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NILPOTENT VARIETIES IN SYMMETRIC SPACES AND TWISTED
AFFINE SCHUBERT VARIETIES

JIUZU HONG AND KORKEAT KORKEATHIKHUN

ABSTRACT. We relate the geometry of Schubert varieties in twisted affine Grassmannian and
the nilpotent varieties in symmetric spaces. This extends some results of Achar—-Henderson in
the twisted setting. We also get some applications to the geometry of the order 2 nilpotent
varieties in certain classical symmetric spaces.

1. INTRODUCTION

Let G be a reductive group over C. Let N denote the nilpotent cone of the Lie algebra g of G.
Let Grg be the affine Grassmannian of G. Each spherical Schubert cell Gry, is parametrized by a
dominant coweight A. When G = GL,,, Lusztig [Lu] defined an embedding from N to Grg, and
showed that each nilpotent variety in gl,, can be openly embedded into certain affine Schubert
variety Gry. This embedding identifies the geometry of nilpotent varieties and certain affine
Schubert varieties in type A. However, there is no direct generalization for general reductive
groups.

In [AH], Achar-Henderson took a different idea for a general algebraic simple group G. Let
Gr, be the opposite open Schubert cell in Grg. One can naturally define a map 7 : Gry, — g.
Achar—Henderson showed that 7(Gry NGry) is contained in A if and only if A is small in the
sense of Broer [Br| and Reeder [Re], i.e. A % 27, where 7 is the highest short coroot of G. They
also proved that 7 : Grgym N Gry — 7(Grgm N Grg ) is a finite map whose fibers admits transitive
7./27Z-actions, where Grgy, is the union of all Gry such that A is small. Moreover, with respect
to m, Achar—Henderson [AH, AHR] related the geometric Satake correspondence and Springer
correspondence.

In this paper, we consider a twisted analogue, and we will extend some results of Achar—
Henderson in [AH]. Let o be a diagram automorphism of order 2, and let o act on the field
K = C((t)) via o(t) = —t and o|c = Idc. Then, we may define a twisted affine Grassmannian
Gr := G(K)?/G(0)?, where O = CJ[t]]. Each twisted Schubert cell Gry, i.e. a G(O)7-orbit, is
parametrized by the image A of a dominant coweight A in the coinvariant lattice X, (7", with
respect to the induced action of o, where X, (T) is the coweight lattice of G. In fact, X, (T),
can be regarded as the weight lattice of a reductive group H := (G’)", where G is the Langlands
dual group of G.

Let Gr, be the opposite open Schubert cell in Gr. We may naturally define a map 7 : Grg — p,
where p is the (—1)-eigenspace of ¢ in g. Let M5 denote the intersection Gry N Gry , which is a
nonempty open subset of Grs. The following theorem is the main result of this paper, and it can
follow from Proposition 2.3 in Section 2.1 and Theorem 4.2 in Section 4, based on case-by-case
analysis.

Theorem 1.1. Assume that G is of type Ay or Dyyy. The image m(M.) is contained in the
nilpotent cone Ny, of p, if and only if X is a small dominant weight with respect to H.
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If we replace the field C by an algebraically closed field k of positive characteristic p, this
theorem still holds for p with minor restrictions, see Theorem 4.16.

In Theorem 4.2 we describe precisely 7m(M3) as a union of nilpotent orbits in p for each small
X. In Theorem 4.5, Theorem 4.6, and Theorem 4.14, we also determine all small A such that
m(M3) is a nilpotent orbit and 7 : M5 — w(M5) is an isomorphism. Furthermore, we describe
all fibers of 7 : M — w(M) in Proposition 4.11 and Proposition 4.15, where M is the union
of Mj for all small X\. The fibers are closely related to anti-commuting nilpotent varieties for
symmetric spaces. When G is of type Ag,_1 (resp. Dyt1), the reduced fiber 771(0),eq is actually
the minimal (resp. maximal) order 2 nilpotent variety in sp,, (resp. s02¢41). This is a very different
phenomenon from the untwisted setting in the work of Achar-Henderson [AH], and it actually
makes the twisted setting more challenging.

For general simple Lie algebra g and general diagram automorphism o, it was proved in [HLR,
Appendix C] by Haines-Lourenco-Richarz that, when X is quasi-miniscule and O is the minimal
nilpotent variety in p, the map 7 : Gry N Gry — O is an isomorphism. In fact, we have also
obtained this result independently, cf. [Ko]. Also, under the same assumption as in Theorem 1.1,
this isomorphism is a special case of our Theorem 4.5, Theorem 4.6, and Theorem 4.14.

The geometric Satake correspondence for Gr was proved by Zhu [Zh], and it exactly recovers
the Tannakian group H. On the other hand, the Springer correspondence for symmetric spaces
is more sophisticated than the usual Lie algebra setting, see a survey on this subject [Sh]. It
would be interesting to relate these two pictures as was done in [AH, AHR]. Y.Li [Li] defined the
symmetric space analogue called o-quiver variety in the setting of Nakajima quiver variety, and
he showed that certain o-quiver variety can be identified with null-cone of symmetric spaces. It
is an interesting question to investigate a connection between o-quiver variety and twisted affine
Grassmannian in the spirit of the work of Mirkovié-Vybornov [MV].

From Theorem 1.1, we can deduce some applications for the order 2 nilpotent varieties in
classical symmetric spaces. Let (,) be a symmeric or symplectic non-degenerate bilinear form on
a vector space V. Let A be the space of self-adjoint linear maps with respect to (,). We consider
Spsy,,-action on A when (,) is symplectic and dim V' = 2n, and SO,-action when (,) is symmetric
and dim V' = n. In Section 5, we obtain the following results.

Theorem 1.2. (1) If (,) is symmetric and dim'V is odd, then any order 2 nilpotent variety
in A is normal.
(2) If (,) is symplectic, then there is a bijection of order 2 nilpotent varieties in $02,+1 and
in A, such that they have the same cohomology of stalks of IC-sheaves.
(3) If (,) is symplectic, the smooth locus of any order 2 nilpotent variety in A is the open
nilpotent orbit.

It is known that when (,) is symplectic, any nilpotent variety in A is normal, but it is not
always true when (, ) is symmetric, cf. [Oh]. Using our methods, we can also prove that there is a
bijection of order 2 nilpotent varieties in sp,,, and in the space of symmetric (2n+1) x (2n+1)
matrices, such that they have the same cohomlogy of stalks of IC-sheaves. This was already
proved earlier by Chen-Vilonen-Xue [CVX] using different methods. Also, Part 3) of Theorem
1.2 is not true when (,) is symmetric and dim V' is odd, see more detailed discussions in Section
5.
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2. NOTATION AND PRELIMINARIES

2.1. Root datum. Let G be a simply-connected simple algebraic group over C, and let g be its
Lie algebra. Let o be a diagram automorphism of G of order r, preserving a maximal torus 7" and a
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Borel subgroup B containing T" in G. Then G has a root datum (X..(T), X*(T), (-, ), &, o, i € I)
with the action of o, where

X.(T) (resp. X*(T) ) is the coweight (resp. weight) lattice;

I is the set of vertices of the Dynkin diagram of G;

a; (resp. ;) is the simple root (resp. coroot) for each i € I;

(-,) : Xu(T) x X*(T) — Z is the perfect pairing.

The automorphism o of this root datum satisfies

o o(ai) = ao(i) and o(d&;) = do(i);

e (g(A),o(p)) = (A p) for any A € X, (T) and p € X*(T).
As a diagram autormophism on G, o also preserves a pinning with respect to B and T, i.e. there
exists root subgroups x;,¥y; associated to a;, —q; for each i €, such that

o(zi(a)) = 2o (a), o(yi(a)) = Yoiy(a),  for any a € C.

Let I, be the set of g-orbits in I. Denote X*(T)? = {\ € X*(T) | oA = A} and X.(T), =
X.(T)/(Id — 0)X.(T). For each 2 € I,, define v, = &; € X.(T), for any 7 € 2, and define
Y € X*(T) by

D ic, i if no pairs in ¢ is adjacent,
Yo=92> i, if 1 = {i,0(¢)} and ¢ and o(7) are adjacent,

Let G denote the Langlands dual group of G, and we still denote the induced diagram automor-
phism on G by o. Denoted by H = (G)? the o-fixed subgroup of G.. Then, H has the root datum
(XH(T)7, Xu(T) g, Yy Yos 1 € 1), cf. [HS, Section 2.2]. For A\, i € X.(T),, define the partial order
A =< X\ if X\ — i is a sum of positive roots of H. Let X, (T)F be the set of dominant weight of H.
In fact, X.(T)F is the image of the quotient map X,(T)" — X, (T),, where X,(T)" is the set
of dominant weights of G.

2.2. Twisted affine Grassmannian. Let o be a diagram automorphism of G of order r. Let
O denote the set of formal power series in ¢ with coefficients in C and denote K the set of Laurent
series in t with coefficients in C. Denote the automorphism ¢ of order r on I and O given by o
acts trivially on C and maps ¢t — et where we fix the primitive r-root of unity e. We consider the
following twisted affine Grassmannian attached to G and o,

gre = G(K)?/G(O)7,

This space has been studied intensively in [BH, HR, PR, Ri]. The ramified geometric Satake
correspondence [Zh] asserts that there is an equivalence between the category of spherical perverse
sheaves on Grg and the category of representations of the algebraic group H = (G)?. If there is
no confusion, we write Gr for convenience.

