
1.  Introduction
Mediterranean and semi-arid regions with mountainous topography are exposed to post-fire flood hazards that 
are extremely dangerous (Jennings & Brooks, 1982; National Research Council, 1996). Herein we use “flood 
hazards” to refer to mixtures of water, sediment, rock, and other debris which are sometimes described as “debris 
hazards” or “flood and debris hazards.” High-velocity flows with sediment, debris, and uncertain flow paths can 
cause devastating losses of life and property, such as the Montecito, CA debris event in 2018 which took 23 lives 
and damaged over 400 homes (Kean et al., 2019), and the 1976 flood in La Paz, Mexico where a sediment-laden 
flood carved a new flow path through the city center and killed thousands (Sanders & Grant, 2020). Runoff and 
erosion on burnt terrain have been observed to be 1–4 orders of magnitude greater than that on unburnt terrain in 
the European Mediterranean and more than 100 times greater on large-plot to hillslope scales in the southwestern 
United States (Shakesby, 2011; Williams et al., 2014). These hydrogeomorphic changes result from the removal 
of vegetation cover by wildfire, which exposes soil to erosion via raindrop impact, and, in some cases, from the 
creation of a hydrophobic layer caused by heat-induced soil water repellency and/or the clogging of soil pores 
with ash (Hyde et al., 2017; Moody et al., 2013). Three major trends point to increasing post-fire flood risks in the 
southwestern United States: first, wildfires are becoming more frequent and more severe (Dennison et al., 2014; 
Li & Banerjee,  2021; Westerling et  al.,  2006); second, precipitation extremes are intensifying (Gershunov 
et al., 2019; Swain et al., 2018), and even relatively minor storms can trigger debris flows shortly after burn 
events (Kean & Staley, 2021; Staley et al., 2013); and third, development is expanding below and into mountain 
wildlands where post-fire flood hazards are concentrated (Cannon & DeGraff, 2009; Radeloff et al., 2018).

Abstract  Flood and debris hazards are heightened following wildfires, but are challenging to quantify 
due to interdependence between fire frequency and severity, runoff and sediment fluxes during storms, and 
sedimentation that reduces infrastructure capacity. Herein we present a stochastic simulation framework 
to estimate compound flood and debris hazards from sequences of wildfires and rainstorms and the 
accumulation of sediment within flood infrastructure. Application of the framework to a hypothetical watershed 
representative of southern California shows that the present-day compound hazard may be up to 6 times greater 
than the marginal hazard posed by peak flows in the absence of wildfire, and that future compound hazards 
could be up to 11 times greater than the marginal hazard based on future increases in wildfire frequency. 
Numerous sensitivities are investigated, including infrastructure design and maintenance, which are shown to be 
crucial for moderating future increases in post-fire flood hazards.

Plain Language Summary  More frequent and intense wildfires lead to increased risks of flooding 
and debris hazards following rainstorms. However, existing models for estimating hazards to communities do 
not account for the filling of protective flood infrastructure with sediment, which reduces capacity. We present 
an original model for estimating post-fire flood and debris hazards that captures the interconnected influences 
of wildfire, rainstorms, and reduced infrastructure capacity from sedimentation. The modeling approach can 
simulate present and future hazards to aid both short-term and long-term risk management efforts. Simulations 
show that present-day hazards are up to six times greater based on the interaction of processes compared to 
flood hazards in the absence of fires. Based on future increases in wildfire frequency, future flood hazards 
could be up to 11 times greater. Simulations also show that hazards can be reduced with more intensive 
cleaning and maintenance.
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Considerable research has focused on predictive models of post-fire peak flows and sediment yields to improve 
the understanding of risks and to design infrastructure to mitigate hazards. Post-fire sediment yield has largely 
been estimated using empirical relationships (Gartner et al., 2014; Kampf et al., 2016; Kean & Staley, 2021; 
Pelletier & Orem, 2014; Wagenbrenner & Robichaud, 2014), while a smaller number of process-based models 
exist (Goodrich et al., 2012; Robichaud et al., 2007). Studies comparing empirical and process-based models 
have not yielded clear evidence for a single approach that consistently performs well (Chen et al., 2013; Kinoshita 
et al., 2014). In the United States, the post-fire flood hazard models most widely used operationally are those 
developed by the United States Geological Survey to predict debris flow probability and volume (Cannon 
et al., 2010; Gartner et al., 2014; Kean & Staley, 2021; Staley et al., 2016, 2017). These empirical models were 
trained and tested using observations from over 300 debris flow events that occurred in several states in the 
western United States, the majority of them in southern California. Southern California is especially vulnerable 
to debris flow hazards based on combinations of steep topography, frequent wildfires, expansive urban develop-
ment, and intense precipitation (Kean & Staley, 2021).

Urban areas at risk of exposure to post-fire flood and debris hazards have been estimated in a number of ways 
for emergency preparedness measures such as risk communication to exposed populations, the placement of 
protective walls and barriers, and evacuation plans. Two-dimensional (2D) models for mud and debris flow 
hazards emerged in the 1980s with a water volume balance equation and momentum equations that account for 
the complex rheological behavior of non-Newtonian, hyperconcentrated flows including cohesive yield stresses, 
Mohr-Coulomb shear stress, viscous shear stress, turbulent shear stress, and dispersive shear stress (O’Brien 
et al., 1993). Application of 2D models requires a digital elevation model, Manning coefficient distribution, esti-
mates of parameters for viscous and yield stresses, and a configuration of hazard drivers such as rainfall rates and/
or streamflow rates from a mountain catchment. Furthermore, 2D models output spatio-temporal distributions 
of flood hazards (e.g., depth and velocity) needed for exposure assessment. The entrainment of sediment into 
flood flows increases volumetric flow rate, a process known as bulking (Jakob et al., 2005; Meyer et al., 1995; 
Meyer & Wells, 1997), and acts to further magnify hazards. In practice, 2D hazard models have been applied 
under the assumption of a bulked flow rate defined by a bulking factor k, which represents the ratio of the 
volumetric flow rate of the fluid-debris mixture to the flow rate of the fluid alone, and can be linked to fire 
severity (Gusman, 2011). Roughly speaking, a bulking factor of 1.00–1.25 corresponds to normal streamflow, 
a bulking factor of 1.25–1.67 corresponds to hyperconcentrated flow, and a bulking factor of 1.67–2.86 corre-
sponds to mud or debris flows (Gusman, 2011). These values follow definitions of debris flows as sediment-water 
mixtures with a sediment concentration of 50% or greater, and hyperconcentrated flows as mixtures with sedi-
ment concentrations of 20%–40% (Gusman, 2011; Pierson, 2005). 2D hazard models may assume a rigid bed (Liu 
& Huang, 2006; O’Brien et al., 1993) or erodible bed (Armanini et al., 2009; Li et al., 2018; Martínez-Aranda 
et  al.,  2022; Rosatti & Begnudelli,  2013). In the case of erodible bed models, an entrainment formulation is 
adopted to account for mass transfer from the sediment bed into the fluidized layer, and thus the bulking process 
is resolved. While this eliminates the need for a bulking parameter, additional parameters are typically required to 
resolve sediment entrainment and/or transport processes (e.g., Christen et al., 2010; Martínez-Aranda et al., 2022, 
and others). Whether fixed or erodible bed modeling of debris flow hazards is preferable for a particular applica-
tion will depend on the availability of data to parameterize models and tolerances for uncertainties and computa-
tional costs, as erodible bed models tend to have significantly higher computational costs than rigid bed models 
(Majd & Sanders, 2014).

