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Abstract

The key technology barriers that hinder the growth of Electric Vehicles (EVs)
are long charging time, the shorter life-time of EV batteries, and battery
safety. Specifically, EV charging protocols have significant effects on bat-
tery lifetime and safety. If not charged properly, the battery could end up
with shorter life, and more importantly, improper charging can cause battery
faults leading to catastrophic failures. To overcome these barriers, we propose
a closed-loop feedback based approach, that enables real-time optimal fast
charging protocol adaptation to battery health and possess active diagnos-
tic capabilities in the sense that, during charging, it detects real-time faults
and takes corrective action to mitigate such fault effects. We utilize bat-
tery electrical-thermal model, explicit battery capacity and power fade aging
models, and thermal fault model to capture battery behavior. In conjunction
with the models, we adopt linear quadratic optimal control techniques to re-
alize the feedback-based control algorithm. Simulation studies are presented
to illustrate the effectiveness of the proposed scheme.
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1. Introduction

1.1. Motivation and Challenges

A key barrier to greater electric vehicles adoption, which is crucial to
decarbonize the transportation sector, is the longer charging time compared
to the refueling time for internal combustion engine vehicles. Significant re-
search efforts are ongoing to resolve this issue making EV charging a timely
and relevant research area. However, there are some critical challenges in
realizing such charging technologies. The first challenge is associated with
battery degradation where the charging algorithms need to adapt to changing
battery age. The second challenge is related to battery safety compromised
by critical faults. Fast charging would result in high level of thermal and
mechanical stresses, which not only induce nominal battery aging, but also
significantly increase the probability of internal faults. Fast charging cause
irreversible capacity loss due to the lithium deposition induced by high po-
larization. The deposited metal can solve into the electrolyte and can cause a
separator puncture and consequently internal short circuit and thermal run-
away. These internal faults can lead to accelerated, possibly catastrophic,
battery failure [1]. Therefore, the charging control system must have active
diagnostics/mitigation capabilities to detect these faults in their early stages
reducing failure risks. Under this scenario, we propose a real-time feedback-
based optimal fast charging algorithm which adapts to battery health as the
battery ages as well as ensures battery safety throughout its lifetime. In the
next few subsections, we will discuss the state-of-the-art in literature followed
by existing research gaps. Finally, we will discuss the main contributions of
this work with respect to these research gaps.

1.2. Literature Review

In the past few years, several battery charging algorithms have been
presented in literature. Broadly, these approaches can be divided into two
categories. The first category is model-free approaches where the charging
algorithm is designed based on heuristic methods. Some examples of such
model-free approaches are: the widely used Constant Current Constant Volt-
age (CCCV) charging [2], multi-stage CCCV [3, 4, 5], fuzzy and neuro-fuzzy
approach [6, 7], reinforcement learning approach [8], ant colony optimization
approach [9], grey system theory based approach [10], and data-driven and



experimental validation approach [11]. Although these model-free approaches
have the advantage of simple practical realization, the main drawback is un-
accounted physical behavior of the batteries. Hence, these approaches may
not be efficient or optimal from charging time or battery health point of view.

The second category, model-based approaches, overcomes the aforemen-
tioned limitation by explicitly considering battery physical models in the
charging algorithm design. For example, [12] and [13] proposed linear quadratic
control-based charging algorithms. In [14], an optimal charging profile is
designed that minimizes charging time considering energy losses and tem-
perature increase. Charging algorithms are presented in [1, 15, 16] based
on control-oriented electrochemical models. Model predictive control based
charging strategies are presented in [17], [18], [19], [20] and [21], [22], [23],
[24], [25], [26]. Dynamic programming based charging algorithms are pre-
sented in [27], [28], [29], [30]. In [31], [32] and [33], pseudo-spectral methods
based optimal charging strategies are presented.

In terms of fault detection, some techniques have been proposed in liter-
ature. For instance, in [34], a robust estimation algorithm is used to isolate
thermal faults, and the loss of cooling system. Authors in [35] present a
Lyapunov-based thermal parameter fault and heat generation fault diagnos-
tic algorithm. In [36], authors propose a Kalman-filtering based thermal fault
detection algorithm for large format batteries.The work in [37] proposes an
uncertainty learning-based thermal fault detection algorithm for cylindrical
cells under fast charging. The work in [38] utilizes an Lon Short Term Mem-
ory (LSTM)-Neural Network (NN) approach for detecting thermal faults. In
[39], the time and location of battery pack faults are determined using big
data and Shannon entropy analysis. However, the data-driven approaches
(38, 39] have the disadvantage of requiring large amounts of data and may
not be able to capture unforeseen anomalies. For details of the existing fault
detection approaches, readers should refer to the comprehensive review pa-
pers [40, 41, 42]. Table 1 presents the summary of fault detection techniques.

1.8. Research Gaps

Most of the aforementioned model-based approaches suffer from one or
more issues which will be discussed next.Many of these approaches ([12], [18],
[14], [19], [43], [23], [44], [45]) do not consider battery health in their design.
Some of the approaches account for battery health by posing constraints
on battery internal states [13], [1], [17], [21], [27], [31], [33], [26], [22], [24].
Such internal state constraints can help maintain battery health to some
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Table 1: Summary of fault detection techniques and their advantages and disadvantages

Technique

Advantages

Disadvantages

Robust estimation
algorithm [34]

Effective in isolating
thermal faults and loss
of cooling system

May mnot detect other
types of faults.

