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Significance

Earthquakes involve complex, 
nonlinear frictional instabilities 
and dynamical processes that 
undermine deterministic 
predictability. Nonetheless, plate 
boundary strain energy budgets, 
driven by long-term relative plate 
motions, provide a degree of 
cyclicity in occurrence of very 
large earthquake ruptures on 
subduction zone plate boundary 
(megathrust) faults. For the 
largest earthquakes, a basic cycle 
of interseismic fault locking and 
strain accumulation, abrupt 
coseismic fault sliding and strain 
energy release, and postseismic 
stress adjustment occurs, 
basically compatible with the 
elastic-rebound theory of 
faulting. Heterogeneous slip and 
triggering interactions give rise to 
irregularity in this seismic cycle, 
but by quantitatively 
characterizing the slip in very 
large earthquakes in regions that 
have previously ruptured in large 
historic earthquakes, improved 
understanding of future 
earthquake hazards is possible.
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So far in this century, six very large–magnitude earthquakes (MW ≥ 7.8) have ruptured 
separate portions of the subduction zone plate boundary of western South America 
along Ecuador, Peru, and Chile. Each source region had last experienced a very large 
earthquake from 74 to 261 y earlier. This history led to their designation in advance 
as seismic gaps with potential to host future large earthquakes. Deployments of geo-
detic and seismic monitoring instruments in several of the seismic gaps enhanced 
resolution of the subsequent faulting processes, revealing preevent patterns of geodetic 
slip deficit accumulation and heterogeneous coseismic slip on the megathrust fault. 
Localized regions of large slip, or asperities, appear to have influenced variability in 
how each source region ruptured relative to prior events, as repeated ruptures have 
had similar, but not identical slip distributions. We consider updated perspectives of 
seismic gaps, asperities, and geodetic locking to assess current very large earthquake 
hazard along the South American subduction zone, noting regions of particular con-
cern in northern Ecuador and Colombia (1958/1906 rupture zone), southeastern 
Peru (southeasternmost 1868 rupture zone), north Chile (1877 rupture zone), and 
north-central Chile (1922 rupture zone) that have large geodetic slip deficit meas-
urements and long intervals (from 64 to 154 y) since prior large events have struck 
those regions. Expanded geophysical measurements onshore and offshore in these 
seismic gaps may provide critical information about the strain cycle and fault stress 
buildup late in the seismic cycle in advance of the future great earthquakes that will 
eventually strike each region.

asperities | seismic gaps | slip deficit | South American large earthquakes | seismic hazards

Earth’s largest earthquakes occur on subduction zone plate boundary faults, or meg-
athrusts, where stick-slip sliding accommodates convergent relative plate motions. 
Long-term relative plate motions result in episodic stress buildup and elastic strain 
accumulation on either side of frictionally locked portions of the megathrusts followed 
by abrupt fault sliding offsets and surrounding strain energy release in large earth-
quakes as the system strives to keep up with the long-term relative plate motions. The 
underlying conceptual framework dates back to the elastic-rebound theory that 
emerged from the 1910 work of Reid (1) following the 1906 San Francisco earthquake 
and the recognition of large-scale plate tectonics in the 1960s. Uncertainties in stress 
drop relative to absolute stress levels, variability in failure stress level, fluctuations in 
fluid pressure distributions, nonlinear frictional instabilities, complexity of megathrust 
physical properties, and adjacent earthquake stress interactions (2) result in space and 
time irregularities of very large megathrust earthquake occurrence. Nonetheless, as 
earthquake observations continue to accumulate, there has been substantial progress 
in understanding megathrust earthquake hazard in the context of the tectonic strain 
energy budget for the system; the so-called Reid renewal interval of strain reaccumu-
lation that must occur before another very large earthquake ruptures a given portion 
of the plate boundary.

The focus here is on the subduction zone extending ~6,500 km along the western coast 
of South America, where the Nazca plate is underthrusting the South American plate. 
The occurrence of 6 very large megathrust earthquakes (MW > 7.8) along this plate bound-
ary during the last 21 y (Fig. 1) has reinforced several fundamental observations that were 
made about great earthquake occurrence more than 50 y ago:

• �The rupture zones of major earthquakes along geometrically simple megathrusts 
tend to abut without significant overlap.

• �Very large earthquakes (MW ≥ 7.8) have a tendency to occur along portions of 
the megathrust where comparable size earthquakes have not occurred for many 
decades or even several centuries (3, 4). These regions are called seismic gaps.
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The first point is readily evident in the nearly continuous dis-
tribution of the most recent large earthquake rupture zones along 
the entire boundary depicted in Fig. 1. The large events since 2000 
are shown with coseismic slip contours that emphasize the non-
uniform slip along dip and along strike of the subduction zone. 
Most of the Nazca–South America plate boundary has produced 
repeated large earthquakes along the full distribution of ruptures 
shown in Fig. 1. The second point above is demonstrated by con-
sidering the estimated along-strike extent of large historic earth-
quakes (MW ≥ ~7.5) along the South American subduction zone 
shown in Fig. 2. It is important to note that there are examples 
where recent very large earthquakes have ruptured smaller areas 
than in prior events (this is notable for the 2016 Ecuador earth-
quake (Fig. 2A), which reruptured the 1942 zone but only rup-
tured the southern portion of the 1906 zone, and the 2001 
southern Peru event (Fig. 2B), which ruptured about 2/3 of the 
length of the 1868 event, as well as examples where earthquakes 
have ruptured areas larger than in prior events (the 2010 Maule, 
Chile, earthquake (Fig. 2C) ruptured the 1928 zone plus most of 
the 1835 zone). One has to be cautious about inferring overlap 
of two-dimensional ruptures, as for the case of the 2007 northern 

Chile rupture, located on the down-dip portion of the megathrust, 
which may not overlap shallow rupture in the 1877 event (5). 
Nonetheless, it is clear that absolute segmentation does not exist, 
and ruptures can comprise multiple adjacent portions of the 
boundary or not, an aspect that was not well recognized in the 
early seismic gap discussions.

About 43 y ago, an additional key concept involving slip het-
erogeneity in megathrust earthquakes developed from observa-
tions of variations in maximum earthquake size and complexity 
of seismic waves radiated from very large earthquakes in different 
subduction zones. Regions on the fault with large coseismic slip 
and associated large volumetric strain release are identified as 
“asperities,” borrowing a contact mechanics term for the point 
contacts of microscale surface interactions (10–12). Patchy distri-
butions of large-slip regions during large earthquakes have been 
affirmed by increasingly well-resolved finite-fault slip models, but 
whether the underlying cause is material property variations (sed-
iments/rock contacts), boundary roughness (seamounts/horst and 
graben structures), or hydrologic variations (pore fluids), or some 
combination of these factors, and their persistence over multiple 
events is still an active area of research. A somewhat complemen-
tary perspective of earthquake ruptures being controlled by por-
tions of the fault that delimit sliding, or “barriers,” was also 
advanced about this time (13). The connection between asperities, 
barriers, and gaps is intrinsically complex as heterogeneity of stress 
and strain accumulation and variable frictional properties com-
plicate the notion of a fault “sticking,” which is intrinsic to the 
elastic-rebound theory (14). While some faults may actually lock 
up uniformly over their entire seismogenic surface and rupture 
accordingly, others may have patchy locking and irregular failure 
with mixed seismic and aseismic modes of boundary sliding, lead-
ing to distributions of event size on the same megathrust, partial 
rupture within a seismic gap, and variability in great earthquake 
size in a given region.