Mitigation of post-fire flood hazards has mainly been approached with two types of infrastructure: debris basins, 
which capture eroded coarse sediment and debris at the outlet of mountain catchments, and flood channels, 
which are designed to convey mixtures of runoff and fine sediment past developed areas to downstream water 
bodies (Jennings & Brooks, 1982; Scott & Williams, 1978). Johnson and McCuen (1992) define a debris basin 
as “a structure designed to contain all or part of a single debris flow or multiple debris flows for the purpose of 
protecting homes, roads, and property downstream of a debris-generating area.” Debris basins have been used in 
the western United States, Japan, Europe, and Canada to mitigate hazards posed by sediment-laden flows, includ-
ing debris flows (Johnson et al., 1991; Johnson & McCuen, 1992; Osanai et al., 2010; Prochaska et al., 2008; 
Wallerstein et  al.,  1997; Willardson,  2020). In general, important design parameters for sizing debris basins 
include the frequency of the design flow event and the magnitude of the flow (Johnson & McCuen, 1992). In 
southern California, design practices vary regionally depending on local regulatory bodies, but generally call for 
the sizing of debris basins using a combination of probabilistic precipitation intensity data and empirical models 
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of sediment yield that depend on watershed attributes such as slope, area, soil properties, and burn severity 
(Gusman, 2011). Similarly, the sizing of flood channels is based on precipitation data and semi-empirical models 
of peak flood discharge (Gusman, 2011).

Infrastructure is designed to meet a specific standard of performance defined by an annual return period, T, or 
an annual exceedance probability p = 1/T, and following guidelines established by county-level governments 
(Gusman, 2011). For example, a channel designed to contain the 20-year return period flow event has an annual 
exceedance probability of 5%, or smaller if a safety factor is used. The exceedance probability of a flood chan-
nel, pc, will not necessarily be the same as the exceedance probability of the precipitation used to size it, pp, due 
to compounding factors that affect the likelihood of an overtopping event (i.e., when the flow rate through the 
channel exceeds its flow capacity). In particular, channels are designed using specific assumptions (models) 
about runoff and sediment loads produced by rainfall, and assuming regular maintenance to prevent loss of flow 
capacity. However, the frequency and intensity of precipitation and wildfires are affected by climate change 
(Dennison et al., 2014; Gershunov et al., 2019; Li & Banerjee, 2021; Swain et al., 2018; Westerling et al., 2006), 
and sequences of storm events may lead to rapid sedimentation of debris basins and channels causing loss of 
channel capacity (Gusman, 2011). The lack of regular maintenance of infrastructure (e.g., removal of sediment 
and debris) is also a growing problem based on resource constraints (Vahedifard et al., 2017). Hence, post-fire 
flooding represents a compound hazard affected by both natural and human factors (e.g., Sadegh et al., 2018).

Given that the role of flood infrastructure in compound post-fire flood hazards has not previously been quantified 
and is poorly understood, the objective of this study is to present a new model for hazard estimation applicable 
to present and future compound hazards. Specifically, we are interested in estimating the exceedance probability 
(and associated return period) of a flood channel downstream of a mountain catchment and debris basin vulner-
able to clogging with sediment. The ability to characterize compound hazards (i.e., exceedance probabilities) is 
important not only for improving the design of infrastructure and promoting infrastructure maintenance, but also 
for increasing risk awareness within affected communities (Cutter et al., 2018; Houston et al., 2019; Montz & 
Tobin, 2008). Moreover, improved understanding of exceedance probabilities can be paired with 2D simulations 
of extreme events for more effective risk communication (Luke et al., 2018; Sanders et al., 2020). Two specific 
questions about post-fire flood hazards will be addressed herein:

1.	 �How does the frequency of channel exceedances vary in areas exposed to post-fire compound flood hazards 
based on current design standards and maintenance approaches?

2.	 �How will the frequency of channel exceedances change in the future based on increasing fire frequency and 
fire severity?

The remainder of the study is organized as follows: Section 2 (Methods) presents the conceptual model and 
stochastic methods for capturing the interdependence between wildfires, rainfall, infrastructure sedimentation, 
and flooding. Section 3 (Results) shows the estimation of hazards for a range of fire frequencies and severi-
ties, infrastructure design standards, and maintenance approaches. Section 4 (Discussion) contrasts the return 
period  of channels due to the compound hazard versus those of the precipitation used for design due to the 
marginal hazard, and contemplates the implications for risk management. Section 5 presents conclusions.

2.  Methods
2.1.  Model Overview

We apply Monte Carlo (MC) methods to simulate the compound hazard (Kroese et  al.,  2014). MC methods 
provide a robust approach for characterizing the uncertainty inherent in estimates of compound hazards linked 
to the variability in the random variables that drive them–in this case, wildfire and precipitation. They can also 
be used to generalize complex models of physical systems into a set of basic events and interactions that is 
simpler, more computationally efficient, and more scalable than a model produced by analytic methods (Kroese 
et al., 2014). Unlike deterministic approaches to modeling hydrologic processes, stochastic approaches like MC 
methods allow modelers to use a single record of precipitation or floods to forecast a range of statistically possi-
ble futures for a given watershed, enabling a much richer understanding of future hydrologic conditions and 
evaluation of flood infrastructure (Vogel, 2017). Stochastic modeling approaches are preferable to deterministic 
ones when evaluating the implementation of different management alternatives because the former can determine 
whether a difference in outcomes between alternatives is significant in a statistical sense, while the latter can only 
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provide a single estimate indicating whether the outcomes differ. Moreover, stochastic modeling is valuable for 
estimating the probability that a particular management or design alternative achieves a specific goal, which is 
particularly useful information for flood management (Brand et al., 2020).

We consider a mountain watershed with a set of properties, p, that control the volumetric flow rate of clear 
streamflow, Q, and sediment, J, in response to precipitation, P. Elements of p may include various factors such 
as watershed morphology, soil properties, vegetative cover, or burn severity, and precipitation can be interpreted 
in various ways (e.g., hourly and daily). For the moment, we leave this in a general form so the derivation herein 
is most easily transferred between systems and poised to leverage the best available information on a site-by-site 
basis. Hence, we write streamflow and sediment flux at the watershed scale as follows.

𝑄𝑄w = 𝑓𝑓𝑄𝑄(𝐩𝐩, 𝑃𝑃 )� (1)

𝐽𝐽w = 𝑓𝑓𝐽𝐽 (𝐩𝐩, 𝑃𝑃 )� (2)

where the subscript w denotes watershed and the functions fQ() and fJ() characterize peak streamflow and peak 
sediment fluxes, respectively. For this study, we use the Rational Method to compute Qw as follows,

𝑄𝑄w =
𝑐𝑐𝑐𝑐𝑐𝑐

𝑡𝑡p
� (3)

where c is a dimensionless runoff coefficient representing the ratio of rainfall to surface runoff, P is the daily 
rainfall accumulation, A is the watershed area, and tp is a time scale representing the time to peak of a triangu-
lar hydrograph. We note that model dependency on geomorphological parameters will depend on the choice 
rainfall-runoff models (e.g., Chen et al., 2013; Goodrich et al., 2012; Kinoshita et al., 2014).

The total sediment volume associated with a storm event can be written in a general way as follows,

�–w = ∫

�s

0
�w ��� (4)

where ts represents the storm duration.