Lyapunov-based di-
agnostic algorithm
[35]

Can diagnose thermal
parameter and heat gen-
eration faults

May not be effective for
other types of faults.

Kalman-filtering Effective in detecting | Complexity may limit
based algorithm | thermal faults in large | real-time  implementa-
[36] format batteries tion.

Uncertainty Effective in detecting | Requires large amounts
learning-based thermal faults during | of data.

algorithm [37]

fast charging of cylindri-
cal cells

LSTM-NN
proach [38]

ap-

Can  detect  thermal
faults using past data

Requires large amounts
of data and may not be
effective for unforeseen
anomalies.

Big data and Shan-

Can determine time and
location of faults

Requires large amounts
of data.

non entropy analy-
sis [39]

extent. However, they may not able to capture comprehensive battery aging
phenomena which do not affect such internal states under consideration.
The works [32] and [20] consider explicit battery aging dynamics. How-
ever, the approach in [32] does not account for deviation of actual aging
from the a priori known aging model. The approach [20] is designed for on-
line control purposes. However, it requires reference trajectories for battery
State-of-Charge (SOC) and State-of-Health (SOH), which may not be avail-
able in practical situations. In [46] an electrochemical-thermal aged model is
employed. However, the degradation consequences like resistance rise, capac-
ity fade and temperature rise are not considered. The work [30] formulates
the charging optimization problem based on the speed of capacity loss and
energy loss of battery. However, this work utilizes the offline dynamic pro-
gramming approach which may not be applied in real time as the battery



ages. Authors in [29, 15, 47, 48] consider the electrochemical-thermal ag-
ing model or Pseudo-two-Dimensional (P2D) model to capture the capacity
fade due to Solid Electrolyte Interphase (SEI) growth and to obtain a fast
charging protocol. However, the high computational cost of the model and
algorithm limits the real-time application.

The works in [25, 49, 28] consider a reduced order P2D model or electro-
chemical model with SEI growth or lithium plating model and solve the fast
charging problem. However, these works do not consider the temperature
dynamics and temperature rise which is significantly affected by fast charg-
ing. In [26], an online model predictive control approach and P2D model is
employed to solve the optimal charging problem. However, the authors do
not consider the aging dynamics. In [50], an exponential current strategy
and Single Particle (SP) model with hoop stress dynamics are considered
in fast charging algorithm. However, no other degradation mechanisms are
considered in this work. The work in [51] proposes a multi stage charging al-
gorithm based on minimization of charging time and charging loss. Even so,
the multi stage constant current strategies leads to more heat generation due
to the switching of current in each stage [52]. Authors in [53] utilize the elec-
trothermal aged model and Particle Swarm Optimization (PSO) algorithm
to obtain a charging strategy which minimize the capacity loss. However,
the power fade and resistance growth has not been considered in this work.

As mentioned in the last paragraph, although some of the aforementioned
approaches have considered battery aging in terms of SEI growth or Lithium
plating, it is difficult in practical applications to identify the model parame-
ters of SEI or lithium plating models from the available measurements. It is
important to note that different operating conditions like the driving pattern
which reflects in current, SOC, and temperature are affecting the battery
degradation. Motivated by that, in this work, we utilize an explicit aging
model that captures the capacity fade and power fade as a function of those
aforementioned conditions. Such explicit aging model is easier to identify
from the available measurement data.

Finally, adapting to battery age is not enough. Fast charging would result
in high level of thermal and mechanical stresses, which not only induce nom-
inal battery aging, but also significantly increase the probability of internal
faults that result in thermal runaway. These internal faults can lead to accel-
erated, possibly catastrophic, battery failure. Therefore, the charging control
system must have active diagnostics/mitigation capabilities to detect these
faults in their early stages reducing failure risks. None of the aforementioned



works possess such capabilities.

1.4. Literature Summary

Here, we summarize the literature review. Several model-based approaches
for optimizing battery charging algorithms have been proposed. However,
many of them do not consider battery health or only consider certain inter-
nal state constraints that may not fully capture comprehensive battery aging
phenomena (e.g., [12, 18, 14, 19, 13, 1, 17]). Some approaches (e.g., [20, 30])
consider explicit battery aging dynamics, but they may require reference tra-
jectories or have high computational costs that limit real-time application.
Other approaches (e.g., [25, 51]) focus on reducing charging time or capac-
ity fade but leave out other important dynamics. Finally, it is important
to note that fast charging induces high levels of thermal and mechanical
stresses, which can lead to internal faults that increase the probability of
battery failure, and none of the aforementioned works have active fault di-
agnostics/mitigation capabilities.

