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The role of neurofilament transport in the radial 
growth of myelinated axons

ABSTRACT The cross-sectional area of myelinated axons increases greatly during postnatal 
development in mammals and is an important influence on axonal conduction velocity. This 
radial growth is driven primarily by an accumulation of neurofilaments, which are cytoskeletal 
polymers that serve a space-filling function in axons. Neurofilaments are assembled in the 
neuronal cell body and transported into axons along microtubule tracks. The maturation of 
myelinated axons is accompanied by an increase in neurofilament gene expression and a 
decrease in neurofilament transport velocity, but the relative contributions of these processes 
to the radial growth are not known. Here, we address this question by computational model-
ing of the radial growth of myelinated motor axons during postnatal development in rats. We 
show that a single model can explain the radial growth of these axons in a manner consistent 
with published data on axon caliber, neurofilament and microtubule densities, and neurofila-
ment transport kinetics in vivo. We find that the increase in the cross-sectional area of these 
axons is driven primarily by an increase in the influx of neurofilaments at early times and by a 
slowing of neurofilament transport at later times. We show that the slowing can be explained 
by a decline in the microtubule density.

INTRODUCTION
Axon diameter is one of the basic cable properties that influence 
axonal conduction velocity, which is critical for neuronal function 
(Waxman, 1980; Hartline and Colman, 2007; Perge et al., 2012; 
Suminaite et al., 2019). In mammals, the expansion of axon caliber 
occurs postnatally (Matthews and Duncan, 1971; Vejsada et al., 
1985) and is triggered by the onset of myelination (Windebank 
et al., 1985; de Waegh et al., 1992; Hsieh et al., 1994; Monsma 
et al., 2014). Among the principal determinants of the diameter of 
myelinated axons in mammals and other vertebrates are neurofila-
ments, which are abundant space-filling cytoskeletal polymers that 

occupy most of the axonal volume (Cleveland et al., 1991; Perrot 
et al., 2008). Morphometric studies in mice and rats have estab-
lished a direct correlation between the abundance of neurofila-
ments and axonal diameter (Friede and Samorajski, 1970; Friede 
et al., 1971; Hoffman et al., 1984; Nixon et al., 1994). In the absence 
of neurofilaments, axons fail to develop normal caliber and exhibit 
reduced conduction velocities (Sakaguchi et al., 1993; Zhu et al., 
1997; Perrot et al., 2007).

In addition to their space-filling role, neurofilaments are also 
cargo of slow axonal transport that move slowly toward the nerve 
terminals at an average velocity on the order of millimeters per day 
(Lasek et al., 1992; Brown, 2000, 2003, 2014). The neurofilament 
polymers are assembled in the cell body and then transported into 
and along the axons on microtubule tracks powered by microtubule 
motor proteins (Francis et al., 2005; He et al., 2005; Uchida et al., 
2009). The filaments move in a “stop-and-go” manner, alternating 
between mobile and immobile states that we have termed “on-
track” and “off-track,” respectively (Trivedi et al., 2007). Filaments in 
the mobile on-track state exhibit bouts of rapid intermittent move-
ment with brief pauses on the order of seconds in duration, occa-
sionally switching to the immobile off-track state in which they can 
pause for an hour or more before moving back on-track (Wang 
et al., 2000; Brown et al., 2005; Trivedi et al., 2007; Jung and Brown, 
2009). Thus, the slow velocity of neurofilament transport is an 
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average of rapid movements interrupted by pauses of various dura-
tions. The filaments move both anterogradely and retrogradely and 
can reverse direction, but they spend more their time moving an-
terogradely, resulting in a net anterograde bias (Fenn et al., 2018; 
Boyer et al., 2022).

Studies on peripheral nerve development in mice and rats have 
shown that the postnatal radial growth of myelinated axons is ac-
companied by a slowing of neurofilament transport (Hoffman et al., 
1983, 1984, 1985a; Watson et al., 1989) and an increase in neurofila-
ment gene expression (Lasek et al., 1983; Hoffman et al., 1987; 
Muma et al., 1991). An increase in neurofilament gene expression 
for a given velocity is expected to result in an increase in the flux of 
neurofilaments into the axon from the cell body. A decrease in the 
neurofilament transport velocity for a given flux is expected to in-
crease the residence time of these polymers in the axon. Thus, both 
the increase in gene expression and the decrease in transport veloc-
ity are expected to lead to an increase in the number of neurofila-
ments in the axon (Hoffman, 1995), but their relative contributions 
are not clear. Here, we use computational modeling in conjunction 
with published morphometric and kinetic data on axon caliber, neu-
rofilament and microtubule densities, and neurofilament transport 
to address this question.

RESULTS
In this section, we use the computational strategy explained in 
Methods to investigate the role of neurofilament transport in the 
growth of axon caliber. Guided by existing morphometric data, we 
model neurofilament influx from the cell body over time using a 
simulated injection of neurofilaments at the proximal end of the 
axon. We confirm that the model reproduces the experimentally 
observed growth in axon caliber. We then use this model to simulate 
the kinetics of neurofilament transport and compare them with pub-
lished neurofilament transport kinetics obtained by radioisotopic 
pulse labeling in order to validate the model and gain insight into 
the mechanism of neurofilament accumulation.

Morphometric analysis and model parameters
Most of the radial expansion of axons in mammals occurs after 
birth. Morphometric studies in rats have shown that this expan-
sion is linear with time up to at least 5 mo of age. In Figure 1A 
we replot the experimental data of Hoffman et al. (1985a) on the 
average caliber of myelinated motor axons in L5 ventral roots of 
rats ranging from 3 to 18 wk in age. By linear regression, we 
obtain the relationship

A t2.93
m

week
16.2 m

2
2=

µ





+ µ  (1)

where A is the axonal cross-sectional area and t is the age measured 
in weeks.

As noted in the Introduction, it is well established that the cross-
sectional area of myelinated axons in mammals is also linearly re-
lated to the number of axonal neurofilaments. However, the slope 
(which approximates the neurofilament density) can vary depend-
ing on the cell type and animal species (Friede and Samorajski, 
1970; Friede et al., 1971). In Figure 1B we replot the experimental 
data of Hoffman et al. (1984) showing neurofilament number ver-
sus axon caliber for myelinated motor axons of rat L5 ventral roots 
measured at 10 wk of age. By linear regression, we obtain the 
relationship

N A 88.0NF NF= α −  (2)

for axonal cross-sectional areas >5 µm2, where NNF is the number of 
neurofilaments in the axonal cross-section, A is the cross-sectional 
area measured in µm2 and the slope is 115/ mNF

2α = µ . To extrapo-
late the regression back to the origin for axonal cross-sectional areas 
<5 µm2, we used the polynomial regression

N A A79.8/ m 3.52/ mNF
2 4 2( ) ( )= µ + µ  (3)

For microtubules, the situation is more complicated. In Figure 1C 
we replot the experimental data of Hoffman et al. (1984) for 

