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ABSTRACT: The reaction of 1 equiv of the dimeric lithium salt of a new London dispersion effect donor ligand {Li(C6H2-2,4,6-
Cy3)·OEt2}2 (Cy = cyclohexyl) with SnCl2 afforded the distannene {Sn(C6H2-2,4,6-Cy3)2}2 (1). The distannene remains dimeric in
solution, as indicated by its room-temperature 119Sn NMR signal (δ = 361.3 ppm) and its electronic spectrum, which is invariant
over the temperature range of −10 to 100 °C. The formation of the distannene, which has a short Sn−Sn distance of 2.7005(7) Å
and greatly enhanced stability in solution compared to that of other distannenes, is due to increased interligand London dispersion
(LD) attraction arising from multiple close approaches of ligand C−H moieties across the Sn−Sn bond. DFT-D4 calculations
revealed a dispersion stabilization of dimer 1 of 38 kcal mol−1 and a dimerization free energy of ΔGdimer = −6 kcal mol−1. In contrast,
the reaction of 2 equiv of the similarly shaped but less bulky, less hydrogen-rich Li(C6H2-2,4,6-Ph3)·(OEt2)2 with SnCl2 yielded the
monomeric stannylene Sn(C6H2-2,4,6-Ph3)2 (2), which is unstable in solution at ambient temperature.

Seminal work by Lappert and co-workers in the 1970s
described the synthesis of the first σ-bonded stannylenes

Sn{CH(SiMe3)2}2
1,2 and Sn{N(SiMe3)2}2

3,4 (the latter species
was also reported by Zuckerman and co-workers).5,6 X-ray
crystallography subsequently established that whereas Sn{N-
(SiMe3)2}2 is monomeric, Sn{CH(SiMe3)2}2 exists in the solid
state as the Sn−Sn bonded dimer [Sn{CH(SiMe3)2}2]2 with
pyramidal tin coordination.2 Since then, much effort has been
devoted to understanding these heavier carbene analogues
(ER2, where E is a group 14 element) and the multiple E−E
bonding in their R2EER2 dimers.7−9 The folded, trans-
pyramidalized configuration of the tin atoms in [Sn{CH-
(SiMe3)2}2]2 and in most other distannenes led to the
description of the Sn−Sn bond as a nonclassical double
bond.10 This interaction is quite weak, and distannenes
R2SnSnR2 typically dissociate into stannylene (:SnR2)
monomers in the solution and gas phases.11 Variations in the
tin−tin bonding also exist. For example, Weidenbruch’s
{Sn(C6H-2-

tBu-4,5,6-Me3)2}2 features pyramidalized geometry
at only one of its tin atoms, with nearly planar geometry at the
other.12 This results in a weaker Sn−Sn interaction and an
exceptionally long Sn−Sn separation of 2.910(1) Å. In
contrast, Sekiguchi’s distannene {Sn(SiMetBu2)2}2 displays
essentially planar geometry at both tin atoms and has an
unusually high torsion angle of ca. 45° between the SnR2
planes.13 Sekiguchi and Apeloig showed that this complex
remains dimerized in solution at ambient temperature (the
only known acyclic distannene to do so) and possesses the
shortest known Sn−Sn bond length (2.6679(8) Å) among
acyclic distannenes.14

Much of the discussion of the bonding in distannenes has
concerned the direct orbital interactions between the tin
atoms.9 However, in a collaborative study by Nagase and this

laboratory, a computational examination of the bonding in
these heavier main group analogues revealed that the London
dispersion (LD) interaction is mainly responsible for the
stability of their dimeric structures in the solid state.15 More
generally, the effects of LD interactions on the stability of
organic molecules and NHC-coordinated main group com-
pounds have been described by Schreiner and co-workers.16,17