Let eg be the based point in Gr. For any A € X, (T'), we attach an element t* € T(K) naturally

and define the norm n* € T(K)“ of t* by
r—1
(2.1) n = H a_i(t)\) _ 621;11 wi()\)tz gi)\_
=0
This construction originally occurred in [Kot, Section 7.3]. Let A be the image of A in X, (T),.

Set e5 = n* - g € Gr. Then e only depends on \. Following [BH, Zh], Gr admits the following
Cartan decomposition

(2.2) Gr = |_| grsy
XeX.(T)F
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where Gry = G(O)? - ey is a Schubert cell. Let Gry be the closure of Gry. Then
@; = |_| gTﬁ,

A=A
and dim Gry = (2p, \), where p is the half sum of all positive coroots of H.
By abuse of notation, we still use o to denote the induced automorphism on g of order r. Then
there is a grading on g,
0=00DPgD - Dgr—1
where g; is the e*-eigenspace. Set
p=01
Set O~ = C[t™!]. Consider the evaluation map evy, : G(O~) — G. Let G(O7)y denote
its kernel. The map ev,, factors through G(C[t~!]/(t72)) — G. Note that the kernel of
G(C[t7']/(t7%)) — G is canonically identified with the vector space g ® t~! with respect to
the adjoint action of G and o. It induces a G x (o)-equivariant map

GO )y —gat L.

Taking o-invariants, we get a K-equivariant map
(2.3) G(O7)g = »,
where K := G?. Note that K is a connected simply-connected simple algebraic group, as G is
simply-connected.

Set Gry == G(O7)7 -eg >~ G(O7)Z. Then Gry is the open opposite Schubert cell in Gr. From
(2.3), we have the following K-equivariant map
(2.4) w:Gry —p.
Lemma 2.1. Gr; NGry is nonempty for any X € X,.(T)}.
Proof. First note that Gry is an open subset in Gr, cf. [BH][Proof of Theorem 4.2]. Moreover,
Grg N @X contains the base point eg. Thus, the intersection Gry N @X is a nonempty open
subset of Gry. Hence Gry N Gry is also nonempty.

O

Following [Br, Re, AH], an element A of X,(T)} is called small, if A # 2vo, where 7 is the
highest short root of H. The set of all small dominant weights is a lower order ideal of X, (T)7F,
i.e., if i < X and X is small, then [ is also small. Let Grg,, be the union of Gry for small dominant
weights A. Set

M = Grgm NGry .

For each small dominant weight X, set
M 3= gTj\ n gro_ .

Let N, denote the nilpotent cone of p. We shall prove in Section 4 that (M) is contained N,
when G is of type A, and D,, and o is of order 2.

Recall that ~yp is the highest short root of H. The following lemma is a twisted analogue of
[AH, Lemma 3.3].

Lemma 2.2. If o is a diagram automorphism of order r, then w(Gray, NGry ) € Ny, .

Proof. Let X be the Dynkin diagram of G. Following [Ka, p.128-129], we choose the following
root of GG,

a4 4 ag_g, (Xn,7) = (A2e-1,2);
o+ -+ ag, (Xn,7) = (A2, 2);

Op = a1+ -+ ayg, (Xn,7) = (De41,2);
a1 + oz + as, (Xn,7) = (D4, 3);
a1 + 2a + 2a3 + a4 + as + ag, (Xn,7) = (Fs,2)
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where the label of simple roots «; follows from [Ka, TABLE Fin, p.53]. Recall from the section
2.1 tha‘g for each ¢ € I;, we define simple roots of H, v, = &; € X.(T),-.
Let 6y be the coroot of 8y. Then,

G, = {’Yo if (Xn,7) # (A2, 2) .
2’70 f (XN, ) = (A2472)

Suppose (Xy,7) # (Ag,2). Note that §y € X*(T) and 6y : C* — T. Each a € C*
0

can be identified with g a-1] € SLs. For each ¢ = 0,...,r — 1, define a homomorphism

(bgi(go) : SL2 — G given by

<(1) ‘f) = Toi (9, (), ((11 (1)) = Yoi(60) (@), (8 a01> — o (o) (a).

Let S be the product of 7 copies of SLy. Then 6 can be extended to ¢ : S — G given by

r—1
¢(903 "'agrfl) = H ¢U’7(00)(gi)~
=0

This ¢ can extend scalar to K. Abusing notation, define o : [];_,(SL2(K)); — [, (SL2(K));
by

a(gl(t)vg2(t)7 ey g’f(t)) = (g7'(€t)7gl(€t)7 "'797'—1(€t))'
There exists an isomorphism

T

o+ SLa(K) = (J(SLa(K))i)” = {(9(t). glet), .., g(e" ) | g(t) € SLa(K)}.

i=1
Hence

t 0 Git 0 i . ig d
: . 140 Vo — 0
poy: (0 t1>'_><(0 (e’t)1>>_ >—>H(6t) nfo.

1=0,..., r—1 =0

Let s be the product of r copies of sly. Define o : s — s by
U(.’Ifl,,... Ly — lam’r) = (er7€l'1, ...,er_l).

Since o has order r, we have s = @&;_ OEZ where s; is the eigenspace of eigenvalue ¢’. Then
51 = {(w,ex,....,e"12) | € sly} = 5l. The derivative of ¢ is d¢ : s — g which induces s; — g;.
Hence we have the map ¥ : slo — g;.

Consider the matrix g(t) € SLs(O7),

() = 1+t71 t=2 [0 1 2 0 1 0
IO=\ v g2 T\ o 2—er1)\o 22t 1)

Then (¢op)(g(t)) € G(O) 2 G(O)7. Since G is not type Ay, 0o = 7o and then (poy)(g(t))-eo €
Gray, NGrg - We have the commutative diagram

9(t)- Lo+ (g(t))-eo (9i(£)7 2 -eo—>(gi(1))7 =0 )-eo

GrSLg,O grg,o gra Lels)
TSLa ™
slo 51 g1

o (z,ex,...,e" L)

where Grgy, o = SL2(O7)o - €9 C Grsr,, and Grs is defined similarly. The commutativity
follows from

(62 9)ol0) - e0) = Blrssalolt) o) = (1 °)).
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where the latter is not nilpotent. It follows that, 7(Gra,,) € N,.
Suppose that (Xy,r) = (Az2,,2). In this case, 0y = 27 and o(fy) = Hy. Then 6y can be
extended to ¢ : SLy — G defined by

1 1 0 0 5
(O C{) — xg,(a), (a 1) — Yo, (@), (8 a1> — Gp(a).
¢ can extend the scalar to . Define a group homomorphism o : SLy(K) — SLo(K) by
a(t) b(t) . a(—t) —b(-t)
c(t) d(t) —c(=t)  d(-t)
where a(t) € K. Then ¢ : SLy(K) — G(K) is o-equivariant. The induced homomorphism

o : sly — sly is given by
(a b ) ( a —b)
— .
c —a —c —a

The derivative d¢ : sly — g induces the map ¥ : (sly); — g;. Similar to the above arguement,
we have the commutative diagram

~

_ _
gTSLg,O ’ gTG,O
TSLa ™

(5[2)1 % g1

where (sly); is the eigenspace of eigenvalue —1 under o. Now consider g(t) € SL2(O7)°

() = 1 N (1 =B+t 2 0\ (1 ¢
IO =1 14¢2) 7 o 1 o t2)\t 14+¢)"

Then ¢(g(t)) € G(O)"néOG(O)" and ¢(g(t)) - eo € Gray, NGry . The result follows from

0 1
(0la(t) - o) = Wmsualo(0)-ea) =¥ (] o)
where the latter is not nilpotent. It also follows that, m(Gray,) € N,. O
Proposition 2.3. For A € X. (1)}, if n(Grx N Gry) C Ny, then X is small.

Proof. Since Gry is an open subset of Gr, m(Grx NGry) C N,. By Lemma 2.2, Gry,, € Gry
which means \ % 2. O
Define the following anti-involution
L:GK) = G(K), g(t)— g(—t)~ L

It can be checked that ¢ commutes with o, and ¢ preserves G(K)?,G(0)? and K ~. This induces

the map
1

t:Grg = Gry,  g(t)-eo— g(—t)"" - eo.
The following lemma will be used in Section 4.
Lemma 2.4. For A € X, (T)F, «(M5) € Ms5.
Proof. Tt suffices to prove t(n*) € My for each A € X, (T)7.
L(n)\) _ L(ea)\+202/\+...+(r71)ar_1)\t22:_01 ai)\)
- 67(0A+202A+...+(r71>a“1x)(,1)22;& T DU

_ (71)22;01 AN



Since (—1)23;01 oA is fixed by o, (n) € G(0)°n~*G(O)°. Let W be the Weyl group of G with
respect to the maximal torus T and wy the longest element of WW. We can choose a representative
wo € G of wy such that o(wy) = wo, cf. [HS, Section 2.3].

When G is of type Doy with £ > 2, wy = —1; otherwise, wg = —o and o is of order 2, cf. [Hu2,

Ex 5, p.71]. If wy = —1, it is easy to see that n=* = wonAwo_l. If wg = —o and o has order 2,
n—)\ — (_1)—0At—(>\+a)\) — (_1)w0>\two(>\+a)\) — wo(—l)AtA—H’)\’wo_l — wo(—l)A+U>‘n>‘wal.
In any case, t(n?) € G(0)°n*G(0)°. O

3. NILPOTENT ORBITS IN THE SPACE OF SELF-ADJOINT MAPS

In this section, we will review some facts on the nilpotent orbits in certain symmetric spaces.
These results are known, cf. [Se]. We provide proofs here, as the proofs in [Se] are omitted.