FIGURE 1: Morphometric data collected from the L5 ventral roots 
of rats. (A) Growth curve showing the average axonal cross-sectional 
areas of the largest 25% of myelinated axons from 3 to 18 wk of 
age. (B) Relationship between neurofilament number and axonal 
cross-sectional area. (C) Relationship between microtubule number 
and axonal cross-sectional area. To fit the data in B and C for 
cross-sectional areas >5 µm2, we used the regressions in Eqs. 2 
and 4, respectively. To extrapolate the regressions in B and C 
to the origin for cross-sectional areas <5 µm2, we used the second-
order polynomial expressions in Eqs. 3 and 5, respectively. The data 
in panel A are from Figure 6 in Hoffman et al. (1985a). The data in 
panels B and C are from Figure 10 in Hoffman et al. (1984). The 
points represent the experimental data. The black lines represent 
the regressions.
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microtubule number versus axon caliber, also measured at 10 wk of 
age. While the increase in microtubule number is approximately lin-
ear for small axons, the rate of increase declines with increasing 
cross-sectional area, resulting in a nonlinear relationship. Thus, there 
is a decline in microtubule density during radial axon growth of rat 
motor axons. This has also been reported by Friede and Samorajski 
(1970) for myelinated axons in the sciatic nerves of rats and mice 
and by Berthold and Rydmark (1995) for myelinated axons in the 
ventral roots of cats. For the data in Figure 1C, we find that an expo-
nential function fits well. By exponential regression, we obtain the 
following relationship:

N A731 736exp 0.042/ mMT
2( )( )= − − µ  (4)

for axonal cross-sectional areas >5 µm2, where NMT is the number of 
microtubules in the axonal cross-section. This relationship has im-
portant implications for the transport velocity of neurofilaments. 
Specifically, the density of microtubules N A/MT MTρ =  decreases 
with increasing cross-sectional area, resulting in a smaller on-rate 
and a larger diffusive search time for a neurofilament to find a micro-
tubule track and hence, a smaller transport velocity. To extrapolate 
the regression back to the origin for axonal cross-sectional areas 
<5 µm2, we used the polynomial regression

N A A28.8/ m 0.375/ mMT
2 4 2( ) ( )= µ − µ  (5)

Note that although the morphometric relations in Eqs. 2–5 are 
based on measurements at one age, for the present study we as-
sume that they apply to all ages. We believe that this is justified 
because studies in the sciatic nerves of young and old rats and mice 
have not revealed age-dependent differences in the relationship 
between neurofilament or microtubule density and axon caliber 
(Friede and Samorajski, 1970).

To simulate neurofilament transport, the directionality of the fila-
ments was set to anterograde initially, which is required for the fila-
ments to enter the axon. For the rate constants in the model, we 
used the values that were estimated for neurofilament transport in 
mouse ventral root and sciatic nerve by Jung and Brown (2009). The 
one exception was the on-rate γon, which now emerges from the 
microtubule density as explained in Methods. For the reversal rates, 
we assumed s4.20 10ar

6 1γ = × − −  and s1.40 10ra
5 1γ = × − − . For 

the off-rate, we used the value s4.50 10off
3 1γ = × − −  determined 

experimentally in cultured neurons using the fluorescence photoac-
tivation pulse-escape method (Trivedi et al., 2007). For the antero-
grade and retrograde velocities, we assumed v s0.5 m/a = µ  and 
v s0.5 m/r = − µ , respectively (Jung and Brown, 2009). The radial dif-
fusion coefficient of neurofilaments on which the on-rate is directly 
dependent was adjusted so that the velocity of the simulated radio-
labeled pulse of neurofilaments matched the initial velocity of 
the experimental measured radiolabeled pulse in the ventral root 
and sciatic nerve of 3-wk-old animals (Hoffman et al., 1985a). The 
resulting value of = × µ−D s2.28 10 m /NF

6 2  was within an order of 
magnitude of the value used by Xue et al. (2015). For the on-track 
rate constants that govern the transition between on-track move-
ments and pauses, we used values of s6.40 1001

2 1γ = × − −  and 
s1.40 1010

1 1γ = × − −  which were previously determined experi-
mentally in cultured neurons using time-lapse imaging (Jung and 
Brown, 2009). We then adjusted these rate constants to match the 
peak of a Gaussian fit of the simulated pulse of radiolabeled neuro-
filaments to the peak of the Gaussian fit of the corresponding ex-
perimental data 15 d after radiolabeling in 3-wk-old animals. This 
resulted in values of s0.08001

1γ = −  and s0.13910
1γ = −  (see Figure 

5 later in this article).

Simulating the growth of axon caliber
Table 1 shows the average axon area and neurofilament and micro-
tubule numbers extracted from the experimental data of Hoffman 
and colleagues in rat ventral roots. To quantify the contribution of 
gene expression to caliber growth, we first used the periodic imple-
mentation of our six-state kinetic model (Figure 2B; see Methods) to 
find the influx j in (i.e., the number of neurofilaments entering the 
axon proximally per unit time) that is required to achieve the increase 
in axonal neurofilament content in these experimental data from 3 to 
18 wk of age (Figure 3A). The rate of increase in the influx decreases 
with time and could be fitted to the following exponential function:

( )= − −j
s s

t21.7
1

10.4
1

exp 0.207in  (6)

FIGURE 2: Modeling the axonal neurofilament flux. (A) The linear 
version of the computational model simulating neurofilament 
transport in a linear open axon of length L that is discretized to 
smaller bins (∆x). (B) The periodic version of the computational model 
simulating neurofilament transport with a periodic boundary where 
neurofilaments move in a closed path, i.e. those that leave one end 
feed into the other end and vice versa. The periodic model was used 
to extract the influx required to achieve radial growth in the linear 
model.

Age (wk) Axonal area (µm2) NNF NMT

3 25.0 27.8 × 102 475

5 30.8 34.5 × 102 531

8 39.6 44.6 × 102 593

12 51.4 58.1 × 102 647

18 69.0 78.3 × 102 691

The average axonal cross-sectional area, number of neurofilaments, and num-
ber of microtubules of myelinated axons of rat L5 ventral roots from 3 to 18 wk 
of age. Data from Figure 10 in Hoffman et al. (1984) and Figure 6 in Hoffman 
et al. (1985a).

TABLE 1: Morphometric measurements.



4 | R. M. Nowier et al. Molecular Biology of the Cell

where t is the time in units of weeks. The rate of neurofilament influx 
plateaus in older animals, similar to the plateau in microtubule den-
sity observed at larger axonal cross-sectional areas in Figure 1C.

Figure 3B shows the average velocity calculated using Eq. 26. As 
neurofilaments accumulate in the axons (Figure 1B) and the microtu-
bule density declines (Figure 1C), there is a reduction in the accessibil-
ity of the neurofilaments to their microtubule tracks. This results in a 
decline in the average transport velocity according to the regression

( )= + −v
mm
day

mm
day

t0.368 2.10 exp 0.068  (7)

Note that in our model this slowing arises not from a change in 
the actual velocity of movement (va or vr), but rather an increase in 
the proportion of the time spent pausing. Later in this section, we 
will discuss the significance of the decline of the neurofilament ve-
locity and the plateauing influx for the growth in axon caliber.

Having established the influx using the periodic model, we next 
used the linear implementation of our six-state kinetic model (Figure 
2A; see Methods) to simulate the growth of an open 1-mm-long 
axon using discretized time intervals of ∆t = 1 s and discretized spa-
tial increments of ∆x = 1 µm. The sequence of steps in the simula-
tions were as follows: we started with the average numbers of neu-
rofilaments and microtubules observed experimentally at t = 3 wk 
(Table 1) and distributed them uniformly along the model average 
axon. Then, we allowed the axon to mature in silico. At each time 
step ∆t, we first updated the number of microtubules and the cross-
sectional area according to Eqs. 1 and 4. This was done simultane-

ously, as the number of microtubules and the cross-sectional area 
are directly linked. Subsequently we recalculated γon (Eq. 29) using 
the updated number of microtubules and cross-sectional area. Then 
we injected neurofilaments into the proximal end of the axon at the 
rate described by Eq. 6 and updated the numbers of neurofilaments 
in the six kinetic states throughout the axon according to Eqs. 22, 
23, and 25, allowing the filaments to cycle between these kinetic 
states.