The origin of this stability in distannenes involves multiple
close interligand contacts between C−H moieties across the
Sn−Sn bond. This finding was later confirmed by Růzǐcǩa and
Hobza, who concluded that our initial calculations may have
underestimated the importance of LD attraction in stabilizing
heavier group 14 R2EER2 molecules.18 The effects of
noncovalent interactions in organometallic molecules have
also been addressed.19,20 We have since reviewed LD effects in
organometallic complexes and concluded that several counter-
intuitive phenomena are in fact hallmarks of intramolecular LD
attraction.21 Perhaps the most striking outcome of LD
attraction is the often inverse relationship between steric
congestion and structural features or reactivity. For example,
we have previously shown that, because of LD attraction,
increasing the steric demand of the ligands in ER2 complexes
results in the closure of the R−E−R angle, although the angle
is normally expected to widen as the size of the R groups
increases.22,23 In a classic demonstration, Schreiner showed
that a substituted hexaphenyl ethane derivative, hexa(3,5-di-
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tert-butylphenyl)ethane, is stabilized by interactions between
bulky substituents on the phenyl groups and more recently
showed that the heavier hexaphenylditetrelanes are also
stabilized by dispersion.24,25 We therefore sought ligands that
would produce stabilizing LD effects in distannenes.
Herein we demonstrate the dramatic effects of the LD

stabilization arising from interligand H−C−H−C interactions
of hydrocarbon substituents. Thus, the reaction of the new
aryllithium reagent {Li(C6H2-2,4,6-Cy3)·(OEt2)}2 (Cy =
cyclohexyl) with SnCl2 affords the Sn−Sn-bonded distannene
{Sn(C6H2-2,4,6-Cy3)2}2 (1), which remains dimeric in
solution even at elevated temperature. In contrast, the reaction
of the less bulky Li(C6H2-2,4,6-Ph3)·(OEt2)2 with SnCl2 yields
the monomeric stannylene, Sn(C6H2-2,4,6-Ph3)2 (2). The LD
attraction produced by the H−H contacts in the former
species is decisive in the stabilization of the distannene. The
increased thermodynamic stability conferred by LD attraction
is further underlined by the inherent instability of the less
sterically encumbered Sn(C6H2-2,4,6-Ph3)2 (2), which decom-
poses into intractable products in solution.
Owing to their ease of modification, aryl ligands feature

prominently among structurally characterized organometallic
complexes. This also is true for tin(II) complexes of the form
(SnR2)n.

26 However, only one structurally characterized metal
complex of any kind is known for the 2,4,6-tricyclohexylphenyl
ligand. This was formed by the photolysis of Ni(Br)2(bipy)
(bipy = 2,2′-bipyridine) in the presence of 2,4,6-tricyclohexyl-
bromobenzene27 rather than by salt metathesis. Almost
simultaneously with that report, Fürstner and co-workers
showed that the exceptional iron(IV) tetraalkyl complex FeCy4
is stabilized by attractive interligand LD interactions between
the cyclohexyl substituents, despite the presence of multiple
accessible β-hydrogens which would typically react further to
result in its decomposition.28 Given these results and that

distannenes have been shown to be stabilized by dispersion
effects in the solid state, we suspected that the 2,4,6-
tricyclohexylphenyl ligand might be capable of stabilizing a
distannene in solution as well. When preparing 2,4,6-
tricyclohexylphenyllithium (SI), we were encouraged by the
fact that its diethyl ether complex has a dimeric structure with
multiple close interligand H−H contacts in its crystal structure.
In contrast, the less bulky 2,4,6-triphenylphenyllithium, which
differs mainly in hydrogen content from the 2,4,6-tricyclo-
hexylphenyl derivative, has a monomeric structure in which the
lithium atom coordinates two diethyl ether molecules in the
solid state.29 Motivated further by this apparent anomaly, we
investigated the different properties conferred by these two
ligands on divalent tin complexes.
The reaction of SnCl2 with 1 equiv of {Li(C6H2-2,4,6-Cy3)·

OEt2}2 in diethyl ether results in the precipitation of a bright-
red powder. Extraction of the powder in toluene and
recrystallization of the residue from a 1:2 mixture of
hexanes/toluene at ca. −30 °C affords cherry-red crystals of
{Sn(C6H2-2,4,6-Cy3)2}2 (1), the structure of which is shown in
Figure 1. The distannene has the folded, trans-pyramidalized
geometry (sum of angles at tin = 343.67(15)°) and trans-
bending angle (36.83(9)°) typical of most distannenes,9 with a
slight twist angle of 8.28(10)° between the C−Sn−C planes.
Thus, in agreement with calculated Kohn−Sham orbitals of 1
(Figure 2a) and the natural bonding orbital (NBO) analysis
(cf. Figure 2b), the structural parameters of 1 are consistent
with a weak bond between the tin atoms.10 Despite the bulk of
the ligands, 1 displays a short Sn−Sn separation of 2.7011(7)
Å. In addition, there are several close interligand H−H
contacts involving the cyclohexyl rings across the Sn−Sn bond,
suggesting a high degree of LD attraction between SnR2 units.
Among structurally characterized (SnR2)2 complexes (exclud-
ing cyclic distannenes), only the distannene {Sn(SitBu2Me)2}2