Let B = (-, -) be a nondegenerate symmetric or skew-symmetric bilinear form on a vector space
V = C™ and A the set of self-adjoint linear maps under the bilinear form. In this section, we
describe the classification of nilpotent orbits in the space A in Theorem 3.3, Theorem 3.4 and
Theorem 3.6.

The isometry group of the form B is

Ip ={g9 € GL(V) | (gu, gv) = (u,v) for all u,v € V'},
whose Lie alegbra is
(3.1) g = {X €sl(V) | (Xu,v) + (u, Xv) =0 for all u,v € V}.

When B is symplectic, dim V' is even, Ip = Sp,,, and gp =~ sp,y,, where m = 2n. When B is
symmetric, Ig =2 O,, and gp = s0,,.

The group Ip acts on the space of self-adjoint linear maps
(3.2) A={X € End(V) | (Xu,v) = (u, Xv) for all u,v € V}

by conjugation. The orbit is called nilpotent if it is the orbit of a nilpotent element of A.
Let g be a complex semisimple Lie algebra. Suppose that g has Z,,-grading

g= @ 9i
i€%0m
so that [gk, g¢] C gr+e. We have the following graded version of Jacobson—-Morozov Theorem and
Kostant Theorem.

Lemma 3.1. Let X be a nonzero nilpotent element in g;.
1) There exists an slo-triple {H, X,Y } such that H € gg andY € g_;.

2) Let {H', X,Y'} be another sly-triple such that Y' € g_; and H' € gog. Then there exists
g€ KX suchthatg- H=H',g- X=X andg-Y =Y.

Proof. The first part follows from the usual Jacobson—-Morozov Theorem, and the proof is similar

to [EK, Lemma 1.1]. We replace u* := g¥ N [g, X] in [CM, Lemma 3.4.5] by uf = g{f N [g, X].
Then the proof of the second part is similar to [CM, Theorem 3.4.10]. O

For each A € sl(V), as a linear map, we denote its adjoint by A* under the form B. We define
an involution o on g = sl(V') by

(33) o(A) = —A*.

Then g is the direct sum of eigenspaces, g = go @ g1. Thus g9 = g and g, = A. Fix a nonzero
nilpotent element X € A. By Lemma 3.1, there exists Y € A and H € gp, such that XY, H is
an sly-triple. This induces a representation of sls on V' and hence we have a decomposition

(3.4) V=M



where M (r) is a finite direct sum of irreducible representation of sl of highest weight r. For
r >0, let H(r) be the highest weight space in M (r). Define a new bilinear form (-,-) on H(r) by

(u,v)y = (u, Y"0).

Lemma 3.2. For any r > 0, (-,-), is symplectic (resp. symmetric) if B is symplectic (resp.
symmetric).

Proof. We assume B is symplectic. The proof is similar when B is symmetric. It is easy to
see that (-,-), is skew-symmetric. It remains to show that (-,-), is nondegerate. Let V, be an
r-weight space in C2". For any u € V,., v € V, with s # —7,
(r + 8){u,v) = (ru,v) + (u, sv) = (Hu,v) + (u, Hv) =0
This implies that V,. and V are (-, -)-orthogonal. Let
W = Span{u € V; | u = Yv for some v € C*"}.
It can be seen that V,, = H(r) @ W. For u € H(r) and v € W, write v = Y/,
(u,v), = (u, Y™0) = (u, YTy = (Y™, o) = 0.

Hence H(r) is (-, -)r-orthogonal to W.

We claim that (-,-) : (Y" - H(r)) x H(r) — C is nondegenerate. Let u =Y"u' € Y" - H(r)
be such that (u,v) = 0 for all v € H(r). For each w € C?", write w = Y__ws where each w,

belongs to V. Since u € V_,., (u,ws) = 0 for s # r. Write w, = wy + wy where wy € H(r) and
wg = Yw), € W. By the assumption (u,w;) =0 and hence

(u,wr) = (u,wz) = (Y7, Ywy) = (V" wy) = 0.

We obtain (u,w) = 0 for any w and hence v = 0. This claim implies that (-, -), is nondegenerate.
U

A partition of a positive integer is denoted by a tuple [d;, da, ..., di] of positive integers. We
use the exponent notation
[a®,...,alr]
to denote a partition where a;j means there are i; copies of a;. For example, [3%,11] = [3,3,1,1,1,1]
is a partition of 10. Put r; = |{j | d; = i}| and s; = |{j | d; > i}|. In fact, each partition can
be illustrated by Young diagram and then s; is the i-th part of the dual diagram. The following
Theorem gives the parametrization of nilpotent Ig-orbits in A.

Theorem 3.3. There exists one-to-one correspondences

partitions of 2n such that }

{nilpotent Sp,,-orbits in A} < { every part occurs with even multiplicity

and
{nilpotent Oy, -orbits in A} < {partitions of m}.

Proof. The proof is similar to [CM, Lemma 5.1.17]. For the case that B is symplectic, it suffices
to show that any nilpotent element in A4 gives rise to a partition of 2n such that every part occurs
with even multiplicity. Given nilponent X € A, the number of Jordan blocks of size r + 1 equals
to the multiplicity of M (r) in C?" which is exactly dim H(r). By Lemma 3.2, dim H (r) is even
for every r.

If B is symmetric, there are no constraints on dim H(r) which means there are no conditions
on partitions of m. O

Theorem 3.4. There exists one-to-one correspondence
{nilpotent SOgqy,41-0rbits in A} < {partitions of 2n + 1} .

Proof. Since Ogp41 = SO2p41 X {£I2n+1}, the orbits under Og,41 and SOg,41 coincide. The
results immediately follows from Theorem 3.3 O



Consider the case that B is symmetric and m = 2n. Given nilpotent elements X, X' € A
whose partitions are the same and have at least one odd part. Say that they are conjugated by
an element g € Oy,. If det g = 1, we conclude that X, X’ are in the same SOs,-orbits. Suppose
that detg = —1. We modify this g so that it has determinant 1. By Lemma 3.1, X gives rise
to the decomposition (3.4). An odd part in the partition corresponds to an odd dimensional
irreducible representation S of sly in C?". We put h = g except that h(v) = —g(v) for v € S.
Therefore, det h = 1, and X and X’ are conjugated by h. If there is no odd parts, we need the
following Lemma.

Lemma 3.5. Let X be a nilpotent element in A whose partition contains only even parts, and
k € Oy, such that k- X =kXk™' = X. Then detk = 1.

Proof. Let O, be the stabilizer group of O, at X. Then k € O%,. By multiplicative Jordan
decomposition, cf.[Bo, Theorem 4.4, p.83], let ks € 052 be the semisimple part of k. Then
det ks = detk. Hence we may assume that k is semisimple. Let ¢ be an automorphism on
g = sl(V) defined by (3.3). Then o commutes with Adk on g, as k € Os,. Then g = go @ g1, and
we have the decomposition of k-stabilizers g% = gk @ g¥ where g = g; Ng”*. Since g* is reductive
and X € g¥, by Lemma 3.1, there exists an slp-triple H, X, Y such that X,Y € g¥ and H € gk
and hence we have the decomposition (3.4). It is easy to see that k(M (r)) C M(r), and also, k
stabilizes each weight space of M (r).

Recall that (-,-) is a nondegenerate symmetric form on V' = C?" and a form on H(r) given by
(u,v), = {u,Y"v) is also symmetric for any r > 0. For any u,v € H(r),

(ku, kv), = (ku, Y"kv) = (ku, kY v) = (u, Y"v) = (u,v),.
Hence k‘H(T) € O(H(r)) for any r. In particular det (k:’H(r)> =+1.
Let M(r); be an ¢-weight space, and L(r) the lowest weight space in M (r). Observe that

X’M(m is an isomorphism from M (r); to M(r)e42 and the diagram
L(r) ---------- > M(r)e M M(r)eqyo —--------- s H(r)
)L(r) k’M(r)2 k|M(r)H2 k‘H(T)
L(r) ---------- > M(r), ‘4> M(r)ppg ---------- > H(r)
M(r)p

commutes. Then k| M(r) has the same determinant for all £. Since X has only even parts, the
number of weight spaces in M(r) is even for each r. Then

det k= Udet (Flas) = Ul;[det (Flarr,) = H (det (k;|H(T)))£ —1

as desired. O

Now suppose that X, X’ € A have the same partition and contain only even parts. If det g = 1,
they are in the same SOs,-orbits. Suppose that det g = —1 and they are conjugated by another
element h € SOg,. Say g- X = X’ = h-X and let k = g~ 'h. Then det k = (det g~1)(det h) = —1
but this contradicts to Lemma 3.5. In this case, it means X, X’ are conjugated by an element in
O3, of determinant —1 only. We have the following theorem:

Theorem 3.6. Nilpotent SOs,-orbits in A are parametrized by partitions of 2n except that the
partitions with only even parts correspond to two orbits.

For each nilpotent element X having the partition [dy, ds, ..., di], we denote the Ip-orbits of
X by Ox,014, ds,...,dy]> Or simply [d1,da, ..., dy]. We are now ready to compute the dimension of
nilpotent Ig-orbits.