While the early conceptual models of seismic gaps and asperities 
have guided many analyses of large earthquakes over the past 
decades, major advances over the past 30 y in understanding the 
complexity of frictional behavior, development of geodetic meth-
ods for directly detecting interseismic strain accumulation in the 
upper plate of subduction zones, and joint seismic–geodetic–tsu-
nami analyses of finite-fault slip distributions have provided a 
more physical context for understanding heterogeneity of slip on 
faults. The inferred “patchiness” of megathrust geodetic locking 
and large event slip irregularity give a better understanding of why 
large event ruptures tend not to overlap with recent events and 
why some events can rupture regions that at other times fail in 
several discrete events. Stress shadowing along dip and along strike 
can result in slip deficit before and after large events in regions 
that are not mechanically coupled (15).

We draw on the updated perspectives of seismic gaps, persistent 
asperities, and geodetic locking to evaluate the current state of 
seismic hazard for very large earthquakes along the Nazca–South 
American megathrust. Our focus is on very large event hazards 
(MW ≥ 7.8). These very large events release the majority of accu-
mulated tectonic strain over large enough portions of the plate 
boundary (~120 km × 40 km) for Reid renewal models to be 
applicable. Smaller ruptures can have adjacent rupture patches 
that may not involve rerupture of a common megathrust region 
making them more ambiguous to interpret. The identification of 
seismic gaps for very large events along the South American sub-
duction zone in the 1970s (16) helped to focus earthquake research 
and monitoring activities during the following decades. While 
efforts to assess the relative probability of major ruptures in iden-
tified seismic gaps became controversial (17–23), being 
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Fig. 1. The most recent large earthquake rupture zones (MW ≥ 7.5) along 
each region of the west coast of South America where the Nazca plate is 
underthrusting the continent. Black dashed regions indicate aftershock zones 
for older events (black labels); red contours indicate slip distribution for large 
events in this century (red labels) from references in the supplement; purple 
contours indicated slip contours (1, 10, and 20 m) for the 1960 Valdivia, Chile, 
event.
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handicapped by consideration of smaller events and the limited 
information about very large historic earthquakes, almost all very 
large megathrust earthquakes during the past 50 y have, in fact, 
been located along subduction zone segments where multiple-dec-
ade intervals of prior strain accumulation had occurred (24). Only 
a handful of recent very large earthquakes have ruptured localized 
areas where a previous comparable or much larger earthquake was 
seismically observed, so quantitative comparisons of successive 
dynamic ruptures remain very limited.

Deployment of geodetic and seismic monitoring instruments in 
many of the early identified seismic gaps throughout the circum-Pa-
cific region has enhanced the resolution of subsequent faulting 
processes, revealing heterogeneous coseismic slip on the megathrust 
fault. New technologies, including global and regional broadband 
seismograph networks, space-based geodesy (GNSS), satellite inter-
ferometry (InSAR), seafloor geodesy (GNSS-a, ocean bottom pres-
sure sensors), seafloor drill hole facilities, and potential field (gravity) 
measurements, have dramatically improved the ability to quantify 
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Fig. 2. Along–plate boundary rupture distributions for historic large earthquakes (M ≥ ~7.5) in (A) Ecuador–Colombia, (B) Peru (6), (C) central to northern Chile 
(7–9), and (D) southern Chile (7, 8). Bolder lines represent Breakthrough Ruptures that likely span the entire width of the plate boundary.
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long-term strain accumulation and relaxation, as well as short-term 
coseismic processes, along plate boundaries.

Results

The following sections consider the fundamental observations 
concerning the abutting of rupture zones and time-dependent 
recurrence behavior along the South American plate boundary in 
the light of recent great earthquakes and the 50 y of subsequent 
research advances since the initial seismic gap and asperity papers 
were published. We discuss the spatial and temporal patterns of 
great earthquake ruptures in the context of updated physical mod-
els of the megathrust and identify segments of the plate boundary 
that appear to have elevated seismic hazard of very large earth-
quakes within the coming decades. Improved understanding of 
very large earthquakes on plate boundaries is emerging from obser-
vations of many global events (24), but key insights can be cap-
tured from consideration of the six recent events along the South 
American subduction zone. Major observations and lessons 
learned from these events are summarized below. Detailed discus-
sion and citations for each event are presented in the Supplement.

2016 Ecuador. The 16 April 2016 MW 7.8 Pedernales, 
Ecuador, earthquake (Figs. 1, 2A, and 3A) ruptured the 
down-dip portion of the Colombia/Ecuador seismogenic 
zone along prior ruptures in 1906 (MW 8.6) and 1942 (MW 
7.8). Large events to the northeast in 1958 and 1979 fill 
in most of the 1906 rupture length, demonstrating that 
great ruptures can intermingle with multiple shorter but 
still very large events (25). The source region had previously 
been accumulating moderate slip deficit based on geodetic 
measurements (26). Comparison of seismic waveforms and 
magnitudes demonstrate that the 2016 and 1942 events have 
similar surface wave magnitudes (MS 7.5), overlapping rupture 
areas, and an overlapping large-slip patch (Fig. 3A) but not 
identical teleseismic waveforms—indicating that 2016 was 
a quasirepeat of 1942 (27). This is further discussed in the 
Supplement. A distribution of slip-weakening patches along 
strike appears to be characteristic of this region.

2007 Pisco, Peru. The 15 August 2007 (MW 8.0) Pisco, Peru, 
earthquake produced substantial shaking damage and a large 
tsunami on the southern Paracas Peninsula (Figs. 1, 2B, and 

Fig. 3. Very large earthquake rupture zone and prior estimates of geodetic plate boundary coupling (darkest reds correspond to 100% slip deficit relative to 
plate motion) for (A) the 2016 Ecuador earthquake and 1906, 1942, 1958, and 1979 ruptures (28); (B) the Southern Peru region with the 2007 Pisco and 2001 
Arequipa earthquakes (29); (C) the 2014 Iquique, Chile, zone, with 1868 Peru to the north and 1877 Chile to the south (9); (D) the 1922 Atacama event region with 
the 1995 Antofagasta earthquake to the north (30); (E) the 2015 Illapel earthquake (9); and (F) the 2010 Maule, Chile, earthquake (9).D
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3B). The event is among a sequence of great earthquakes in 
Central Peru that progressively reruptured the larger 1687 and 
1746 zones (Fig. 2B) in 1940 (MW 8.2), 1942 (MW 8.1), 1966 
(MW 8.1), 1974 (MW 7.6), and 2007 (MW 8.0) (31). Geodetic 
slip deficit had been observed prior to the 2007 rupture (29). 
The seismic, geodetic, and tsunami data for this event reveal that 
the rupture involved two or more large-slip patches straddling 
the peninsula with about a 60-s lag time between the primary 
subevents (32). The discrete triggering of separated large-slip 
patches and adjacent up-dip and along-strike afterslip (33) are 
consistent with the asperity model.

