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ARTICLE INFO ABSTRACT

Keywords: Dual-grid models address the computational bottlenecks of large-scale (> 10°> km?) urban flood modeling with
Flood risk solution updates on a coarse grid that are informed by topographic data on a fine grid. However, dual-grid
Inundation del. 1 lve 1 leading to I f H t id ed, lassificati
Levees models may poorly resolve levees, leading to loss of accuracy. Here we present a grid edge classification
Urban floodin method whereby specific edges of the coarse grid are flagged to gather nearby topographic data from the fine
Hazards & grid and create a contiguous physical barrier. The method relies on levee location data in a polyline format,

and does not require levee height data since that information is stored on the fine grid. Using a 6804 km?
model of the Los Angeles Metropolitan Region with 3 m topographic data and 987 km of levees, the proposed
method is implemented and evaluated. Simulations using coarse grids of 15, 30 and 60 m capture flood extent
consistent with fine-grid models based on a critical success index (CSI) of 90, 87 and 82%, respectively. Edge
classification improves CSI up to 7 percentage points over a model with unclassified coarse grid edges, and
reduces the false alarm ratio up to 10 percentage points. Differences in model performance across the study
area are noted, including lower accuracy on urbanized alluvial fans. With compute costs that scale with the
coarse grid, dual-grid models can efficiently realize more accurate large-scale models of urban flood hazards.

1. Introduction

Flooding from extreme weather events including tropical storms,
storm surge, heavy rainfall and flash floods poses major risks to human
populations, assets and economic activities. Flood losses have been on
the rise for decades both in the U.S. and globally, while fatalities have
fallen over the same period (Gall et al., 2011; WMO, 2021). The five
largest disasters ever recorded, when measured by economic losses,
were hurricanes Katrina, Sandy, Irma, Harvey, and Maria, and involved
significant flooding in addition to wind and other storm damage (WMO,
2021). Moreover, flood impacts are increasingly concentrated in urban
areas characterized by high population densities and high physical and
social vulnerabilities (Galloway et al., 2018; Hino and Nance, 2021),
and there have been calls for new approaches and strategies to curb
impacts and build resilience (Task Committee on Flood Safety Policies
and Practices, 2014; NASEM, 2019).

Spatially distributed flood hazard (inundation) modeling is im-
portant for characterizing risks and assisting flood risk adaptation
processes (Ward et al., 2015; Sanders et al., 2020; Bates et al., 2021;
Wing et al., 2022). Flood simulations have supported adaptation at
local levels for decades by enabling the mapping of flood zones, the
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guidance of mitigation measures such as levees and drainage infras-
tructure, and planning for physical vulnerability reduction through
land-use and zoning restrictions (NRC, 2009). Recently, large-scale (de-
fined here as > 10> km?) flood simulation models have been developed
to support national-level and international risk management needs,
including data for insurance schemes, identification of global flood risk
hot spots, and planning of sustainable development (Ward et al., 2015).

Large-scale (national, continental and/or global) flood hazard mod-
eling has mainly been pursued with modeling frameworks of two
different types: statistical/hydrologic and hydrologic/statistical. The
statistical/hydrologic approach begins with available statistics on flood
hazard drivers, such as rainfall and streamflow, and continues with the
application of a hydrodynamic flood inundation model on a regional
domain to map flood hazards (Sampson et al., 2015; Dottori et al.,
2016; Schumann et al., 2016). National, continental, and/or global
coverage is subsequently achieved by assembling results of numerous
regional models. Conversely, the hydrologic/statistical approach begins
with simulating the hydrologic cycle over the scale of interest (national,
continental, global) to generate a spatially distributed data set of peak
flood volumes (e.g., annual maxima). Next, a probability distribution is
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fit to model output to estimate extremes, and in a third step, extreme
flood volumes are downscaled with the aid of topographic data to
map hazard distributions over the large-scale domain (Pappenberger
et al., 2012; Winsemius et al., 2013). Both the statistical/hydrologic
method and the hydrologic/statistical method have proven success-
ful at advancing understanding of present and future risks at large
scales. For example, household-level flood risk and inequities have been
estimated for the continental U.S. based on a statistical/hydrologic
framework (Bates et al., 2021; Wing et al., 2022), and the hydro-
logic/statistical framework has enabled global estimation of future
flood risk (Winsemius et al., 2016), critical insights into strategies to
manage future riverine flooding (Jongman et al., 2015) and guidance
for provision of aid and assistance during flooding disasters (Ward
et al., 2015).

One of the weaknesses of large-scale modeling frameworks is that
flood hazards in urban areas, where population density and physi-
cal and social vulnerabilities are greatest, are somewhat crudely es-
timated (Jonkman, 2013). For example, Ward et al. (2017) report a
median critical success index of only 46% across eight urban areas
within the U.S., U.K., Germany and Thailand for estimation of the 100-
year flood zone, and Wing et al. (2017) report a critical success index
of 23% for areas of the U.S. classified as “High Intensity Development”
based on data from the National Land Cover Database. Large-scale flood
models tend to use somewhat coarse grids by urban flood modeling
standards, and also lack sensitivity to flood management infrastruc-
ture, which is essential for shaping flood risk adaptation (Jonkman,
2013). Urban flood modeling is now a relatively mature field following
decades of research into model structure and numerical methods (Teng
et al., 2017; Guo et al., 2021; Dewals et al., 2021; Mignot and De-
wals, 2022), and thus methods for accurate urban flood modeling are
well known including reliance on local knowledge, urban drainage
infrastructure data, and sufficient grid resolution to resolve flow paths
and obstructions (Jonkman, 2013). The main barriers facing large-scale
modeling are that: (1) detailed data relied upon by urban flood models
are not widely available to support large-scale modeling (Ward et al.,
2015), and (2) the computational and memory demands of fine-grid
urban flood modeling (e.g., Russo et al., 2015) become prohibitively
expensive at large scales (Sanders et al., 2010; Ivanov et al., 2021).
Considerable recent research has been directed at overcoming the com-
putational bottlenecks of urban flood modeling. For example, Mignot
and Dewals (2022) review a number of different methods including
using graphical processing units (GPUs), porosity models, and fast
surrogate models (Dewals et al., 2021; Ivanov et al., 2021; Mignot and
Dewals, 2022). Of these, applications at large scale have mostly used
fast surrogate model approaches (Dewals et al., 2021).