Figure 4 shows that the resulting model can match the experi-
mental data on neurofilament accumulation and radial axonal growth. 
Thus, the linear model can explain the rate of increase in axonal cross-
sectional area in a manner consistent with the experimentally deter-
mined neurofilament and microtubule densities.

Simulating a radioisotopic pulse-labeling experiment
To validate the model, we sought to determine whether the same set 
of parameters used to match the growth in axon caliber in terms of 
the neurofilament and microtubule densities can also match the neu-
rofilament transport kinetics. To do this, we adapted the linear model 
to simulate the movement of a pulse of radiolabeled neurofilaments 
(see Methods) and compared the resulting transport kinetics to 
experimental data obtained by radioisotopic pulse labeling in motor 
axons of rat lumbar ventral root and sciatic nerve (Hoffman et al., 
1985a). In these experiments, radioactive amino acid was injected 
into the lumbar spinal cord of rats in order to create a pulse of radio-
labeled proteins in the cell bodies of motor neurons in the anterior 
horn. Animals were then killed at intervals, and the distribution of 

FIGURE 3: Influx and velocity vs. animal age. (A) The calculated influx 
in units of neurofilaments per second (NF/s) that is needed to achieve 
the target axonal caliber and neurofilament content shown in Table 1 
for the average myelinated axon at 3, 5, 8, 12, and 18 wk of age. 
(B) The calculated average neurofilament transport velocity (mm/day) 
at the same ages. The model predicts a nonlinear increase in the 
neurofilament influx and a nonlinear decrease in the average velocity. 
The solid circles represent the calculated values, and the lines 
represent the exponential regressions shown in Eqs. 6 and 7.

FIGURE 4: Computational simulation of the radial growth curve of 
myelinated axons during postnatal rat development. (A) The 
relationship between neurofilament number and axonal cross-
sectional area generated by the model (solid black line) closely 
matches the regression to the experimental data (dashed red line). 
(B) The growth of axonal cross-sectional area with age predicted by 
the neurofilament accumulation in A (solid black line) starting at 3 wk 
closely matches the regression to the experimental data (dashed red 
line). The points represent the experimental data extracted from 
Figure 6 in Hoffman et al. (1985a).
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radiolabeled NFM was analyzed over a distance of 13 cm extending 
from the ventral root into the distal sciatic nerve by cutting the nerve 
into segments, separating the proteins by electrophoresis, and quan-
tifying the radiolabeled proteins by autoradiography (Brown, 2014). 
Because we lack experimental data on the caliber and neurofilament 
and microtubule content of motor axons along the rat sciatic nerve at 
the appropriate ages, we used the morphometric data obtained in 
the L5 ventral roots (Figure 1; Hoffman et al., 1984, 1985a) and as-
sumed that these parameters were constant along the nerve. We 
then simulated neurofilament transport in a 200-mm-long axon for 
24 wk with a radioactive pulse initiated at either 3 or 12 wk of age.

Figure 5 shows the comparison of our simulations to the experi-
mental data of Hoffman et al. (1985a). The model generates a wave 
that spreads as it propagates along the axons as described previously 
(Jung and Brown, 2009). A limitation of the radioisotopic pulse-label-
ing technique is that the injected animals must be killed for the analy-
sis to be performed. Thus, each animal yields one time point. Be-
cause the injection of isotope into the anterior horn cannot be 
controlled exactly, the total radioactivity (area under the curves) varies 
considerably from animal to animal. Thus, we focused on the shape 
of the waves, not their amplitude. To facilitate the comparison of the 
wave shapes, we normalized the amplitudes of the peaks of the simu-
lated waves to the respective waves in the experimental data. The 
good agreement between the wave peaks for the simulated and ex-
perimental data at 15 d after radiolabeling in 3-wk-old animals is ex-
pected because we tuned the on-track rate constants in our six-state 
model to achieve this (see above). However, without any further ad-
justment to the model parameters, we also observed good agree-
ment of the shape of the wave at this time point and the position and 
shape of the waves at all other time points for both the 3- and 12-wk-
old animals. This is remarkable because it means that a single set of 
kinetic parameters in our model captures the kinetics of neurofila-
ments throughout the radial growth process.

We have shown previously that the shape and spreading of the 
waves is dictated by the pausing and reversals of the filaments (Brown 
et al., 2005; Jung and Brown, 2009). The simulated waves were ini-
tially sharp with a pronounced asymmetry and then assumed a more 
bell-shaped form over time (e.g., compare the waves at 5 d and 20 d 
in Figure 5A). The initial asymmetry reflects the starting conditions of 
our simulations. Specifically, because the neurofilaments must move 
anterogradely to enter the axon, we start our simulations with the 
radiolabeled neurofilaments all initially on-track in the anterograde 
motile state. As the filaments transition off-track or reverse direction, 
they fall behind the rest of the labeled neurofilaments, giving rise to 
a wave with a trailing edge. Over time, the filaments equilibrate 
across the kinetic states, and the wave gradually assumes a more 
symmetrical form. The slow rate of equilibration is a consequence of 
the low magnitude of the reversal and off-track rate constants.

Because our simulations using the periodic model predicted a 
decline in average velocity over time (Figure 3B), we also calculated 
the velocity of the pulse of radiolabeled neurofilaments in our simu-
lations using the linear model for animals injected at 3 and 12 wk of 
age. We refer to this as the pulse velocity, which is the distance 
moved by the peak of the transport wave divided by the time. As 
observed experimentally (Hoffman et al., 1983, 1985a; Watson 
et al., 1989), the pulse velocity declined rapidly in the first week or 
so and then more slowly at later times. For example, the pulse 
velocity in the 3-wk-old animals declined from 3.8 mm/day at 5 d 
after radiolabeling to 2.1 mm/day at 10 d and then to 2 mm/day at 
20 d (see blue symbols and line in Figure 6). However, when we 
calculated the average velocity of the neurofilaments at the same 
location in the axon in our simulations, we obtained a velocity of 

2 mm/day at 5 d after radiolabeling at 3 wk of age, which slowed 
approximately linearly to 1.9 mm/day at 20 d after radiolabeling 
(see dashed black line in Figure 6).