2001 Southern Peru. The 23 June 2001 MW 8.4 Arequipa (or 
Camaná), Peru, earthquake and its magnitude 7.6 aftershock 
on 7 July 2001 to the southeast reruptured the northern two-
thirds of the 1868 seismic gap (Figs. 1, 2B, and 3B). Earthquake 
intensity and tsunami run-up reports indicate that great events 
in 1604 and 1868 were larger than those in the overlapping 
1582, 1784, and 2001 earthquakes (Fig. 2B) (31,34). Based on 
analysis of seismic, geodetic, and tsunami data, the earthquake 
broke two spatially offset asperities: the first in the northwest of 
the rupture zone and the second, centrally located asperity being 
much larger and releasing most of the total seismic moment  
(29, 32, 35). Rupture appears to have extended across the 
megathrust to near the trench.

2014 Iquique, Chile. The 1 April 2014 MW 8.1 Iquique, Chile, 
earthquake and its large MW 7.7 aftershock on 3 April 2014 
to the south ruptured a rather compact area of the northern 
Chile central megathrust from 19.3°S to 20.7°S (Figs. 1, 2C, and 
3C). The rupture was preceded by months of slowly migrating 
foreshock activity located up-dip of the eventual mainshock, 
indicating along-dip variation in frictional properties of the 
megathrust (36, 37). The large-slip zone (~2 to 7 m) for the 
2014 mainshock extends only about 70 km along strike and 
50 km along dip, with finite-slip models being well resolved 
by seismic, geodetic, and tsunami observations (38, 39). The 
concentrated mainshock slip, with adjacent down-dip slow 
deformation and afterslip, is consistent with the asperity model, 
and several prior historical earthquakes have occurred in this 
region of northernmost Chile over the past few centuries (Fig. 
2C), so persistence of localized velocity-weakening properties is 
viable. The event struck in an area of large slip deficit inferred 
from geodesy that extends along northern Chile from 18°S to 
25°S, with a low-coupling zone near 21°S (40). Many estimates 
of the 1877 rupture extent span this region (41, 42), so early 
interpretations viewed the 2014 event as a partial rupture of the 
1877 zone akin to the events along Ecuador–Colombia. However, 
based on detailed reinterpretation of intensity observations for 
1877, the 2014 Iquique event appears to have ruptured within 
the megathrust region south of Arica and north of Iquique that 
lies between large-slip regions of the great 1868 Peru and 1877 
Chile earthquakes (43) (Fig. 3C).

2015 Illapel, Chile. The 16 September 2015 MW 8.3 Illapel, 
Chile, earthquake ruptured ~170 km along the plate boundary 
megathrust in central Chile from 30°S to 31.8°S (Figs. 1 and 3E). 
This event struck in the same region as events in 1943, 1880, and 
1730 (Figs. 2C and 3E) (18, 44). The 2015 Illapel earthquake is of 
particular note because rapid seismic magnitude estimation of the 
event prompted a tsunami warning and evacuation notifications 
within 8 to 11 min of the origin time, resulting in large-scale 
evacuation along the Chile coast (45). Seismic, geodetic, and 
tsunami waveform analyses of the 2015 Illapel earthquake indicate 

concentrations of ~3-m coseismic slip below the coast and a large 
patch with up to ~10-m slip at shallow depths (46–48). Studies 
with the best offshore resolution are consistent with the large-
slip patch having extended up-dip to near the trench. Geodetic 
measurements prior to the event indicate that there was strong 
megathrust coupling in the region of large slip, particularly south 
of 31°S, although resolution of coupling out to the trench is 
very low (49, 50), and afterslip expanded both northward and 
southward from the large-slip zone (51). The prior 1943 MW 7.9 
event has a single pulse of moment release at depths <35 km but 
has a smaller seismic moment estimate and simpler waveforms 
that indicate that it did not rupture the shallow portion of the 
megathrust (50). Local and far-field tsunami heights for the 2015 
event are significantly higher than those in 1943. Overall, the 2015 
event is not a simple repeat of the 1943 event and likely had much 
more slip at shallow depth (45).

2010 Maule, Chile. The 27 February 2010 Maule (MW 8.8) 
earthquake ruptured the plate boundary offshore of central Chile 
between 34°S and 38.5°S (Figs. 1–3F). The coseismic slip of this 
event has been determined by analysis of seismic, geodetic, and 
tsunami observations. Patchy coseismic slip is distributed over a 
region 460 km long and 100 km wide between the depths of 15 
and 40 km. Two large-slip asperity regions are resolved along the 
megathrust: one extending from 34°S to 36°S (with up to 20-m 
slip) and the other from 37°S to 38°S (with up to 10-m slip). 
Joint inversions with accurately modeled tsunami observations 
find that the large-slip patches include slip of 5 to 8 m all the 
way to the trench (52, 53). Geodetic measurements had resolved 
accumulating slip deficit prior to the rupture along the entire 
rupture area, with moderate reduction near 35°S (54), but the 
patchy slip distribution only loosely conforms to the variable 
locking distribution (55). Afterslip extends along the length 
of the rupture primarily down-dip and between the two large 
coseismic slip patches (56). Conventional seismic gap ideas with 
strong segmentation do not characterize this region well, but the 
Reid strain renewal concept in conjunction with a distribution of 
persistent asperities along the megathrust reconciles the historical 
behavior.

Discussion

The quantification of interseismic, coseismic, and postseismic 
deformation for the six very large earthquakes along the South 
American subduction zone in the past 21 y described above pro-
vides insight into updated conceptual/observational seismic gap 
and asperity models. The intuitive concept of strain accumulation 
and release in the Reid renewal cycle continues to underlie validity 
of the seismic gap idea for very large earthquake occurrence, but 
strict segmentation of the plate boundary is not defined by recent 
rupture zones. Early estimates of the lateral extent of large ruptures 
relied heavily on aftershock zones as well as MMI VIII damage 
and tsunami reports. Recent, well-documented earthquakes help 
to calibrate these older descriptions (7). Coseismic slip heteroge-
neity and nonuniform slip deficit accumulation from seismic and 
geodetic inversions continue to be well accounted for by the asper-
ity model, but evaluating persistence of these regions of slip-weak-
ening properties is complicated by repeated very large earthquakes 
having variable slip both along dip and along strike. Representations 
of the asperity model have progressively added complexity to 
reflect along-dip variations and complexity of individual sequences 
(Fig. 4) (24, 57–59), and such models have been invoked in many 
earthquake studies. Along-dip variations are now recognized as 
particularly important, with the megathrust shallower than 15 km D
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(Domain A) potentially having strain accumulation that results 
in tsunami earthquakes or enhances ruptures that initiate deeper. 
Between 15 and 35 km (Domain B), the megathrust has discrete 
slip-weakening patches that are patchy and surrounded by 
slip-strengthening zones; the larger patches fail in very large earth-
quakes and may cascade to produce great earthquakes that span 
longer stretches of the boundary. Domain C extends from 35 to 
50 km and has reduced size asperities and increasing aseismic 
component, but damaging earthquakes can still result as they tend 
to be below the coast. This region also produces stronger short-pe-
riod radiation during very large earthquakes.