Dual-grid modeling approaches have recently emerged as a highly
promising approach to overcome the computational challenges of large-
scale urban flood modeling described above. Derived from multi-
grid approaches to solving the hydrodynamic equations governing
flood inundation (Stelling, 2012; Henonin et al., 2013), dual-grid
models are limited to two grid resolutions: a fine-resolution grid to
resolve topographic data and a coarse-resolution grid for solution
updates (Volp et al., 2013; Sanders and Schubert, 2019; Shamkhalchian
and De Almeida, 2021). Cartesian grids are used to simplify data struc-
tures for upscaling and downscaling and to simplify data management,
which is paramount in large-scale flooding applications due to high
data volumes. Dual-grid models can also support ideal parallel scaling,
enabling simulation domains of any size given available computational
resources due to well-balanced data structures (Sanders and Schubert,
2019). Here, we refer to the fine grid of topographic data with a
resolution 4, as the Zgrid and the coarse grid with a resolution
Ay as the Ugrid. The Zgrid is also known as a Digital Elevation
Model (DEM), while the Ugrid is the basis for mass conservation
and momentum balance updates. The ratio of grid sizes represents
the upscale factor, « = 4;/4,, and practical applications of the dual-
grid Parallel Raster Inundation Model (PRIMo) with a ranging from
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10-20 have been shown to reduce computational costs by orders of
magnitude compared to fine-grid modeling, without overly sacrificing
accuracy (Sanders and Schubert, 2019).

Dual-grid models are a type of subgrid model, which refers to any
type of analytical or empirical model that calculates the solution at
scales finer than the Ugrid resolution. Examples of subgrid models
include multi-grid models (Hénonin et al., 2015; Stelling, 2012), poros-
ity models (Dewals et al., 2021), analytical models of subgrid-scale
channel flows (Neal et al., 2012) and data-driven empirical models of
storage, conveyance and flow resistance (Casulli and Stelling, 2011;
Brunner, 2022). The general idea behind subgrid models is to leverage
knowledge about fine-resolution details that affect flood inundation,
such as the shape of the land surface resolved on a Zgrid (e.g.,
Casulli and Stelling, 2011), the width of a channel visible from aerial
imagery (e.g., Neal et al., 2012), or the presence of blockage features
that affect floodplain storage and conveyance (e.g., Sanders et al.,
2008), while avoiding prohibitively high compute costs.

The development of subgrid models in general, and dual-grid mod-
els in particular, has also led to new approaches to the representation
of flood management infrastructure such as curb inlets, subsurface
pipes and pumps at the scale of the Ugrid. For example, to account
for drainage from curb inlets through pipes to flood channels, PRIMo
can use pairs of inlets and outlets that transfer water between Ugrid
cells, which can be done sequentially in the solution update process
without negatively impacting parallel scaling that is crucial for model
efficiency at large scales (Sanders and Schubert, 2019). For each hy-
draulic link, flow is routed from the inlet to the outlet each time step
in accordance with the type and size of the infrastructure (Chang et al.,
2018). When applied to the historical Baldwin Hills dam-break flood
scenario (Gallegos et al., 2009), an uncalibrated dual-grid PRIMo model
simulated inundation with a critical success index of 70% using an
upscale factor of 10 and previously reported drainage infrastructure
parameters (Sanders and Schubert, 2019).

Delineating blockage and overtopping features such as levees and
flood walls is of paramount importance when developing flood hazard
models for both urban and rural areas, and especially when using a
subgrid model because the widths of Ugrid cells are likely to be coarse
compared to levee widths. Sanders and Schubert (2019) demonstrated
that with increased upscaling of a dual-grid model, representation of
blockage features progressively worsened. Unstructured grid models
address this problem by positioning edges of the computational mesh
along levee crests to directly resolve the blockage feature (Brunner,
2022; Gallien et al., 2011; Luke et al., 2015), while structured grid
models resolve blockage features by moving the location (and in some
cases, the width) of the levee to the nearest topographic cell (Wing
et al.,, 2019a; Shustikova et al., 2020). Moreover, frameworks that
automate the representation of blockage features in flood inundation
models have been a focal point of research. Hodges (2015) and Li and
Hodges (2019, 2020) presented a semi-automated approach that begins
by calculating an elevation differential raster between the Zgrid
the Ugrid. Values above a specified cutoff height in the differential
raster signify unresolved features on the Ugrid, and the connected
nonzero values are registered as blockage features that are transferred
to the nearest coarse grid edges. Wing et al. (2019b) developed a
method whereby five geomorphometric characteristics of the Zgrid
were computed as indicators of levee features, a probabilistic model for
levee features was trained using known levee locations from the U.S.
Army Corps of Engineers (USACE) National Levee Database (USACE,
2015), and then selected grid cells of the hazard model were elevated
to represent the blockage feature. In summary, previous work shows
that accurately representing blockage features is an important and es-
pecially challenging aspect of flood inundation modeling using subgrid
models. Furthermore, in the context of dual-grid models, previous re-
search points to value of methods that register the location of blockage
features on the Ugrid, and adapt the processing of Zgrid data for
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solution updates depending on the presence or absence of blockage
features.

Data to improve the representation of levees in flood inundation
models is increasingly available. The National Levee Database (USACE,
2015) contains data on over 7,000 levee systems spanning over 40,000
km in the U.S., and the database is constantly being updated due to
efforts from local, state, federal and tribal agencies. There have also
been calls for regional to global infrastructure data (Tourment et al.,
2018; Ozer et al., 2020), and a new international levee database, open-
DELVE, was recently introduced (O’Dell et al., 2021). High-resolution
Zgrid data is also widely available across urban areas of developed
nations to support detailed inundation modeling, and the need for
greater global coverage of high-quality topographic data has been
recognized (Schumann and Bates, 2020).

The purpose of this study is to present a new, semi-automated
method to improve the representation of blockage features in dual-
grid flood inundation models based on the following preconditions
consistent with the literature review above: (a) the location and con-
tinuity of flow barriers have been characterized as a polyline, or can
be readily characterized as a polyline using geospatial tools and data,
and (b) data characterizing the height of obstructions such as levees are
resolved on the Zgrid. Specifically, in this study we present a semi-
automated workflow that flags Ugrid edges based on the presence of
a barrier (levee) so that the flow solver is guided to enforce blockage
effects when such features are present and simulate overtopping when
flood levels exceed blockage feature heights. Hence, herein we present
a workflow for Ugrid edge classification that enables the dual-grid
solver to utilize available topographic data for solution updates more
intelligently, with the aim of achieving fine-grid model accuracy at the
computational cost of running a coarse-grid model. We acknowledge
possible exceptions to the preconditions above, such as errors in levee
polyline data and blockage features that are not resolved by the Zgrid,
but argue that these exceptions can be addressed with additional edit-
ing and processing of data, and thus a push towards a semi-automated
workflow could offer immense value for future modeling.