This discrepancy between the velocity of the pulse-labeled neu-
rofilaments compared with the overall neurofilament population at 
short times is an interesting feature of radioisotopic pulse-labeling 
experiments that has not previously been recognized. It arises due to 
the low frequency of directional reversals and the slow rate in which 
the nonmotile states become populated (discussed above). Two 
phases of slowing can be identified. Initially, the fact that the fila-
ments all enter the axon moving anterogradely results in a net an-
terograde velocity that is much higher than the average for the total 
neurofilament population. After entering the axon, the transport 

FIGURE 5: Simulation of neurofilament transport in a radioisotopic 
pulse-labeling experiment. The radioactivity on the y-axis is in 
arbitrary units. (A) Comparison between the simulated transport 
waves (blue line) and the experimental data (black data points) at 5, 
10, 15, and 20 d after radiolabeling neurofilaments in 3-wk-old 
animals. The on-track rate constants γ01 and γ10 were tuned to match 
the peak of the transport wave in the model (blue line) to the mode of 
a Gaussian fit to the experimental data at 15 d after radiolabeling. 
(B) Comparison between the simulated transport waves (red line) and 
the experimental data (black data points) at 6, 20, 33, and 60 d after 
radiolabeling neurofilaments in 12-wk-old animals. To facilitate 
comparison of the shapes of the waves, we normalized the 
amplitudes of the peaks of the simulated waves to the corresponding 
experimental data (see text for an explanation). The black points 
represent the experimental data from Hoffman et al. (1985a).
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velocity slows as the filaments equilibrate across the long-term paus-
ing and retrograde moving states, governed by the rate constants 
γon, γoff, γar, and γra. We can estimate the equilibration time using the 
smallest rate constant, i.e. s4.2 10ar

6 1γ = × − − . The inverse of this 
constant, i.e. about 3 d, gives us the time for 63% of the initially la-
beled neurofilaments to equilibrate kinetically. By 5 d, most of the 
filaments had equilibrated and the actual and measured velocities 
had converged. Thus, the velocity of the pulse of radiolabeled neu-
rofilaments is initially an overestimate of the true average velocity.

After the measured and actual average velocities converge, we 
enter a second slowing phase in which the actual average velocity 
continues to decline with time, but at a slower rate. This reflects the 
gradual decrease in the accessibility of the neurofilaments to their 
microtubule tracks due to the decline in microtubule density that 
accompanies the neurofilament accumulation. We show below that 
this slowing of the average neurofilament velocity contributes to the 
radial growth.

Contributions of flux increase and velocity slowing 
to caliber growth
The analyses above demonstrate that there is both an increase in the 
influx of neurofilaments and a decrease in their transport velocity dur-
ing postnatal development of lumbar motor axons in the rat. Because 
both of these changes will result in an increase in the neurofilament 
content of the axon, both are likely to contribute to the growth of 
axon caliber. To quantify the relative contributions of these changes, 
we first formalize the relationship between the net flux j and average 
velocity v . Because neurofilaments move bidirectionally, we must 
consider the net flux j, i.e. the balance between the anterograde and 
retrograde fluxes (see below Eq. 26), which can be expressed as

j vtotal= ρ  (8)

where ρtotal is the linear density of the neurofilaments in all states, 
i.e. ρtotal = ρa + ρa0 + ρap + ρr + ρr0 + ρrp. The linear density can 

also be expressed as 
N

ltotal
NFρ = , where l l 1NF= +  and lNF  is the 

average filament length. Thus, the total number of neurofilaments in 
an axonal cross-section is given by

N l
j
vNF =  (9)

The total axonal area can then be found from Eq. 2 as follows

A
N l j

v
88.0 88.0NF

NF NF NF
=

+
α

=
α

+
α

 (10)

This expression tells us quantitatively what was intuitively clear, 
i.e. for a constant cross-sectional density of neurofilaments NFα  the 
axonal cross-sectional area will increase in direct proportion to the 
net flux of neurofilaments and in inverse proportion to the velocity.

It follows that the growth of the axonal cross-sectional area can 
be expressed as the increment of the axonal cross-sectional area, i.e.

dA
dt

dN
dt

l j
v j

dj
dt v

dv
dt

1 1 1

NF

NF

NF
=

α
=

α
−







 (11)

The first term within the parentheses represents the contribution 
of the change in flux j to the change in caliber A, with a weight of

w
j
dj
dt j

dj
dt

e
e

1 1 2.15
21.7 10.4

t

t1
in

in
0.207

0.207= = =
−

−

−  (12)

At equilibrium, i.e. for a constant influx, the retrograde flux and 
the influx (i.e., the anterograde flux) are related through 

j j/r ar ra in( )= γ γ  and hence j j 1in
ar

ra
= −

γ
γ







. This relation holds very 

well during radial growth and allows us to replace j with j in (Eq. 6) in 
Eq. 12. 

The second term within the parentheses in Eq. 11 represents the 
contribution of the change in average velocity v  to the change in 
caliber A, with a weight of

w
v

dv
dt

e
e

1 0.143
0.368 2.10

t

t2

0.068

0.068= − =
+
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where we inserted Eq. 7 for the average velocities. Finally, for the 
relative weighting of the contribution of the flux to the caliber 
growth, we find

w
w

w wj
1

1 2
≡

+
 (14)

and for the relative weighting of the contribution of the slowing to 
caliber growth we find

w
w

w wv
2

1 2
≡

+
 (15)

Figure 7 shows the results of this analysis for simulations of axo-
nal growth. The linear increase in the cross-sectional area contrasts 
with the nonlinear increase in the influx and the nonlinear decrease 
in the velocity. The influx increases steeply in the early weeks of 
postnatal development. However, as the axon grows, the rate of 
increase in the influx slows down while the transport velocity contin-
ues to decline. As a result of these changes, increases in the influx 
are the major driver of axonal radial growth during early postnatal 
development, with slowing of the neurofilament transport velocity 
becoming the major driver later in development (Figure 7D).

While Figure 7 shows the contributions of neurofilament influx 
and slowing to the increment of the axonal caliber during radial 
growth at any instant in time, it does not tell us the cumulative 
contribution of influx and slowing to the postnatal growth of the 

FIGURE 6: Comparison of average and pulse velocities of neuro-
filament transport vs. age. The pulse velocity (mm/day) was calculated 
over time (weeks) by tracking the peak of the simulated radiolabeled 
pulse in Figure 5. The pulse velocities in the animals injected at 3 wk 
of age (represented in blue) were measured at 5, 10, 15, and 20 d 
after radiolabeling, which correspond to 3.7, 4.4, 5.1, and 5.9 wk. The 
pulse velocities in the animals injected at 12 wk of age (represented in 
red) were measured at 6, 20, 33, and 60 d after radiolabeling, which 
correspond to 12.9, 14.9, 16.7, and 20.6 wk. The dashed black lines 
represent the computationally calculated average velocity of all 
neurofilaments at the location along the nerve corresponding to the 
location of the peak of the radiolabeled pulse at that time.
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axon up to that point. To address this, we use the linear regression 
in Eq. 2 for axons of cross-sectional area >5 µm2, extrapolated back 
to the origin for axons <5 µm2 using the polynomial expression in 
Eq. 3. On the basis of these expressions, we can rewrite Eq. 11 as
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for axons of cross-sectional area >5 µm2, and as

FIGURE 7: The contribution of changes in influx and velocity to the 
growth of axonal caliber in rat lumbar motor neurons. (A) Growth 
curve showing the axonal expansion plotted vs. age in weeks. This is 
the output of our model, which matches the linear regression shown 
in Eq. 1. (B) Exponential regression for the change in the influx jin vs. 
age in weeks. (C) Exponential regression for the change in the 
average velocity v  (mm/day) vs. age in weeks. (D) The relative 
contributions of the influx wj (blue) and the slowing wv (red) to the 
growth of axonal caliber between 3 and 18 wk of age.