Debris basins are located at the outlets of mountain watersheds to capture coarse sediment and debris and prevent 
the clogging of downstream flood control channels, which are designed to convey only water and small amounts 
of fine sediment past developed areas into a downstream water body (Figure 1). The debris basins fill with eroded 
sediment during storms, especially those after fires, and are typically emptied during dry weather periods through 

Figure 1.  Conceptual diagram of the development of post-fire flood and debris flow hazards due to infrastructure clogging.
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excavation. If a debris basin fills completely, sediment fluxes bypass the debris basin and flow into a downstream 
flood channel where flow capacity is reduced through clogging, the settling out of sediment as the flow slows 
down, and increased flow resistance. The volume of sediment in a debris basin, �– b, can be modeled based on 
mass conservation as follows,

��–b
��

= �w − �c − �e� (5)

where Jc represents the volumetric flux of sediment flowing out of the debris basin and into the flood channel, 
and Je represents the flux of sediment removed from the debris basin by excavation. The sediment flux from the 
debris basin into the flood channel is assumed to be zero when debris basin storage is below capacity and equal 
to the inflow rate otherwise,

�c =

⎧

⎪

⎨

⎪

⎩

0 if�–b < �– des
b

�w otherwise
� (6)

where �– des
b  represents the design capacity of the debris basin. The excavation flux is driven by human activity and 

generally occurs episodically between precipitation events. For example, excavation may occur over several days 
to weeks during dry weather periods once the infrastructure has filled to a cleaning threshold (e.g., 85% full), 
subject to various constraints such as the availability of funding, wetland protection policies, and the Endangered 
Species Act (RCFCWCD, 2021). Je can thus be considered a function that is prescribed to vary over time depend-
ing on local maintenance practices. Additional details on the implementation of maintenance protocols within the 
model are provided in Section 2.5.

If the debris basin attenuates the flood peak, then the peak flow rate entering the channel can be expressed as a 
fraction of the peak flow from the watershed,

𝑄𝑄c = 𝛼𝛼b𝑄𝑄w� (7)

although in many cases the debris basin will not be designed to attenuate the flood peak and thus αb = 1.

The bulked flow of water and sediment, a simple sum of Equations 1 and 2, has been previously introduced for 
sizing infrastructure and quantifying hazards in areas impacted by mud and debris flows and appears as follows,

𝐵𝐵 = 𝑄𝑄 + 𝐽𝐽 = 𝑘𝑘𝑘𝑘� (8)

where k represents a bulking factor expressed as follows,

𝑘𝑘 =
𝑄𝑄 + 𝐽𝐽

𝑄𝑄
=

1

1 −
𝑐𝑐v

100

� (9)

where cv represents the percentage concentration of sediment by volume in the bulked flow. Streamflow in small 
watersheds and alluvial fans is typically characterized by a bulking factor of 1.25 or less (1.0 corresponds to 
clear  water), but after burn events, watersheds may produce hyperconcentrated flows with a bulking factor of up 
to 1.67 or mud and debris flows with a bulking factor of 2.0 or greater (Gusman, 2011). The magnitude of the 
bulking factor, k, is varied over time to represent the effects of the occurrence and severity of wildfires on water-
shed hydrology, as described in detail in Section 2.2.

Flood hazards downstream of mountain watersheds occur when the bulked flow rate into the flood channel, Bc, 
exceeds the channel capacity (more information on how channel design capacities are typically determined can 
be found in Section 2.4). While flood channels are designed to accommodate a peak discharge associated with a 
storm or flood of a certain return period, over time they may fill with sediment and may also grow vegetation that 
reduces channel capacity. Consequently, channel capacity, is assumed to decrease with sedimentation as follows,
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�eff
c =

⎧

⎪

⎨

⎪

⎩

�des
c

(

1 − �–c
�– des
c

)

if �–c
�– des
c

< 1

0 otherwise
� (10)

where 𝐴𝐴 𝐴𝐴des

c  is the design capacity of the channel, �– c is the volume of sediment in the channel and �– des
c  is the design 

volume of the channel. Now that both the bulked flow rate in the channel and the channel capacity are established, 
the flood hazard, H, is given by the exceedance of channel flow over capacity as follows,

𝐻𝐻 =

⎧
⎪
⎨
⎪
⎩

𝐵𝐵c −𝐷𝐷eff

c if𝐵𝐵c > 𝐷𝐷eff

c

0 otherwise

� (11)

The above formulation captures the interdependence between wildfires, precipitation, infrastructure sedimenta-
tion and hazards, and is poised to inform research into the ways in which flood hazards are impacted by changes 
in fires, rainfall, infrastructure design, and infrastructure maintenance. Several modes of interdependence are 
captured by the model as follows: First, wildfires alter watershed properties, p, that increase the bulk discharge 
(Equation 8) through increases in the clear water flux (Equation 1) and sediment fluxes (Equation 2). Second, 
bulked flows that cannot be contained by debris basins reduce the capacity of flood channels (Equation 10) and 
lower the threshold for channel bank overtopping (Equation 11). And third, the capacity of debris basins and 
channels is impacted by excavation and cleaning schedules, which in turn are impacted by available funding 
and  various environmental constraints (Section 2.5).

2.2.  Wildfire Occurrence and Severity Models

The bulking factor, k, is used to quantify the effect of wildfire on streamflow and sediment flux as a function of 
the time elapsed since the fire occurred. Multidecadal records of sediment production and streamflow from the 
San Gabriel Mountains of southern California show that the effect of wildfire on erosion and runoff is greatest 
immediately following the fire, which strips hillslopes of vegetation and may alter surficial soil properties, and 
decays exponentially during the first 5 years following fire as vegetation and surficial soils recover (Lavé & 
Burbank, 2004). Studies of sediment yields in the Transverse Ranges of southern California have used a similar 
exponential decay function termed a “lingering effect” to model the decreasing influence of wildfire on sediment 
production over time as watershed vegetation recovers; in these studies, the decay constant has been varied to 
represent a recovery time (i.e., time to return to pre-fire conditions) of 2–10 years (Gartner et al., 2009, 2014). 
Hence, the occurrence of a wildfire is represented by an increase in the bulking factor from a pre-fire, baseline 
level, k0, to a post-fire level, k1. Following the start of the fire, the bulking factor decays exponentially according 
an adjustable parameter termed the “recovery timescale” of the watershed, tr, as follows,

𝑘𝑘(𝑡𝑡) = 𝑘𝑘0 + (𝑘𝑘1 − 𝑘𝑘0) 𝑒𝑒
−𝑡𝑡∕𝑡𝑡r� (12)

where t is the number of days elapsed since the start of the wildfire. Once the bulking factor falls within 1% of 
k0, the watershed is no longer considered to be actively burned, and k(t) = k0 until the next fire occurs. Thus, the 
recovery time of the watershed following a given fire will depend on the value of the post-fire bulking factor, k1, 
which is taken to be a proxy for the severity of the fire. The greater the k1, the longer it will take for the bulking 
factor to return to its baseline level, k0. For each wildfire, k1 is simulated stochastically following Equation 14 
below.

Fire occurrence is modeled using an MC method that makes use of the probability that a fire will occur on a 
given day during the fire season, pf. This daily exceedance probability is modeled as a Bernoulli random variable 
as follows,

𝑝𝑝f = 1 −

(
1 −

1

𝑇𝑇f

)1∕𝑛𝑛

� (13)
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where Tf is the annual fire interval and n is the number of days in the fire season. The parameter Tf is adjustable 
and can be changed to simulate the effect of different historical or projected fire frequencies on post-fire flood 
hazards. On each day of the fire season, the output from a uniform random number generator, u ∼ U(0, 1), is 
compared to pf. If u < pf, an active burn is initiated and the bulking factor for that day is set to k1. Thereafter, the 
magnitude of the bulking factor will decay exponentially according to Equation 12 until it is within 1% of the 
pre-fire bulking factor, at which point it will be reset to k0. Otherwise, if u ≥ pf, then k(t) = k0.