Bathymetric features on the subducting plate, notably the Chile 
Rise, Challenger Fracture Zone, Juan Fernandez Ridge, Nazca 
Ridge, Medaña Fracture Zone, and Carnegie Ridge, appear to act 
as persistent barriers to rupture along South America, defining 
major megathrust segments (3, 60). Finer-scale segmentation is 
controlled by asperity distributions on the megathrust, but only a 
few examples (1942/2016 Ecuador and 1943/2015 Illapel) of 
repeated ruptures with seismic recordings are available to evaluate 
the persistence of asperities through the seismic cycle. Megathrust 

ruptures that span the entire width of the plate interface (Domains 
A+B+C), termed “Breakthrough Ruptures” (61), are proposed to 
“reset” the seismic cycle and are distinct from those events confined 
to deeper portions of the interface (Domain B or C only). Along 
the South American plate boundary, one can identify multiple 
Breakthrough Ruptures, including the 1575 and 1960 S. Chile, 
1730 Valparaíso, 1819/1922 Atacama, 1877 N. Chile, 1604/1868 
S. Peru, 1746 Central Peru, and 1906 Colombia–Ecuador events. 
From two to four events have reruptured most of the same regions 
in smaller, nonoverlapping events, giving rise to the space–time 
irregularity evident in Fig. 2 but still allowing regions of significant 
strain accumulation and potential for future events to be 
identified.

If we view seismic gaps in areas with prior very large earth-
quakes and/or current day slip deficit accumulation as regions 
with patchy asperities that must accumulate sufficient stress 
and strain to fail, one can generally infer relative seismic 
hazard based on historical and geodetic observations. 
Essentially, the updated asperity representation shown in Fig. 
4 captures the essence of the asperity, seismic gap, and 
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Fig. 4. An updated representation of the asperity model (24). (A) Schematic cross-section indicating four depth-varying domains of megathrust rupture 
characteristics: A – near-trench domain where tsunami earthquakes or anelastic deformation and stable sliding occur; B – central megathrust domain where 
large slip occurs with minor short-period seismic radiation; C – down-dip domain where moderate slip occurs with significant coherent short-period seismic 
radiation; D – transitional domain, only present in some areas, typically with a young subducting plate, where slow slip events, low-frequency earthquakes, and 
seismic tremor can occur. At yet greater depths, the megathrust slides stably or with episodic slow slip or plastic deformation that does not generate earthquakes. 
(B) Cutaway schematic characterization of the megathrust frictional environment related to Domains A, B, C, and D defined in (A). Regions of unstable frictional 
sliding (asperities) are red regions labeled “seismic.” Regions of aseismic stable or episodic slow sliding are white regions labeled “aseismic.” Orange areas are 
conditional stability regions, which displace aseismically except when accelerated by failure of adjacent seismic patches. Domain A is at shallow depth where low-
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small unstable patches can rupture in seismic tremor when slow slip events occur.D
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frictional heterogeneity perspectives, with the behavior of the 
larger asperities being emphasized here. With the 2016 
Ecuador, 2007 and 2001 Peru, and the 2010 Maule events 
all involving coseismic rupture of at least two large asperities, 
and the 2001 Peru and 2014 Iquique, Chile, events having 
very large aftershocks along strike, the patchy nature of the 
megathrust asperity distribution has been clearly manifested 
in the recent South American events. The relatively uniform 
but modulated geodetic coupling on the megathrust along 
the South America coastline, with patchy ruptures and after-
slip distributions for the recent very large events, provides 
further support for this conceptual model. However, time 
predictability remains elusive given the experience that some 
events involve cascades of several asperities failing together 
to make a great earthquake, some events likely have incom-
plete stress release due to lateral buttressing by adjacent 
regions that do not fail, and shallow megathrust failures may 
or may not accompany deeper megathrust failures. The recent 
events demonstrate this full range of behavior. Anticipating 
the size and timing of future events is thus highly uncertain, 
but as for the recent events, one can generally anticipate where 
large events are likely to occur.

With these perspectives in mind, we identify four regions of 
particular interest for future large earthquake occurrence.

• �Ecuador/Colombia: Esmeraldas (~1°N)
The region just north of the 2016 MW 7.8 Ecuador rupture 

(Figs. 1, 2A, and 3A) last ruptured with a comparable size event 
in 1958 (MW 7.6). Viewing the deeper megathrust region as 
having several large asperities distributed along strike, the 2016 
failure has increased driving stress on the 1958 zone, which 
already has 64 y of possible strain accumulation, exceeding that 
between the 1906 and 1958 events. Aftershock activity for the 
2016 event has concentrated offshore and along the southwest-
ern portion of the 1958 zone. Localized strong geodetic cou-
pling in the 1958 rupture zone adds to the earthquake potential 
in this region.

• �Southeasternmost Peru: Arica (~18 to 19°S)
The 1604 and 1868 MMI VIII isoseismal zones both extend 

farther southeast toward Arica, Chile, than the 2001 rupture 
(Figs. 1, 2B, and 3B), indicating that the southeasternmost por-
tion of the Peru plate boundary has remained unbroken for 154 
y (34, 62). Geodetic slip deficit accumulation in the area is high 
(~63 mm/y) indicating that as much as ~10 m of slip may have 
accumulated in the region since 1868, with potential seismic 
moment equivalent to an MW 8.4 event. It is unclear why the 
2001 event failed to rupture into this region, but there is evidence 
for prior smaller events that ruptured just this region in 1833 and 
1715 (Fig. 2B).

• �Northern Chile: Loa (~21 to 23°S)
The Loa segment between Iquique and Antofagasta corresponds 

to the large-slip region of the great 1877 Arica earthquake based 
on intensity reports (41, 43) and is bounded to the north by the 
2014 MW 8.2 Iquique earthquake and to the south by the 1995 
MW 8.0 Antofagasta rupture (Figs. 1, 2C, and 3C). The Loa seg-
ment exhibits high geodetic coupling along its entire length (Fig. 
3C), and the area between 20° and 21°S has had little to no seismic 
activity during the last century (39). The rate of slip deficit accu-
mulation in the area (~55 mm/y) (63) indicates that as much as 
~8 m of slip has accumulated in the region since 1877, with 
potential seismic moment equivalent to an MW 8.4 event. Rupture 
of the shallow megathrust up-dip of the 2007 rupture zone as part 
of this event is viable.

• �Northern Chile: Vallenar/Atacama (~26 to 29.5°S)
This region last ruptured in the great Mw 8.6 Atacama earthquake 

of 10 November 1922 and is bounded to the north by the 1995 MW 
8.0 Antofagasta rupture and to the south by the 2015 Illapel MW 8.3 
earthquake (Figs. 1, 2C, and 3D). The northern region of the 1922 
rupture zone, from 26°S to 27°S, has experienced relatively frequent 
large ruptures, in 1796 (M ~ 7.5), 1819 (M ~ 8.5), 1859 (M ~ 7.5), 
1918 (M ~ 7 to 7.5), 1922, 1946, and 1983 (MW 7.6), while the 
southern region from 27°S to 29.5°S appears to have ruptured only 
in 1819 and 1922 (7,8,64) (Fig. 2C). The 1922 event likely exhibited 
bilateral rupture (65) and a complex slip distribution involving the 
rupture of three separate asperities, seemingly consistent with eyewit-
ness accounts (44). The prior rupture in 1819 involved a sequence of 
three events on April 3, 4, and 11 (8). The very large earthquake pairs 
in 1796/1819 and 1918/1922 have been suggested to represent the 
primary plate boundary ruptures for the Vallenar/Atacama segment, 
indicating a repeat time for this segment of the Chilean subduction 
zones of on the order of a century. Geodetic surveys provide a clear 
mapping of heterogeneous interseismic coupling along the 1922 rup-
ture zone with high coupling at both shallow (8 to 15 km) and inter-
mediate (15 to 35 km) depths (30, 49, 63) (Fig. 3D). The southern 
boundary of the 1922 rupture, near La Serena (30°S), is coincident 
with the intersection of the Challenger Fracture Zone, and the local 
low geodetic coupling is proposed to act as a persistent barrier between 
great earthquake rupture in the Atacama and south-central Chile 
segments (66). For an estimated slip deficit rate of ~50 mm/y (63), 
~5 m of slip may have accumulated during the last 100 y comparable 
with an MW 8.3 earthquake.