1.5. Main Contribution

Based on the earlier review, we propose a safe and health-adaptive opti-
mal fast charging algorithm that overcomes the aforementioned issues in ex-
isting approaches. Specifically, (i) the proposed approach considers battery
electrical-thermal dynamics along with an explicit battery aging model that
captures capacity fade and power fade; (ii) it does not require predetermined
reference trajectories for battery SOC and SOH; (iii) it utilizes a closed-loop
feedback based approach that enables real-time charging protocol adaptation
to battery health, and (iv) most importantly, it possesses active diagnostic
capabilities in the sense that it detects real-time faults during charging and
takes corrective action to mitigate such fault effects. Some preliminary re-
sults of this work have been presented in the conference paper [54] where only
the active fault-tolerant control aspect is discussed. However, the work [54]
did not consider optimal charging problem nor did it consider the battery
aging dynamics. This current paper extends the preliminary work [54] by (i)
formulating and solving an optimal charging problem with consideration of
battery capacity fade and power fade aging dynamics; and (ii) extending the
fault-tolerant control scheme by employing the entropy effect as additional
cooling mechanism to combat thermal anomalies.



1.6. Organization of the Paper

The rest of paper is organized as follows. In section 2 the battery electrical-
thermal-aging model is discussed. Section 3 presents the proposed control
algorithms for optimal fast charging including, the estimators and different
control modes. In section 4 the results and discussion are presented and
finally the paper is concluded in section 5.

2. Battery Model

In this section, we describe the battery modeling approach we have adopted
for this work. We consider three aspects of the battery physical behavior in
our model: (i) nominal electrical-thermal dynamics that represent the phys-
ical behavior of a new battery, (ii) battery aging reflected by capacity fade
and power fade, and (iii) battery thermal faults that can potentially originate
due to internal electrochemical failure, mechanical or thermal stress.

2.1. Nominal Battery Electrical-Thermal Model

In this work, we adopt an equivalent circuit model that captures battery
electrical dynamics [55] (see Fig. 1). The equivalent circuit model consists of
a voltage source that represents battery open circuit voltage (OCV'), a series
resistance (R) and a resistance-capacitance pair (R; —C1). The mathematical
representation of the equivalent circuit model is given as:

SOC(t) = —0I(t), (1)
Vit = — ) 10, @)
Vi(t) = OCV(50C) = V(t) — I(¢)R, (3)

where SOC' is battery State-of-Charge, 6 = 1/Cj,; is inverse of battery ca-
pacity Cyas, Vi is the voltage across the capacitor C', I is the applied battery
current (I < 0 indicates charging and I > 0 indicates discharging), and V; is
the battery terminal voltage. To capture the battery thermal dynamics, we
choose an average thermal model derived from energy balance principle [56].

mC,T(t) = —hA(T(t) — T (1))
+ I(1)(OCV(SOC) = Vy(t) = T()u(SOC)), (4)

where m is the battery mass in kg, C, is the heat capacity in Jkg 'K~!, T
is the average battery temperature in K, T, is the cooling temperature, h
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is convective heat transfer coefficient in (Wm™2K '), A is the area of heat
transfer in m? and p is the entropic heat coefficient as a function of SOC, as
shown in Fig. 2 [57].

Note that there is always a trade-off between accuracy and complexity
in battery models. For example, some Equivalent Circuit Models (ECMs)
possess simple mathematical structure and reasonable computational require-
ments at the cost of potentially lesser accuracy. In comparison, some elec-
trochemical models tend to be more accurate however at the cost of com-
plex mathematical structure such as coupled nonlinear Partial Differential
Equations. In this work, the proposed algorithms are designed for real-time
control and diagnostic applications where simplified mathematical structure
and lower computation aspects are required. Furthermore, under typical
settings, characterization of electrochemical models tends to be more cum-
bersome than that of the ECMs. Due to these reasons, we have adopted a
simplified ECM. The main limitations of using ECMs are the potential lack
of accuracy. However, it is important to note that the use of feedback in
the control and diagnostic algorithms in this framework will suppress the
model uncertainties arising from inaccuracies to a reasonable extent. Specif-
ically, the robustness properties of the sliding mode observer used in fault
detection and estimation (discussed later in Section 3.1) will help address the
uncertainties.

Remark 1. It is worth noting that the parameters Ry, Ry, and C] are typi-
cally affected by the operating conditions such as SOC, I, and T'. However,
characterization of such dependence typically requires cumbersome experi-
mental efforts. Furthermore, explicitly incorporating such dependence within
the model results in highly nonlinear model structure which in turn leads to
two difficulties: (i) higher computation burden, and (ii) complex mathemat-
ical structure limiting the applicability of standard analysis and synthesis
techniques. In order to avoid these difficulties, we have chosen to use con-
stant values for these parameters — leading to simpler computation as well
as use of standard analysis and design techniques. Furthermore, the model
inaccuracies resulting from this choice of constant parameters are suppressed
by the use of feedback in the control and diagnostic algorithms.

2.2. Battery Aging Model

Battery capacity and power fade affect the parameters () and (R), re-
spectively. Essentially, both # and R increases as the battery ages over time.
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Figure 1: Battery electrical equivalent circuit.
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Figure 2: Entropy coefficient as a function of SOC [57].