The remainder of the paper continues as follows: Methods, includ-
ing the proposed grid edge classification method, are presented in
Section 2, Applications of the method and results are presented in
Section 3, and we close with Discussion (Section 4) and Summary and
Conclusion (Section 5).

2. Methods
2.1. Large-scale flood hazard model

PRIMo simulates flood hazards by solving the two-dimensional
shallow-water equations with a Godunov-type finite volume scheme
that is conditionally stable in accordance with a Courant-Friedrichs—
Lewy (CFL) condition (Sanders and Schubert, 2019). Simulations can be
forced in several different ways: spatially distributed and time-varying
precipitation (non-point sources), time-varying inputs from streams
entering a model domain and/or concentrated runoff from catchments
(point sources), time-varying water levels at model domain boundaries
(boundary water levels), and point sink/point source pairs that account
for water transfers through storm water infrastructure such as drainage
pipes (water transfers). Additionally, flow resistance is modeled using a
spatially distributed Manning resistance parameter, and soil infiltration
is modeled with a runoff coefficient that transforms precipitation into
runoff (Noh et al., 2019) and approaches unity in urban areas due to
impervious surfaces and soil saturation during extreme events (Bates
et al.,, 2010; Wing et al., 2017; Noh et al.,, 2019). For this study,
emphasis is placed on fluvial flooding scenarios to document potential
overtopping of levees, and thus model forcing is based on point sources
of streamflow added to drainage channels that are representative of
lateral inflows.
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The fine-resolution Zgrid used by PRIMo corresponds to a DEM
with n, columns and n, rows of ground elevation data, z,;; for i =
I,....,n, and j = L...,n, with a uniform cell size of 4,. Here, i and
Jj represent indices in a conventional Cartesian coordinate system with
the origin in the lower-left corner of the spatial domain. The coarse-
resolution Ugrid corresponds to a spatial domain congruent with the
Zgrid where the number of columns and rows is based on the upscale
factor, N, = n,/a and N, = n,/a, respectively. Introducing capitalized
indices for the coarse grid, I =1,...,N,and J =1, ..., N,, the solution
state in each coarse-grid cell is given by U;; = (n;; p;y 4r,)
where 7, represents the elevation of the water surface, p represents
the discharge per unit width in the x direction, and ¢ represents the
discharge per unit width in the y direction. Furthermore, slopes in
the free surface elevation, (6,#); ; and (6,1); ; are computed using the
minmod limiter (Sanders and Bradford, 2006) and used to downscale
flood depth, d, from the Ugrid to the Zgrid as follows: d,; =
max(nfﬁj —-2z;,0) fori=al-1+1,...,al and j=a(J - 1)+ 1,...,aJ
where

'I,-*J =g+ @My g X0 =X) +6,m s X ;= ¥y) @

and where X; and y; represent cell-centered coordinates on the Ugrid.
PRIMo leverages the dual-grid data structure in three distinct ways to
support accurate flood hazard modeling. First, the a? z values within
each Ugrid cell are used to create tables of water storage per unit
area, h, versus water level 5. Once established in a pre-processing step,
these tables are used each time step to compute  in each cell based
on the storage, h, computed from the mass balance equation. Second,
the 2a z values from the two sides of each Ugrid edge are used to
establish the cross-sectional shape for mass and momentum fluxes be-
tween neighboring cells, 2,, k = 1 ... a, including momentum fluxes that
account for the bed slope source term (Valiani and Begnudelli, 2006).
And third, PRIMo uses a bilinear reconstruction of the free surface
elevation (Eq. (1)) for accurate downscaling of flood depth (Bradford
and Sanders, 2005). Note that the weakness of PRIMo addressed herein,
the representation of blockage effects, relates to the estimation of 2,
k=1...a, for each Ugrid edge connecting neighboring cells.

2.2. Study area and supporting data

The proposed Ugrid edge classification method is presented in the
context of the Los Angeles Metropolitan Region (Fig. 1), home to the 8"
largest megacity in the world and the second largest in the U.S. based
on a population of 19 million people (Blackburn et al., 2019). With
urban development blanketing a coastal plain below steep mountains
rising to over 3000 m above sea level, the region is vulnerable to
flooding disasters from atmospheric river rainfall events that generate
fast-moving runoff and floodwater filled with mud and debris that may
overwhelm infrastructure (Jones, 2019; Sanders and Grant, 2020).

A 3 m Zgrid was prepared with 756 1000 x 1000 cell tiles
that span an area of 6804 km? (see Model Domain in Fig. 1). Levee
polyline data were obtained from the National Levee Database (US-
ACE, 2015) and further edited for coverage and spatial alignment
with blockage features (red lines in Fig. 1). Topographic data for
the Zgrid were derived from aerial lidar survey data obtained from
the United States Geological Survey (USGS) and National Oceanic
and Atmospheric Administration (NOAA) for Los Angeles County and
Orange County. The topographic data effectively captures the height
of most levees, but additional processing of the data was carried
out (i.e., hydro-conditioning) for accurate representation of drainage
pathways on the land surface (Bales and Wagner, 2009). For example,
aerial lidar encounters line-of-sight obstruction of flow pathways from
bridges, roads and other structures, leading to gaps in data coverage or
non-physical blockage features in the land surface. Here, these errors
were corrected by intersecting OpenStreetMap (OSM) road network
data (OpenStreetMap Contributors, 2022) with the DEM to identify
and correct erroneous changes in road elevations. A second class of
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Fig. 1. Fluvial flood hazards are modeled across a 6804 km? domain spanning the Los Angeles Metropolitan Region. A Zgrid consisting of 756 1000 x 1000 cell tiles at 3 m
resolution is used to resolve topographic heights and the Manning coefficient. Polylines characterize the location of levees (red lines). A 100-year fluvial flooding scenario is created
from frequency analysis of 51 streamgage records (circles). Subregions for detailed analysis of model output include: (a) Coyote Creek, (b) Long Beach, and (c) San Fernando.

Table 1
Manning resistance parameters based on land cover/land use.

Land cover/land use Manning n (s/m'/?)