Looking forward, sustained operation or new deployment of 
dense networks of seismic, onshore and offshore geodetic, and 
tsunami sensors is essential to making sufficient observations of 
the deformation process in these four regions that will inevitably 
culminate in future very large earthquakes. Large-scale space–time 
patterns of regional seismicity may help to identify regions 
approaching their limiting strain accumulation (61, 67). Of 
course, large events can also occur in regions where strain accu-
mulation is thought to be modest; the 2016 MW 7.6 earthquake 
in the 1960 rupture zone (Fig. 2D) is one such example. Imprecise 
knowledge of strain release in historical events limits the ability 
to anticipate such behavior. But this does not eliminate the value 
of concentrating observational effort on regions that likely will 
experience future very large events, given the success that this 
strategy has achieved for recent South American earthquakes.

Materials and Methods

Earthquake rupture source dimensions and, for recent events, coseismic slip dis-
tributions for ruptures along the South American subduction zone were extracted 
from the literature. This information is incorporated into Figs. 1 and 2, which 
document the very large earthquake history dating back to 1500. The rupture 
lengths for historic events are largely based on documented ground shaking 
and damage patterns, with information being available for very large events for 
regional and far-field tsunami inundations. The history of events prior to 1900 is 
nonuniform along the coast over the past 500 y as it depends on European settle-
ments and archives. In limited regions, sedimentological observations document 
great events over several millennia. Details of many of the earthquakes extracted 
from geological, seismological, geodetic, and tsunami observations are discussed 
and cited in the supplement, with a focus on six recent large events that have been 
particularly well studied. These observations of the history of large earthquakes 
along the subduction zone are considered in the context of seismic gap and 
seismic asperity conceptual models to understand the variation in earthquake 
ruptures along localized subduction zone segments and to highlight regions with 
large strain accumulation where future great earthquakes are likely to occur and 
where geophysical instrumentation can be deployed to capture the later stages 
of the earthquake cycle culminating in the large events to come.D
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Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix. No new data were generated in this study.
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Ecuador-Colombia 6	

The Ecuador-Colombia plate boundary from 4°N to 3°S (Figure 1) involves oblique underthrusting of the 7	
Nazca plate at ~4.6 cm/yr below the North Andean Sliver, a fragment of the South American plate (1-3). 8	
The broad Carnegie Ridge on the incoming oceanic plate intersects the subduction zone from 0.5°N to 9	
2.0°S (4). Modeling of interseismic geodetic strain around the megathrust requires accounting for the 10	
movement of the sliver relative to stable South America along with any distributed deformation in the 11	
northern Andes. Doing so indicates heterogeneous locking of the plate interface from 3°N to 3°S, with 12	
relatively uniform >40% locking north of 0.5°S and an isolated patch below La Plata Island from 1°S to 13	
1.5°S where a slow-slip event occurred in 2010 and no large (MW >7) earthquake has been recorded (2; 5-14	
7).  15	

The history of very large megathrust earthquakes along this region is relatively short (Figure 2a). The 16	
1906 Mw 8.6 Columbia/Ecuador earthquake is the largest known event. It had an estimated rupture length 17	
of ~500 km, based on macroseismic data (8), and produced significant local and Pacific wide tsunami (MT 18	
8.7, 9).  Historic information on earlier events provide only indirect evidence for recurrence times in that 19	
no event comparable to 1906 is recorded in the historic catalog from 1575 to 1915 (331 years) (10).  20	
Earthquake triggered turbidites collected on the continental slope offshore of Esmeraldas River indicate 21	
that one or two earthquakes comparable in size to the 1906 event occurred ~600 years ago (11).    22	

A series of great earthquakes re-ruptured the near coastal portion of the 1906 Colombia/Ecuador zone 23	
within 36 (1942, MS 7.5), 52 (1958, MS 7.3) and 73 (1979, MS 7.7) years of 1906 (12). An MW 7.1 event in 24	
1998 ruptured the southernmost portion of the 1906 zone southwest of the 1942 rupture (2). The 25	
aftershock zones of these ruptures abut without overlap within the larger 1906 rupture zone (13). Analysis 26	
of seismic waveforms (14) and GPS data (2) has identified discreet asperities associated with the 1958 27	
and 1979 ruptures. Kanamori and McNally (12) note that the cumulative seismic moment of the 1942, 28	
1958 and 1979 earthquakes based on aftershock zone area is considerably less (~1/5) than the seismic 29	
moment of 1906. This discrepancy reduces to ~1/3 based on direct waveform comparisons (14). 30	

The re-rupture of the 1942 Pedernales, Ecuador segment in 2016 (MW 7.8, MS 7.5) presents an opportunity 31	
to examine persistent heterogeneous frictional properties of the Colombia-Ecuador megathrust, and may 32	
indicate the onset of a new earthquake cycle along the Colombia-Ecuador region. 33	

2016 Ecuador 34	

The 16 April 2016 MW 7.8 Pedernales, Ecuador earthquake (Figures 1, 2a, 3a) ruptured the down-dip 35	
portion of the Colombia/Ecuador seismogenic zone along prior ruptures in 1906 (MW 8.6) and 1942 (MW 36	
7.8). The source region had previously been accumulating moderate slip deficit based on geodetic 37	
measurements (2), with larger slip deficit accumulating in the adjacent regions of non-overlapping 38	
aftershock zones of the 1958 (MW 7.6) and 1979 (MW 8.1) ruptures, extending along the 1906 zone. Chlieh 39	



2	

et al. (2) estimated characteristic earthquake recurrence times for asperities associated with 1942, 1958 40	
and 1979 events of ~140±30, 90±20 and 153±80 years, respectively, significantly exceeding their actual 41	
intervals since 1906 (36, 52, and 73 years). After 74 years, the 1942 region re-ruptured in the 2016 event.  42	

Available high-rate GPS, broadband teleseismic, InSAR, and tsunami data resolve the rupture of two 43	
large-slip patches in 2016 with peak slip of ~ 2-6 m and an average slip ~ 2 m (6, 15-18). Comparison of 44	
seismic waveforms and magnitudes demonstrate that the 2016 and 1942 events have similar surface wave 45	
magnitudes (MS 7.5), overlapping rupture areas, and an overlapping large-slip patch, but not identical 46	
teleseismic waveforms – indicating that 2016 was a quasi-repeat of 1942 (15, 19). While the average slip 47	
in 2016 is consistent with the plausible slip deficit accumulation of 3.5 m since 1942, given the ~4.7 48	
cm/yr convergence rate (15), localized peak slip estimates of 5-6 m exceed the expected slip deficit (6), 49	
indicating that significant residual slip deficit persisted after the 1942 event in the localized region of peak 50	
slip in 2016. Nocquet et al. (6) also infer excessive moment release in the 1958 and 1979 events relative 51	
to slip deficits accumulated since 1906. Noting the lack of historic large earthquakes in the region (Figure 52	
2a), they propose that the Ecuador-Colombia region has been experiencing a supercycle of large events 53	
over the past century. Yoshimoto et al. (18) invert for the tsunami source of 1906, finding large-slip on 54	
the shallow megathrust, up-dip of the large-slip zones in 2016, 1942, 1958 and 1979, complicating 55	
assessment of strain budget for localized regions of the megathrust.  56	