In this study, fire occurrence is limited to the months of July to August (n = 62) according to the peak fire season 
in California (Li & Banerjee, 2021), but can be adjusted based on the fire season of any region or to simulate 
different climate change scenarios. We consider fire intervals of 50, 20, 15, 10, 5, and 2 years based on a map 
of fire intervals for major vegetation types in California from 1908 to 2012, which shows that the range of fire 
intervals for mountain watersheds in southern California spans from 7 to 52 years (USDA Forest Service, 2012). 
We include the 2-year and 5-year fire interval scenarios to represent possible futures in which wildfire frequency 
has increased relative to historical levels. Note that the selection of the 2-year and 5-year fire intervals is not based 
on specific predictions of future wildfire frequency in the region, but rather is intended to illustrate the sensitiv-
ity of post-fire flood hazards to hypothetical increases in fire frequency. In an effort to avoid an overly complex 
model of the effect of wildfire on watershed hydrology, only one active burn can be simulated at a time, which is 
a reasonable assumption at the watershed scale since a wildfire consumes fuel, and another wildfire is unlikely to 
occur in the same area while the watershed is recovering (Moody et al., 2013).

Given the considerable natural variability in fire intensity and thus burn severity of wildfires that may occur 
within a watershed over time, the post-fire bulking factor, k1, is modeled as a uniformly distributed random vari-
able with a specified range as follows,

𝑘𝑘1 = 𝑘𝑘min

1
+
(
𝑘𝑘max

1
− 𝑘𝑘min

1

)
𝑣𝑣� (14)

where 𝐴𝐴 𝐴𝐴min

1
 and 𝐴𝐴 𝐴𝐴max

1
 are the lower and upper limits of the range, respectively, and v ∼ U(0, 1). We use a uniform 

random distribution since no prior information is known about the distribution of post-fire bulking factors, and 
thus assign probabilities equally to all possible bulking factors within the specified range. The limits of the 
post-fire bulking factor range can be selected based on the range of observed sediment fluxes from a given 
watershed or to represent the effect of different burn severities on post-fire sediment fluxes. We assume that the 
post-fire bulking factor increases with increasing burn severity, an assumption supported by studies that found 
increasing sediment fluxes with increasing burn severity class (Cannon et al., 2010; Gartner et al., 2014; D. Vieira 
et al., 2015).

By representing wildfire occurrence and severity as stochastic processes, many scenarios of varying fire frequen-
cies and severities can be simulated and the potential effects of wildfire characteristics on post-fire flood hazards 
are more thoroughly explored. For this study, k1 was uniformly sampled from a range representing the severity 
of a fire as follows:

1.	 �Low burn severity: 1.10 < k1 < 1.25
2.	 �Moderate burn severity: 1.25 < k1 < 1.67
3.	 �High burn severity: 1.67 < k1 < 2.86

We chose these ranges for each burn severity class because they roughly demarcate transitions in flow types 
between normal streamflow, hyperconcentrated flow, and mud flows and debris flows (Gusman, 2011).

2.3.  Precipitation Model

Following Wilks (1998), precipitation was simulated as a stochastic process using a first-order Markov chain 
to describe precipitation occurrence and MC sampling from an appropriate probability distribution to describe 
precipitation amounts for days with rain (e.g., Richardson, 1981; Stern & Coe, 1984). The Monte Carlo Markov 
Chain (MCMC) rainfall simulator was developed using a long-term daily precipitation record (1932–2020) from 
the Big Tujunga Dam station in Los Angeles, California (ID: USC00040798) retrieved from the Climate Data 
Online database maintained by the U.S. National Oceanic and Atmospheric Administration (NOAA, n.d). This 
meteorological station was chosen for its length of record and its location at high elevation in the San Gabriel 
Mountains, since watersheds prone to post-fire flood hazards tend to be mountainous.
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To preserve the distribution of wet versus dry years present in the long-term precipitation data set, we divided the 
data into subsets for wet years (N = 27 years) and dry years (N = 44 years), where “wet years” were defined as 
those with total annual precipitation greater than or equal to the mean. Years missing 10% or more daily values 
were excluded from the analysis. We used the wet-year and dry-year designations to calculate the conditional 
probability of transitioning from a dry year to a wet year, pDW, and from a wet year to a wet year, pWW. This 
was done by counting the number of transitions for each possible type of transition: dry-to-wet (DW), dry-to-
dry (DD), wet-to-dry (WD), and wet-to-wet (WW). Then the annual transition probabilities were calculated as 
follows.

𝑝𝑝DD =
𝐹𝐹DD

𝑁𝑁D

� (15)

𝑝𝑝DW = 1 − 𝑝𝑝DD� (16)

𝑝𝑝WW =
𝐹𝐹WW

𝑁𝑁W

� (17)

where F represents the number of times a transition occurred and N represents the number of wet or dry years on 
record (Adane et al., 2020; Shahraki et al., 2013; Sumeet et al., 2013).

Modeling daily precipitation occurrence as a first-order Markov process assumes that the probability of observ-
ing precipitation on a given day depends only on whether precipitation occurred the previous day, regardless of 
whether precipitation occurred on earlier days in the time series. We define a “wet day” as a day on which at 
least the minimum reportable precipitation amount occurred, 0.254 mm. The parameters p01 and p11 represent the 
conditional probability of transitioning from a dry day to a wet day and transitioning from a wet day to a wet day, 
respectively. These daily transition probabilities were estimated from the wet-year and dry-year subsets separately 
by grouping the data by ordinal day (1–365, where 365 represents December 31 of a non-leap year) and perform-
ing the same calculations in Equations 15–17 on a daily time scale. Again, years missing 10% or more daily values 
were excluded from the analysis. Average daily transition probabilities were calculated using a 14-day moving 
average of the empirical probabilities to smooth extreme values (Figure S1 in Supporting Information S1).

The MCMC rainfall simulator generates m × 365 days of a daily precipitation time series, where m is the number 
of years in the time series, as follows: for the first year of the time series, a random number is generated to deter-
mine the wet or dry status of the first year, with a 50% chance for either outcome. The appropriate wet-year or 
dry-year daily transition probabilities are then used to simulate 1 year of a daily precipitation time series. This is 
done by generating a random number to determine the wet/dry status of the first day in the time series, which in 
turn determines the “threshold transition probability,” pt, that will be used to predict the wet/dry status of the next 
day. The threshold transition probability for day t is given by,

𝑝𝑝t =

⎧
⎪
⎨
⎪
⎩

𝑝𝑝01 if𝑋𝑋𝑡𝑡−1 = 0

𝑝𝑝11 if𝑋𝑋𝑡𝑡−1 = 1

� (18)

For each day of the year, pt is compared to the output from a uniform random number generator, ut ∼ U(0, 1). 
Rainfall occurrence on day t is then calculated as follows,

𝑋𝑋𝑡𝑡 =

⎧
⎪
⎨
⎪
⎩

1 if 𝑢𝑢𝑡𝑡 ≤ 𝑝𝑝t

0 otherwise

� (19)

The precipitation amount for each wet day is determined by randomly sampling from a Weibull distribution fit 
to the observed non-zero precipitation amounts from wet years and dry years separately. The Weibull distribu-
tion was selected after comparing the fit of four probability distributions commonly used for non-zero rainfall 
amounts in the literature (e.g., Sharma & Singh, 2010; F. M. C. Vieira et al., 2018; Ye et al., 2018). Goodness of 
fit was assessed with a comparison of quantile-quantile (Q-Q) plots between the fitted probability distributions 
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(Figure S2 in Supporting Information S1) and Q-Q plots of the wet-year and dry-year subsets versus the fitted 
Weibull distribution (Figure S3 in Supporting Information S1).

The wet/dry status of the next year in the time series is determined in a similar manner to that shown in Equa-
tions 18 and 19, except the annual transition probabilities, pDW and pWW, are used.