9



Theorem 3.7. Let X be a nilpotent element in A. Then the dimension of Ig-orbit of X is

1
dimOx = 3 <m2 —Zs?) .

Proof. Suppose that B is symplectic on C™, m = 2n. Recall that we have the decomposition
(3.4). For each Z € g3, we investigate how Z sends M (d). We consider Z(M (d)) and project
it onto M(e) for each e > 0. Since Z and X commute, by theory of representations of sls, the
projection of Z(M(d)) onto M(e) is uniquely determined by a linear map L(d) — M (e) where
L(d) is the lowest weight space in M (d).

Suppose that a linear map from L(d) to M (e) is determined for d < e. Since Z is skew-adjoint,
Z* = —Z7 where Z* is a conjugate transpose of Z. Hence the projection of Z(M (e)) onto M (d)
is uniquely determined. Therefore, we only consider the case d < e.

Now, consider the case d < e. For v € L(d), X v = 0 and then X1 Zv = ZX%1y = 0.
Hence the nonzero M (e)-component of Zv must lie in the weight spaces

M(e)€72d ® M(e)e72(d71) D---D M(e)(»;’f? S5 M(e)e

where M (e)y, is the k-weight space in M (e). Note that r441 = dim L(d). Therefore the set of all
linear maps from L(d) to M (e) forms a vector space of dimension (d + 1)rg417et1-

Assume that d = e. If Z sends L(d) to H(d), then we define a new bilinear form (-, )4 on L(d)
given by (u,v)q = (u, Zv). It can be checked (,-)q is symmetric and completely determine the
action of Z on L(d). The set of all such (-, )4 forms a vector space of dimension 7411 (rg11+1).
If Z sends L(d) to (d —2)-weight space in M (d), we define the new form by (u,v)4—2 = (u, X Zv).
Again, this form is symmetric and completely determine the action of Z on L(d). Continue this
process up to the case Z sends L(d) to itself. We obtain

dim gy = Z

d>0

d+1
(d+1) <Z Td+17"e+1> = rat1(rat1 +1)

e>d

1 2
— [rl(r2+r3+~-)+27"1(7"1+1)] + {2r2(r3+r4+...)+27"2(7'2—%1)}

[ 3
+ 37‘3(T4+T5+"')+2T3(7’3+1):| + -

(1 1 2 2
= 57“1(7‘1 +2ro+2rg+...) + 27‘1:| + [27“2(7“2 +2r3+2ry +..) + 27‘2:|

3 3
+ 5’(‘3(’/’3 + 274 + 275 + ) + 27"3:| + -

(1 1 2 2
= 5(51 — s2)(s1+ s2) + 27'1} + {2(82 — 53)(82 + 53) + 27“2]

3 3
+ 5(53 — 84)(s3+84) + e +-

1 1
:55 Si (r+ 2ra 3y ) 4 -
12 ) 12
:5 : Si+§ i S
122
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and hence
dimOX:dimgB—dimgX:(2n2+n)— n—|—1 E 52 :m—z—l g 52
B 2 - ¢ 2 2 - v

If B is symmetric, the arguement is similar except that the form (u,v)q is symplectic and
hence the vector space consisting of such forms (-,-)4 has dimension %'I"d_},.l(""d_}rl —1). O

Remark 3.8. The dimension of Ip-orbits can also be obtained from [Se, 3.1.c, 3.2.b], where the
formulae are not uniform and the proofs are also omitted.

The closure relation on the set of nilpotent orbits in A is given by
Oy = Ox if Oy Cc Ox
for nilpotent elements X,Y € A. Given two partitions d=[d, o dN], fﬁ: [f1y .y fv] of N (put
some d;, f; = 0 if needed). We say that d dominates f, denoted by d = f if

dy > f1
di+do> fi+ fo

di+...+dy > fi+ ...+ fn.

Theorem 3.9. Let X,Y be nilpotent elements in A having partition d, f, respectively. Then
Og = Og if and only if d dominates f.

Proof. See [Oh, Theorem 1]. O

For example, all nilpotent Sp,,-orbits in A C sl are
0[52] t 0[42’12] t 0[32722] t 0[32’14] t 0[24’12] t 0[22716] t 0[110].
The dimensions are 40, 36, 32, 28, 24, 16, 0, respectively.

4. THE CONNECTION BETWEEN SCHUBERT CELLS AND NILPOTENT K-ORBITS

The goal of this section is to show that for any small A, M5 is sent to the nilpotent cone N,
by the map m, and show that how each M3 is sent to nilpotent K-orbits in the N,. Theorem 4.2
describes the image m(M3) where the proofs are provided by case-by-case consideration in this
section.

Let X be the type of Dynkin diagram of G and ¢ the diagram automorphism on G of order 7,
denoted by the pair (X, 7). We consider the cases (Xn,7) = (Aar, 2), (A2¢—1,2), and (D41, 2).
Then H = (G)? is either of type By or C;. We make the following labelling for simple roots 7;:

V1= V{1,20=1)> -+ 5 Ve—1 = V{t—1,n+1}> Ve = V{&} (Xn,7) = (A2e-1,2);
(4.1) V1= V{1,265 0 V=1 = V{e—1,642}> Ve = V{£,041) (Xn,7) = (A2, 2);

V1= V(1) Vo1 = V{e—1}> Ve = V{t,04+1} (Xn,7) = (Det1,2).
This labelling of vertices of type B, and Cy agrees with the labelling in [Ka, TABLE Fin, p.53].
Then the highest short root vy of H can be described in the following table.

From Section 2.1, we can identify the weight lattice of H with X, (7)., and the set of dominant

weights of H with X, (T')F. Then, from the construction of root system of classical Lie algebras
given in [Hu2, §12], we can make the following identifications:

7t if H = By:
{(ar,...,a0) €Z' |ay + - +ap €272} if H=0Cy
and

X (T)5 = {(a1, . ar) € X (T)y | a1 > -+ > ag > 0}
11



(Xn,7) G H Simple roots of H  Highest short root o of H

(A2, 2) SLaer1 PSOgpq 7T ?f?e_i“’ Y1+ 2 e A e

(Agg_l, 2) SLoy PSp% i Zi :“dﬂ_i’ Y1+ 272 + oo + 27901 + Yoo

. i =&i=1,..,0—1
(Dgy1,2)  Spinggyy PSOgpyy 7 wa: 15% e M+v+. e
H Simple roots Yo Fundamental weights
71 = (1,-1,0,0,...,0)
~v2 = (0,1,-1,0,...,0) w; = (19049), j = 0, . b —1
By ; (1,0,0,...,0,0) 11 1
. wé_(iziv'vi)
Ye-1 = (0,0,0,...,1,-1) 22 2
=(0,0,0,...,0,1)
7 =(1,-1,0,0,...,0)
=(0,1,-1,0,...,0)
Cy : (1,1,0,...,0,0) | w; = (190°79),5 =0,....¢
Ye-1 = (0,0,0,...,1,~1)
=(0,0,0,...,0,2).

TABLE 1. Simple roots, highest short root, and fundamental weights of H in
term of tuples

for any cases of H. This identification preserves the relation on X,(T)F and the dominance
relation on {(a1,....,ar) € Xu(T)s | a1 > -+ > ag > 0}.

In the Table 1, we can further make the following identifications for simple roots and funda-
mental weights of H. Those fundamental weights follows from [Hu2, Table 1., p.69].

The following lemma is well-known, cf.[AH]. We give a self-contained proof here.

Lemma 4.1. All small dominant weights of H are
(1) wj = (190¢79), j=0,....0 — 1, 2w, = (1,1,..., 1), if H has the type By.
(2) w1+ wejpr = (21%0°7271), j=0,..., 5]
woj = (120172, j =0,..., |£], if H has the type C;.

Proof. Suppose that H has the type By. The highest short root is vy = (1 0,...,0). By definition,
a dominant weight (a1, ...,a¢) € X, (T)7 is small if and only if (a1, ...,as) # (2,0,...,0) which is
equivalent to a; < 1. This proves the first part.

Now assume that H has the type Cy. The highest short root is v = (1,1,...,0). Let
(a1,...,ar) € X.(T)F be a small dominant weight. Then (a,...,a¢) # (2,2, ...,0) and so a; < 2.
If a; = 1, then (a1,...,ar) = (120°=%). If a; = 2, then as < 2 and hence (ai,...,a;) =
(21270¢—27-1), O

Let @ be the maximal element among all small dominant weights of H, then
grsm = H Qr;\ = a;}
X=i,\ small
Since Grgy, is irreducible and M is an open subset of Grg,,, M is irreducible.

The following theorem is the main result of this section.

Theorem 4.2. If X is small, then m(My) is contained in Ny,. Moreover, the image 7(Ms) can
be described as the union of nilpotent orbits as the following table:
12



(Xn,7) | Small dominant weight X of H Orbits in m(M5)
(A2£72) (1']0@7‘7)7] = 071,...,€ [2j12(72j+1}
(1%270-%7),7 =0,1,..., L%J [227120-4]]
(20471) 0, [2212574]
<A2£71, 2) (21202—3) [22122—4]7 [24125—8], [32125—6]
o . B 92 120—45] [92+2120~45—4]
(212]06 2 1)7.7 =2,..., LZTBJ [3222j—212£—4j}—[2}’ (322214120~ 4j+2]
227214 , 22 , . .
(212[%]0872[%J71) [3226[—412}’[]32[26]—614} ’ ng 15 even
20-112], e
[3228—3}’[322]15_514} 5 Zf€ 15 odd
int—7\ s 0,ifj=0
M — s
(Det1,2) (190779, 5 =0,1,... ¢ 0,[31%%71], if § is even, j > 2
[312571], if 7 is odd
where the nilpotent orbit [ai1 sy alr] in the above table means empty set if the associated partition

is invalid for some small £.

