ma (Yang et al., 2018). The age model of the Siberian Traps 
LIP showed that the beginning of the pyroclastic eruption started 
before 252.24 ± 0.1 Ma (with a maximum age of about 255.58 
± 0.38 Ma) and two-thirds of the total erupted lava volume was 
emplaced between 252.24 ± 0.1 Ma (or 255.58 ± 0.38 Ma) and 
251.907 ± 0.067 Ma (Burgess et al., 2017). Thus, the two episodes 
of expanded seafloor anoxic area during the EGE and the EPME 
can be temporally correlated with the ELIP and Siberian Traps LIP, 
respectively (Fig. 5). Volcanic CO2 degassing can lead to the expan-
sion of marine anoxia through (1) CO2 – induced climatic warming, 
which can reduce oxygen solubility and result in sluggish oceanic 
circulation (Winguth et al., 2012), and (2) enhanced global chem-
ical weathering, elevated nutrient levels in the oceans and higher 
primary marine productivity (Zhang et al., 2018b, 2020a). Below, 
we use a carbon cycle box model to explore the idea that the 
magnitudes in the extent of the expansion of marine anoxia and 
the ecosystem responses were closely related to the volcanic CO2
emission rates.

5.3. Oceanic anoxia and ecosystem responses linked to volcanic carbon 
emission rates

Carbon cycle models serve as powerful tools to quantify CO2
emissions during major carbon cycle perturbation intervals in 
geological history (Zeebe et al., 2009). The Long-term Ocean-
Atmosphere-Sediment CArbon cycle Reservoir (LOSCAR) model 
has been widely used to constrain carbon emission patterns in 
the past, such as the Palaeocene-Eocene Thermal Maximum, the 
Cretaceous-Paleogene boundary, and the Triassic-Jurassic transi-
tion (Hull et al., 2020; Shen et al., 2022; Zeebe et al., 2009). 
LOSCAR is designed to calculate the partitioning of carbon be-
tween ocean, atmosphere, and sediments on various time scales 
and is suitable for simulating atmospheric pCO2 and the sur-
face ocean carbon isotopes during and after carbon injection over 
hundreds of thousands to millions of years. Owing to LOSCAR’s 
high-efficiency numerical routine, thousands of different carbon 
perturbation scenarios with different parameter combinations (e.g., 
carbon sources, carbon emission amounts, and durations) can be 
tested with LOSCAR in parallel on the supercomputer within hours.

With LOSCAR, CO2 emission rates and the most likely δ13C val-
ues of the CO2 sources across the EGE and the EPME are deter-
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Fig. 5. A. δ238U data of the seawater during the Permian, the blue circles represent previous data compiled from Zhang et al. (2018a, 2018b), Brennecka et al. (2011), and Lau 
et al. (2016) and the red circles represent this study; B. Calculated anoxic seafloor area based on uranium isotope mass balance model; C. The biodiversity changes during 
the Permian (Fan et al., 2020). D and F and the detailed information of the A and B across the Permian-Triassic boundary.
mined by minimizing the differences between modeled δ13Ccarb, 
sea surface temperature, and surface ocean pH (when available). 
The δ13Ccarb data across the EPME and the EGE are from a global 
compilation of six sites in the Paleotethys Ocean, including Abadeh, 
Kuh-e-Ali Bashi, Shahreza and Zal sections in Iran (Korte et al., 
2004; Richoz, 2006; Shen et al., 2013), and Dukou and Meishan 
sections in China (Shen et al., 2013; Fig. 6A,G). The simplified ge-
ologic settings and lithology of these sections are presented in the 
Supplementary Material. The sea surface temperature data of the 
EPME and the EGE are based on the conodont δ18O data from sites 
in South China (Fig. 6; Appendix 2) and the pH data for the EPME 
are from brachiopod-based δ11B measurements in Jurikova et al. 
(2020). According to the δ13C record, the δ13C excursion started 
at 252.02 Ma for the EPME and 261.5 Ma for the EGE, and lasted 
for ∼120 kyr and ∼2 Myr, respectively, until their initial recovery. 
To match the onset and duration of the δ13C excursion to the vol-
canic eruption, the model runs started at 252.02 Ma for the EPME 
and 261.5 Ma for the EGE, and lasted for 120 kyr and 2 Myr, re-
spectively (Fig. 6). To quantify the emission pattern and isotopic 
compositions of the carbon sources, we performed Monte Carlo re-
sampling for emission trajectories and ran 5,000 LOSCAR models 
for both the EPME and the EGE. Specifically, we constructed 1,000 
carbon emission trajectories (Fig. S2 and S7) for each assumed car-
bon emission source (reflected by different δ13C values of −5�, 
−8�, −12�, −18�, and −25�). To make our simulations more 
robust, we turned on the climate sensitivity parameter (i.e., the 
temperature change for a doubling of atmospheric CO2) in LOSCAR 
and set its value to 3 (the unit of climate sensitivity is ◦C per dou-
bling of CO2 in ppmv). The LOSCAR simulation results (including 
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average surface ocean δ13C values, atmospheric pCO2, average sur-
face ocean temperature, and average surface ocean pH) are shown 
in Figures S3 to S6, and Figures S8 to S11 for the EPME and the 
EGE, respectively.