FIGURE 8: Cumulative contribution of flux and slowing to the 
postnatal growth of axonal caliber. The black line represents the 
increase in axonal cross-sectional area with age, constrained to match 
the linear regression in Eq. 1 as described above. The blue line 
indicates the proportion of the axonal cross-sectional area that can be 
accounted for by an increase in the neurofilament influx alone. The 
red line indicates the proportion of the axonal cross-sectional area 
that can be accounted for by a decrease in the neurofilament 
transport velocity alone. The increase in axonal caliber can be 
attributed largely to an increase in neurofilament influx at early times, 
with a slowing of neurofilament transport becoming more influential 
at later times.
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for axons of cross-sectional area <5 µm2, where dAj is the increment 
of the axon caliber caused by an increase in influx djin, and dAv is the 
increment caused by a decrease in velocity dv . Adding all the incre-
ments over time results in the cumulative contributions of the influx 
increase and neurofilament slowing to the growth of axon caliber (Aj 
and Av, respectively) in animals ranging from 3 to 18 wk of age. To 
implement this, we start with an axon of zero cross-sectional area 
and zero neurofilaments and microtubules and then simulate axon 
growth using the linear model described above and integrate the 
incremental contributions of flux and velocity dAj and dAv using Eqs. 
16 and 17.

The results of this analysis are shown in Figure 8. For 3-wk-old 
animals, which have an average axonal cross-sectional area of 
25 µm2, 80% of the postnatal growth in cross-sectional area could 
be attributed to the increase in neurofilament influx and only 20% to 
the slowing of neurofilament transport. For 18-wk-old animals, 
which have an average axonal cross-sectional area of about 69 µm2, 
60% of the postnatal growth in cross-sectional area could be attrib-
uted to slowing. Thus, the increasing rate of influx is the major driver 
of axonal expansion early in postnatal development, but as the rate 
of influx stabilizes, the slowing of neurofilament transport becomes 
more influential.

Radial growth beyond 18 wk
In the experimental data of Hoffman and colleagues on which our 
modeling study is based, there is a linear increase in the average 
axonal cross-sectional area from 3 to 18 wk of age. No morphomet-
ric data are provided for rats older than 18 wk, but it is reasonable 
to assume that the radial growth will slow and then plateau as the 
animals mature further. To estimate the contribution of flux and 
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velocity during this maturation phase, we constrained the average 
axonal cross-sectional area in our model to approach a constant 
value of 80 µm2, (average diameter = 10 µm), which corresponds 
approximately to the maximum axon diameter extracted from 
the histograms of axon diameters at 18 wk of age in Figure 5 of 
Hoffman et al. (1985a). The cross-sectional area was assumed to ap-
proach this constant value by the exponential regression

A t80.0 m 72.5 m exp 0.0802 2 ( )= µ − µ −  (18)

where time t is measured in weeks (see Figure 9). The neurofilament 
and microtubule densities were obtained using the same regres-
sions as those used above (Figure 1, B and C).

Using the periodic version of the model, we found that the influx 
and neurofilament transport velocities approach finite constant val-
ues as the axons approach their target caliber (Figure 9, B and C). 
Thus, neurons can tune their axon caliber during postnatal develop-
ment by coordinated regulation of the flux and velocity of neurofila-
ment transport.

DISCUSSION
Neurofilaments are space-filling structures that are separated from 
each other by radial sidearm projections that maximize the axonal 
volume occupied by each polymer. As neurofilaments accumulate in 
axons, they contribute to the expansion of axon caliber in proportion 
to their number. Most of this accumulation occurs after birth, co-
incident with the onset of myelination. In large myelinated axons, 
which can contain several thousand neurofilaments per cross-section, 
these polymers occupy most of the axonal volume and thus make a 
significant contribution to the axonal caliber. Because neurofila-
ments are delivered to axons by the mechanisms of axonal trans-
port, it has been hypothesized that the neurofilament content of the 
axon is determined by the volume and kinetics of neurofilament 
transport and thus that there is a direct relationship between neuro-
filament transport and axon caliber (Hoffman, 1995). To test the fea-
sibility of this hypothesis, we developed a computational model of 
neurofilament transport that relates the influx and transport kinetics 
of axonal neurofilaments to the axonal cross-sectional area.

The kinetic states of our model were based on our prior kinetic 
and computational analyses of neurofilament transport in cultured 
nerve cells, in which we have shown that axonal neurofilaments alter-
nate between distinct short-term and long-term pausing states that 
we term on- and off-track, respectively. Neurofilaments in the on-
track state exhibit short bouts of rapid movement interrupted by 
short pauses, whereas neurofilaments in the off-track state pause for 
prolonged periods without movement. Because neurofilaments 
greatly outnumber microtubules in large neurofilament-rich axons, 
most neurofilaments are not adjacent to a microtubule. For these 
neurofilaments to move, they must make a diffusional encounter with 
a microtubule track. Thus, in our model we assume that neurofila-
ments are mobile in the radial dimension of the axon and that the rate 
of engagement of off-track neurofilaments with their microtubule 
tracks is governed by the rate of diffusion of the neurofilaments in the 
cross-sectional plane of the axon and the average distance between 
the neurofilaments and the microtubules. We use this model to simu-
late the radial growth of myelinated motor axons of rat lumbar ventral 
root and sciatic nerve during postnatal development, constraining 
the model to match published morphometric data on axon caliber 
and neurofilament and microtubule densities in L5 ventral roots of 
these animals as well as radioisotopic pulse-labeling studies of neuro-
filament transport in the lumbar ventral root and sciatic nerve. Assum-
ing that the axon caliber and microtubule densities are uniform along 

the axons, we show that the model can explain the published data of 
Hoffman and colleagues on the growth of axon caliber and kinetics of 
neurofilament transport during the postnatal development of rat lum-
bar motor neurons.

Because postnatal axonal development is accompanied by an in-
crease in neurofilament gene expression and a slowing of neurofila-
ment transport, it has long been assumed that the radial growth of 
axons can be explained by changes in neurofilament influx and trans-
port velocity (Hoffman, 1995). Our study confirms this quantitatively 
and also provides the first quantitative estimate of their relative con-
tributions. We found that the answer is time dependent and evolves 
during postnatal development. Initially, the radial growth can be at-
tributed primarily to the rapid increase in neurofilament influx, while 
later in development the influx plateaus and slowing of neurofila-
ment transport becomes the dominant contributor. This transition 
from an expression-driven phase of radial growth to a slowing-driven 
phase results in continued expansion of axon caliber even after the 
rate of neurofilament influx stabilizes.

FIGURE 9: Simulation of the neurofilament transport changes that 
accompany axonal maturation. (A) Extrapolation of the radial axonal 
growth to an asymptotic cross-sectional area of 80.0 µm2 using the 
exponential regression in Eq. 18. The line represents the regression and 
is dashed beyond 21 wk to denote that it is an extrapolation for these 
ages. (B) The time course of the influx predicted by the model. (C) The 
time course of the average neurofilament transport rate predicted by 
the model. The data points in A represent the experimental data, and 
the line represents the regression in Eq. 18. 
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An additional outcome of our study is a prediction of the magni-
tude of the neurofilament influx into the axon, which is a parameter 
that has never been measured experimentally. Our simulations pre-
dict an influx of approximately 21 neurofilaments per second for the 
average myelinated axon at 18 wk of age, assuming a neurofilament 
length of 5 µm. Because the average neurofilament content of these 
axons at this age was approximately 8000 per cross-section, this 
represents about 0.26% of the total neurofilament content. This low 
rate of flux reflects the slow average velocity of neurofilament trans-
port and is approximately consistent with our previous modeling 
studies in adult mouse sciatic nerve, which have indicated that at 
any point in time only 0.5% of the filaments are moving in myelin-
ated internodes (Walker et al., 2019).