Streams 0.01
Paved surfaces 0.015
Sandy 0.019
Undeveloped open space 0.03
Short grass 0.035
Developed high intensity 0.02
Developed open space 0.04
Long grass 0.05
Developed medium intensity 0.06
Agricultural/forested 0.1
Buildings 0.3

problems arises with drainage pathways through subsurface pipes,
which are not resolved by aerial lidar surveys. Using urban drainage
geometry data representing open channels and connecting culverts
from Los Angeles County and Orange County Public Works, open
channel pathways were “burned” into the DEM to support open channel
flow routing. As a result of hydro-conditioning the Zgrid, the Los
Angeles Metropolitan Region model developed here resolves both Level
1 infrastructure (major channels and levees) and Level 2 infrastructure
(secondary drainage channels and culverts/pipes). However, Level 3
infrastructure (curb inlets and small storm pipes that connect curb
inlets to large pipes or channels) are not integrated into the model for
this study. A 3 m resolution raster grid of Manning coefficients was also
developed for flow resistance based on OSM land use information (see
Table 1).

2.3. Proposed edge classification

Herein we present a five-step process or workflow (Fig. 2) to
improve the representation of levees along Ugrid edges. The pro-
cess begins with a spatial domain of interest that is spanned by a
Ugrid, Zgrid, and levee location data in a polyline format, P =
{1,y (2.9, ... (x,,3,)}, and ends with the estimation of edge-
based elevation data, 2;, k = 1,...,a, along edges of the Ugrid. The
workflow is illustrated with a channel junction from the Coyote Creek
subdomain of the Los Angeles Metropolitan Region (Fig. 1a), as follows:

1. The first step (Fig. 2a) involves manual or semi-automated edit-
ing of P such that levee polylines delineate both sides of any
channel with a levee or flood wall on either side. Levee polylines
may be acquired from available repositories (e.g. National Levee
Database, openDELVE) and may also be created using geospatial
tools.

2. The second step (Fig. 2b) involves intersecting levee polylines
with Ugrid cells to establish a logical matrix M (or mask) at the
same size and resolution as the Ugrid, whereby true indicates
that the grid cell contains a levee, and false indicates that it
does not. This is accomplished by breaking the polylines into a
set of points with a linear spacing comparable to 4,, and flagging
all Ugrid cells that contain one or more of these points.

3. The third step (Fig. 2c) involves filling holes within the logical
matrix, M. These holes correspond to the channel space between
levees on opposite sides of a channel. This is accomplished using
the imfill command in Matlab (Mathworks, Natick, MA),

M = imfill(M, H) 2

where H = {(x},)).(x2, ), ... (X» ¥y) }» represent the coordi-
nates of points within the m holes of the mask M. In Fig. 2b,
there is only one hole indicated by black coloring, and the hole
is filled as shown by the red mask in Fig. 2c. We also note based
on experience using the imfill command that the majority of
holes are filled automatically, so only a limited number of hole
coordinates are typically required. Several iterations of inspect-
ing results and adding additional points are typically required to
complete the step.

An important consideration for this stage of the workflow to be
successful is whether channel areas are fully encircled by M =
true cells. If not, then manual editing of M or the polyline data
which generates M (Step 2) will be needed to produce channel
areas that are completely surrounded and/or encompassed by
M = true cells.

4. The fourth step involves classifying edges of the Ugrid to guide
the calculation of %2 using Zgrid data. Ugrid edges that are
representative of levees correspond to edges of the region de-
fined by M’ = true and appear in Fig. 2d as blue lines. In
the case of vertical grid edges, the edge classification includes
three possible options: —1 for when the physical levee is to the
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Fig. 2. Grid edge classification proceeds in five steps: (a) delineating the perimeter of flood channels (black) with levee polylines (red), (b) intersecting levee polylines with Ugrid
cells to create a mask M, (c) filling interior areas with the Matlab imfill command which creates an updated mask, M’, (d) using edges of the M’ mask to classify area Ugrid
edges as levees (blue lines), and (e) manual editing of Ugrid edges to remove channel blockage.

| |
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Fig. 3. Application of the grid edge classification method may require manual editing during the workflow to account for (a) channels intersecting the boundary of the model
domain and (b) channels with discontinuous levee coverage, which can lead to incorrect edge classifications (c) involving non-physical barriers to channel flow.

left of the Ugrid edge, O when there is no levee present, and 1
for when the physical levee is to the right of the Ugrid edge.
In the case of horizontal levees, -1 corresponds to a physical
levee below the Ugrid edge, and 1 corresponds to a physical
levee above the Ugrid edge. The edge classification is saved as
two separate arrays for vertical edges and horizontal edges: E,
with a dimension (N, + 1, N,) and E", with dimension (N,, N v+
1), respectively. Mathematically, this classification appears as
follows for EY,

-1 if (M’I_u=1 & M), =0
Ej, =41 if M, ,=0 & M|, =1 3)
0 otherwise

and similarly, elements of E" are set as follows,

-1 if M, =1 & M), =0

h : — —

Ej,=q1 if M), =0 & M|, =1 C))
0 otherwise

5. In the fifth step, manual re-classification may be required to
avoid blockage features in channels. Fig. 2e presents an example
where the initial levee polyline data (Fig. 2a) intersected a
secondary drainage channel and the automated steps resulted in
a non-physical blockage feature.

The mask editing described in Step 3 and edge re-classification
described in Step 5 above are representative of the two types of manual
editing that may be needed to implement this method: one is related
to the creation of holes within the mask M, which requires the use
of the imfill command, and the other is related to the removal
of edges incorrectly classified as levees. In a practical, large-scale
application as shown in Fig. 1, the need for manual editing can result
from channels that intersect the model domain boundary (Fig. 3a),
channels with discontinuous levee coverage, which leaves openings in
levee polylines (Fig. 3b) that need to be closed manually (Step 1 or 2),

and edges incorrectly classified as levees (Fig. 3c) as a consequence of
the openings in levee polylines that are closed manually (Fig. 3b).