PERU 57	

The Peru seismic zone, extending from 3°S to ~19°S, has the most pronounced variability in very large 58	
megathrust faulting history of the entire South American seismogenic zone (Figures 1, 2b).  The Northern 59	
Peru segment from 3°S to 10°S is bounded by the Grihalva Ridge to the north and the Mendaña Fracture 60	
zone to the south. Geodetic measurements in the region (1, 20-21) indicate that the plate boundary is not 61	
accumulating significant slip deficit along the 800-km-long segment other than in localized shallow (<20 62	
km deep), poorly resolved patches near 3°S-4°S and 7°S-8°S. The area near Chimbote (~9°S) has 63	
experienced infrequent large earthquakes (Figure 2b), the largest being MW ~ 7.7-8 in 1619 (8; 21-23). 64	
That event destroyed the town of Trujillo and macroseismic reports indicate that damage extended over 65	
100-150 km. The most recent large events along Northern Peru are the 1960 MW 7.6 and 1996 MW 7.5 66	
earthquakes located on the shallow megathrust (Figure 1, 2b), which have both been characterized as 67	
tsunami earthquakes due to having weak radiation of short-period seismic energy, low rupture velocity 68	
and long rupture durations (24-27). Future occurrence of very large earthquakes in this region is very 69	
difficult to anticipate based on the coupling and historical records. 70	

The seismic record for central and southern coastal Peru (Figure 2b) is considered complete for 71	
earthquakes of M > ~7.6 for more than 450 yr (21-23; 28). The Central Peru segment from 10°S to 14.5°S 72	
is bounded by the Mendaña Fracture Zone to the north and the Nazca Ridge to the south. The subducted 73	
Nazca plate in central Peru is characterized by flat, low angle subduction and a lack of active volcanism. 74	
Dorbath et al. (23) describe the seismic activity in Central Peru as being complex due to the irregularity of 75	
rupture lengths, locations of epicentral zones, and timing. Two earthquakes stand out in the historic 76	
record, not only for their size but also for the length of time of seismic quiescence following their 77	
occurrence. The 1687 MW 8.4 Ica earthquake ruptured the southern half of the central Peru segment with 78	
an estimated rupture length of 350 km and produced a damaging local tsunami with a height of 5 to 10 m 79	
(MT 8.5-8.4, 9). The 1746 MW 8.6 Lima, Peru earthquake ruptured the northern 350 km of the central Peru 80	
segment 59 years later with long overlap of the 1687 zone and produced a local tsunami of 15 to 24 m 81	
height (MT 9 – 9.2, 9). The 1746 event ranks as the largest Peruvian earthquake during the last 450 years 82	
(23) and coupled with the earlier 1687 earthquake (the slip distributions are not known in detail) may 83	
represent a so-called “Breakthrough Event” (29) that ruptured the entire Central Peru segment (30). 84	
Following these two events, a period of seismic quiescence for great earthquakes along much of Central 85	
Peru lasted nearly 200 years (23).  86	
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A renewed period of earthquake activity spanning Central Peru started in 1940. A series of great 87	
earthquakes progressively re-ruptured portions of the 1687 and 1746 zones in 1940 (MW 8.2), 1966 (MW 88	
8.1), 1974 (MW 8.1) and 2007 (MW 8.0) (8; 22-23; 30-31). These recent events occurred at intermediate 89	
depths along the megathrust (15 to 35 km), and exhibit non-overlapping rupture zones (Figures 1, 2b) 90	
consistent with the seismic gap and asperity concepts. Waveform analysis of these events (18, 31-35) 91	
identified one to three concentrated large-slip zones, or asperities, for each event. The events produced 92	
minor local tsunamis ranging from 1.6 to 3 m in height that were significantly less than those reported for 93	
1687 and 1746. This is similar to the Ecuador-Colombia region. Chlieh et al. (36) estimate that the recent 94	
set of events account for less than half of the estimated seismic moment release in 1746, leaving a deficit 95	
that could produce an MW 8.5-8.7 event. The 2007 rupture struck the southeastern end of this region, 96	
which had not had a very large earthquake since 1746.  97	

2007 Pisco, Peru  98	

The 15 August 2007 (MW 8.0) Pisco, Peru earthquake produced substantial shaking damage and a large 99	
tsunami on the southern Paracas peninsula (Figures 1, 2b, 3b), northwest of the intersection of the Nazca 100	
Ridge with the Peru Trench. The seismic, geodetic and tsunami data for this event reveal that the rupture 101	
involved two or more large-slip patches straddling the peninsula with about a 60 s lag time between the 102	
primary subevents (e.g., 20; 34-43). Maximum slip was up to about 8 m and geodetic slip deficit had been 103	
observed prior to the rupture (36).  104	

The discrete ruptures during this event, with two main separated asperities experiencing triggering 105	
interaction and adjacent up-dip and along-strike afterslip with seismic moment equal to 14% of the co-106	
seismic moment (20) are consistent with the asperity model, but this type of multi-asperity delayed 107	
rupture presents great challenges to early warning procedures that attempt to characterize imminent 108	
seismic and tsunami hazards from the early energy release or ground deformation (34). Longer term, 109	
interseismic coupling models indicate as much as 50-70% aseismic slip in this region and are consistent 110	
with return times of 250 years or greater (i.e., 2007 – 1687 = 261 yrs), in this region just north of where 111	
the Nazca ridge intersects the subduction zone (20). Given the lack of seismic recordings of prior events 112	
striking the recent rupture zones, we cannot assess persistence of asperities in Central Peru. 113	

The Southern Peru segment extends from 14.5°S, where the Nazca Ridge intersects the trench, to ~19°S, 114	
near the Chilean border and Arica. Great earthquakes have occurred relatively frequently in Southern 115	
Peru (22-23; 44) during the last 500+ years (Figure 2b). Great ruptures spanning this segment struck in 116	
1604 and 1868, with pairs of very large events (1687/1715 and 1784/1833) also covering most of the 117	
length. The region in the north near the city of Nazca had several large ruptures in 1913, 1942 (MW 8.1) 118	
and 1996, with the latter two being partially overlapping complex ruptures along the southern flank of the 119	
Nazca Ridge intersection (19; 45). 120	

2001 Southern Peru 121	

The 23 June 2001 MW 8.4 Arequipa (or Camaná), Peru earthquake and its magnitude 7.6 aftershock on 7 122	
July 2001 to the southeast, re-ruptured the northern two-thirds of the 1868 seismic gap (Figures 1, 2b, 3b). 123	
Based on analysis of seismic, geodetic and tsunami data, the earthquake broke two spatially offset 124	
asperities, the first in the northwest of the rupture zone and the second, centrally located asperity being 125	
much larger and releasing most of the total seismic moment (34; 36-37; 46-49). Rupture appears to have 126	
extended across the megathrust to near the trench (34; 36), unlike the 2007 Pisco and 2016 Ecuador 127	
events.  128	
 129	
Earthquake intensity and tsunami runup reports indicate that great events in 1604 and 1868 (10-15 m and 130	
14 m peak tsunami runup, respectively) were larger than the overlapping 1582, 1784, and 2001 131	