Figure 1. Molecular structure of {Sn(C6H2-2,4,6-Cy3)2}2 (1) with thermal ellipsoids drawn at 30% probability. Interligand H−H contacts across
the Sn−Sn bond below the sum of their van der Waals radii (ca. 2.4 Å) are indicated with dashed lines. All other hydrogens are not shown. Selected
bond distances (angstroms) and angles (deg): Sn1−Sn1′ = 2.7011(7), Sn1−C1 = 2.182(3), Sn1−C25 = 2.189(3), and C1−Sn1−C25 =
106.80(11).
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(3) reported by Sekiguchi and co-workers in 2004 possesses a
shorter Sn−Sn bond of 2.6679(8) Å.13 That complex is the
only distannene known to remain dimeric in solution at
ambient (or higher) temperature as evidenced by its 119Sn
NMR chemical shift and its reactivity with CCl4 and
phenylacetylene to give {Sn(Cl)R2}2 or a four-membered [2
+ 2] cycloaddition product. However, the tin atoms in that
molecule are essentially planar-coordinated, and the Si−Sn−Si
planes have a torsion angle of ca. 45°. Thus, the shorter Sn−Sn
bond and its high strength can be attributed at least in part to
the presence of a covalent σ bond and a twisted π bond
between two triplet state tin units. In contrast, the trans-
pyramidal structure of {Sn(C6H2-2,4,6-Cy3)2}2 suggests weak
Sn−Sn bonding like that observed in most other distannenes
so that any unusually strong interaction between its SnR2 units
must originate from another source.
A computational study at the B3LYP-D4/def2-QZVP

+COSMO-RS/r2SCAN-3c(COSMO) level30−34 (SI) of {Sn-
(C6H2-2,4,6-Cy3)2}2 indicated that, when dispersion effects are
excluded, the monomeric stannylene Sn(C6H2-2,4,6-Cy3)2 is

favored (ΔGdimer = +31.9 kcal mol−1). In contrast, including
LD effects in the calculations using the accurate D4 model
shows that the dimer is clearly favored, with a ΔGdimer of −6.1
kcal mol−1 (ΔHdimer = −24.5 kcal mol−1). For 3, these values
are +3.1 and −13.5 kcal mol−1, respectively, highlighting the
unusually large impact of LD interactions in 1. The importance
of LD contributions is further supported by an energy
decomposition analysis of 1 (Figure 2c). For 1, a comparably
small Eorb component is observed, while the Eint to Edisp ratio
amounts to 1.0. Neglecting the dispersion component results
in a slightly repulsive interaction energy of 0.3 kcal mol−1, thus
underlining the crucial role of LD. For 3, the interaction energy
is dominated by Eorb, yielding a small Edisp/Eint = 0.4.
Furthermore, for 3 the Eint value is negative by −28.1 kcal
mol−1 without the inclusion of dispersion effects, indicating the
dominant role of the stronger tin−tin bond.
The magnitude of ΔGdimer for 1 suggests that this complex

should remain dimeric in solution even at elevated temperature
(at 300 K, a ΔG value of ca. −6 kcal mol−1 indicates an
equilibrium constant of ca. 104 favoring the dimer). The 119Sn
NMR chemical shift of distannene 1 was predicted in our
computational study to be δ = 388.2 ppm (SO-ZORA-
revPBE(COSMO)/ZORA/TZP).35−37 This agrees well with
the experimental spectrum of distannene 1 at room temper-
ature, which displayed a single resonance at δ = 361.3 ppm.
Given that 119Sn signals appear over a very wide range (ca.
−2000 to +3000 ppm), this signal is in a region similar to the
reported chemical shifts of SnR2 complexes that possess a Sn−
Sn bond in solution (cf. {Sn(SiBut2Me)2}2, δ = 630.7 ppm;
{Sn(C6H2-2,4,6-