This theorem follows from Theorem 4.5, Theorem 4.6, Theorem 4.10, and Theorem 4.14, which
will be proved separately case by case.

The partial orders of small dominant weights of H are shown in the below picture, where the
partial order is compatible with the height.

QUJ( w1 +w2L%J+1
We—1 w1 +w2le%J—1
we=2 Wit Wyt g Wal4)

| “alg)-2

|
w1 + w3

—

|
i
I
I
I
|
|
I
|
|
I
I
I
|
i
wa 22.«)1

Wy
| NTT—— |
w1 w2
| _—
0 0
Type B, Type Cy

We first recall a crucial lemma from [AH, Lemma 4.3].

Lemma 4.3. Let g = Y = v a;it' € SL,(K), where xx # 0. Let X = (a1, az, ...,a,) be a tuple of
integers such that ay > ag -+ > a, and Y. a; =0, and g(t) € SL,(O)t*SL,,(O). Then

(1) N = ay,.
(2) The rank of xn equals to the number of j such that a; = ay.
13



(8) For any s > 1,

IN IN+1 "t TN+s—2 TN+s—1
0 TN 't TN4s—3 TN4s—2 n
tk | = g max{s — (a; — ay),0}.
0 0 e TN TN41 j=1
0 0 0 TN

We have the following lemma for the twisted version.

Lemma 4.4. Let g(t) = Y ;o y x;t' € G(K)° where z; € Maty,sm, on # 0. Let X = (a1, ..., a¢) €
X.(T)F be such that g(t) € G(O)°n*G(0)°. Then

(1)
_Jma (Xn,7) = (A2¢,2), (A20-1,2);
—2&1 Zf (XN7 7") = (De+1, 2)

(2) The rank of xn is equal to the number of j such that a; = a;.

Proof. We can write

where ~; are simple roots of H as labelled by (4.1). We choose a representative A\ € X, (T') of A
by

S (S @ i (Xo,7) = (A20,2), (Des1,2);
)i (2221 aj) & + % (2521 aj) ap if (X, 1) = (A2e-1,2)
so that
i (Smray) d+ X (S35 ) dn i (Xv,r) = (Aae, 2);
Aor =i (Do) @+ it (X0 aj) & if (X, ) = (A2e-1,2);
ST (Sima20) i+ (S5-105) G+ desn) i (X, 1) = (Dega, 2).

The simple coroots of G are identified with tuples of integers through the construction of root
system given from [Hu2, §12].

Let p : G — GL(V) be the standard representation of G. We will determine the double
SL(Vo)-coset in SL(Vi) that p(g(t)) belongs to.

If G is of the type A,,, then &;, i = 1,...,m, are identified with the following (m + 1)-tuples

&1 = (1,-1,0,0, ...,0)
&y = (0,1,-1,0,...,0)

& = (0,0,0,...,1,—1)
and hence, as the coweight of SL,,, A + oA corresponds to the following tuples
)\+0)\: (a17a27"'5a5707 _a€7"'7_a27_a1) lf (XN7T) = (A2€72);
((11, ag,...,Qp, —AQy, ..., —A9, —al) if (XN, T) = (AQg_l, 2)

Assume that G has the type Dyyy. Then &, i = 1,...,£ + 1, are identified with following (¢ + 1)-
tuples
14



a1 = (1,-1,0,0,...,0)
&y = (0,1,-1,0,...,0)

) ]-7_]-)
0,0,0,...,1,1).

Q« o

Ay

Then A + oA = (2a1,2as,...,2a,,0) as the coweight of G = Spiny,,,. Choose an appropriate
maximal torus and a positive root system in G. Composing with p : G — SLay4 2, as the coweight
of SLagy2, A+ oA corresponds to the following tuple

(2a1,2as, ...,2a¢,0,0, —2ay, ..., —2a2, —2aq).

We write g(t) = A(t)n*B(t), where n* is a norm of t* defined by (2.1) and A(t), B(t) € G(O)°.
Hence p(g(t)) € SLy(O)p(t*T*)SL,,(O). By the above description of p(t**7*), this lemma
follows from Lemma 4.3. O

4.1. Case (Xn,r) = (A2, 2). Let (-, -) be anondegenerate symmetric bilinear form on V' = C%+1
whose matrix is

1
-1

-1

1

The diagram automorphism o on g given by (3.3) becomes o(A4) = —JATJ~1 and the diagram
automorphism o on G is given by

(4.2) o(A)=JA"TJ L

This o gives the decomposition g = £ & p to 1 and —1 eigenspaces £ and p, respectively. Let
K := (SLg¢41)° = SOg¢41. The classification of nilpotent K-orbits in p and their dimensions
follow from the Theorem 3.4 and 3.7.

Set

Theorem 4.5. m maps M isomorphically onto N, ». Moreover, m maps M 1i0e-3) isomorphically
to [27126-27+1],

Proof. We first show that m maps injectively into N, 2. Let g(t) - eg € M. Then g(t) - e €
M(1ige-5y for some j. By Lemma 4.4, g(t) = I+xt~! for some z € Matay1 2¢41. By Lemma 2.4,
1(g(t) - e0) € Mige—iy. Hence 1(g(t)) = (I —axt™')"" = T+ zt~! for some z € Matoyi1,2¢41, and
so 22 = 0. We now show the map 7 : M — N, is bijective. Let z € N, be such that z? = 0.
Then I +2t~! € G(K)°. By (2.2), (I + 2t~ 1) -eq € Gry, for some X = (a1, ...,ar) € X.(T)F. By
lemma 4.4, A = (170°77) for some j.

Consider the map ¢ : N, 2 — Gry given by z +— (I+at™!)-ep. Clearly ¢ is a closed embedding,
as Gry ~ G(O7) and I +xt~! € G(O7)§ if and only if z is nilpotent. By the argument in the
previous paragraph, ¢(N, 2) = M and 7o ¢ is the identity map on N, 2. Thus, ¢ : Ny o — M is
an isomorphism, and 7 : M — N, 5 is its inverse.

Finally, we show 7 maps M q;p¢-;) isomorphically to [2/12727F1] for each j. Since 7 is
K-equivariant, it suffices to show that m maps M qse-s) onto [2712672F1] Let (I + xt™') -
eo € M(1igt—+y. Then 2?2 = 0 and z has the Jordan blocks of size at most 2. By Lemma 4.4,
rkz = j and then x has the partition [2712=2/F1]. Tt is obvious that 7 is injective. To prove
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surjectivity, let # € N, 2 having the partition [271%=2+1]. Then, (I + 2t71)- ey € M and hence
(I+xt™)-eg € M(yrge-ry for some k. In fact, k = j since 7((I+xt™1)-eg) = x € 2812721 O

4.2. Case (Xy,7) = (A2/-1,2). Let {-,-) be a symplectic bilinear form on V' = C?* whose matrix
is

1
-1

-1

The diagram automorphism ¢ on g given by (3.3) becomes o(A4) = —JATJ~1 and the action on
G is given by

(4.4) o(A)=JA"TJ L

This o gives the decomposition g = €@ p to 1 and —1 eigenspaces £ and p, respectively. Let
K := (SL2¢)? = Spyy. The classification of nilpotent K-orbits in p and their dimensions follow

from the Theorem 3.3 and 3.7.
Define the following constructible sets

5] 554
M, = U M(12_j01{—2j), M” = U M(212j01{—2j—1).

=0 =0

By Lemma 4.4, the element of M’ is of the form (I +xt~!) - eg and the element of M” is of the
form (I 4+t~ +yt2) - eg. Let N, 2 be the order 2 nilpotent cone defined as in (4.3).

Theorem 4.6. © maps M’ isomorphically onto Ny 2. Moreover, ™ maps M (12i0¢-25) isomorphi-
cally to [2%712¢—47].
Proof. The proof is the same as the proof of Theorem 4.5, where in this case we use Lemma 4.4

for (A25_1,2). O

Before we describe elements of M” | we need the following lemma.
Lemma 4.7. Let g(t)-eg = (I + at™t +yt=2) - eqg € M". Then
(1) u(g(t)) # 9(t)
(2) If g(t) - eo € M212i0¢-2-1), then tk <g 5) =25 +2.

Proof. Note that ¢(g(t)) = g(¢) if and only if

(T4at Pyt )T —at 4yt 2) =1

1
which is equivalent to y = 5:132 and z* = 0. Suppose that t(g(t)) = g(t). Observe that rka® <

tkaz? = 1ky = 1. If tka® = 1, then tk2* = rk2® = 1 which is impossible. Hence x> = 0. Since
tkz? = 1, x € p is nilpotent having the partition [32712/=27=3] but this contradicts to Theorem
3.3. This proves the first part.