4	

earthquakes (1-2 m, 2-4 m, and 8.8 m peak tsunami runup, respectively) (Figure 2b) (23; 46). Lacking 132	
seismic recordings it is not possible to compare details of the ruptures or to assess persistence of 133	
asperities, but the repeated occurrence of great earthquakes with overlapping ruptures is consistent with 134	
the basic seismic gap concept, with frictional heterogeneity resulting in smaller slip patches adjacent to a 135	
large central asperity. The 1604 and 1868 MMI VIII isoseismal zones both extend farther southeast 136	
toward Arica, Chile than the 2001 ruptures, indicating that the southeasternmost portion of the Peru plate 137	
boundary has remained unbroken for 154 years (46; 50-51). Geodetic slip deficit accumulation in the area 138	
is high (~63 mm/yr) indicating that as much as ~10 m of slip may have accumulated in the region since 139	
1868, with potential seismic moment equivalent to an MW 8.4 event. It is unclear why the 2001 event 140	
failed to rupture into this region, but there is evidence for prior smaller events that ruptured just this 141	
region in 1833 and 1715 (Figure 2b).  142	

CHILE 143	

Northern Chile 144	

The Northern Chile region extending from 19°S to 26°S has a limited very large earthquake history, 145	
dominated by the great 1877 (MW 8.5-8.8) and 1995 Antofagasta (MW 8.0) earthquakes (Figures 1, 2c) 146	
(52). Large events for which there is some information struck northernmost Chile in 1615, 1768 and 147	
1786, in the vicinity of the recent 2014 Iquique event (44). There is marine evidence for slumping near 148	
23°S occurring between 1754 and 1789 (53), indicating that the 1768 and/or 1786 ruptures may have 149	
extended along the entire 1877 zone. Marine evidence near 23°S and boulder fields on the Atacama coast 150	
also indicate a predecessor event overlapping the 1877 event around 1429 ± 20 (53, 54), coincident with 151	
Japanese tsunami records of a distant event on 7 September 1420 (55). Geologic and archeological 152	
provide evidence for a giant (M ~ 9.5) earthquake in this region at ~3800 years ago (56) that may have 153	
also affected the Northern Chile and Atacama Desert region from 21° to 27° S. 154	

2014 Iquique, Chile 155	

The 1 April 2014 Mw 8.1 Iquique, Chile earthquake and its large MW 7.7 aftershock on 3 April 2014 to 156	
the south ruptured a rather compact area of the northern Chile central megathrust from 19.3°S to 20.7°S 157	
(Figures 1, 2c, 3c). The large-slip zone (~2-7 m) for the 2014 mainshock is unusually concentrated for a 158	
great earthquake, extending only about 70 km along strike and 50 km along-dip, with finite-slip models 159	
being well resolved by seismic, geodetic, and tsunami observations (57-64). The rupture was preceded by 160	
months of slowly migrating foreshock activity located up-dip of the eventual mainshock, indicating 161	
along-dip variation in frictional properties of the megathrust (59; 65-71) 162	

The concentrated mainshock slip, with adjacent down-dip slow deformation and afterslip (71; 72) is 163	
consistent with the asperity model, and several prior historical earthquakes have occurred in this region of 164	
northernmost Chile over the past few centuries (Figure 2c), so persistence of localized velocity weakening 165	
properties is viable. The event struck in an area of large slip deficit inferred from geodesy that extends 166	
along northern Chile from 18°S to 25°S, with a low coupling zone near 21°S (36; 72-74), although the 167	
coupling estimates depend strongly on assumptions of upper plate (central Andes) distributed 168	
deformation. Many estimates of the 1877 rupture extent span this region (e.g., 44; 75), so early 169	
interpretations viewed the 2014 event as a partial rupture of the 1877 zone akin to the events along 170	
Ecuador-Colombia. However, based on detailed reinterpretation of intensity observations for 1877, the 171	
2014 Iquique event, rupturing the megathrust region south of Arica and north of Iquique lies between 172	
large-slip regions of the great 1868 and 1877 earthquakes (76) (Figure 3c). The 1877 slip zone may or 173	
may or may not have overlapped the 2014 event, and while it extends along the 2007 Tocopilla event at 174	
its southern end (Figure 2c), the latter event was concentrated down-dip in Domain C and did not rupture 175	
the shallow megathrust (36; 77-80).   176	
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1995 Antofagasta 177	

The 30 July 1995 MW 8.0 Antofagasta earthquake ruptured south of the 1877 earthquake gap from 23.3°S 178	
to 25°S (Figures 1, 2c, 3d).  Analysis of seismic, geodetic, and tsunami data indicate that the rupture 179	
began near the Mejillones peninsula and expanded southward with predominantly unilateral slip (81-88), 180	
to the vicinity of the 1966 (MS 7.8) Tal-Tal earthquake at its southern end.  Long-period directivity 181	
indicates a rupture velocity of 3.0-3.2 km/s and rupture duration of 60-68 s (85). The finite-fault studies 182	
resolve slip beneath the coastal area in the central megathrust (Domain B of Figure 4), with some along-183	
strike variability that may be due to prior stress relaxation in 1987 (MW 7.5) and 1988 (MW 7.2) ruptures 184	
and a 1998 (MW 7.0) aftershock in the deeper portion of the megathrust (Domain C of Figure 4) (87; 89).  185	
The rupture south of 24.3°S appears to have modest slip that extends to near the trench (Domain A of 186	
Figure 4) based on strong excitation of pwP arrivals (27; 90), and there is some indication of this in finite-187	
fault modeling, although such models lack resolution of slip near the trench (88). 188	

North-Central Chile - Atacama 189	

Seismic waveform modeling (91) indicates rupture of 3 sub-events during the 1922 Atacama earthquake, 190	
consistent with eyewitness accounts of feeling three distinct shocks within the first few minutes. The prior 191	
great rupture in 1819 involved a sequence of three events on April 3, 4 and 11, as well (92).  As seen in 192	
Figure 3d, a line of seamounts intersects the Chile trench near 27°S, in the northern portion of the 1922 193	
Atacama earthquake rupture zone which has had repeated smaller events in 1851, 1859, 1918, 1946 and 194	
1983 (Figure 2c). The seamounts are spaced ~ 100 to 150 km apart and are ~25 km in diameter.   Each 195	
seamount or asperity could accumulate a slip deficit of 6 to 7 m per century, equivalent to an M 7+ 196	
earthquake. While the seismic moments of subevents in 1922 are not well constrained (91; 93), the rough 197	
seafloor bathymetry may account for some of the rupture complexity.  Evidence for prior great ruptures 198	
from paleotsunami run-up along the Atacama include the 1429 ± 20 event (53; 54) discussed above, along 199	
with 1267 ± 85? and 964 ± 32? segment-spanning events (94). 200	