Typically, such increase depends on battery SOC, average temperature T,
current I, and depth of discharge (DOD). We consider the following aging
models that capture the changes in ¢ and R:

0 = Kg10 + KpSOC + KT + Kool + Kgs DOD, (5)
R=KmnR+ KpSOC + KpsT + Kpyl + Kps DOD, (6)

where DOD represents depth of discharge of the battery, Ky; and Kg; with
t = 1,..,5 are the coefficients of the aging model. The battery aging equa-
tions in (5) and (6) are an empirically fitted linear version of the degradation
model developed by the National Renewable Energy Laboratory (NREL)
(58, 59]. NREL’s battery prognostic framework [58] has clearly established
the dependency of battery degradation (capacity degradation and resistance
growth) on important stress factors such as SOC, T, I, and DOD. How-
ever, these models are highly nonlinear in nature in order to capture chang-
ing dependencies throughout the life of the battery. To incorporate battery
degradation into the fault tolerant control law, we considered a linear struc-
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ture of the form & = ax + Su for the battery life model. The coefficients of
this model are identified through a linear least square regression (see Section
4.1), where the NREL developed, experimentally validated nonlinear battery
degradation model [59] is used to generate “true” degradation and the linear
model presented in (5) and (6) is used to obtain “predicted” value.

Charging Control System

1

Control Mode 1 ,Control

[Active under |— I Inputs .
No Fault Condition] \< 't 1 Battery ired
Decision SN\ o | Outputs
1
Maker_| Control Mode 2 v : Cooling System VT

[Active under — 1

Faulty Condition] | === === === == 7 =

V. SOCR,8 :I
State Estimator

Figure 3: Charging control system schematic for safe and health-adaptive optimal fast
charging. State estimator and fault detector and estimator generate estimates states and
fault, respectively. Depending on the estimated fault, Control mode 1 is activated under
no-fault condition while Control Mode 2 is activated under fault presence. Both control
modes utilize real-time feedback of terminal voltage and temperature to generate control
signals.

J\ T f Fault Detector
j and Estimator

2.3. Battery Fault Model

As mentioned before, fast charging would result in high level of thermal
and mechanical stresses which may lead to internal faults that result in ther-
mal runaway. In this work, we model such internal faults as abnormal heat
generation in the battery. Hence, under such faults, battery thermal model
can be re-written as:

dT(t)

mC,, g

= —hA(T(t) — Tw(1))
+1()(OCV(SOC) = Vi(t) = T(t)u) + f(t), (7)

where f represents the abnormal heat generation fault.

Remark 2. The term f represents the effect of physical faults that might
lead to abnormal internal heat generation in the battery. Probable sources of
such faults are [60, 36]: i) internal short circuit, ii) overcharging, iii) external
mechanical or thermal abuse such as vibration and puncture.
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Assumption 1. The functions OCV/(.) and u(.), and the parameters Ry,
Ci, h, A, m, C,, Kg; and Kg; with ¢« = 1,..,5 are known a priori. These
parameters can be found via offline data-driven identification techniques or
online joint estimation algorithms. The temperature T" and terminal voltage
V; are measured in real time. Finally, the value of DOD is known from the
battery usage history.

3. Control System for Optimal Fast Charging

The schematic of the optimal fast charging algorithm is shown in Fig. 3.
The charging control system consists of several subsystems whose functions
are described as follows:

State Estimator: This subsystem estimates the internal battery states
SOC, V., R,0 online. As per our model formulation, the state SOC
represents the amount of charge left in the battery, and the states R
and 6 represent battery SOH.

Fault Detector and Estimator: This subsystem detects the occurrence
of the fault f as well as estimates the magnitude or intensity of the
fault online.

Control Mode 1: This subsystem is active when there is no fault de-
tected in the battery. It receives the feedback of measured terminal
voltage (V;) and temperature (T") and estimate of the states SOC, V., R,
and 6, and in turn computes the charging current and cooling temper-
ature based on a control law to be discussed later. The goal of this
control mode is to ensure minimum time charging with consideration
of battery health.

Control Mode 2: This subsystem is active when there is a fault f in the
battery. It also receives the feedback of measured V; and T, estimates of
the states SOC, V., R, and 0, and the estimate of the fault f. However,
as opposed to minimum time charging, the goal of this control mode is
to compute current and cooling temperature that minimizes the effect
of fault f. Essentially, this mode is only active under safety emergency
situations.

Decision Maker: This subsystem decides which control mode to acti-
vate (Control Mode 1 or 2) based on the estimated fault feedback f. It
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activates Control Mode 1 when no f is detected and activates Control
Mode 2 when f is detected.

In the following, we will discuss the detail designs of the aforementioned
subsystems.

Remark 3. Since battery state estimation has been widely explored in liter-
ature, we do not focus on that aspect of this work. We assume internal state
estimates are available via some existing estimation techniques proposed in
the literature (see, for example [61]). Note that aging processes evolve very
slowly in time compared to charging dynamics. This phenomenon makes the
battery system that exhibits multi time-scale behavior. There are a few works
that explored multi time-scale aspects of battery charge and health-related pa-
rameters, such as [62, 63, 64]. Interested readers are suggested to refer to
these works for details.

3.1. Fault Detector and Estimator

We follow a sliding mode observer based approach for designing the fault
detector and estimator [65]. We chose the following observer structure.

mC,T = —hA(T — Too) + I(OCV(SOC) — Vi — T)
+ Lysgn(T = 1T), (8)

rf = —f + Lysgn(T — 1), (9)

where f is the estimate of the fault f, sgn(.) is the sign function, Ly is
the observer gain to be designed and 7 > 0 is an user-defined parameter.
Detailed design of the gain along with theoretical convergence analysis is
shown in Appendix A. The filter given in (9) is implemented along with the
detection observer (8), and used to estimate the fault magnitude online. The
filter is essentially a first order low-pass filter that extracts the average value
from the switching feedback signal Lysgn(T — T) Because of the properties
of sliding mode, the average behavior of this switching feedback signal equal
to the fault magnitude (see mathematical analysis in Appendix A). Hence,
tracking this switching feedback signal allows us to reconstruct the fault
online.