2.4.  Infrastructure Design Standards

In southern California, due to the frequency of post-fire flood events, many flood control agencies estimate bulk-
ing factors or sediment yields for watersheds that produce high levels of sediment, burn frequently, or are located 
upstream of critical infrastructure, such as hospitals or transportation infrastructure (Gusman, 2011). Bulking 
factors are applied as a safety factor to the peak discharge used to design flood control channels, while sediment 
yields are estimated to determine the design capacity of debris basins. The specific equations and procedures 
used to determine design bulking factors and sediment yields vary widely from county to county, but in general 
they involve a design storm of a certain return level, which is translated into a design peak discharge using 
a rainfall-runoff relationship. Two counties in particular, Los Angeles and Ventura County, provided detailed 
descriptions of the design standards for debris basins and flood channels in design manuals (LACDPW, 2006a; 
2006b; VCWPD, 2005, 2017). Specifically, Los Angeles County requires all debris basins to be designed for a 
50-year design storm (termed the “Capital Flood”), and the sediment yield for a “design debris event” is deter-
mined using curves calculated for each “debris producing area” in the county based on watershed area and an 
assumption of 4 years since the watershed was last burned. Bulking factor curves are used to calculate bulking 
factors used to design flood channels in sediment producing watersheds where a debris basin does not exist 
(LACDPW, 2006b). Ventura County, on the other hand, requires debris basins for watersheds with areas <5 mi 2 
to be designed to hold 125% of the sediment volume expected from a 100-year design storm, provided sufficient 
land is available. The design sediment yield is determined using a regression equation that takes into account 
the watershed area and morphology, as well as a dimensionless “fire factor” that represents the percentage of 
non-recovery of a watershed following a burn; normal (i.e., non-emergency) design conditions assume 4.5 years 
since the watershed was last burned. It should be noted that the Ventura County Debris Basin Manual states, “A 
number of the debris basins do not have sufficient storage for the 100-year debris yield and therefore could possi-
bly fill with sediment during extreme storm events” (VCWPD, 2005). Bulking factors are applied to the design of 
flood channels downstream of watersheds known to produce high levels of sediment or experience frequent fires 
as well as those designed to protect critical infrastructure shortly after a fire (VCWPD, 2017).

The two key design criteria implemented in the model to represent regional differences in infrastructure design 
standards are the precipitation of the design storm, P des, and the decision whether to use a clear-water or a bulked 
peak discharge as the design discharge. In the model presented here, P des is determined by performing an extreme 
value analysis on a 100-year precipitation time series generated by the MCMC rainfall simulator. A Generalized 
Extreme Value distribution was fit to the 100-year time series of annual maximum precipitation to determine the 
magnitudes of the 50-year and the 100-year design storms (Figure S4 in Supporting Information S1). Next, the 
peak discharge associated with the return level of the design storm is calculated using the Rational Method as 
follows,

𝑄𝑄
peak

w =
𝑐𝑐𝑐𝑐 des𝐴𝐴

𝑡𝑡p
� (20)

where 𝐴𝐴 𝐴𝐴
peak

w  is the peak clear-water discharge from the watershed, c is a dimensionless runoff coefficient, A is the 
watershed area, and tp is a time scale representing the time to peak of a triangular hydrograph. Note, however, that 
any rainfall-runoff model may be used to calculate 𝐴𝐴 𝐴𝐴

peak

w  .

The design discharge may be calculated as either a clear-water or a bulked volumetric flow rate. If the bulked 
design discharge is used, a design bulking factor, kdes, will be applied to the clear-water discharge, 𝐴𝐴 𝐴𝐴

peak

w  , to deter-

mine the design capacity of the flood control channel. Otherwise, the channel design capacity is set equal to 𝐴𝐴 𝐴𝐴
peak

w  . 
Similarly, the capacity of the debris basin also depends on the design storm return period and whether bulking is 
applied to the flow from the watershed. Based on a clear-water design standard or a bulked design standard, the 
capacity of the debris basin is calculated as follows,
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�– des
b =

⎧

⎪

⎨

⎪

⎩

0.15 × �� des� clear-water standard

(�des − 1) �� des� bulked standard
� (21)

assuming that the concentration of sediment in normal streamflow within an alluvial fan is typically at most 15% 
by volume (Gusman, 2011). Note that the use of the 15% sediment concentration is not a safety factor, but rather 
an approximation of the typical sediment flux expected from an unburned watershed used to determine the design 
capacity of the debris basin assuming a clear-water design standard.

In the present study, we compare four sets of infrastructure design standards generalized from the design 
approaches described above:

1.	 �50C: 50-year design storm (pp = 0.02), clear-water design discharge
2.	 �50B: 50-year design storm (pp = 0.02), bulked design discharge
3.	 �100C: 100-year design storm (pp = 0.01), clear-water design discharge
4.	 �100B: 100-year design storm (pp = 0.01), bulked design discharge

It is important to note that by including a clear-water design discharge, we do not imply that such a design 
standard is operationally applied to watersheds that are known to burn frequently or produce high levels of 
sediment. Rather, it is included to provide a conceptual contrast to the effects on the flood hazard of bulking the 
design discharge. Including a clear-water design standard also allows the exploration of what might happen if a 
watershed not previously identified as fire-prone was burned and its infrastructure was not designed to convey 
significantly bulked flows.

Finally, we note that the flood infrastructure design standards described herein are representative of debris basin 
design globally, in that the capacity of the infrastructure is determined based on the magnitude of an event 
with a particular (design) return period (Johnson et al., 1991; Johnson & McCuen, 1992; Osanai et al., 2010). 
We acknowledge, however, that differences in designs can be expected based on differences in equations for 
frequency analysis and the estimation of (post-fire) flow rates.

2.5.  Infrastructure Maintenance Models

One example of a typical maintenance schedule for debris basins in Riverside County is annual inspection during 
the summer months to determine maintenance needs; if the cleaning threshold is met or exceeded, the debris basin 
will be returned to 100% capacity. In a year during which a major fire has occurred, the capacity of debris basins 
is restored or sometimes enhanced beyond 100% (i.e., with excavation beyond the initial grading of the  basin) as 
soon as possible following fire containment. While excavation of debris basins can occur during the wet season, 
it is avoided by flood control agencies when possible because wet sediment is difficult to excavate, costly to 
move, and may not be accepted at the ultimate location of disposal. The excavation rate varies depending on how 
urgently the need for cleaning is, that is, how close the debris basin is to overfilling, with faster cleaning rates and 
higher maintenance costs the closer the capacity is to 0% (RCFCWCD, 2021).

These maintenance protocols have been generalized and implemented as four maintenance approaches:

1.	 �S: Summer Cleaning
2.	 �SA: Summer + After-fire Cleaning
3.	 �SAW7: Summer + After-fire + Wet Season Cleaning with 7-day waiting period
4.	 �SAW1: Summer + After-fire + Wet Season Cleaning with 1-day waiting period

When the Summer Cleaning model is active, the levels of sediment in the debris basin and the flood channel are 
checked each day during the summer months (June 1 to September 29); if the level of sediment in a given facility 
is greater than or equal to the cleaning threshold, the facility will be “excavated” and returned to full capacity.

When the After-fire Cleaning model is active, if a fire occurred during a given year, the debris basin will be 
“excavated” on September 30, the nominal last day of the summer, and returned to full capacity.

Finally, when the Wet Season Cleaning model is active, the level of sediment in the debris basin is checked each 
day during the wet season (October 1 to April 30); if the level of sediment in the debris basin is greater than or 
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equal to the cleaning threshold and if a certain number of days have passed without rain, the debris basin will 
be “excavated” at a certain cleaning rate (volume of sediment per day). The “waiting period” between storms 
and cleaning rate are used to represent the effort to incrementally excavate sediment during dry periods between 
storms in the wet season; both parameters can be estimated from debris basin cleaning records.