Assume that g(t) - eg € M(g1259¢-25-1). We write

glt) = At 0T DY ) g
16



where A =3, (A", B =3, Bit' € G(O)?. In particular, g(t) € SLa¢(O)t*SLgy(O) where
A= (2,1%,0%-4-2 (~1)% —2). By Lemma 4.3,

2¢
y o\ a1 _ o
rk (0 y> = Elmax{fa],O}fQjJrQ
‘7:

as desired.
O

Let g(t) = I + xt~! + yt=2. By Lemma 2.4, we can write ¢(g(t)) = I + 2't~1 + 3/t~2 for some
matrices x’,y’. Hence
(T—at P4yt )T+t oyt =T=T+ 2t + 't )T -t +yt™2)
which implies
(4.5) o=z, t=y+y, zy=vyr, v =vyx, vy =9yy=0.

By Lemma 4.4 and Lemma 4.7, tky = rky’ = 1 and ¢ # y. Since o(g(t)) = g(t), v' = JyTJ !
which means that y and 3’ are adjoint to each other. We set

M{mzjoe—zj—l) ={{I+at™" +yt™?) e € M 212ige-25-1y | L = L'},
M£1212j0e72j71) = {(I + l‘t_l + yt_Q) ‘e € M(212j02—2j—1) | L 75 L/}7

where L =Imy and L' = Imy/.
The following lemma will be used in the proofs of Lemma 4.9 and Theorem 4.14.

Lemma 4.8. Let (-, -) be a nondegenerate symmetric or skew-symmetric bilinear form on a vector
space V' over a field C and let T a linear map on V. Denote the adjoint of T by T*. Assume
that ImT =ImT™ and tkT = 1. Then T is self-adjoint or skew-adjoint.

Proof. Tt is easy to see that ker T = (ImT*)* and ker T* = (Im7T)*. Say that ImT = Cv and
ImT* = Cv’ for some v,v’ € V. Then Tw = v for some w € V. Since ImT = ImT*, we have
T*w = Mv for some A € C. Let u € V. Then Tu = kv for some k € C. Since T(u — kw) = 0,
u—kw€kerT = (ImT*)t = ImT)*+ = ker T*. Hence T*u = T*(kw) = kAv = XTu. Since u is
arbitrary, T* = AT. Consider T+ T% = (1 + A\)T. Then

QA4+ =T+T"=(T+T")"=1+NT".
Therefore 1 + XA =0 or T' = T™* which means that 7" is skew-adjoint or self-adjoint. O
Lemma 4.9. If (I +xt 1 +yt=2) e € M{212j0£_2j_1), then y' = —y.

Proof. We know that y # y' are adjoint to each other, they have the same images, and rky = 1.
By Lemma 4.8, y is skew-adjoint, i.e., y' = —y. O

Theorem 4.10.
(1) If ¢ is even, then
W(M£212j0£—2j—1)) = [22'7.12[_4‘1] U [22j+212£_4j_4]
for j=0,1,.., 552, If £ is odd, then

22]’12274]' U 22j+212£74j74 if 0>
W(M%mzjoz—zj—l)) = : /142 Jul ] Zf . —
[2 1 ] if j = 5 -

(2) When £ >3, for j=1,..,| 5], we have
Ml _J 3712679 ifj=1;
7('( (212_7'014—247'—1)) - [3222j7212€74j72] U [3222j*412(*4j+2] ng >4, 2 S] < LK—?IJ

Moreover, for any £ > 1, Mgog,l) s empty.
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Proof. Let g(t)-eg= (I +at~ ' +yt=2) ey € Mbl?ml*?ifl)' By Lemma 4.7,

rkwﬁrk(% 5) =2j4+2<2rky+rkx=2+rkzx.

Since 22 = y + 9 = 0 (by Lemma 4.9), = is nilpotent whose partition is [22¥12¢=%*] so that
rkz = 2k. Hence k= j or j + 1. If £ is odd and j = 51, then k = j.
Let E;; € Matagyo, be the matrix which has 1 at the entry 4,j and 0 elsewhere. For each

i=0,1,..., [52] let

:L'j = diag(O, JQ, ) JQ, 02274];2, —JQ, ) —JQ, 0)
where there are j blocks of Jy = (8 é) and j blocks of —J3, and 0g¢_4;_2 is the square zero
matrix of size 2¢ — 4j — 2. Then x; € p is nilpotent and has the partition [22/12¢~4]. Tt is easy
to check that g(t) = I+ z;t ™' + E1 2t € G(K)7 and «(g(t)) = I + x;t~" — Ey 20t~%. By (2.2),
g(t) - eq € Gry for some A = (ay, ..., ap) € X.(T)} with a; > az... > ap > 0 and )~ a; is even. By
Lemma 4.4, since tk E1 2 = 1, A = (212%0°=2k~1) for some k. By Lemma 4.7,

2%k + 2 =1k <EB” ngj%) =2j +2.
Then (I + 2t~ " + E120t™2) - €9 € M{g12500-25-1) For j =0,1,..., | 52], let

!
x; =x; + E1gj42 — Eae—2j-1,2¢-

Then 2/ € p is nilpotent and has the partition [227+2126-47=4] " Similarly, one can show that
(I+ x;-t‘l + E100t™2) - e9 € M{lejoz_zj_l). Since 7 is K-invariant, this proves the first part.
Now, we prove the second part. Let g(t)-eqg = (I + 2t~ +yt=2) - eg € M{;lzjoe,zj,l). Set
U=L+L" Sincey#y’,dimU =2 and U = Im2?. Assume that L = Cv, L’ = Cv’. By (4.5),
we have zy = 3’z and 2y’ = yz. Hence xv = bv’ and xv’ = av for some a,b € C,v,v" € C%.

Then
(0 a 91 _ (ab 0O
ty=1{y o) “lv={0 w

Suppose that ab # 0. We will show that (-, ->|UxU is nondegenerate. Let u be a vector in C?¢
such that (z2u,z%v) = 0 for all v € C2*. Since x? is self-adjoint, (z*u,v) = 0 for all v. Therefore,
z*u = 0 and so z?u € (kerz?) N U = ker(z?|y). By the assumption that ab # 0, ker(2?|y) = 0.
Thus z?u = 0. This concludes that (-,-)|,

Since yy' = 0 = y'y, we have L' C kery and L C kery’. Recall that y,y’ are adjoint to each
other. Tt follows that kery = (L')* and kery’ = L. Thus, L' C (I/)* and L C L*. This implies

is nondegenerate.

(v,v) = (v,v') = 0. By the non-degeneracy of (., ->|U><U, we must have (v,v’) # 0. Since z is
self-adjoint with respect to the symplectic form (,), we have
ab(v,v') = (v, 2%0") = (zv, 20") = (W', av) = —ab(v,v’)

which implies ab = 0, a contradiction. This shows that we must have 22 = 0 on U = Im 22, which
means ¢ = 0. Since x € p and rkz? = 2, by Theorem 3.3, = is nilpotent having the partition
[3222F120~4k=6] By Lemma 4.7,

rkxﬁrk(% ;j) =2j+2<2rky+rkz=2+rkz.

Since rkx = 2k +4, k = j — 1 or j — 2. Here we see that j # 0 and hence /\/1?20,_;,1) is empty.
When j =1, we see that k = 0. Let
0 1
» 2= (0 0) '
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For each j =1, ..., LZ_TlJ, let
xj_1 = diag(Js, J2, ..., J2, 02¢—aj_2, —J2, ..., —=J2, —J3)

where there are j — 1 blocks of J, and j — 1 blocks of —Jy. Then z;_; € p is nilpotent
having the partition [3222/-212¢-41-2]. Note that g(t) := 1 + z;_1t~! + F13t~% € G(K)? and
t(gt)) =1+ a;_1t71 + Eap_n2pt=2 By (2.2), g(t) - e € Gry, for some A = (a1, ...,ar) € X.(T)F
with a; > ag... > a; > 0 and Y a; is even. By Lemma 4.4, since rk B3 = 1, A = (212k0¢=2k—1)
for some k. By Lemma 4.7,

. E13 l’jfl Y
2k+2rk<0 b ) =2 +2

Then (I 4+ z;t7 + E13t72) - ep € Mgwohw,l). For j =2,.., |52, let
x;_o = diag(0, J3, Ja, ..., J2, 02_4j, = J2, ..., —=J2, —=J3,0)

where there are j — 2 blocks of Ja, and j — 2 blocks of —J3. Then 2;_, € p is nilpotent having
the partition [32227-412¢-47+2]_ One can check that h(t) := 1 + 2 _gt™h + (Fag + Er20)t ™2 €
g‘(lC)" and «(h(t)) = 1+ m;-_2t’1 + (Bap—320-1 — E120)t™2. Similarly, h(t) - eg € Gry where
A = (212k0¢=2k=1) for some k. By Lemma 4.7,

Eoy + En 20 xh_y .
2k +2 =1k ’ J =274 2.
( 0 Esy+ E1,2¢ J

Then (I + LL‘;_Qt_l + (E24 + El’gg)t_Q) -eg € Mglgjoz,gj,l). O

In the following proposition, we describe the reduced fibers of © : M — w(M). For any
x € (M), let 77 1()eq denote the reduced fiber of 7 over .
Proposition 4.11. For any x € 7(M), we have

1

(4.6) TN (2)red = {2 € 85poy | 2 + 22 = 0,27 = 0,1k(z + §$2) <1}.
In particular, 7=1(0)req is isomorphic to the closure of nilpotent orbit Ol212¢-2) in 8Py and
dim 7 (0)eq = 20+ 1.