It is important to note that neurofilament number may not be the 
sole determinant of axonal caliber in large myelinated axons. For 
example, neurofilament density is not uniform across all axons and 
appears to be influenced by the polypeptide composition of fila-
ments and the phosphorylation of their carboxy-terminal neurofila-
ment side arm projections (Nixon et al., 1994; Garcia et al., 2003; 
Mukhopadhyay et al., 2004; Chang et al., 2009; Malka-Gibor et al., 
2017). In addition, recent evidence indicates that axon caliber is also 
influenced by the membrane-associated periodic cytoskeleton, 
which consists of regularly spaced actin filament rings associated 
with the cytosolic surface of the plasma membrane and linked by 
spectrin molecules (He et al., 2016). These rings provide structural 
support to the axonal plasma membrane and also influence axon 
diameter and physiology, microtubule dynamics, and vesicle trans-
port (Costa et al., 2018; Costa and Sousa, 2021). Many questions 
remain, however, about the extent of cross-talk between this mem-
brane cytoskeleton and other cytoskeletal components. For exam-
ple, mice lacking a component of the membrane-associated peri-
odic cytoskeleton called adducin have increased caliber and actin 
ring diameter but also a higher neurofilament density, implying an 
increased neurofilament content (Leite et al., 2016). This suggests 
that alterations to the membrane-associated periodic cytoskeleton 
may influence neurofilament transport and/or gene expression. On 
the other hand, axonal expansion in response to changes in neuro-
filament content must be accompanied by expansion of the actin 
rings, indicating that the membrane cytoskeleton is also capable of 
dynamic remodeling in response to changes in neurofilament con-
tent. Thus, the membrane-associated periodic cytoskeleton may 
both influence and respond to changes in axon caliber.

A key feature of our computational model is that it is able to ex-
plain the slowing of neurofilament transport during rat postnatal 
development in terms of the decline in microtubule density. Impor-
tantly, this slowing is not an assumption in our model but rather 
emerges as the axons expand because the increase in the number 
of microtubules does not keep pace with the increase in the number 
of neurofilaments and thus, over time, the accessibility of neurofila-
ments to their microtubule tracks declines. This, in turn, results in a 
decrease in the on-rate. Because the increase in neurofilament con-
tent arises due to the increase in neurofilament influx, the slowing of 
neurofilament transport during postnatal development can be con-
sidered a simple consequence of the increase in the neurofilament 
influx. If the microtubule number were to increase in direct propor-
tion to the neurofilament number during postnatal development, 
then the microtubule density would remain unchanged. There 
would be no decline in neurofilament transport, and the radial 
growth of the axons would be entirely dependent on the neurofila-
ment influx. While this proposed mechanism of neurofilament slow-
ing remains to be proven experimentally, it is consistent with experi-
mental observations on the correlation between the kinetics of 

neurofilament transport and the neurofilament:microtubule ratio 
during axon regeneration after injury. Specifically, axonal injury re-
sults in a decline in neurofilament gene expression, a decrease in 
axon caliber, and an increase in both microtubule density and neu-
rofilament transport velocity (Hoffman et al., 1984). It is also sup-
ported by our studies of neurofilament transport across nodes of 
Ranvier, where there is a local constriction of the axon accompanied 
by a decrease in neurofilament number and an increase in both mi-
crotubule density and neurofilament transport velocity (Walker 
et al., 2019; Ciocanel et al., 2020). Thus, microtubule density may be 
a basic regulator of neurofilament transport.

It is interesting to consider why neurofilament transport slows 
during postnatal development, or indeed, why slow axonal trans-
port is so slow at all. The answer appears to be that the purpose of 
slow axonal transport is to distribute proteins along the axon rather 
than to deliver them to the axon tip (Brown, 2003). With this pur-
pose in mind, speed is not necessarily an advantage and actually 
comes with a significant energetic cost in terms of both the produc-
tion and the movement of the cargoes. Thus, the slow transport of 
neurofilaments in axons could be considered a more efficient solu-
tion to the problem of delivering and distributing these polymers. 
By the same reasoning, the slowing of neurofilament transport dur-
ing postnatal development may be an adaptation to permit the 
axon to reach its target caliber while producing and moving fewer 
neurofilaments, thereby lowering the metabolic cost of establishing 
the desired axon caliber.

A central assumption in our model is that all the neurofilaments in 
axons move and thus changes in neurofilament transport result di-
rectly in changes in neurofilament content. As discussed above, the 
results of our simulations support this assumption. However, some 
researchers have proposed that the majority of axonal neurofila-
ments are deposited into a permanently stationary cytoskeleton and 
that radioisotopic pulse-labeling experiments reflect the movement 
of only a small proportion of the total axonal neurofilament popula-
tion (Nixon and Logvinenko, 1986; Yuan et al., 2009, 2017). If only a 
small proportion of axonal neurofilaments are mobile, then the kinet-
ics of neurofilament transport might not correlate directly with the 
neurofilament content. In support of their hypothesis, these re-
searchers reported several examples of mutant mice in which the 
neurofilament content of optic nerve axons differed from that in wild-
type mice but the kinetics of neurofilament transport did not (Yuan 
et al., 2015). The three lines of mice examined were a transgenic line 
overexpressing human NFH, a transgenic line overexpressing a mu-
tant human NFL, and an NFH knockout line. Interpretation of the 
data from these mice is complicated by the fact that the mechanism 
by which these mutations lead to differences in neurofilament con-
tent is not clear. However, setting aside that concern, it is not possi-
ble to relate the abundance of neurofilaments ρ to their transport 
velocity v  without knowing the flux j  because j v= ρ . For example, 
if an axon has twice the neurofilament content, the neurofilament 
velocity can still be the same if it also has twice the flux. Hence differ-
ences in the neurofilament content of axons in different lines of mice 
could be explained by difference in the neurofilament flux with no 
difference in the neurofilament transport velocity. Thus, we would 
caution against simply equating neurofilament content and transport 
kinetics without taking into consideration neurofilament flux.

METHODS
In this section we describe the source of the experimental data that 
we use, how we model the transport kinetics of neurofilaments, how 
we account for the axonal cross-sectional area based on the abun-
dance of the constituent neurofilaments and microtubules, how we 



10 | R. M. Nowier et al. Molecular Biology of the Cell

extract the flux, and how we simulate the movement of radiolabeled 
neurofilaments to compare our model with radioisotopic pulse-la-
beling experiments on a timescale of days and weeks.

Experimental data
We used experimental data published in a series of papers by Hoff-
man, Price, and colleagues on the postnatal development of myelin-
ated motor axons in the L5 ventral root and sciatic nerve of rats 
(Hoffman et al., 1983, 1984, 1985a,b). Collectively, these papers pro-
vide a unique opportunity for our modeling study because they report 
morphometric measurements on neurofilament and microtubule den-
sities and the growth of axon caliber, as well as kinetic data on neuro-
filament transport obtained using radioisotopic pulse labeling, all at 
multiple time points spanning the first 5 mo of life in these animals. 
For the radioisotopic pulse-labeling kinetics, we used data obtained 
by isotope injection into rats at 3 and 12 wk of age from Figures 2 and 
3 in Hoffman et al. (1985a). For the myelinated axon caliber, we used 
the data obtained in L5 ventral roots of rats at 3, 5, 8, 12, and 18 wk 
of age from Figure 6 in Hoffman et al. (1985a). For the neurofilament 
and microtubule densities, we used the data obtained in L5 ventral 
roots of rats at 3, 5, 8, 12, and 18 wk of age from Figure 10 in Hoffman 
et al. (1984). The data were extracted from the published figures using 
WebPlotDigitizer (Ankit Rohatgi, version 4.5, August 2021).