The grid edge classification matrices EV and EP guide the processing
of Zgrid data to produce a distribution of topographic data for each
edge, 2, with k = 1,...,a, for solution updates as follows: For edges
classified as non-levee edges, pairs of Zgrid data from opposite sides
of the Ugrid edge are averaged to estimate 2 as reported by Sanders
and Schubert (2019). When the edge is classified as —1, 2, is specified
based on data from the Ugrid cell on the left-hand side of the edge. In
particular, the maximum z value among the o> Zgrid data points in
the left-hand Ugrid cell is computed and assigned to all « values of 2.
Conversely, when the edge is classified as +1, 2, is specified based on
data from the Ugrid cell on the right-hand side of the edge, and the
maximum z value from the Zgrid within the right-hand Ugrid cell
is assigned to all « values representing the edge. Fig. 4 illustrates the
transfer of high topographic heights representative of a levee (Fig. 4a)
to edges of a Ugrid (Fig. 4b) for the estimation of 2, for k =1,...,a.
Note that the levee representation (Fig. 4b) is contiguous along Ugrid
edges (no gaps) to enforce a barrier to flow in both horizontal and
vertical directions when water levels are below the crest of the levee.
Upon exceeding the crest elevation, the model simulates overtopping
flows in accordance with mass and momentum fluxes resolved by
the approximate Riemann solver and solution updates by the flood
inundation model (Sanders and Schubert, 2019).

The proposed method to resolve levees results in spatially variable
distributions of 2 for edges that are classified as O, while it results
in constant values of £ across each Ugrid edge classified as a levee
(=1 or 1). This could bias the method towards overprediction of flood
protection in cases where levee heights vary significantly along the
Ugrid cell, such as with a sloping channel as shown in Fig. 4. Other
sampling strategies could also be considered to create a distribution of
edge-based topographic heights, 2, for k = 1, ..., a, but for this study,
a simple approach was used to promote continuity of flow barriers and
avoid non-physical flood spreading through blockage features. Previous
work has emphasized the importance of continuity in the gridded
representation of blockage features (Hodges, 2015).

With the implementation of this method in PRIMo, the edge clas-
sification matrices are written to a file and loaded at the beginning
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Fig. 4. (a) Topographic data on a Zgrid (bar plot) based on « = 10 including points representative of levees (yellow coloring) are transferred to (b) values along each Ugrid
edge, 2,, k=1,...,a, based on the maximum of the «? values within an adjacent grid cell for Ugrid edges classified as levees (-1 or +1, blue line) and a local average of two
adjacent Zgrid values for as edges not classified as levees (O, gray lines). Levee polyline data (a, red line) controls edge classification as shown in Fig. 2.
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Fig. 5. Coyote Creek edge classification for levees (white lines) on Ugrid (black lines) for upscale factors («) given by (a) 10, (b) 20 and (c) 50. Original levee polylines (red)

and topographic heights (colorbar) resolved by Zgrid are also shown.

of a simulation to guide the computation of edge topography (2,
k = 1,...,a) for all edges prior to time-integration. Alternatively,
edge topography could be computed off-line and saved in separate sets
of files to be loaded at the beginning of the simulation. The former
approach was implemented here to minimize the number of input
files and the file storage requirements of the model, and because the
calculation of edge topography happens very fast in parallel and has
negligible impact on overall compute times.

To illustrate the results of this workflow based on data from the
Los Angeles region, Ugrid edges classified as levees for the Coyote
Creek subdomain (Fig. 1a) are presented in Fig. 5a, b and ¢ (white
lines) for « = 10, 20 and 50, respectively. While the representation of
levees becomes less precise with increasing upscale factor, the method
guarantees two important attributes for flood hazard modeling: first,
continuity in flood defenses is preserved irrespective of the upscale
factor, which is critical for avoiding artificial leakage through levees;
and second, levee heights are based on fine-resolution Zgrid data,
irrespective of the upscale factor.

2.4. Performance assessment

Fig. 5 shows that as the upscale factor increases, the planform area
between levees also increases (note the distance between the white
lines and the red lines in Fig. 5), which could affect the accuracy
of predictions. Increasing the upscale factor also increases numerical
truncation errors (i.e., numerical diffusion) that may impact accuracy.
Therefore, simulation accuracy and biases are examined by comparing
dual-grid simulations with « = 5, 10, 20, and 50 to fine-grid simulation
as has been done in previous studies of flood model performance (e.g.,
Haile and Rientjes, 2005; Fewtrell et al., 2008). The fine-grid simula-
tion is based on a = 2 (6 m) without the edge classification method.
Use of a =2 ensures that every topographic data point is used for flux

calculations, and thus all blockage features are resolved for accuracy
considerations. A fine-grid model based on « = 1 was not possible due
to prohibitively expensive compute costs corresponding to simulations
fully utilizing 756 compute cores and lasting for many months.

Accuracy and biases in flood extent predictions are evaluated using
a contingency table that quantifies the frequency with which the sim-
ulation predicts flooded cells (above a threshold of 3 cm) correctly or
incorrectly compared to the fine-resolution reference case. The contin-
gency table includes the number of cells correctly predicted as flooded
(a), the number of cells where flooded cells are incorrectly predicted
to be dry (b), and the number of dry cells incorrectly predicted to
be flooded (c). These three measures are used to compute a Critical
Success Index (CSI), False Alarm Ratio (FAR), and the Hit Ratio (H) as
follows (Schaefer, 1990),

a c a
CSI= —— , FAR= , H= 5
a+b+c a+c a+b )

where FAR serves as a measure of overprediction, H serves as a measure
of underprediction and CST provides a measure of overall accuracy. We
note that a perfect prediction corresponds to CSI = 1, FAR=0and H = 1.
Dual-grid model compute times, Tp,g, are recorded with all sim-
ulations and two different indicators are used as measures of model
performance. The first measure is model speed, .S, defined as follows,

Trr )

where Ty represents the real time covered by the simulation, or model
duration. The concept of model speed is borrowed from weather fore-
casting, where model simulations must execute substantially faster than
real time to provide timely information. For example, Woods (2006)
suggests use of models with .S > 20 for timely information. Forecasting
is not the focus of this study, but given the immense computational
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demands of large-scale modeling, compute times are an important con-
sideration, and model speed offers an intuitive dimensionless number
to interpret compute costs.

A second measure considered here is the ratio, R, of dual-grid model
to single (coarse) grid model compute times,

R= 1 @)
Tso

where Ty represents the compute time of a single-grid model. While no
single-grid models are actually implemented in this study, an estimate
of single-grid model compute times can be made from a dual-grid model
compute time measured under low levels of upscaling.