iPr3)2}2, δ = 427 ppm, which remains dimeric
in solution only at low temperatures of ca. −70 °C; see
Wrackmeyer’s reviews for a general overview of the
topic).14,38−40 At 350 K, this signal shifts slightly downfield
to 369.3 ppm, but no signal for the monomer was detected in
the range of 1250 to 3750 ppm (the chemical shift of the
monomer was calculated to be δ = 2569 ppm), indicating that
complex 1 remains dimeric in solution even at elevated
temperatures, in agreement with the theoretical result.
Additionally, a variable-temperature UV−visible spectroscopy
study over the temperature range of −10 to 100 °C showed
only a single absorbance in the visible region at 505 nm.
However, despite several attempts and a variety of conditions,
no new products were isolated from its reactions with excesses
of either phenylacetylene or ethylene. The low reactivity of
{Sn(C6H2-2,4,6-Cy3)2}2 with respect to these reagents is
consistent with high steric congestion around the tin atoms. A
space-filling model of the structure (Figure 3) clearly shows
that the tin atoms are almost wholly obscured in the dimer.
In contrast to the high stability of {Sn(C6H2-2,4,6-Cy3)2}2

(1), the use of the 2,4,6-triphenylphenyl ligand, which is less
bulky but has a configuration similar to that of the −C6H2-
2,4,6-Cy3 ligand used in 1, gives very different results. In a
preparation similar to that of {Sn(C6H2-2,4,6-Cy3)2}2, SnCl2
was treated with 2 equiv of Li(C6H2-2,4,6-Ph3)·(OEt2)2

29 in
diethyl ether. After this mixture was stirred overnight, a large
amount of red powder was precipitated. Extraction of the red
material in toluene and recrystallization of a concentrated
toluene solution layered with diethyl ether gave large, red
crystals of Sn(C6H2-2,4,6-Ph3)2 (2) in moderate yield. Despite
the reduced bulk of the ligand, a structural study showed that it
is monomeric in the solid state (Figure 4). Its molecular
structure is broadly similar to that of its lead analogue, which
was reported by Robinson in 2005.41 Its C−Sn−C angle

Figure 2. (a) Selected Kohn−Sham orbitals and (b) natural bonding
orbitals (isosurface value = 0.05 au) for 1. (c) EDA for 1 (blue) and
{Sn(SitBu2Me)2}2 (3, gray) at the BLYP-D4/def2-QZVP//r2SCAN-
3c level of theory. The dashed lines represent the overall interaction
energies of the corresponding stannylene fragments SnR2. Isosurface
value = 0.03 au.
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(96.36(9)°) is notably sharp and is comparable to that of the
stannylene Sn{C6H3-2,6-(C6H2-2,4,6-

iPr3)2}(Ph) (C−Sn−C
angle = 98.86°).42 The shortest Sn−Sn distance in the crystal
structure is 7.8870(9) Å, confirming the monomeric structure.
Sn(C6H2-2,4,6-Ph3)2 is unstable in solution, and attempts to
redissolve it result in an immediate color change from red to
brown and the deposition of an insoluble solid of currently
unknown composition (likely polymeric,43 see the SI for
spectra). Computational studies for 2 showed that the
formation of the monomeric stannylene is favored over the
distannene, even when LD effects are considered (ΔGdimer =
+8.8 kcal mol−1). Although few further details are currently
available due to its instability, its monomeric structure
underlines the importance of the stabilizing effects of LD
attraction in 1, and in distannenes generally.

In conclusion, the trans-pyramidalized distannene {Sn-
(C6H2-2,4,6-Cy3)2}2 (1) was shown to remain dimeric in
solution over a wide range of temperatures. Its enhanced
thermodynamic stability compared to that of other distannenes
was determined computationally to be due to London
dispersion (LD) attraction between SnR2 units. Unlike the
previously reported solution-stable distannene {Sn-
(SiBut2Me)2}2, which possesses a comparably strong inter-
action between the tin atoms, the strong dimerization in 1 is
dominated by the presence of these LD attractions since its
trans bent structure indicates only a weak nonclassical double
bond between the tin atoms, in agreement with the NBO
analysis. In contrast, using the less bulky 2,4,6-triphenylphenyl
ligand afforded the monomeric stannylene Sn(C6H2-2,4,6-
Ph3)2 (2), which was shown to be unstable in solution. The
instability of monomeric 2 underscores the importance of LD
attraction in stabilizing 1 via its dispersion effect donor ligand
−C6H2-2,4,6-Cy3.
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