Proof. Fix a nilpotent element x in 7(M). Note that (1 + 2t~ +yt=2) - ¢9 € M if and only if
det(1+at~ ! +yt=2) =1,1ky <1 and
(4.7) 2T J—Je=0, —alJe+yTJ+Jy=0, TJy—yTJz=0, yTJy=0.
Set z =y — %aﬂ, (4.7) is equivalent to
(4.8) zE€t=s5py, xz4+zx=0, 22=0.
When zz + zz = 0 and 22 = 0, 2t~ + (2 + 22)t "2 is nilpotent in Matgyx2¢(K). Thus, det(1 +
at™! + (24 $2?)t72) = 1. Therefore, the isomorphism (4.6) holds. In particular, when z = 0 we
have
7T (0)red = {2 € 8Py | 22 = 0,1k z < 1},
and the dimension, cf. [CM, Corollary 6.1.4], is given by
1 1
dim 77" (0)rea = dim Ojgy2e-2) = (20% + ) — S (20~ 1?2 +1%) — F20=2)=20+1.
(]
In [AH, Theorem 1.2], they proved that there are finitely many G-orbits in Gry N Gry for
small dominant coweight A. In the case of (Agg,2), it is easy to see that K acts transitively
on M5y and hence there are finitely many K-orbits in M. For the case (Ag—1,2), it is

not obvious to determine if there are finitely many K-orbits in Mayge-5-1y. If g(t) = 1+
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M140)

FIGURE 1. Mj for small dominant weight A and their image under the map 7
in type (Xn,7) = (Ao, 2)

wt™t 4 (2 + §22)t72 € Ma1500-5-1y, then g(t) satisfies (4.8). If the action of K on the following
anti-commuting nilpotent variety

{(@,2) € Ny x N | 22 + 22 = 0}
by diagonal cojugation has finitely many orbits, then there are finitely many K-orbits in M g150¢-5-1y.

Example 4.12. Consider the case (Xn,r) = (Ag,2) . In this case, G = SLig and g = sljp =
D p. The diagram as shown in Figure 1 describes the image of M5 for each small dominant
weight \. For instance, M 21202) consists of two parts, M{21202) and ./\/1?21202). By Theorem 4.10,
F(M%leog)) is precisely the union of two nilpotent orbits [241%] and [2%1°] in p while W(M%;1202)>
is the single nilpotent orbit [321%] in p. Since (21%0%) = (10), M(21202) = M 110y Similarly,
M 21202) = M(g04). According to the table in Theorem 4.2, the image of certain My is a union
of 4 nilpotent orbits. It does not happen in this case since £ =5 is not large enough. In the case
of (Xn,7) = (A13,2), (M 21402)) is a union of nilpotent orbits [2*1°],[201%],[322214], [321%] in
p C sli4.

4.3. Case (Xy,7) = (Dy41,2). In this case, it is more convenient to work with G = SOg¢12 and

o is a diagram automorphism on G. It is known that G ~ SOqp11 X {£I}. Let G(O)?° denote

the identity component of the group G(O)?. Then, the action of Spiny, ,(O)? on the twisted

affine Grassmanian Gr of Spin,,, ,, factors through G(0)7°. Let G(O7)§ be the kernel of the

evaluation map G(O~)? — G?. The action of Sping,,,(O~ ) on Gr factors through G(O~)g.

Hence, the opposite open Schubert cell Gr is a G(O~)g-orbit. In fact, Gr is naturally the neutral
20



component of the twisted affine Grassmannian associated to (G, o), whose definition is a bit more
involved.

We can realize the group G as {g € SLasy2|gJgT = J}, and the Lie algebra of G as g =
s09042(J) = {z € gly,, | Jr + 2T J =0} where

The diagram automorphism o of order 2 on g can be given by o(x) = wxw where

w = diag <Ig, ((])- é) ,Ig) .

The diagram automorphism ¢ on G is also defined in the same way. We also have the decompo-
sition g = €@ p. Let K be the identity component of G?. K has Lie algebra ¢ and acts on p by
conjugation. It can be checked that J = AT A where

% 0 - ... 0 %

0 0
1 1
A= V2 V2
Vi TV

ﬁ 0 -0 e 0 _ﬁ

Another realization of 02/ is 50212(1) = {z € gly, | z+2T = 0}. There exists an isomorphism
from s09¢12(J) to 502¢42(I) given by z +— Az A=, Under s02412(I), the diagram automorphism
0 is defined by oo () = wozwg where wy = (PA)w(PA)~! = diag(—1,1,1,...,1) and P is some
matrix of change of basis.

Proposition 4.13.

(1) If = is a nonzero nilpotent element in p, then = has the partition [31271].

(2) There are exactly 2 nilpotent K -orbits in p: {0} and N, \ {0}.

Proof. Since wyrwy = —x, « has the form

(0 —ut
=\ o

where u € C2*1 is a nonzero column vector. Then

2 —Utu O
= 0 —uut )

If 22 = 0, then wu' = 0 which implies u = 0, a contradiction. Since rkz = 2 and 22 # 0, z has
the partition [312"~1!]. This proves the first part.
The element of K has the form

where g € SOg¢41 and k acts on z € p by

e )
qu 0 '
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Hence the action of K on p is the same as the action of SOg.,; on C**!. Note that for every
k > 3, 2* has the scalar u”'u on every nonzero entry. Since z is nilpotent, u”u = 0. The result
immediately follows since the action of SOg,41 on {z € C2**! | 272 = 0} has two orbits. O

Theorem 4.14. For j =0,1,...,¢, we have
N, \ {0} if 7 is odd,
m(Mige—sy) = ¢ {0} if j =105 ~
N, if j is even and j > 2.

Moreover, Mjge-1) = {(1+ 2t~ + 32%t72) - e | & € N, \ {0}}. Consequently, = maps M 1ge-1)
isomorphically onto N, \ {0}.

Proof. By Lemma 4.4, let g(t) - eg = (1 +at™" +yt™2) - eg € Mqige-5y. We work under the

realizations $02¢42(J) and SOgp42(I). Since g(t) is fixed by g, wozwey = —x and woywy = y.
Similar to the proof of Proposition 4.13, x,y are in the form

(4.9) T = (2 _ST) Y= (%O g)

where v € C**! is a column vector, yy € C, and D € Mat(s—1)x(¢—1)- Since gTg = I, the
following equations hold:
(4.10) P 4+rx=0, zTz+y"+y=0, 2Ty+ylz=0, yTy=0.

Then yo = 0 and uTu = 0 which implies 2> = 0. Hence x € N,.

Suppose that j is odd and 2 = 0. We have y +y” = 0 and y”y = 0. Then yo = 0 and D is a
nilpotent element of 5040, ; with D? = 0. Since rk D = rky = j, D has the partition [2712¢~27+2],
This contradicts the classification of nilpotent orbits of type B, [CM, Theorem 5.1.2]. Hence
x # 0. Now, consider the matrix zo € N, \ {0} defined by

0 -+ 0 —1 —i

o =

S = O e

Let N be a nilpotent element in s0g,_1(I) having the partition [2/=112¢=7+1]. Such a matrix N
exists in view of [CM, Theorem 5.1.2]. Then the matrices z and

1
yo := diag(0, ...,0, N,0,0) + 53:8

satisfy the relations in (4.10). Hence g(t) := 1 +xzot ™! +yot—2 € G(O)?. By (2.2), g(t) -eq € Gry,
for some A = (a1, a2,...,ap) € X.(T)F with a; > ... > ay. Since rkyo = j, by Lemma 4.4,
A = (170“7) and hence g(t) - eg € M1;9¢-s). Since 7 is K-equivariant, the first part is done. By
K-equivariance, the second part also follows.

Suppose that j is even. For each j =0,2,4, ..., Q%J, consider the £ x ¢ matrix
1




where there are % copies of each 1 and -1. Denote z; the square zero matrix of size 2¢ 4+ 2 whose
¢ x ¢ submatrix on the right top is replaced by the above matrix. Now we work under so242(.J)
and SOg42(J). Since wzjw = z; and rk z; = j, we have (14 z;t7%) - eg € M 150¢-5) and then
m((1+z;t72) - eg) = 0. Let ¢ be the square zero matrix of size 2¢ + 2 whose 4 x 4 submatrix at
the center is replaced by

01 -1 0
0 0 O 1
00 0 -1
00 0 O

Then zo € N \ {0}, Set yo = 222 + z;. Then rkyo = j. It can be checked that z¢,yo satisfy
WIoW = —Tg, WYoW = Yo, and

(411) al T+ Jrg =0, alJro+ylJ+ Jyo =0,

' g Jyo +yo Jro =0,y Jyo = 0.

Hence h(t) := 1+ zot™' + yot~2 € G(O)?. Similarly, one can show that h(t) - eg € Mqige—s).
This proves the second part.

To prove the last part, let x be a nonzero nilpotent element in p. Since x has the partition
[31%], rka? = 1. It is easy to check that (14 at™! + $22t72) - ¢g € M(ype-1). Conversely, let
g(t) - eo = (L+at ' +yt™2) - eg € Mpge—r). Let o(g(t)) = 1+ xt~! + ¢/t Since g(t) =
g®)™T = ((g(=t))T, y = (¥')T. Then y and 3’ are adjoint each other under the symmetric form
whose matrix is I. Note that tky = rky’ = 1. If Imy # Imy/, then tk2? = tky + rtky/ = 2, a
contradiction. Hence Imy = Imy’. By Lemma 4.8, ¢/ = y or yy = —y. By (4.5), 22 =y + ¥/
and hence y' = y. By (4.10), 27 + 2 =0 and 272+ y7 +y =0. Then y +¢' = 22 =y + y7, so
y =19y =yT. Therefore, g(t) =1+ at ' +yt 2 =1+at"1 + %x2t_2. O
Proposition 4.15. For z € N, write x as in (4.9). Then
(4.12) (&) rea 2 {D € 509041 | Du=0,D* =0}.