Central Chile 201	

The Illapel region (30°S-32°S) (Figures 1, 3e) is a highly coupled segment of central Chile bounded by 202	
the Challenger Fracture Zone (CFZ) to the north and the Juan Fernandez Ridge (JFR) to the south (95-203	
97). The CFZ intersects the Chile Trench near the southern end of the 1922 Atacama earthquake and at 204	
the estimated northern end of the great 1730 Valparaíso earthquake, suggesting persistent segmentation. 205	
The Illapel segment exhibits complexity of very large earthquake rupture as it ruptured in the northern 206	
~1/3 of the great 1730 MW ~ 9 Valparaíso earthquake as well as in a series of smaller overlapping events 207	
in 1880 (MW 8.3), 1943 (MW 7.9), and 2015 (MW 8.3). The latter set of ruptures may possibly involve a 208	
persistent asperity on the central megathrust, but with variable amounts of shallow coseismic slip near the 209	
trench. There is no clear data on great events prior to 1730, extending south to Constitución. 210	

2015 Illapel, Chile 211	

The 16 September 2015 MW 8.3 Illapel, Chile earthquake ruptured ~170 km along the plate boundary 212	
megathrust in Central Chile from 30°S to 31.6° S (Figure 1). This event struck in the same region as 213	
events in 1943, 1880, and 1730 (Figures 2c, 3e) (8; 91; 98-99). The 2015 Illapel earthquake is of 214	
particular note because rapid seismic magnitude estimation of the event prompted a tsunami warning and 215	
evacuation notifications within 8 to 11 min of the origin time, resulting in large-scale evacuation along 216	
the Chile coast (100). Seismic, geodetic, and tsunami waveform analyses of the 2015 Illapel earthquake 217	
indicate concentrations of ~3 m co-seismic slip below the coast and an large patch with up to ~10 m slip 218	
at shallow depths (94; 100-113). Studies with the best off-shore resolution (including careful modeling of 219	
tsunami arrivals) are consistent with the large-slip patch having extended up-dip to near the trench. 220	
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Geodetic measurements prior to the event indicate that there was strong megathrust coupling in the region 221	
of large-slip, particularly south of 31°S, although resolution of coupling out to the trench is very low 222	
(106; 114-115), and afterslip expanded both northward and southward from the large-slip zone (110; 116-223	
118). 224	

Similar to the 2016 Ecuador earthquake, comparisons can be made with details of the prior very large 225	
rupture in 1943. The 1943 MW 7.9 event has a single pulse of large moment rate at depths < 35 km but has 226	
a much smaller seismic moment estimate and simpler waveforms that indicate that it did not rupture the 227	
shallow portion of the megathrust (91; 101). Local tsunami heights for the 2015 event are significantly 228	
higher than those in 1943, and ranged from 3 to 6 m along the coast from 29°S to 32°S, with localized 229	
peak values of 13 m at La Cebada (30.98°S, 71.65°W) and 10.8m at Totoral (30.37°S, 71.67°W) and a 230	
tide gauge peak recording of 4.5 m at Coquimbo to the north (119; 120).  Far-field tsunami amplitudes 231	
reported in Japan for the 1943 event (10-30 cm, 91) are less than those reported in 2015 (11-80 cm). The 232	
macroseismic effects of the 1943 earthquake are broadly similar to the 2015 event, but extend further 233	
south. (8; 91). Aftershocks for the 1943 event, located by Kelleher (8) using S-P times from La Paz, 234	
indicate along-strike rupture zone dimension comparable to 2015 (106). Peak slip in 2015 (8-12 m) is 235	
greater than the slip accumulated during the interval 1943-2015 (5.3 m for 74 mm/yr convergence) 236	
although average slip is comparable. Overall, the 2015 event is not a simple repeat of the 1943 event and 237	
likely had much more slip at shallow depth (100). The 1880 rupture was similar in extent, but the 1730 238	
rupture extended much further to the south, akin to the Ecuador-Colombia behavior. While there may be 239	
persistent asperities in the central and shallow megathrust, they may fail independently in some events 240	
and may participate in along-strike cascades in other events (106). 241	

2010 Maule, Chile 242	

The 27 February 2010 Maule (MW 8.8) earthquake ruptured the plate boundary offshore of central Chile 243	
between 34°S and 38.5°S (Figure 1, 3f). The coseismic slip of this event has been determined by analysis 244	
of seismic, geodetic, and tsunami observations (121-134). Patchy coseismic slip is distributed over a 245	
region 460 km long and 100 km wide between the depths of 15 and 40 km. Two large-slip asperity 246	
regions are resolved along the megathrust, one extending from 34°S to 36°S (with up to 20 m slip) and 247	
the other from 37°S to 38°S (with up to 10 m slip). Finite fault inversions relying on only on-land static 248	
geodetic data tend to place slip on the central megathrust toward the coastline (124; 125; 131), but (132) 249	
and (134) find that the large-slip patches include slip of 5-8 m all the way to the trench based on joint 250	
inversions with accurately modeled tsunami observations. This is consistent with direct images of 251	
coseismic seafloor displacement at the trench from repeated seismic reflection surveys (135). 252	
Concentrations of outer trench-slope normal faulting occurred offshore from these shallow slip patches 253	
(132). Aftershocks concentrate along the down-dip megathrusts and around the large-slip zones (136). 254	
 255	

Geodetic measurements had resolved accumulating slip deficit prior to the rupture along the entire 256	
rupture area, with moderate reduction near 35°S (95; 114; 123; 131; 137), but the patchy slip distribution 257	
only loosely conforms to the variable geodetic locking distribution (138). Afterslip extends along the 258	
length of the rupture primarily down-dip and between the two large coseismic slip patches (126; 131; 259	
139-140). While the region was recognized as a seismic gap along the historic 1835 rupture zone and 260	
geophysical instrumentation was deployed in the region in advance of the earthquake, the co-seismic slip 261	
was moderate in the 1835 source area. Substantial slip overlapped the 1928 rupture zone and slip 262	
terminated adjacent to the 1985 rupture zone (141). The estimated slip deficit from 1835 to 2010 is ~12 263	
m, somewhat above the average slip in the southern half of the rupture zone. Much less slip deficit could 264	
have accumulated after 1928, but that event could have ruptured the deeper megathrust, below the region 265	
of 20 m slip in 2010, with large ruptures in 1647, 1730 and 1751 possibly having ruptured the same 266	
region (Figure 2c).  Conventional seismic gap ideas with strong segmentation do not characterize this 267	
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region well, but the Reid strain renewal concept in conjunction with a distribution of persistent asperities 268	
along the megathrust reconciles the historical behavior. 269	

Southern Chile 270	

Southern Chile (Figures 1, 2d), extending from 38°S near the Arauco Peninsula to 48°S near the 271	
intersection with the Chile Rise has hosted several great historic megathrust ruptures in 1575, 1737 and 272	
1837 (52; 92; 142; 143), as well as the 1960 MW 9.5 event (144-150). It appears that the 1737 and 1837 273	
events had limited overlap (Figure 2d), and together spanned the 1575 and 1960 rupture extent (52). 274	
Paleotsunami evidence indicates ruptures preceding 1575 in 1337 ± 18(?) and 1154 ± 27 (94), with 275	
biostratigraphy giving compatible dates of 1270-1450 and 1070-1220 (151). A recurrence time of about 276	
270 years appears to hold along this segment (142; 152). Dura et al. (152) also consider whether the 277	
Arauco Peninsula (37°-38°S) is a persistent barrier. The 2010 Maule event ruptured into, but not across 278	
this region, and the 1835, 1751, 1657 and 1570 events in Central Chile also did not cross it, nor did the 279	
1960, 1737 and 1575 events to the south, so it appears to have been a persistent impediment to through-280	
going rupture over the last 600 years.     281	
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