2.6.  Model Summary and Limitations

The framework developed herein for hazard simulation can be considered a lumped system dynamics model for 
estimating exceedance probabilities in channel reaches downstream of debris basins and upstream of confluences 
from other streams. Key physical elements of the framework include the watershed, debris basin, and flood 
channel as shown in Figure 1, and the key state variables include the bulking factor, debris basin storage of 
sediment, channel storage of sediment, daily precipitation accumulation, daily sediment fluxes, and flood peaks 
accounting for water and sediment fractions. Each of these state variables represents approximations of processes 
that could be subject to more refined modeling. In particular, the generation of runoff and entrainment of solids 
from hillslopes and channels involves many different physical processes active at a range of spatial and temporal 
scales (Jakob et al., 2005; Moody et al., 2013; Shakesby, 2011). It should be noted that while unit-area runoff 
and sediment fluxes are generally expected to decrease with increasing contributing area in semiarid regions 
(e.g., Mayor et al., 2011; Nadal-Romero et al., 2011; Wagenbrenner & Robichaud, 2014), the model as currently 
configured estimates that these variables are insensitive to changes in watershed area (Figure S5 in Supporting 
Information  S1). This is a consequence of calculating clear-water runoff from the watershed (Qw) using the 
Rational Method (Equation 3) and sediment flux from the watershed (Jw) as a linear function of Qw and the 
bulking factor, k. Additionally, the clogging of channels may result from complex interactions between channel 
geometry, channel vegetation, hydraulic structures, and the flow regime such as whether and to what extent the 
flow entrains large woody vegetation, mud, and rocks (Luke et al., 2018; Piton & Recking, 2016; Rickenmann 
et al., 2006). Finally, the probability of wildfire occurrence and the severity of a given wildfire depend on several 
factors including the availability and composition of fuel, climatic controls such as humidity, and the topography 
of the landscape (Finney, 2005; Littell et al., 2016). In this light, stochastic modeling approaches are advanta-
geous because uncertainty can be captured with random variables that span a range of possible values, as we have 
done for the bulking factor.

2.7.  Hazard Simulations

Results are organized into two sets of simulation scenarios: Model Illustration Scenarios and Stochastic Hazard 
Scenarios. The Model Illustration Scenarios demonstrate how the framework estimates compound post-fire flood 
hazards under three infrastructure management scenarios using 100-year stochastic simulations that account for 
the combined effects of wildfires, rainfall, infrastructure design, and maintenance. The Stochastic Hazard Scenar-
ios consist of four sets of scenarios used to systematically investigate post-fire flood hazards in relation to four 
separate factors: infrastructure design standard, infrastructure maintenance approach, fire interval, and fire sever-
ity. The model settings for each simulation scenario are shown in Table 1.

The model parameters that were not varied within a given simulation scenario were kept constant between the 
different scenarios to ensure a fair comparison. The baseline parameter values used in this study were chosen 
to simulate a representative watershed system and flood infrastructure system in southern California and are 
displayed in Table 2. The same synthetic precipitation time series was used in each simulation (displayed in 
Figure 2a) for consistency across results.

2.8.  Model Outputs

For each scenario, a total of 3,000 MC trials were simulated, each trial yielding a 100-year daily time series of 
peak channel flows and channel capacities from which the number of years per century with at least one channel 
exceedance, nc, was computed. The annual exceedance probability, pc, was computed for each MC trial empiri-
cally as follows,

𝑝𝑝c = 𝑛𝑛c∕100� (22)
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and a flood return period, Tc, follows as,

𝑇𝑇c = 1∕𝑝𝑝c for 𝑝𝑝c > 0� (23)

The progression of MC trials yields distributions of Tc values that are examined to infer dependencies on infra-
structure design standards, infrastructure maintenance approaches, fire interval, and wildfire severity. Distri-
butions are presented by combining box plots and violin plots. Box plots are displayed as follows: widths are 

Scenario name Model settings a Model output Figure

Model Illustration Scenarios Scenario 1: Low Protection 50C, S Overbank flows (m 3/s)  2

Scenario 2: Moderate Protection 50B, S

Scenario 3: High Protection 50B, SAW1

Stochastic Hazard Scenarios Design Standards and Fire Interval �50C, 100C, 50B, 100B
�50, 20, 15, 10, 5, 2 (years)

Empirical flood return period (years)  3

Maintenance Approach and Fire Interval S, SA, SAW7, SAW1 1. Empirical flood return period (years)  4

50, 20, 15, 10, 5, 2 (years) 2. Sediment  5

excavated from

infrastructure (m 3)

Design Standards and Burn Severity �50C, 100C, 50B, 100B
�1.10 < k1 < 1.25,
�1.25 < k1 < 1.67,
�1.67 < k1 < 2.86

Empirical flood return period (years)  6

Maintenance Approach and Burn Severity �S, SA, SAW7, SAW1
�1.10 < k1 < 1.25,
�1.25 < k1 < 1.67,
�1.67 < k1 < 2.86

Empirical flood return period (years)  7

 aAbbreviations are defined in Sections 2.2, 2.4, and 2.5.

Table 1 
Simulation Scenarios

Variable/parameter Value Rationale

Watershed area, A 3 km 2 Average area of watershed in southern California (Gartner et al., 2014)

Pre-fire bulking factor, k0 1.00 Corresponds to clear streamflow

Post-fire bulking factor, k1 1.25–2.86 Represents a range of flow types from hyperconcentrated flow to debris 
flows

Fire interval, tf 20 years Roughly representative of southern California (USDA Forest 
Service, 2012)

Design standard 50B Represents standard used by Los Angeles County, which has set 
precedents in the estimation of design bulking factors for the region 
(Gusman, 2011)

Design bulking factor, kdes 1.20 Based on past studies by the Ventura County Watershed Protection 
District (VCWPD, 2017)

Maintenance approach S A commonly used approach in southern California (RCFCWCD, 2021)

Infrastructure cleaning threshold 85% filled Based on correspondence with Riverside County (RCFCWCD, 2021)

Debris basin cleaning rate 1,800 m 3/day Based on debris basin excavation records provided by Riverside County

Watershed recovery timescale, tr 365 days Assumes recovery time of 5 years following debris flow event (Lavé & 
Burbank, 2004)

Runoff coefficient, c 0.3 Used to calculate Qw; based on commonly used values for natural land 
use types with >6% slope

Table 2 
Baseline Model Parameters
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proportional to the square root of the sample size for each scenario; the central line corresponds to the median and 
the lower and upper edges correspond to the first and third quartiles, respectively; the upper whisker is calculated 
as min(max(x), Q3 + 1.5 × IQR); the lower whisker is calculated as max(min(x), Q1 1.5 × IQR); and outliers are 
not displayed. For the violin plots, Gaussian kernel smoothing was used.

We note that a “No Fires” scenario was also considered as a check on numerical consistency. In the absence of 
wildfire, the compound hazard reverts to the marginal hazard scenario (precipitation and runoff in the absence 
of wildfire), and the channel return period matches the precipitation return period, Tc = Tp. In all cases, the 
computed median value of Tc from 3,000 MC simulations was found to match the return period (either 50-year or 
100-year) of the precipitation return level used for runoff modeling, peak discharge estimation (Equation 1), and 
sizing of channels according to the clear-water design standard.

3.  Results
3.1.  Illustration of Compound Post-Fire Flood Hazard Estimation

The simulation begins with a 100-year stochastic time series of daily precipitation (Figure 2a), the bulking factor 
(Figure 2b), and daily peak bulked flows into flood channels (Figure 2c, blue stem plot). Note that the simulation 
includes five fire events with different peak bulking factors, which correspond to random numbers, and that the 
bulking factor exponentially decays back to a baseline value of unity for several years after each fire event. The 
filling of infrastructure with sediment is sensitive to the management scenario (Scenario 1, 2, or 3), which in 
turn impacts the capacity of the flood channel (Figure 2c, orange, yellow, and purple lines, respectively) and the 
number of days when peak bulked flows exceed channel capacity (Figures 2d–2f, respectively).