In particular, 7=(0)yeq is isomorphic to the mazimal order 2 nilpotent variety in s02¢11, and
62 TR .
T L S
Z—1 if £ is odd.

Proof. Under the realization $02¢12() and SOg42(I), and the diagram automorphism o, we

have that (1 4+ xt~! + yt=2) - ¢g € M if and only if woywy = y and the conditions (4.10) hold.

Set z =y — %x27 these conditions are equivalent to

(4.13) z:(O D), D € so0y0,1, D?=0, Du=0,

where u is given in (4.9). Hence the isomorphism (4.12) holds. In particular when x = 0,
T (0)rea = {D € 509041 | D* = 0} which is Oprq2e-2r41) in 805041 where k is the maximal even
integer. By the dimension formula, cf. [CM, Corollary 6.1.4],
dim Wﬁl(o)red = dlm 0[221] - 52 9 lf ! %S even
dim Ojge-115) = £= — 1 if £ is odd
as desired. O
Similar to the case (Ags—1,2), it is not obvious to see if there are finitely many K-orbits in
Mige-sy. I g(t) = 1+ at™! + (2 + $2?)t72 such that g(t) - eg € M1s0e-s), then g(t) satisfies
(4.13). If the action of K on the following anti-commuting nilpotent variety
{(z,2) € s09042(I) X s09042(I) | £z + zz = 0, z, z nilpotent }

by diagonal cojugation has finitely many orbits, then there are finitely many K-orbits in M yjge-).
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4.4. Theorem 4.2 for the field of positive characteristic. In this subsection, we make a
remark regarding Theorem 4.2 when the filed C is replaced by an algebraically closed field k of
positive characteristic p.

Theorem 4.16. Theorem 4.2 holds for the field k of characteristic p, when

p>3  if (Xn,7) = (A2,2)
p>5  if (Xn,7) = (A2-1,2)
p>3 if (Xn,7) = (Deg1,2).

Proof. Suppose that p > 2. Given any element L € M, set x = w(L) € p. When (Xy,r) =
(Agp,2), by the proof of Theorem 4.5, 2 = 0. When (Xy,r) = (Aar_1,2), by the proofs of
Theorem 4.6 and Theorem 4.10, z* = 0. Recall that = € p if and only if z is self-adjoint with
respect to a non-degenerate symmetric form (resp. symplectic form) when g = Ay, (resp. Aap—1).
Under our assumption on the characteristic p, by the similar proof of [Ja, Lemma 1.9] for x € p,
we can find a nilpotent matrix y in p with the same order of z and h € & such that {x,y,h}
is a sly-triple. By [Ca, Theorem 5.4.8], with the assumption on p, as a slp-representation, V is
completely reducible, i.e. we still have the decomposition (8). Then by the same argument as in
Theorem 3.3, all possible partitions of = are exactly those that appear in Theorem 4.2. When
(Xn,7) = (Dyy1,2), by the proof of Theorem 4.14, 22 = 0. When p > 2, by [Ja, Theorem 1.6],
x is either 0 or has partition [31%¢~1] i.e. those that appear in Theorem 4.2. Thus, all results in
Section 4.1-4.3 remain true under our assumption on p. O

We expect that Theorem 4.2 is true for any p > 2. Theorem 4.2 relies on the classification
theorem of nilpotent orbits in p. In fact, we expect Theorem 3.3 and Theorem 3.4 hold for any
field k when the characteristic p > 2. The reason is that the classification of nilpotent orbits in
classical Lie algebra remains the same if p > 2, see a proof in [Ja, §1.6-1.12]. A similar proof for
the classification of nilpotent orbits in p should also carry over when p > 2.

5. APPLICATIONS

In this section, we describe some applications to the geometry of order 2 nilpotent varieties in
the certain classical symmetric spaces.

Let (,) be a symmetric or symplectic non-degenerate bilinear form on a vector space V. Recall
that A is the space of all self-adjoint linear maps with respect to (,). Set N 42 denote the space
of all nilpotent operators = in A such that z? = 0. If {,) is symmetric and dimV = 2n + 1,
then SOg,,41-orbits in N4 o are classified by the partitions [2712"+1=27] with 0 < j < n; if (,) is
symplectic and dim V' = 2n, then Sp,,-orbits in N4 2 are classified by the partitions [2%712"~27]
with 0 <j < |3 ].

Theorem 5.1. Assume that (,) is symplectic or symmetric and dimV is odd. Then any order
2 nilpotent variety in A is normal.

Proof. By Theorem 4.5 and Theorem 4.6, for any order 2 nilpotent variety O in A, O is isomorphic
to My = Gry N Gry for a small dominant weight A of H. Note that Mj is an open subset of
the twisted Schubert variety Gry and Gry is a normal variety (cf. [PR, Theorem 0.3]). It follows
that O is also normal. ]

In fact, when (, ) is symplectic, any nilpotent variety in A is normal, see [Oh]. In loc.cit., Ohta
also showed that not all nilpotent varieties are N, is normal, when (,) is symmetric. When (,)
is symmetric and dim V' is odd, this theorem seems to be new.

Remark 5.2. Theorem 5.1 is true for any field k of characteristic p > 2, as one can see that
the classification theorem in Section 3 still holds for order 2 nilpotent orbits, and the arguments
in Theorem 4.5, Theorem 4.6 applies as well. See the discussions in the proof of Theorem 4.16.
The same remark applies to the following Theorem 5.3 and Theorem 5.4
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For any variety X, let ICx denote the intersection cohomology sheaf on X. The perverse sheaf
ICx captures the singularity of the variety X. For any = € X, we denote by #*(ICx) the k-th
cohomology of the stalk of ICx at x.

Theorem 5.3. (1) When (,) is symmetric and dimV = 2n+1, for any 0 < j < n, let O;
denote the nilpotent orbit in A associated to the partition [2712"1=27] and let O; denote
the nilpotent orbit in sp,,, associated to the partition [2712"~21], we have

dimO; = dim O = j(2n 41 — j).
Moreover, for any x € Ogit2ni1-2i) and z’ € OfQilgn_gi], and for any k € Z,
. k - _ . k o
dim #7(IC5, ) = dim 77 (IC%7 ).

(2) When (,) is symplectic and dim V' = 2n, for any 0 < j < [ 5], let Oy; denote the nilpotent
orbit in A associated to the partition [22712"=4] and let Os; denote the nilpotent orbit
in 509,11 associated to the partition [22712"T1=47] we have

dim(92j = dlmO’QJ = 4](71 —j),
Moreover, for any integer 0 < i < j, x € Oy, &' € OL;, and for any k € Z, we have
dim 7 (ICg, ) = dim 7 (ICq, ).
Proof. We first prove part 1). By Theorem 3.7 and [CM, Corollary 6.1.4], it is easy to verify
dim O; = dim O} = j(2n + 1 — j). By Theorem 4.5, O; can be embedded into an open subset in
the twisted affine Schubert variety @wj associated to (SLay,41,0). On the other hand, in view

of [AH], O’; can be embedded into the untwisted affine Schubert variety Grg, ~in the affine
Grassmannian @szn of Sp,,,. Set

F = IC@J_ [— dimﬁj], and F' = IC@J_ [— dlm@j]

By purity vanishing property of intersection cohomology sheaf of Schubert varieties (cf. [KL]),
HF(F) = A% (F') = 0 when k is odd. Equivalently,

HF(1Cq,) = H#(1ICH,) =0

for any odd integer k, as dim@j = dim@j is even.

Note that the affine Grassmannian Grgp, and the twisted affine Grassmannian Grep,, .,
have the same underlying affine Weyl group. Applying the results in [KL], the polynomials
S dim H22F(F)gk and Y A2 (F')g* are both equal to the same Kazhdan-Lusztig polynomial
P, w;(q) for the affine Weyl group of s02,,11. It follows that

dim A (ICq ) = dim 7 (ICs; )

for all even integer k. Alternatively, one can see these two polynomials are equal, as they both
coincide with the jump polynomial of the Brylinsky-Kostant filtration on the irreducible repre-
sentation V,,, of H, see [Bry, Zh].

For the second part of the theorem, the proof is almost the same, except that by Theorem
4.6, 62j can be openly embedded into the twisted affine Schubert variety @wzi associated to

(SLgy,, 0), and @;j can be openly embedded into the affine Schubert variety @gzj O

Pllgy, g °
Part 1) of this theorem was due to Chen-Xue-Vilonen [CVX] by different methods. This
theorem shows that there is a natural bijection between order 2 nilpotent varieties in A and
order 2 nilpotent varieties in its dual classical Lie algebras, such that they share similar geometry
and singularities.
We now describe another application.

Theorem 5.4. If (,) is symplectic, then the smooth locus of any order 2 nilpotent variety in A
is the open nilpotent orbit.
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Proof. Let O be any order 2 nilpotent variety in .A. By Theorem 4.6, O can be openly embedded

into a twisted Schubert variety Gry with A small, in the twisted affine Grassmannian Grei,,,, .
Then this theorem follows from [BH, Theorem 1.2]. O
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