The compute times of any well-behaved, spatially explicit flood
inundation model constrained by the CFL condition can be estimated
as follows assuming fixed computing power (Sanders et al., 2010),

(€©))

T=COF

where A is the grid size and ¢, is a constant that depends on the
spatial extent of the model, the real-time duration of the model, and
details of the algorithm. Eq. (8) shows that compute times increase
by a factor of eight with every halving of the grid size, 4, which
illustrates the origin of computational bottlenecks in fine-grid flood
inundation modeling. Nevertheless, when compute times are measured
at one specific resolution, 4, compute times for any other resolution
can be estimated by rearranging Eq. (8) as follows,

Tsg(4) = Tgg(49/4)° ©)

where Tsoc represents the compute time for grid size 4. For this study,
we estimate TSOG based on the dual-grid model compute time at very
low levels of upscaling (, = 2, the finest resolution that was feasible
to implement at large scale), and recalling that 4 = a4,, we estimate

single-grid model compute times at coarse resolution as follows,

Tsg(a) = Tag(ap/a)’ 10)
which allows Eq. (7) to be computed as follows,
T;
R(a) = LG(ar/oto)3 an
TS

Values of R equal to unity indicate that dual-grid model compute
times are equivalent to those of a coarse-grid model, while values
greater than unity indicate that the dual-grid model is more compu-
tationally demanding than a coarse-grid model at the same coarse-grid
resolution.

3. Applications

Two test cases are considered, both taken from the Los Angeles
Metropolitan Region domain shown in Fig. 1. The first test case utilizes
the Coyote Creek subdomain shown in Fig. 1a, while the second test
case utilizes the entire domain shown in Fig. 1. Both test cases involve
fluvial flood hazard scenarios whereby flooding is forced by point
sources of flow added to channels and routed by the flow solver,
focusing attention on the accuracy with which coarse-grid flow models
characterize levee overtopping and floodplain inundation.

3.1. Coyote Creek test case

The Coyote Creek Test Case involves a 56 km? domain with 30
km of levee polylines along three different channels, as shown in
Fig. la. Fig. 5 provides a magnified view which better illustrates
the channel configuration. Topography and resistance are based on
a 2500 x 2500 Zgrid, and the grid edge classification method was
applied for Ugrids defined by « =5, 10, 20, and 50.

This test case is configured to measure the how accurately dual-
grid model simulations contain design flows within flood channels, with
and without the edge classification method. Point sources of flow are
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Table 2
Flood extent error statistics for Coyote Creek test case compared to a fine-grid model.
Perfect accuracy corresponds to CSI=100%, H =100%, and FAR=0%.

a Unclassified edges

Classified edges

CSI (%) FAR (%) H (%) CSI (%) FAR (%) H (%)
5 91 7 98 98 0.2 98
10 92 2 94 94 0.1 94
20 74 22 93 92 2 94
50 47 52 97 59 40 97

added to the upstream end of Coyote Creek, Carbon Creek and the
unnamed channel west of Coyote Creek at a rate of 800, 225, and 7
m3/s, respectively (see Fig. 5). These flow rates represent 90% of the
maximum allowable flow rate in each channel determined empirically,
through an iterative process, using model simulations with « = 2. With
flow at 90% capacity, simulated overtopping will not occur until there
is more than a 10% error in the simulated capacity of the channel. Each
simulation was executed from a dry initial condition with steady inflow
from point sources and a critical flow outflow boundary condition at the
southwest corner of the domain, which yields a subcritical flow regime
upstream. A 3-hour model duration was found to be sufficient to reach a
steady state and is used in all simulations. Compute times for execution
using « =2, 5, 10, 20, and 50 corresponded to 9.75 h, 30, 5, 1, and < 1
min respectively, on a laptop computer using 4 cores, and there was
negligible change to compute times using classified versus unclassified
levees.

Fig. 6 shows flood extent based on a depth threshold of 3 cm for
all model simulations, and flood extent error statistics are reported
in Table 2. These results show that the model correctly predicts no
levee overtopping for « = 5 and 10, and only a minor amount of
overtopping (FAR=2%) using « = 20, when using classified edges. In
contrast, the model incorrectly predicts moderate levee overtopping
(FAR=7%-22%) for a = 5 and 20 when using unclassified edges. Use
of @ = 50 results in incorrect prediction of overtopping regardless of
the edge classification method, which highlights limits to the amount
of upscaling that can be implemented before accuracy levels become
unacceptable. To summarize, these results show that the proposed edge
classification method reduces or eliminates the incorrect prediction
of levee overtopping. For the cases with « = 5, 10 and 20, FAR
values are roughly an order of magnitude smaller using classified versus
unclassified edges.

3.2. Los Angeles Metropolitan Region test case

Application of the edge classification method to the entire Los
Angeles Metropolitan domain involved consideration of 987 km of
polylines with 92 different channel openings, and levee input files were
prepared for Ugrids defined by « =5, 10, 20, and 50. Manual editing
over several hours was required to address the types of irregularities
shown in Figs. 2e and 3.

A 100-year return period fluvial hazard is used to evaluate the grid
edge classification at the metropolitan scale. Use of a fluvial scenario
focuses attention on the containment of flow in flood channels and
potential biases from inaccurate prediction of levee overtopping.

The fluvial flood hazard scenario was developed using data from 51
streamgages across the region maintained by USGS, Los Angeles County
Public Works, and Orange County Public Works (see Fig. 1). To estimate
100-year flow rates, frequency analysis was completed using HEC-SSP
software developed by the U.S. Army Corps of Engineers (Hydraulic En-
gineering Center, 2021) which follows USGS Bulletin 17C (England Jr.
et al., 2019). Flow was forced with a distributed set of point sources
in channels that accumulate to match the 100-year flow rate at each
gaging station, in consideration of all upstream point sources. Using
756 compute cores on the Cheyenne cluster at the NCAR-Wyoming
Supercomputing Center, flow was simulated for a 48-hour duration to
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a=5 a=10 a=20 a=>50

Fig. 6. Simulated flood extent with and without the proposed edge classification method for Coyote Creek test case using a =5, 10, 20, and 50.
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Table 3

Dual-grid model compute times, model speed S (Eq. (6)), and dual-grid/single-grid
compute time ratio R (Eq. (7)) for Los Angeles Metropolitan Region model.

Table 4
Flood extent accuracy metrics for Full Domain and Long Beach and San Fernando
subdomains shown in Fig. 1.

a Unclassified edges Classified edges

Tpg (h) S R Tpg (B) N R
2 175 0.3 (@] - - -
5 13.8 3.5 1.2 13.1 3.7 1.2
10 1.7 28.2 1.2 1.6 30 1.1
20 0.25 192 1.4 0.16 300 0.9
50 0.07 686 6.3 0.07 686 6.3

reach a steady state, and dual-grid compute time T}, model speed
S, and the dual-grid/single-grid compute time ratio R are reported in
Table 3.