The fault detection logic is: a fault is detected when f > fip,, otherwise no
fault. In an ideal scenario with no modeling or measurement uncertainties,
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the estimate f = 0 when there is no fault and f # 0 under a fault. However,
due to the presence of modeling and/or measurement uncertainties, f # 0
even when there is no fault. Hence, the threshold parameter f;;, takes this
into account and provides robustness to such uncertainties. The threshold
fin can be designed using the tuning according to the data collected under
non-faulty conditions from Monte-Carlo simulations or experimental studies.

3.2. Decision Maker )
The decision making logic is: activate Control Mode 1 when f < f,, and
activate Control Mode 2 when f > fu.

3.3. Control Mode 1 - Fast Charging Mode

The objective of Control Mode 1 is to charge the battery within minimum
time while considering the battery age. First, from (1)-(6), we formulate the
battery state-space model by defining 1 = SOC — SOC,., xo = V,, x3 =6
and x4 = R where SOC, is the constant target SOC to be reached after
charging. The state-space model takes the following form:

&= Ax + G(z)u + Dd, (10)
with
[0 0 0 0
oo 0o
A= Kpo 0 Ko 0 | (11)

Kpo 0 0 Kg

—x3 0 0 0
1
= 0 0 0
Gz)= | & | D= , 12
@) =15, K Ko Ko (12)
KR4 KR2 KR3 KR5

where x = [, To, 73, 24]7 is the state vector, u = I is the control input, d =
[SOC,., T, DOD]" is a known disturbance vector. Next, based on the state-
space model (10), we pose the following optimization problem for minimum-
time charging:

minimize J = Ofll'%(tf) + OzziBg(tf) + 04333?;@]”)

w,tf
tr ty
+a4/ 1dt+045/ u?dt,
0 0
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0) where ¢ is the free final time (that is, total charge time) and
,2,...,5 are the optimization weights to be selected by the user.

subject to (1
a; >0,1=1
Remark 4. The first term in (13) represents the error between actual SOC
and target SOC, at final time ¢;. The second and third terms asz3(¢;) and
a3x3(ts) represents the value of inverse capacity 6 and internal resistance R
at final time ¢t = ty. Minimizing these two terms at final time essentially
minimizes the power fade (i.e. increase in resistance) and capacity fade (i.e.
decrease in capacity or equivalently, increase in ¢). The fourth term min-
imizes the final time ¢y = fotf 1dt enabling fast charging. Finally, the fifth
term represents a soft constraint on the total current during charging.

The objective function (13) can be written is the following compact form:
— ty
J = 2" (ty)Sx(ty) + / (o + 2" Qrz + azu®)dt, (14)
0

where the weight matrices S and Q; are functions of the parameters oy, as, g
and ay. For further simplification, we re-write the model (10) as

&= Az + Bu + Dd, (15)

where B; = Glg—g,, 0; € [0, 6] with 6 is the minimum possible capacity and 6
is the maximum possible capacity. Note that G; is a constant vector evalu-
ated at a given 6;. This simplification leads to a linear system with known
disturbances (15). To this end, the optimal control problem in hand is the fol-
lowing: Find the optimal control profile u* during the time interval t € [0, 1]
that drives the system with known disturbances (15) along a state trajectory
x* such that the value of the cost function (14) is minimized, where the final
time t; and final state x(ty) are free parameters.

Following the calculus of variations, Lagrange multiplier approach and
sweep method presented in [66], the solution to the aforementioned optimal
control problem takes the following form:

—S=8A+4 ATS — SB;a;'BY'S + Q1,S(t;) = S, (16)
—M = A"M — SB;a;'B'M — SDd, M(tf) = 0, (17)
u=—Kz+ Ky, K, =a;'Bl'S Ky =a;'B M. (18)
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The optimal control u is essentially an affine state feedback control with gains
K, and K5. Note that the gains K; and K5 depend on the trajectories S and
M which in turn depend on B; (equivalently on 6;) and d (equivalently on
DOD,T,SOC,). Next, we compute the gains K; and K, offline by solving
(16) and (17) for given ranges of 6; € [0, 0], DOD € [DOD, DOD], SOC, €
[SOC,,SOC,] where DOD, T, SOC, are the maximum values of the range
and DOD,T,SOC, . are the minimum values of the range. Essentially, we
compute the optimal control gains K; and K, for each possible values of
0, DOD,SOC,, T. Next, these gains can be scheduled as a function of
0, DOD,SOC,,T in real-time. Finally, the optimal control can be imple-
mented in real-time as u = —K1(0, DOD, SOC,., T)x+Ky(0, DOD, SOC,.,T)
where 7 is the estimated state from the State Estimator and K;(.) and Ky(.)
are the gains scheduled as functions of 8, DOD, SOC,.,T.