The modeled average surface ocean δ13C output in each emis-
sion scenario was compared to the observed δ13Ccarb time series 
(by minimizing the mean squared error) to yield the best C emis-
sion trajectory for each assumed carbon isotope source for the 
EPME (Fig. S12A) and the EGE (Fig. S13A). The cumulative carbon 
emission amount, average surface ocean δ13C, atmospheric pCO2, 
average surface ocean temperature, and average surface ocean pH 
(in relative scale) for each best emission scenario are also shown 
in Figure S12 and Figure S13. We then compare (visually) the sur-
face ocean temperature and pH values of the five scenarios (i.e., of 
different carbon source isotope values) to the temperature and pH 
records (if any) to further constrain the best carbon sources.

For the EPME, the best-fit model scenario is associated with 
a δ13CCO2 value between −8� to −12� (Fig. 6A-F), indicating 
a predominantly volcanic CO2 source. This is in broad agreement 
with the Earth system modeling result pointing to a largely vol-
canic CO2 source (Cui et al., 2021) but differs from the previ-
ous study suggesting the metamorphism of organic carbon (with 
δ13C value of ∼-25�) is the main source of CO2 (Svensen et al., 
2009). When considering both the δ13C excursion and the sur-
face ocean pH decline simultaneously (Chen et al., 2016; Jurikova 
et al., 2020), rather than matching just the δ13C excursion across 
the EPME (Svensen et al., 2009), we note that the δ13C value 
(−25�) associated with organic carbon oxidation is too low to 
generate the observed patterns of the δ13C excursion, the surface 
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Fig. 6. The best LOSCAR model scenarios for the EPME (A-F) and the EGE (G-L). (A, G) Modeled average surface ocean δ13C and observed δ13Ccarb data (black dots) compiled 
from the literature (Appendix 2); (B, H) Modeled carbon emission rate in Pg C yr−1; (C, I) Modeled cumulative carbon emissions in Pg C (D, J) Modeled atmospheric CO2