Based on the speed criterion for usefulness reported by Woods
(2006) and results in Table 3, model simulations involving a« = 10,
20 and 50 provide sufficient speed to provide timely forecast informa-
tion (i.e., speed is greater than 20). Furthermore, model simulations
involving « = 5, 10 and 20 and classified edges have compute costs
that closely track the compute costs of an equivalent coarse grid model
based on R values close to unity (0.9-1.2). Use of a = 50 results in a
model speed S that is lower than ideal and a dual-grid/single-grid ratio
R that does not match an equivalent single-grid model. We attribute
this to the computational demands of data output, which are typically
small compared to computing demands, but become a larger fraction
of the overall costs as upscaling increases. We also note that our model
for single-grid compute times (Eq. (8)) does not account for the cost of
data output.

An overview of the flood hazard distribution is presented in Fig. 7,
and reveals several parts of the region where channels are unable to
contain the 100 year flow rate including communities between Los
Angeles and Long Beach (Fig. 7b), communities near Burbank (Fig. 7b),
and coastal communities such as Huntington Beach. Fig. 7c-e also
show three levels of magnification to illustrate the level of detail that
is captured by the model. Fig. 7e shows the finest level of detail
characterized by street-level details with flood water moving along the
road network.

Of particular interest for this study is whether and to what extent the
proposed edge classification method alters the simulated distribution of
flooding. To this end, Table 4 provides a summary of flood extent accu-
racy metrics, using a fine-grid model as a reference case, for the entire
model domain as well as Long Beach and San Fernando subdomains
shown in Fig. 1. The Long Beach subdomain encompasses a region that
was historically occupied by riparian and coastal marshlands of the
Los Angeles and San Gabriel Rivers, and is presently defended from
flooding by engineered flood channels with levees (Orsi, 2004). Due

a Unclassified edges Classified edges
CSI (%) FAR (%) H (%) CSI (%) FAR (%) H (%)

.5 5 88 9 96 920 2 92
§ 10 81 15 94 87 5 91
= 20 75 21 94 82 12 93
= 50 68 28 92 75 19 90
5 5 83 15 97 88 3 90
<1
2 10 76 22 96 88 6 93
%o 20 70 28 96 81 16 96
=

50 62 36 96 72 23 93
g 5 75 5 78 72 5 75
g 10 61 18 70 61 16 69
E 20 52 30 67 54 26 67
« 50 28 57 45 28 49 38

to its low topography and position along major rivers, the deepest and
most severe flooding of the region is simulated to occur within this
subdomain. The San Fernando subdomain is representative of an ur-
banized alluvial fan where convex topography is capable of producing
overtopping flows with diverging flow paths that are highly sensitive
to localized changes in topography (NRC, 1996; Garcia et al., 2004;
Santangelo et al., 2011). Hence, accuracy metrics are computed in areas
of highest importance, based on the depth of flooding, and in areas
where high accuracy is expected to be most challenging to achieve.

Table 4 shows that across the Full Domain, the proposed Ugrid
edge classification leads to lower FAR and equal or lower H com-
pared to the model with unclassified edges, and the overall accuracy
represented by CSI is 2-7 percentage points higher using classified
edges. The overall error (computed as 100-CSI) at the scale of the
Full Domain can be estimated to be 10, 13 and 18% for « = 5, 10
and 20, respectively. For context, the highest CSI values achieved in
validation studies (relative to flood extent measurements) in the study
area have been 80%, corresponding to a 20% overall error (Gallegos
et al., 2009; Schubert and Sanders, 2012). Hence, the errors of the
dual-grid flood model (with grid edge classification) presented here
can be viewed, at worst, as being slightly smaller than overall errors
considering uncertainty in flow, topography, resistance and storm drain
infrastructure.

Table 4 also illuminates different levels of sensitivity to upscaling
between the Long Beach and San Fernando subdomains. In the Long
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Fig. 7. (a) Simulated flood extent for Los Angeles Metropolitan Region using a = 2. (b) Long Beach subdomain, (c) San Fernando subdomain, (d) Coyote Creek subdomain, (c, d,

e) range of scales captured by model.

Beach subdomain where changes in topography are relatively mild
and there are numerous channels with levees where overtopping is
simulated to occur, the dual-grid model using classified edges yields
high accuracy (CSI > 80%) for « = 5, 10 and 20. Conversely, in the San
Fernando subdomain characterized as an urbanized alluvial fan, CST
drops to 72 and 61% with « = 5 and 10, respectively. Additionally,
for the Long Beach subdomain, CSI is increased by 5-12 percentage
points, FAR is reduced 12-16 percentage points (less overprediction)
and H is reduced 0-7 percentage points (more underprediction) from
using classified grid edges. Conversely, in the San Fernando subdomain,
FAR is reduced only 0-4 percentage points and H is reduced 0-3
percentage points (excluding the case with a = 50).

Fig. 8 provides a magnified view of the Long Beach subdomain and
shows areas of agreement (green), overprediction (blue), and under-
prediction (red) compared to the fine-grid model. Overall, the level of
agreement appears very good using classified edges, and the amount
of underprediction and overprediction appears minimal when using
classified edges and « = 10. Additionally, this shows that for all
four upscale factors, overprediction is reduced using classified edges
compared to unclassified edges (less blue comparing classified to un-
classified cases across the same value of «). Furthermore, the cause of
high overprediction for the case with « = 50 and unclassified edges can
be attributed to incorrect prediction of channel overtopping (see upper
left quadrant of top right panel).

Underprediction may be of particular interest based on the possi-
bility of incorrectly predicting safety from flooding. The amount of
underprediction is reflected by the difference between 100% and the
hit rate as a percentage. Using classified edges, « = 5 yields more

underprediction than a« = 10, 20 or 50. Indeed, both the « = 5 and
a = 10 cases result in CSI=88% using classified edges, but the a = 5
is better from a perspective of less overprediction and a = 10 is better
from a less perspective of underprediction.

The patterns of flooding simulated in the San Fernando subdomain
are presented in Fig. 9. Flow initiates at the northern edge of the
domain where channel capacity is insufficient to contain the 100-
year flow, and simulated channel overtopping generates divergent flow
paths in the downstream (southerly) direction. Note here that a single
channel with levees is responsible for the excess flows. Fig. 9 shows
that east-west roadways enable dispersal of flooding to the east through
neighborhoods. Here, errors in the over- and underprediction of flood
extent (blue and red, respectively) strikingly increase between a = 20
and a = 50. This is attributed to the high sensitivity of alluvial fan flood-
ing to differences in topography resolved by each model (Pelletier et al.,
2005). Conversely, differences in flood extent between the classified
and unclassified cases are minimal except when using « = 50. Hence,
the results in this sub-domain draw greater attention to the sensitivity
of the dual-grid model to increased upscaling versus representation of
levees.