3.4. Control Mode 2 - Fault-tolerant Mode

This control mode is active under the presence of a fault. The control ob-
jective is to mitigate the fault effect by minimizing the temperature rise. Note
that safety is the primary concern in this mode, instead of fast charging. To
achieve this objective, we take two measures. First, we treat cooling temper-
ature Ty, as a control input and design a control algorithm that manipulates
T, to minimize the temperature rise. Secondly, we utilize a discharging bat-
tery current [ to further reduce the heat generation. This discharging battery
current is chosen to achieve one of the two following objectives: (i) If the fault
size is large, we discharge the battery to SOC' = 0 condition. This is achieved
to make sure that the battery is in lowest possible energy state under fault
such that it emits lowest possible energy even if it explodes. (ii) If the fault
size is small, we discharge the battery with small current to ensure that it
stays in the SOC region where the entropic coefficient u(SOC) is positive.
This will ensure that we get additional cooling effect from the entropic term.
Algorithm 1 explains this thermal fault-tolerant scheme where fy, is the fault
threshold that indicates a fault occurrence, f;, is the fault threshold that
distinguishes a large versus small fault, Ky, and Ky, are control gains, Iy and
I;, are high and low discharge current under fault. The value Iy is manually
tuned to balance the heat generation effect due to current and time taken
to reach SOC = 0 state. The value I} is tuned manually to balance the
effect of heat due to current and the value of SOC is tuned to utilize the
effect of cooling due to entropic term. The value f;,, is determined by the
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user considering the prior knowledge of cell thermal failure modes. Detailed
design of the control gains are discussed in Appendix B.

Algorithm 1: Thermal Fault-tolerant Control Algorithm.

Input: Measured Temperature 7', Estimated fault f .
Output: Cooling Temperature T, Current I.
1 Read f;
2 if f < fi then
‘ DO NOTHING & GO TO Step 1;
else
L GO TO Step 3;

3 if f > fiim then
| Set Too = KT+ Ky, f and I = Ipy;
else
if 0 < SOC < S0C then
‘ set T, = KflT—I—Kfo and [ = 0;
else
t set T, = KflT—I—Kfo and [ = Iy;

4. Results and Discussion

In this section we present the simulation studies of the proposed opti-
mal charging control and fault-tolerant control algorithms to evaluate the
performance of proposed schemes.

4.1. Battery Model and Parameterization

In these simulation studies the battery nominal parameters are taken from
Table 1 of [67] which were originally studied and experimentally parameter-
ized in [68]. The values are considered as follows: @ = 3921C', R;C} = 2631s,
C7 = 17327F. Moreover, the thermal model parameters are taken from Ta-
ble 5 of [69] and are as follows: C, = 1011JKg 'K, h =21.04Wm 2K !,
m = 0.039kg. For the battery life model, we use a semi-empirical degradation
model developed by the National Renewable Energy Laboratory (NREL) as
part of a battery life prognostics framework [58, 59]. In this framework,
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Figure 4: Discharge current profile in all simulation studies.

simple proxy models are used to capture the degradation trends in capac-
ity and resistance based on several stress factors such as temperature, SOC,
DOD, C-rate etc. The model itself is chemistry-specific as for each specific
cell, there is need to test and re-parameterize the model to fit to each cell
design’s unique aging because aging rates (li-plating rate, SEI growth rate,
etc) are sensitive to cell design and manufacturing quality (electrode mate-
rial, binder, electrolyte, additives, coating procedures, wetting and drying
procedures, etc.). Parameters for these models are identified using separate
effects, accelerated aging test data [70]. We use a degradation model devel-
oped for LFP chemistry [71] as our “true” model and use linear least squares
regression to identify the parameters Ky; and Kg; with ¢ = 1,--- |5 in (5)
and (6).

4.2. Results of optimal charging control

In this subsection, we demonstrate the performance of the proposed op-
timal charging control algorithm. We compare the performance of the pro-
posed algorithm with the most common charging protocol, Constant-Current
Constant-Voltage (CCCV). We charge the cell under different C-rates and
compare the health degradation of the cell under each charging current pro-
file. For the discharge part of the simulation, we have chosen the dynamic
discharge current profile shown in Fig. 4. The applied optimal charging cur-
rent profile during one year is illustrated in Fig. 5. The optimal charging
profile is updated each month according to the health status of the cell given
by (5) and (6). In order to investigate the performance of the optimal
charging algorithm under model parameter uncertainties, we have injected
uncertainties in the following parameters: (i) in R;C}, which affects the A
matrix in (15), and (ii) in @ which affects B; in (15). The variations of control
current trajectories are shown in Fig. 6. As it can be seen in in Fig. 6a, the
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optimal charging profile is significantly robust with respect to uncertainties
in R1C7. On the other hand, the impact of uncertainties in B; on control
gains is relatively more and the changes in optimal charging profile can be
seen in Fig. 6b.
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Figure 5: (a) Optimal charging current profile during one year; (b) SOC evolution under
optimal current profile.
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Figure 6: Optimal charging current profile in month six under parameter uncertainty.