evolution (E, K) Modeled average surface ocean temperature and observed temperature (black dots) based on conodont proxy data (Appendix 2). (F, L) Modeled changes in 
average surface ocean pH compared with pH data (black dots in F) based on boron isotope proxy (Jurikova et al., 2020). The black line in F represents the loess-smoothed 
pH records with a span of 0.87 and the shaded gray area represents the 95% confidence interval of the smoothing fit.
ocean temperature, and pH records during the EPME. We also find 
that it is not necessary to invoke methane hydrate as a carbon 
source as suggested by Berner (2002) because the carbon isotope 
excursion of our study is smaller compared to those data used 
in the Berner (2002). Furthermore, our modeling results are in 
agreement with a modeling scenario proposed by Clarkson et al. 
(2015), such that a mixture of mantle and lighter carbon sources 
(δ13C = −12.5�) could lead to the observed δ13C pattern dur-
ing the EPME. For the EGE, the carbon sources are difficult to be 
narrowed down due to the limited temperature records and the 
absence of pH records (Fig. 6G-L). However, existing coarse resolu-
tion temperature records across the EGE appear to support mainly 
13C-depleted carbon source (e.g., δ13C = −18� or −25�, with 
−25� modeling result fitting slightly better with the tempera-
ture records; Fig. 6K), implying a mixture of volcanic and organic 
sources, with organic source as the dominating component. We 
highlight that the conclusion for the EGE was made based on the 
currently available records of δ238U, δ13C, and δ18O, and we sug-
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gest that higher-resolution proxy data for sea surface pH, surface 
ocean temperatures and redox conditions across the EGE will help 
further constrain the carbon sources and the emission trajectory. 
Comparing the carbon emission patterns between the EPME and 
the EGE (Fig. 6B and 6H), we argue that the peak emission rate 
of the EPME (∼0.5 Pg C yr−1 for −8� and ∼0.3 Pg C yr−1 for 
−12�) is much faster (5 to 9 times) than that of the EGE (0.056 
Pg C yr−1 for −25�). The total amount of carbon emission from 
252.02 Ma to 251.9 Ma during the EPME is estimated to range 
from 18,000 to 30,000 Pg C and the total amount of carbon emis-
sion from 261.5 Ma to 259.5 Ma during the EGE is estimated to be 
∼10,000 Pg C. The modeled peak pCO2 is as high as ∼4,000 ppm 
during the EPME and ∼3,000 ppm during the EGE, consistent with 
CO2 proxy data based on high-resolution δ13C of C3 plant (Wu et 
al., 2021). Both our modeled cumulative carbon emissions and de-
gassing rates are within the range of the previous estimation for 
the EPME (Beerling et al., 2007; Cui et al., 2021; Sobolev et al., 
2011).
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A growing body of evidence suggests that the EGE was more 
protracted and taxonomic selective (Chen and Shen, 2021; Clapham 
et al., 2009; Fan et al., 2020) than the geologically instantaneous 
EPME (Burgess et al., 2014; Shen et al., 2019). Although the Emeis-
han and Siberian Traps LIPs have been overwhelmingly considered 
as the trigger of these events (Burgess et al., 2017; Shen et al., 
2019), the driver for the drastically different ecosystem responses 
to the two LIPs events is less clear. The EGE was constrained 
between the conodont Jinogondolella altudaensis to Clarkina postbit-
teri postbitteri zones (Shen et al., 2020), generally coincident with 
the anoxic event recognized in our study. And the anoxic event 
during the end-Permian was coincided, or immediately preceded 
the EPME (Brennecka et al., 2011; Lau et al., 2016; Zhang et al., 
2018a,b). By comparing the CO2 emission rates, seafloor anoxic 
area changes, and changes in species richness, we suggest that 
the differences in the ecosystem responses across the EGE and the 
EPME can be reasonably attributed to the different emission rates 
of CO2 associated with the ELIP and STLIP (Fig. 6). The compar-
ison of CO2 degassing between the two events suggests that the 
emission rate of CO2 was more than five times faster during the 
EPME than the EGE (Fig. 6), similar to the timing of the onset of 
the expansion anoxic seafloor area (Fig. 5B). The anoxic seafloor 
area expanded sharply immediately prior to or coincident with the 
EPME, while the anoxic seafloor areas expanded slowly during the 
EGE. The differences in the rate and magnitude of volcanic CO2

injection across EPME and EGE can reasonably account for the dif-
ferent extent in the expansion of marine anoxia. For example, a 
simple biogeochemical model suggests that the extent of marine 
anoxia depends strongly on the magnitudes of the CO2 being in-
jected into the ocean-atmosphere system (i.e., Fig. 7 in Zhang et al., 
2020a). Similar expansion of anoxic seafloor area associated with 
CO2 emissions has been documented during the end-Triassic (Jost 
et al., 2017), the end-Cretaceous (Clarkson et al., 2018), and the 
Paleocene-Eocene Thermal Maximum (Winguth et al., 2012). This 
led to the conclusion that the different extinction patterns during 
the EPME and the EGE are highly dependent on the carbon emis-
sion rate because of similar initial background climate conditions 
and ocean carbonate buffering capacity to CO2 forcing (Fig. 5). One 
important aspect to point out is that there are large uncertainties 
on the total carbon emission amount and associated carbon iso-
tope composition for the EGE due to the lack of constraints from 
high-resolution proxy records (such as surface ocean temperature 
and pH). We suggest that future studies with higher resolution and 
diverse proxy record are needed to validate our results.

6. Conclusions

We report a successive Middle (Guadalupian) to Late Permian 
(Lopingian) marine carbonate δ238U data that reveal two episodes 
of widespread expansion of seafloor anoxia around the EGE and 
the EPME. The uranium mass balance model suggests that the 
anoxic seafloor areas were ∼10% and ∼35% during the EGE and the 
EPME, respectively. LOSCAR carbon cycle modeling suggests that 
the carbon emission rate across the EPME was at least five times 
faster than during the EGE, with the best-fit δ13C values of the 
input sources being between −9 and −12� for the STLIP (indicat-
ing a predominant volcanic CO2 source) and close to −25� for the 
ELIP (based on limited temperature records). More proxy data (e.g., 
seawater temperature, pH) are needed to better constrain the car-
bon source for the EGE. By linking the CO2 emissions, changes in 
the marine redox chemistry, and the magnitude of marine extinc-
tions, we find that the rate and the magnitude of the two Permian 
marine extinctions are closely linked to the CO2 emission rates.
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