Mathematical model of the neurofilament transport kinetics
We simulated neurofilament transport using the six-state model de-
scribed previously (Jung and Brown, 2009). This model emerged 
from two sets of experiments, one where the motion of single neu-
rofilaments was tracked along axons on a timescale of minutes using 
time-lapse fluorescence imaging (Wang et al., 2000; Brown et al., 
2005) and another one where a pulse of fluorescently activated neu-
rofilaments was tracked on a timescale of several hours using a fluo-
rescence photoactivation strategy (Trivedi et al., 2007). These stud-
ies revealed that neurofilaments switch between distinct pausing 
states that we termed on-track and off-track. Neurofilaments in the 
on-track state are engaged with their microtubule tracks and move 
in rapid bursts interspersed by brief pauses on the order of seconds 
to minutes in length. In contrast, neurofilaments in the off-track state 
pause for long periods of time on the order of hours, functionally 
disengaged and perhaps also physically distant from their micro-
tubule tracks.

We have shown that this motile behavior can be described using 
a kinetic model in which each filament moves independently and 
bidirectionally along the length of the axon, cycling between six 
states. In the on-track moving states a and r, the neurofilaments 
move anterogradely and retrogradely along microtubule tracks with 
constant velocities va and vr, respectively. In the on-track pausing 
states a0 and r0, the filaments pause for brief periods of time that 
last for seconds to minutes. On-track filaments switch repeatedly 
between these moving and short-term pausing states governed by 
rates γ10 and γ01, resulting in “stop-and-go” intermittent motion of 
neurofilaments along their microtubule tracks (Brown et al., 2005). 
While pausing on-track, the neurofilaments can also disengage from 
their microtubule tracks and enter the long-term anterograde or ret-
rograde pausing states, ap or rp, at a rate determined by the rate 
constant γoff. They can reengage with a microtubule at a rate deter-
mined by the rate constant γon. While pausing on- or off-track, the 
neurofilaments can change direction governed by the anterograde-
to-retrograde and retrograde-to-anterograde “reversal rates” γar 
and γra, respectively. This scheme is summarized graphically in 
Figure 10. The following set of partial differential equations de-
scribes the distribution of neurofilaments in the six kinetic states 

with respect to distance x along the axon and time t, governed by 
the six rate constants, for the anterograde direction:
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where ρa, ρa0, and ρap are the linear densities of neurofilaments in 
the anterograde moving and short-term and long-term pausing 
states respectively, and for the retrograde direction:
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(20)

where ρr, ρr0, and ρrp are the corresponding linear densities of neu-
rofilaments in the retrograde moving and short-term and long-term 
pausing states, respectively.

Computational implementation of the model
To simulate neurofilament transport and the growth of axonal cali-
ber during postnatal development, the mathematical six-state 
model was converted to a computational one using a spatial and 
temporal discretization. The distance along an axon of length L 
was divided into a total of N bins, each of length ∆x. Time t was 

FIGURE 10: The six-state model of axonal neurofilament transport. 
An “on-track” neurofilament can transition from anterograde or 
retrograde moving states (a or r) to corresponding short-term pausing 
states (a0 or r0) while still bound to a microtubule track (governed by 
the rate constants γ10 and γ01). During a short-term pause, the 
neurofilament can detach from the microtubule track and enter the 
corresponding “off-track” long-term pausing states (ap or rp). Note 
that we define separate anterograde and retrograde off-track pausing 
states so that we can separate reversals (governed by the rate 
constants γar and γra) from switching between on- and off-track states 
(governed by the rate constants γon and γoff). The neurofilaments can 
reverse direction in either the on-track or the off-track pausing states. 
Adapted from Jung and Brown (2009).
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discretized into short time intervals of ∆t. For the simulations pre-
sented in this study, we used ∆x = 1 µm and ∆t = 1 s. The distance 
at any point along the axon is then the position of the ith bin rela-
tive to the zeroth bin at the proximal end of the axon (x 00 = ), i.e.

x x i xi 0= + ∆  (21)

We apply a forward-time and backward-space discretization 
scheme to the three partial differential equations describing the dis-
tributions of neurofilaments in the anterograde direction in Eq. 19, 
resulting in the following set of equations that describe the time 
evolution of the anterograde linear distributions of the neurofila-
ments along the axon across all kinetic states:
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Similarly, we apply a forward-time and backward-space discreti-
zation for the equations in the retrograde direction in Eq. 20, result-
ing in the following set of equations for the retrograde linear distri-
butions of the neurofilaments along the axon across all states:
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We impose the boundary conditions x t x t, ,N N 1( ) ( )ρ = ρη η −  at 
the distal end of the axon, simulating an infinitely long axon using a 
finite model where all linear distributions of neurofilaments, i.e. 

x( )ρη  with a a a r r r, , , , ,0 p 0 pη = , are uniform and in steady state. 
We consider the center point of a filament of length INF, such that it 
extends across INF/(2∆x) bins on each side. We find the number of 
neurofilaments in any given bin in the axon by adding up the linear 
distributions of neurofilaments that are occupying that bin plus the 
INF/(2∆x) bins on each side, i.e. (INF + ∆x)/∆x bins in total, across all 
kinetic states. The number of neurofilaments NNF at any given loca-
tion in a homogeneous axon is therefore given by

( ) ( )=
∆

ρN x
l
x

xiNF i total  (24)

where ∆x = 1 µm, ρtotal = ρa + ρa0 + ρap + ρr + ρr0 + ρrp and l l xNF= + ∆ . 
The average length of neurofilaments in vivo is not known so we 
assume that all neurofilaments have the same length of l 5 µmNF = , 
which is the approximate average length of moving neurofilaments 
in cultured nerve cells (Fenn et al., 2018).

The resulting model mimics the neurofilament transport kinetics 
observed experimentally (Brown et al., 2005; Jung and Brown, 2009). 
To apply this model to the radial growth of an axon, we considered 
the axon to be a cylinder with a cross-sectional area A containing 

NMT microtubules and NNF neurofilaments. During postnatal matura-
tion, the cylinder accommodates an increasing number of neurofila-
ments, leading to its radial expansion, i.e. an increase in caliber A. In 
the present study, we considered that one of the mechanisms for this 
accumulation was an increase in the influx jin of neurofilaments from 
the cell body associated with an increase in neurofilament gene ex-
pression. The influx is defined as the average number of neurofila-
ments that enter the axon in a unit of time. We simulated this influx 
at the proximal end (x0 = 0) by increasing the density of anterogradely 
moving neurofilaments x t t,a 0( )ρ + ∆  in the zeroth bin as follows:

( ) ( ) ( )

( ) ( )

ρ + ∆ = ρ + ∆ −
∆

ρ +
∆


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+ γ ρ − γ ρ

x t t x t t
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x
x t

j
x

x t x t

, , ,

, ,

a
a 0 a 0 a 0

in

01 a0 0 10 a 0



 (25)