In the optimal charging simulation, we consider the SOC, = 0.98 and
SOC, = 0.6. We consider three different CCCV charging profiles as 0.5C,
1C, 2C, in which C stands for C-rate. We compare the battery’s performance
under these three CCCV charging current profiles with the proposed optimal

18



charging current profile. The performance of the proposed optimal charging
algorithm is evaluated in terms of charging time as well as capacity fade and
resistance rise which are treated as the health indicators. As it is shown in
the Fig. 7b, the capacity fade under the proposed optimal charging profile
is less than the constant current case studies.
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Figure 7: (a) Charge time comparison between different charging algorithms during one
year; (b) Capacity fade during one year under different current profiles; (c) Resistance rise
during one year under different current profiles.

In the case of optimal charging we obtain 17.73% capacity fade. How-
ever, in the cases that the cell was charged under constant current profile, we
have 19.46%, 19.73%, and 21.16% capacity fade for 0.5C, 1C, and 2C' cur-
rent profiles, respectively. Moreover, the impedance rise under the optimal
charging current profile is less than that under constant current charging pro-
files. There is 4.3% rise in the impedance under the optimal charging profile.
However, there are 4.8%, 4.9%, and 5.6% impedance rise under 0.5C, 1C,
and 2C' current profiles, respectively. The charging time among all current
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profiles are compared in Fig. 7a. We have compared the charging time un-
der each current profile in the specific range of SOCs . The lower and upper
SOC range for calculating and comparing the charging time are selected as
SOC = 0.65 and SOC = 0.9, respectively. As it can be seen the charging
time of the optimal current profile is close to the 2C (fast charging) profile
at the beginning of the life and as the cell ages, the charging time lies be-
tween the charging time under 1C' and 2C' current profiles. However, the
capacity fade and impedance rise in the optimal charging algorithm is con-
siderably less than the constant fast charging current profile which enables
more available peak power and longer driving range for the electric vehicle
in long term. This is because of the proposed charging algorithm takes the
time of charge as well as health of cell into consideration. As it can be seen
from Fig. 7a to Fig. 7c, we have an optimal charging protocol which leads
to less capacity fade and resistance rise which are the main concerns in fast
charging algorithms. It should be mentioned that in these case studies we
are representing the accelerated aging and the aggravated results by contin-
ued charge and discharge of cell, caused 20% capacity fade within one year.
However, in reality the EV’s customer using mainly the home charging, or
the EV is parked in the parking lot most of the day, and they utilize the fast
charging less often than it is simulated in this paper. Such charging routine
makes the life-time of battery pack longer and slow the degradation behavior.
In reality, the expected lifetime for EV’s battery pack is 8 to 10 years.

4.8. Results of fault-tolerant Control

In this subsection, we present the simulation studies of the proposed
fault-tolerant control algorithm. In these simulation studies we consider the
B3 =05, B =1, Ig = 1C and I;, = 0.5C, where C' is the C-rate. Moreover,
we consider the fault thresholds as follows: f;, = 2 Watt and f;,,, = 4 Watt.
The performance of the fault detector and estimator under no fault and
faulty condition is demonstrated in Fig. 8. Here, the estimated states and
faults are initialized with different conditions compared to the true values.
Starting from these incorrect initial conditions, both state and fault estimates
converge to the true values thereby proving the effectiveness of the algorithm.
We perform the following case studies to evaluate the performance of the
Algorithm 1 under different conditions:

e Case I: The fault magnitude is f = 5 Watt which is greater than fi;,,.
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Figure 8: Fault detector and estimator performance. (a) Estimated temperature under
no-fault; (b) Estimated fault under no-fault; (c) Estimated temperature under small fault;
(d) Estimated fault.

e Case II: The fault magnitude is f =3 Watt, that is, fin < f < fiim:
and the SOC range is 0.4 < SOC < 1.

The result of case studies are illustrated in Fig. 9 and Fig. 10. In Case
I, we inject a large fault at ¢ = 10 min to evaluate the performance of the
fault-tolerant control scheme. The fault estimation is shown in Fig. 9a. In
Fig. 9b and Fig. 9e, the controlled current and and the controlled cooling
temperature 7T,, are shown. As it is shown, the fault-tolerant control algo-
rithm is enabled at the time when the large fault is detected. Subsequently,
the battery is being fully discharged by applying the Iy current to fully dis-
charge the cell and avoid hazardous situation. In Fig. 9d, The performance
of the fault-tolerant control algorithm is compared with the uncontrolled sce-
nario when no control algorithm enables in case of fault occurrence. As it is
demonstrated, the cell temperature remains in safe zone (below 50°C') un-
der proposed fault-tolerant algorithm. The unsafe zone is depicted with red
color.

In Case II, we inject the small fault, f = 3 watt at ¢ = 10 min. In this
scenario, the fault tolerant control algorithm is acting according to the SOC
range. In this simulation study, we considered the SOC = 0.4 according
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Figure 9: Case I results (a) The estimated fault; (b) Current profile; (c) Cell State of
Charge; (d) Cell temperature; (e) Cooling temperature

to the entropy coefficient in Fig. 2. As it can be seen in the Fig. 10c, at
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the time of fault injection, the SOC range is higher than 0.4 and the fault-
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Figure 11: Controlled temperature with and without the effect of entropy.

tolerant control algorithm is enabled and applied the I}, to discharge the cell.
By discharging the cell we utilize the effect of cooling due to the entropy
term and consequently we observe less rise in temperature of cell.