4. Discussion

As mentioned in the Introduction, urban flood hazards have proven
difficult to accurately simulate using large-scale models, and accu-
racies reported have ranged from CSI=23% (Wing et al., 2017) to
CSI=46% (Ward et al., 2017). In these previous studies, CSI is mea-
sured relative to flood zones mapped by different models, and thus
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Fig. 9. Flood extent agreement, underprediction, and overprediction of dual-grid model in San Fernando subdomain compared to a fine-grid model.

accounts for numerous factors that contribute to uncertainty such as
the magnitude of flood peaks, representation of topography, and other
factors. In contrast, CSI values reported here only reflect the effects of
upscaling and the proposed Ugrid edge classification. Nevertheless,
high CSI values (>80%) demonstrate the potential for large-scale
models to reduce errors associated with grid resolution, a finding that
is responsive to calls for greater attention to local data for urban flood
hazard modeling (e.g., Jonkman, 2013). These results also highlight
the challenges of accurate modeling of flood hazards on steep and
convex topography associated alluvial fans (see NRC, 1996) based
on CSI values of roughly 60% with a = 10 for the San Fernando
subdomain ( Table 4). These results also demonstrate the value of levee
polyline data available from the National Levee Database (USACE,
2015), and the importance of the new global database for levee data,
openDELVE (O’Dell et al., 2021). In fact, efforts to utilize levee data in
flood hazard modeling studies also present opportunities to scrutinize
and further expand existing levee data repositories, and could help to
accelerate the availability and coverage of data.

Dual-grid model simulations with forecast-ready speeds (S > 20),
compute times comparable to those of single-grid models (R ~ 1)
and consistency with respect to fine-grid models (CSI>80%) at the
metropolitan scale constitute an important advance with respect to de-
veloping flood simulations with fine-grid accuracy at the cost of coarse-
grid models. Widespread utilization of dual-grid model structures could

10

help to improve the accuracy of nationwide flood risk assessments (e.g.,
Wing et al., 2017; Bates et al., 2021), expand simulation-enhanced
flood risk adaptation (e.g., Luke et al., 2018; Sanders et al., 2020) from
the community level to the regional level, and enable real-time flood in-
undation forecasting with a process-based modeling approach (Ivanov
et al., 2021). We acknowledge, however, the need for future research to
consider the role of Level 3 drainage infrastructure (e.g., curb inlets and
small pipe connections to Level 2 drainage infrastructure), and the need
for systematic approaches to model calibration and validation. Urban
flooding during extreme events is rarely well monitored, and a lack of
data for model calibration and validation (e.g., flow and depth distri-
bution through street network) and uncertainties in hydrologic drivers
(e.g., precipitation, streamflow, storm surge) hinder the estimation of
model parameters and the development of accurate models. Given high
uncertainties in hydrologic drivers, it is reasonable to be somewhat
pessimistic about achieving major benefits from enhanced land-surface
process representation (see Bates, 2012). Additional research is needed
on process-based models, strategies for model calibration/validation,
and implications for simulation accuracy, timeliness, and uncertainties
to deepen understanding and build capacity on this important frontier
of hydrologic science and engineering.
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5. Summary and conclusion

Herein we present a grid edge classification method to improve
the representation of blockage effects and levee overtopping in large-
scale, dual-grid flood inundation models that sample topographic data
from a fine-resolution Zgrid to account for mass and momentum
fluxes between neighboring coarse-resolution Ugrid cells. While pre-
vious work envisioned the redistribution of blockage features such as
levees along coarse grid edges (e.g., Hodges, 2015; Li and Hodges,
2019, 2020), here we present a new workflow that leverages available
polyline data to create a coarse grid edge classification. The workflow
sharpens the representation of levees as barriers to flood spreading and
constraints on overtopping. Furthermore, we present an application of
the workflow that is unprecedented in scale at a fine resolution (3
m), covering the Los Angeles Metropolitan Region, which is home to
roughly 19 million people vulnerable to major flooding from a severe
atmospheric river event.

Application of the model across the Los Angeles Metropolitan Re-
gion shows that flood extent accuracy with « = 10 (30 m effective
resolution) is characterized by a critical success index of 87%, a false
alarm ratio of 5%, and a hit rate of 91% when compared to a fine-grid
model, and compute times are 30 times faster than real time. Similarly,
an a = 20 model (60 m effective resolution) achieves a critical success
index of 82%, a false alarm ratio of 12%, a hit rate of 93%, and
compute times 300 times faster than real time. Furthermore, these dual-
grid compute times closely match (within 10%) the compute costs of a
single-grid model run at the same coarse-grid resolution. Hence, we find
that the proposed grid edge classification method based on levee loca-
tion data enhances dual-grid model accuracy such that it is comparable
to fine-grid model accuracy at compute costs comparable to those of
single-grid models. The proposed grid edge classification method is par-
ticularly effective at reducing the overprediction of flood extent, which
is a drawback of existing dual-grid models (Sanders and Schubert,
2019). This work also validates the importance of the National Levee
Database (USACE, 2015), new global levee databases (O’Dell et al.,
2021), and accessible, high-resolution topographic databases to enable
systematic advances in the modeling of urban flood hazards (Schumann
and Bates, 2020).

Differences in dual-grid model accuracy were observed across two
subregions of the study area with differing topographical features. In
a fluvial corridor near Long Beach historically occupied by riparian
and coastal wetlands, the dual-grid model with « = 5 and 10 demon-
strated high accuracy marked by a critical success index of 88%. On
the other hand, on alluvial fan topography near San Fernando with
relatively steep topography, the dual-grid model with « = 5 and 10
demonstrated only moderate accuracy marked by a critical success
index of 72 and 61%, respectively. Furthermore, simulated flood extent
in the San Fernando subdomain was more sensitive to upscaling than
to the proposed grid edge classification. Lower accuracy is attributed
to convex topography whereby local-scale variability in the represen-
tation of topographic heights can trigger divergent flow paths (NRC,
1996; Pelletier et al., 2005). Furthermore, lower sensitivity to the edge
classification method is attributed to flows that far exceed channel
capacity such that changes in levee representation do not substantially
alter the amount of overtopping flow. These results call attention to the
need for more robust dual-grid upscaling methods for steep and convex
topography with higher sensitivity to topographic variability.
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