Hazards can be estimated based on the number of years or days with exceedances of the channel capacity. 
Figures 2d–2f show that with increasingly conservative flood management approaches (Scenario 1, 2, and 3, 
respectively), the number of years with exceedances of channel capacity is reduced (9, 5, and 3 out of 100) and 
the number of days with exceedances is reduced (115, 79, and 45 over 100 years).

Figure 2.  Time series of (a) daily precipitation, (b) bulking factor, (c) peak bulked flows from the debris basin into the channel and (d–f) the corresponding time series 
of overbank flood flows for three management scenarios. Management scenarios are defined in Table 1. The effective flood channel capacity time series for the three 
scenarios are compared in panel (c).
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An important dynamic captured by the simulation framework is the coincidence of high bulking factors and high 
peak precipitation, which leads to high peak bulked flows. For example, following a fire event in Year 10 that 
yields a bulking factor exceeding 2.0, overtopping events are predicted across all three management scenarios 
with rainfall less than 150 mm/day; on the other hand, rainfall of nearly 300 mm/day in Year 20 only yields a 
small rate of overtopping in Scenario 1, while no flooding is predicted under Scenarios 2 and 3.

3.2.  Flood and Debris Hazards Versus Fire Interval

Figure 3 shows Tc distributions across four different infrastructure design standards (50C, 100C, 50B, and 100B) 
and six different fire intervals (50-year, 20-year, 15-year, 10-year, 5-year, and 2-year). Return period is expected 
to decrease below that of the precipitation design level (50 or 100 years) with wildfires that alter runoff and 
sediment production, and Figure 3 shows the rates of decrease with decreasing fire intervals. Notably, median 
flood return period was computed to be 2–10.5 times smaller than expected based on a 50-year design standard 
and 3–16 times smaller than expected based on a 100-year design standard. For example, infrastructure designed 
based on a 50-year design storm assuming clear-water discharge (50C) delivers protection corresponding only 
to a 10-year return period when the fire interval is 10 years. Further, infrastructure designs that take a more 
conservative approach, such as a 100-year design storm assuming a bulked discharge (100B), only offer protec-
tion corresponding to a 20-year return period when the fire interval is 10 years. The most conservative design 
scenario (100B) produces a median flood return period that is 1.8 times larger than that of the least conservative 
design scenario (50C), across all fire frequencies.

Figure 4 shows Tc distributions across four different maintenance approaches (S, SA, SAW7, and SAW1) based 
on the same fire intervals as before and infrastructure designed based on a 50-year storm and a bulked discharge 
(50B). The comparison of the flood return period distributions shows that differing maintenance approaches play 
a major role in moderating risks. For example, the most conservative maintenance scenario (SAW1) produces a 
median flood return period that is twice as large as that of the least conservative maintenance scenario (S).

Sediment management costs tend to vary based on a number of factors such as sediment size distribution, pres-
ence of contaminants, challenges with access, level of moisture, and access to a disposal site (Brand et al., 2020), 
but a controlling consideration is the volume of material that needs to be removed.

Figure  5 shows the total volume of sediment excavated from debris basins (Figure  5a) and flood channels 
(Figure  5b) per century under the each of the maintenance models. The volume of sediment removed from 
debris basins increases with more intensive maintenance practices, and this results in a decrease in the amount 

Figure 3.  Simulated distributions of flood return period versus infrastructure design standard (50C, 50B, 100C, and 100B) and fire interval.
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of sediment removed from flood channels. The median sediment volume removed from the debris basin across 
fire frequencies for the SAW1 maintenance scenario was approximately 2.2 times greater than that of the S main-
tenance scenario. As a result, about 52% less sediment needed to be removed from the channel under the SAW1 
scenario than under the S scenario. Figure 5 also shows that the amount of sediment that needs to be excavated 
from infrastructure per century increases dramatically with decreasing fire interval: under the 2-year fire interval 
scenario, the amount of sediment removed from the debris basin was 9.7 times greater and the amount removed 
from the flood channel 12 times greater than that under the 50-year fire interval scenario across all maintenance 
approaches.

3.3.  Flood and Debris Hazards Versus Burn Severity

Attention now turns to the influence of burn severity on flood return periods, which enters the modeling frame-
work through the bulking factor, k. Figure 6 shows Tc distributions across the four infrastructure design standards 
(50C, 100C, 50B, and 100B) and three different levels of burn severity (Low, Moderate, and High). Figure 6 
shows that with increasing burn severity, flood return periods are reduced. For example, in the case of Moderate 
Burn Severity, infrastructure designed based on a 100-year design storm and bulked design discharge (100B), 
the most conservative design standard considered, delivers protection corresponding to a 100-year return period, 
based on the median value. In transitioning from Moderate to High Burn Severity, the median Tc for design stand-
ard 100B is reduced from 100 to 33.3 years, corresponding to a threefold increase in flood frequency.

Figure 7 shows Tc distributions across the four maintenance approaches (S, SA, SAW7, and SAW1) and three 
different levels of burn severity (Low, Moderate, and High). These simulations are based on infrastructure 
designed with a 50-year bulked (50B) design standard, and for cases of Low Burn Severity, that level of protection 
is exceeded under all maintenance approaches: the median value of Tc is 100 years or greater in all cases. With 
Moderate Burn Severity, the median value of the simulated Tc distribution is 50 years based on the summer-only 
cleaning model (S) and increases to 100 years with the three other maintenance models. And finally, the case 
of High Burn Severity, the median Tc falls to 25 years for the summer cleaning scenarios (S and SA) and to 
33.3  years for the SAW7 scenario, but retains the 50-year level of protection using the SAW1 maintenance 
approach. In the case of the High Burn Severity, the level of bulking is much higher than that assumed for infra-
structure design purposes (kdes = 1.2), which leads to a major reduction in the level of infrastructure performance 
compared to that of the Low and Moderate Burn Severity scenarios.

Figure 4.  Simulated distributions of flood return period versus infrastructure maintenance approach (S, SA, SAW, and SA1) and fire interval.
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4.  Discussion
The previous results clearly show that peak bulked flows may exceed the capacities of channels located below 
burn areas at frequencies far greater than inferred by the exceedance probability of precipitation used for infra-
structure design. To this end, we define a hazard amplification factor,

𝐴𝐴𝐹𝐹 = 𝑇𝑇p∕𝑇𝑇c = 𝑝𝑝c∕𝑝𝑝p� (24)

which represents a ratio of the frequency of overtopping events for the marginal hazard (precipitation in the 
absence of wildfire) to that of the compound hazard. Results presented here point to hazard amplification factors 
ranging from 1.0 to 16.0 across all simulation scenarios.

To get a sense of present post-fire flood risks, consider the range of hazard amplification factors that results from 
scenarios combining the 50 and 100B design standards with the range of historically observed fire intervals in 

Figure 5.  Simulated distributions of sediment volume removed from (a) debris basins and (b) flood channels per century versus maintenance approach (S, SA, SAW7, 
and SAW1) and fire interval.
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southern California, 7–52 years (USDA Forest Service, 2012): the median hazard amplification factors are 1.0, 
2.0, 4.0, and 6.0 for the 50B/52-year scenario, 100B/52-year scenario, 50B/7-year scenario, and 100 B/7-year 
scenario, respectively. For context, we note that the 50B design standard is a generalized representation of the 
design standard used by Los Angeles County (LACDPW, 2006a; LACDPW, 2006b), which operates nearly 200 
debris basins across the county.