To obtain the average velocity of all neurofilaments in any bin i, 
we summed the fractions of the neurofilament population in the 
anterograde and retrograde moving states multiplied by their re-
spective velocities, i.e.

v x
x v x v

xi
a i a r i r

total i
( ) ( ) ( )

( )=
ρ + ρ

ρ
 (26)

The neurofilaments move bidirectionally, resulting in an antero-
grade flux ja, a retrograde flux jr, and a net-flux j = ja + jr. These 
fluxes, which have the dimensions 1/s and describe the number of 
neurofilaments that pass an axonal cross-section at position xi in a 
unit of time, were extracted from the computational model as 
follows:

j x x v

j x x v

a i a i a

r i r i r

( ) ( )

( ) ( )

= ρ

= ρ
 (27)

The microtubule density determines the on-rate
As described above, we consider neurofilaments in the off-track 
states to be disengaged from their microtubule tracks and hence 
not capable of transport along the axon. For these neurofilaments 
to move, they must first find a microtubule. In our model, this is 
governed by the rate constant γon. Because neurofilaments outnum-
ber microtubules in myelinated axons (Price et al., 1988; Reles and 
Friede, 1991), this likely requires movement in the radial dimension 
of the axon. We modeled this as diffusion in the cross-sectional 
plane of the axon.

In a recent study, Chakrabarty (2020) assumed off-track neurofila-
ments to be capable of lateral diffusion, as if engaged in a constant 
radial diffusive search for an available microtubule track. Chakrab-
arty (2020) calculated the resulting binding rate, which is equivalent 
to the on-rate γon in our model. The results showed that the rate 
exhibited a 3/2 power-law dependence on the density of the avail-
able microtubules ρMT, i.e.

d D
i

i
2

1 !
1
2

i
on NF

1

3

MT
3/2∑ ( )

γ = π
−

Γ +



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

















ρ
=

∞

 (28)

where d r r2 2NF MT= +  is the sum of the diameters of a neurofilament 
and a microtubule and is twice the distance between these poly-
mers when a neurofilament is on-track, and DNF is the diffusion coef-
ficient of neurofilaments in the radial dimension of the axon. The 
microtubule density ρMT is defined as the number of microtubules 



12 | R. M. Nowier et al. Molecular Biology of the Cell

divided by the axonal cross-sectional area and is assumed to be 
random, with an equal probability of finding a microtubule at all lo-
cations across the axon cross-section. The above expression ne-
glects interactions between neurofilaments, which would be ex-
pected to result in a smaller effective diffusion constant (van Beijeren 
and Kutner, 1985; Novak et al., 2009). However, because we cali-
brate the unknown diffusion coefficient to the actual initial neurofila-
ment velocity observed experimentally (see Results), such crowding 
effects are incorporated implicitly into our model.

Note that an increase in the microtubule density will decrease 
the average distance between neurofilaments and their nearest mi-
crotubule track, and thus off-track neurofilaments will move on-track 
more quickly, resulting in a larger on-rate γon and a faster average 
transport velocity. To implement the varying on-rate computation-
ally during our simulations of radial axonal growth, we assume each 
microtubule track has the capacity to accommodate up to p = 5 
neurofilaments, and we take the neurofilament and microtubule ra-
dii to be r 20.0 nmNF =  and r 12.5 nmMT =  (Xue et al., 2015). Denot-
ing the number of neurofilaments engaged with microtubules at a 
location x along the axon by Non and the total number of microtu-
bules not available to bind additional neurofilaments by Non/p, the 
on-rate assumes the form

γ = π
−





D
N N p

Area
4.63

/
on NF

MT on
3/2

 (29)

where N lon a a0 r r0( )= ρ + ρ + ρ + ρ  is the number of all neurofila-
ments in the on-track states.

Finding the influx
To examine the possible role of temporal changes in neurofilament 
export from the cell body for the growth of axon caliber, we use 
Eq. 25 to simulate an injection of neurofilaments with influx jin into 
the proximal end of the axon. No direct experimental data for the 
neurofilament influx in vivo are available, but we are able to infer it 
computationally based on the axonal neurofilament and microtubule 
content. One way to do this would be to systematically change the 
influx in the model until the desired neurofilament and cross-sec-
tional area are identified. A more efficient method is to create a pe-
riodic version of the model in which the neurofilaments that leave the 
axon distally enter it again proximally and vice versa, effectively cre-
ating a closed loop (Figure 2B). To implement this model, we con-
sider a short (1 mm) length of axon of the desired caliber and distrib-
ute neurofilaments and microtubules uniformly along this axon so 
that their density is consistent with the morphometric data (see be-
low). We then simulate neurofilament transport using the six-state 
model described above and allow the system to equilibrate. As the 
neurofilaments traverse the axon in a periodic manner, the average 
velocity v , anterograde flux j va a a= ρ , retrograde flux j vr r r= ρ , and 
net flux j j ja r= +  emerge directly from the simulations.

To connect back to the linear version of the model (Figure 2A) in 
which there is a net addition of neurofilaments proximally and a net 
loss distally, we have to specify only the influx jin determined from 
the periodic model above, i.e.

j j vin a a a= = ρ  (30)

and then the retrograde and net fluxes jr and j = ja + jr emerge from 
the resulting simulations.

Simulating the propagation of radiolabeled neurofilaments
To simulate the movement of a pulse of radiolabeled neurofilaments 
computationally in a radioisotopic pulse-labeling experiment, we 

model a single axon that can be thought of as an average of the 
many axons that make up a nerve in the animal. We split the total 
influx jin into two populations, one that is labeled and another that is 
nonlabeled:

j j jin lab non= +  (31)

where jlab is the influx of labeled neurofilaments and jnon is the influx 
of nonlabeled neurofilaments. We now have two sets of six-state 
equations, one for the labeled neurofilaments and the other for the 
nonlabeled neurofilaments, i.e.
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As a result, the two neurofilament populations propagate along 
the axon, each cycling between the six kinetic states according to 
the same rate constants as defined above. The wave of labeled neu-
rofilaments is the sum of the distributions of the labeled neurofila-
ments in all six kinetic states, i.e.

rlab a,lab a0,lab ap,lab ,lab r0,lab rp,labρ = ρ + ρ + ρ + ρ + ρ + ρ  (34)

For the simulations, we used a square wave pulse of labeled fila-
ments and set the duration of the pulse to 6 h based on a previous 
computational modeling study of neurofilament transport in mouse 
optic nerve (Li et al., 2012). However, we should note that the pre-
cise duration and shape of this pulse has little influence on the 
shape of the resulting wave because it spreads enormously due to 
the stochastic and bidirectional nature of the neurofilament move-
ment. To ignore events that determine neurofilament fate at the 
distal ends of the axons, the length of the axon was assumed to be 
very long, specifically 20 cm.

Code availability
The code will be made available upon reasonable request. Requests 
should be submitted to the corresponding authors.
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model a single axon that can be thought of as an average of the 
many axons that make up a nerve in the animal. We split the total 
influx jin into two populations, one that is labeled and another that is 
nonlabeled:

j j jin lab non= +  (31)

where jlab is the influx of labeled neurofilaments and jnon is the influx 
of nonlabeled neurofilaments. We now have two sets of six-state 
equations, one for the labeled neurofilaments and the other for the 
nonlabeled neurofilaments, i.e.
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