The effect of entropic term can be seen in Fig. 11. To demonstrate
the effect of entropic term, we consider three different scenarios after the
fault is detected, as follows: (i) No change in current, that we only enable
the controlled T, after the fault is detected and we keep charging the cell
with the current as it was; (ii) Change the current to zero, that as the
fault is detected, we change the current to zero as well as enabling the T,
controller; (iii) Discharge the cell with [, that as the fault is detected we
start discharging the cell with I, as well as enabling the controlled T,,. The
result of each scenario is shown in Fig. 11. As it was expected, discharging
the cell with I}, and utilizing the entropy effect help reducing the temperature
in compare to the other two scenarios.

5. Conclusion

In this paper, we proposed a safe and health-adaptive optimal charging
algorithm that considered battery electrical-thermal dynamics along with an
explicit battery aging model that captured capacity fade and power fade.
The proposed algorithm utilized a closed-loop feedback based approach that
enabled real-time charging protocol adaptation to battery health, and most
importantly posses active diagnostic capabilities in the sense that it detected
real-time faults during charging and took corrective action to mitigate such
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fault effects. The performance of proposed charging algorithm were eval-
uated and compared with the most common CCCV charging algorithm in
terms of capacity fade, resistance rise, and charging time, showing improve-
ments in less capacity fade and resistance rise with equivalently 1C to 2C
charging speed. Moreover, we evaluated the performance of the proposed
fault-tolerant control algorithm under different fault scenarios. As future
extension of this work, we plan to compare the proposed algorithm other
advance control methods like model predictive control to understand the de-
tailed pros and cons of our approach. Furthermore, we also plan to run a
detailed experimental campaign to verify the effectiveness of the proposed
algorithm.
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Appendix A. Theoretical Convergence Analysis of Fault Detector
and Estimator

Here, we show the design of Ly by analyzing the error dynamics of the
fault observer (8). Subtracting (8) from (7), and defining 7' =T — T as the
state estimation error, we can write the error dynamics as:

mC,T = —hAT + f — Lysgn(T), (A.1)
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We choose the Lyapunov function candidate Wr = (1/ 2)mC,T? whose time
derivative can be written as: Wr < |T|{|f| — Lr}. With the choice of a
sufficiently high gain such that Lz > |f], V¢, we have Wz < 0 which in turn

leads to the sliding motion defined by 7,7 — 0 [65]. Hence, under sliding
motion, the error dynamics (A.1) can be written as f = ¢ where ¢ is a average
value of the switching signal Lysgn(T). For real-time implementation, the
signal ¢ can be extracted by passing Lysgn(T) through a low-pass Lysgn(T)
filter with unity steady-state gain. The equation (9) essentially represents
such low-pass filter whose cut-off frequency depends on 7. The parameter 7

can be tuned to meet the desired frequency response of the low-pass filter.

Appendix B. Theoretical Design of Control Mode 2

Here, we focus only on the thermal dynamics (7) and design the control
gains Ky and Kjy,. Defining the state X = T and control input U = T,
and considering I = {Ig, I}, (7) can be written as:

X =AX +g(X,I)+bU +¢f, (B.1)

where A = —(hA)/(mC,), b = (hA)/(mC,), ¢ = 1/(mC,), g(X,I) =
I(OCV(SOC) — V; — Xu(SOC)), and f represents the fault. Linearizing
(B.1) using Taylor’s series expansion, we get the following linear approxima-
tion

X =aX +bU + cf +dy, (B.2)
where X is the linearized temperature state, U is linearized cooling input,
do, and f contains the heating effect due to current and fault, and the system
parameters {a, b, c} are gain scheduled as functions of I and SOC'. Based on

(B.2), we pose the following optimization problem:

t
minUi’glize J =3 X(tp) + %/0 f(ﬁgXQ + BsU?)dt, (B.3)
subject to (B.2) where ¢; is the free final time and 8; > 0,7 = 1,2,3 are
the optimization weights to be selected by the user. In (B.3), the first term
minimizes the final temperature, the first term inside the integral minimizes
the temperature deviation within the whole time period, and the second term
inside the integral provides a soft constraint on the cooling temperature 7T,..
The problem structure is similar to (13) and can be posed as: Find the
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optimal control profile U* during the time interval t € [0,tf] that drives the
linear system with known disturbances (B.2) along a state trajectory X* such
that the value of the cost function (B.3) is minimized, where the final time
tr and final state X (ty) are free parameters. Following similar approach [66],
the solution to the optimal control problem takes the following form:

_ 272
S 9Sat py- 0 (B.4)
Bs
. Sv?
3
bS b
U=—2X 1+ M,S(t;) = b, M(t;) = 0. (B.6)
Bs Bs

For further simplification of (B.4) and (B.5), we consider the steady-state
behavior S, and M, under the assumption S,M — 0, < ;. Consequently,
solving (B.4) and (B.5), with S, M = 0, results in:

Ba
Bs

afs

Seo = [1— 1+ —|, My

(Cf+d2), (B?)

2 G Bs + B2

_ B3 [1_ Bs

Hence, comparing (B.7), (B.6), and Algorithm 1, the control gains are:

___a_ _ @

Kp =~ _1 ,/1+ﬂ3 : (B.8)
___1_ — . Ps

Ky, = 7 _1 5t (cf + da), (B.9)
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