Now consider future scenarios in which the fire interval decreases to 5 or 2 years, resulting in median amplifica-
tion factors of 4.5 and 7.0 for the 50B design standard and 7.0 and 11 for the 100B design standard, respectively 
(Figure 3). These constitute compound hazard estimates up to an order of magnitude greater than the return 

Figure 6.  Simulated distributions of flood return period versus infrastructure design standard (50C, 50B, 100C, and 100B) and fire burn severity (Low, Moderate, and 
High). Missing values are due to a lack of annual channel exceedances during simulation trials.

Figure 7.  Simulated distributions of flood return period versus infrastructure maintenance approach (S, SA, SAW7, and SAW1) and fire burn severity (Low, Moderate, 
and High). Missing values are due to a lack of annual channel exceedances during simulation trials.
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period for which the flood infrastructure is designed. With respect to our choice of 2 years for the lower bound of 
the fire interval, we do not expect fire intervals in the region to decrease below this value based on projections of 
future fire intervals and a review of post-fire watershed recovery in Mediterranean climates that found a minimum 
recovery period of 2 years (Gao et al., 2021; Wagenbrenner et al., 2021). This simple comparison demonstrates 
the potential of the modeling framework to predict future hazards based on any distribution of hazard drivers (e.g., 
fire interval, fire severity, precipitation intensity, and changes in maintenance). Previous studies have documented 
the value of stochastic modeling for studying infrastructure performance (Byun & Hamlet,  2020), and there 
is growing interest in understanding non-stationarity in flood hazards. For example, non-stationarity in flood 
hazards has been linked to land use or land cover change (Luke et al., 2017), sea level rise (Wahl et al., 2017), 
and more intense precipitation extremes (Brunner et al., 2021; Swain et al., 2018). However, predicting future 
distributions of hazard drivers is not straightforward. For example, projections of future precipitation have proven 
challenging, especially for California (Huang et al., 2020). That said, our model can be used to determine the 
consequences of assuming a particular distribution for a given hazard driver on the post-fire flood hazard, which 
may prove useful to flood management agencies until the uncertainty in projections is reduced.

The design and construction of flood infrastructure, as well as its maintenance, are affected by many factors 
including available financial resources and government permit requirements. Maintenance costs for infrastruc-
ture cleaning generally scale with the volume of material to be excavated, and the timing of the excavation. 
Excavation during the wet season may be several times more expensive than dry season excavation due to the 
physical processing required of wet sediment and mud, the challenge of finding a disposal site, and other factors 
(RCFCWCD, 2021). Modeling results show the volumes of material requiring excavation increase by about an 
order of magnitude as fire interval decreases from 50 to 20 years (Figure 5). Furthermore, simulations show that 
the volumes of material requiring excavation from channels decrease as excavation of debris basins becomes 
more aggressive. Our model produces quantitative estimates of the magnitude of excavation required to maintain 
flood infrastructure performance that could help flood management agencies evaluate the cost-effectiveness of 
different maintenance approaches under multiple climate change scenarios and multidecadal planning timescales.

Increased awareness of hazard amplification among exposed populations could prove especially valuable 
for public safety. Given the short time period between wildfire containment in Summer or Fall and potential 
precipitation-induced flooding and debris flows in Winter or Spring, emergency responders and residents of the 
wildland-urban interface could be fatigued from fire mitigation and evacuation and less able to respond quickly 
to post-fire flooding and debris flows. Furthermore, residents who trust that debris basins and flood control 
channels will be sufficient to contain post-fire runoff and who are unaware of potential overtopping could be 
relatively unconcerned about flooding and debris hazards and be less prepared to respond (Houston et al., 2019; 
Hutton et al., 2019; Montz & Tobin, 2008). In addition, post-wildfire debris flows can travel with surprising 
speed several kilometers from the burn area, impacting unexpecting residents of the urbanized lowlands who in 
many cases may be of a lower socioeconomic status with fewer resources to respond compared to residents on 
higher ground along the wildland-urban interface (Figure 1). Impacts on lowland residents could be particularly 
severe if sediment fluxes clog downstream flood control infrastructure resulting in unpredictable flow paths 
through these communities. For these reasons, advancing a greater understanding about hazard amplification and 
the potential limitations of flood control protections among emergency agencies and residents of these areas will 
be very important given the expected intensification of fire and storm events in coming years.

5.  Conclusion
In this study, a new modeling framework is developed for estimation of compound post-fire flood hazards below 
mountain catchments based on multiple interdependent factors including the frequency and severity of wild-
fires, the effect of wildfire on sediment production and flood peaks, the presence of debris basins and flood 
channels to mitigate hazards, the loss of channel capacity from sedimentation and clogging, and the restoration 
of channel capacity with infrastructure maintenance. Compound hazards are estimated by counting overtopping 
events within century-long Monte Carlo simulations with stochastic inputs. While the model is applied here with 
parameters representative of southern California, it can be parameterized for other regions, making it highly 
transferable.
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Application of the model shows that the hazard facing human populations may be up to an order of magnitude 
greater than what would be expected based on the return period of the primary hazard driver (rainfall) used 
for infrastructure design. Moreover, we find that this hazard amplification is sensitive to design standards. For 
example, in southern California where fire intervals are roughly 20 years on average, infrastructure designed 
based on extreme rainfall with a 50-year return period yields a level of protection corresponding to a 15-year or 
25-year return period depending on whether a clear-water (50C) or bulked flow (50B) design approach is used, 
respectively. This corresponds to a hazard amplification of 2.0–3.3. Similarly, designs based on extreme rainfall 
with a 100-year return period yields a level of protection corresponding to roughly 20-year and 30-year return 
periods depending on whether a clear-water (100C) or bulked flow (100B) design approach is used. This corre-
sponds to a hazard amplification of 3.3–5.0. Considering that the 50 and 100B design standard scenarios were 
based on infrastructure design standards currently used by two highly populated counties in southern California, 
these hazard amplification factors point to concerning limitations to the protection of human development from 
post-fire flood risk.

Simulations also show that differing maintenance approaches influence hazard amplification. For example, with 
a 20-year fire interval and a 50-year bulked design standard, the flood return period can range from 25 to 50 years 
across the four maintenance scenarios based on operational maintenance approaches in Riverside County. This 
corresponds to a hazard amplification of 2.0 and 1.0, respectively.

Stochastic simulations also reveal the sensitivity of compound post-fire flood hazards to a prominent aspect of the 
effects of climate change in southern California, increased wildfire frequency. For example, if fire intervals were 
to shift from 20 to 10 years, the median flood return period for the 50-year bulked flow design approach would 
be reduced from 25 to 17 years. Hence, the hazard amplification would increase from 2.0 to 3.0. Furthermore, 
simulations show that shifts in burn severity also increase the hazard amplification. For example, infrastructure 
that is constructed based on a 50-year bulked flow design standard and experiences only moderate burn severity 
events (which match the design standard) exhibit a 50-year level of protection, but a shift to high burn severity 
reduces the flood return period to 25 years, corresponding to a hazard amplification of 2.0.

The ability of this original modeling framework to quantify compound post-fire flood hazards as a function of 
wildfire severity and frequency, precipitation intensity, and flood infrastructure design and maintenance makes it 
a useful tool for risk management. In particular, model applications can support flood risk communication efforts 
to increase awareness of the heightened flood hazards. Furthermore, the model could be applied to back-calculate 
the sizing of infrastructure and maintenance levels needed to achieve a specific standard of protection, such as a 
50-year return period.

Data Availability Statement
After the embargo period, the data and model scripts will be made available in the open repository DRYAD 
(https://doi.org/10.7280/D16Q59). The precipitation record used to develop the stochastic rainfall model was 
retrieved from the Climate Data Online database (NOAA, n.d.). MATLAB (MATLAB, 2021) was used to develop 
the model and to conduct the majority of the statistical analysis of the observed data and the simulation results. R 
(R Core Team, 2021) was used to generate boxplot visualizations and for minor data analysis.
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