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CONDENSED MATTER PHYSICS

Unified theory of the anomalous and topological Hall
effects with phase-space Berry curvatures

Nishchhal Vermat, Zachariah Addisont, Mohit Randeria*

Spontaneously broken time-reversal symmetry in magnetic materials leads to a Hall response, with a nonzero
voltage transverse to an applied current, even in the absence of external magnetic fields. It is common to analyze
the Hall resistivity of chiral magnets as the sum of two terms: an anomalous Hall effect arising from spin-orbit
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coupling and a topological Hall signal coming from skyrmions, which are topologically nontrivial spin textures.
The theoretical justification for such a decomposition has long remained an open problem. Using a controlled
semiclassical approach that includes all phase-space Berry curvatures, we show that the solution of the Boltzmann
equation leads to a Hall resistivity that is just the sum of an anomalous term arising from momentum-space cur-
vature and a topological term related to the real-space curvature. We also present numerically exact results from

a Kubo formalism that complement the semiclassical approach.

INTRODUCTION

Skyrmions in chiral magnets are topological spin textures (I) that
are of great interest both for their fundamental properties and their
technological promise as new platforms for information storage and
computation. These textures can be directly imaged using a variety
of techniques, but their simplest experimental signature is in electri-
cal transport. The “topological charge” density of skyrmions affects
the flow of electrons via a real-space Berry curvature and leads to the
topological Hall effect (THE). This, however, is only part of the mea-
sured Hall resistivity data in chiral magnets.

Hall data in these systems are routinely analyzed as a sum of two
nontrivial contributions, an anomalous Hall effect (AHE) that ex-
ists in the presence of a net magnetization and the THE described
above, in addition to the ordinary Hall response proportional to the
external field. This has become the standard way of interpreting Hall
data in skyrmion materials ranging from conducting B20 crystals (2-4)
and thin films (5-7) to heavy metal/magnetic insulator bilayers (8, 9).

Despite much effort, however, a rigorous theoretical justification
for expressing the total Hall resistivity as the sum of these contribu-
tions has been lacking thus far. Here, we demonstrate that the Hall
resistivity can be written as the sum of the AHE and THE within a
controlled calculation. While our final result is simple, its derivation
involves a complex route: developing a semiclassical formalism that
takes into account all phase-space Berry curvature effects on an equal
footing, including r-space, k-space, and mixed curvatures, and solv-
ing the Boltzmann transport equation in a controlled fashion.

To put our work in perspective, we note that existing theories of
the AHE and THE are distinct, and efforts to combine them have
not led to simple predictions in the past. Karplus and Luttinger (10)
identified the importance of spin-orbit coupling (SOC) in the AHE.
Their analysis is now best understood in terms of an anomalous
velocity of conduction electrons arising from the k-space Berry cur-
vature of the band structure (11-13) in a system with a net magne-
tization. Additional extrinsic contributions to the AHE arise from
scattering processes (14, 15) in the presence of SOC. However, it is
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well established that the intrinsic k-space Berry curvature effect
dominates over the extrinsic scattering contribution in many AHE
experiments (12, 16). We thus focus below only on the intrinsic part
of the AHE.

Theories of THE, on the other hand, are based on a real-space
Berry curvature effect that arises from the coupling of the conduc-
tion electrons to emergent electromagnetic field (1, 17, 18) of topo-
logical spin textures. There has been much work on refining these
theories (19-23) and on analyzing the effects of SOC (24-32) on the
conduction electrons interacting with skyrmions. In particular,
Bouaziz et al. (32) have analyzed the scattering of electrons from a
single skyrmion, without including the anomalous velocity arising
from k-space Berry curvature, and have found a noncollinear Hall
contribution in addition to THE and the extrinsic AHE.

We emphasize, however, that a single theory that incorporates both
real- and momentum-space Berry curvature effects to calculate trans-
port has remained elusive. We present here a unified theory of THE
and the intrinsic AHE in chiral magnets that accomplishes this goal.

RESULTS
The semiclassical approach has been tremendously successful in
understanding electronic transport in metals (33). It is the natural
avenue to study the effects of both r-space and k-space Berry curva-
tures on an equal footing, which also requires the inclusion of mixed
phase-space curvatures in our analysis (13, 34). The derivation of
the semiclassical equations of motion (13) of suitably defined wave
packets in phase space is rigorously justified when there is a separa-
tion of length scales: Both the scale L on which the spin texture varies
and the mean-free path € from impurity scattering must be much
larger than the microscopic-scale k;;' of order the lattice spacing a.
To determine the Hall resistivity, we solve the Boltzmann equa-
tion to linear order in the electric field in the presence of all phase-
space curvatures and real- and momentum-space derivatives of the
semiclassical energy eigenvalues. This solution is simplest in the re-
gime Ly > € > k' ~ a. In addition, we exploit the fact that in
the materials of interest, the SOC is weak with A < Ep, the Fermi en-
ergy. Systematically classifying the resulting array of terms in the solu-
tion of the Boltzmann equation in powers of the small parameters
MEg and £/Lg and extracting the leading contributions, we find that
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AHE

THE
Pxy = Pxy

+ Py + Oy (1)

Our semiclassical results are summarized in the table in Fig. 1,
where we show how each term depends (i) on the small parameters
that control our calculation, (ii) on the spatially varying magnetiza-
tion M = M;m(r), and (iii) on the Berry curvatures. While the first
two terms represent the AHE and THE, respectively, the correction
term Jp,, is a curvature-independent boundary contribution pro-
portional to the vorticity of the local electronic velocity field. It van-
ishes when the spin texture is periodic, e.g., a skyrmion crystal, and
is negligible for a disordered skyrmion array in the thermodynamic
limit. We show that the mixed curvatures contribute to the Hall
resistivity at higher order in the small parameters (A/Eg) and (a/L)
than the terms shown in Fig. 1.

Last, we also present results using the Kubo formula in the oppo-
site regime, where € > L > k;l =~ g. We focus on a disorder-free
system with £ = oo, use exact diagonalization in the magnetic unit
cell of a skyrmion crystal, and compute the total Hall conductivity using the
TKNN (Thouless, Kohomoto, Nightingale and den Nijs) formula (35) in
the magnetic Brillouin zone, which includes the effects of both the
anomalous velocity and of the skyrmion topological charge density.

These numerically exact results do not allow a simple partitioning
of the Hall effect into well-defined separate contributions; nevertheless,
we can get qualitative insights into aspects of these results by com-
paring them with the analytical results in the semiclassical regime.

Chiral magnets host skyrmion textures (36) with length scales
10 < L, < 500 nm, while 10 < kpf < 10%, so that the mean-free path
is in the range of 1 $ € < 100 nm. Thus, all regimes of £/L can be
relevant depending on the material. We focus here on the two limits
a < ¥ < Lgand a S Ly < £ where we have control on the analysis,
semiclassics in the former and exact diagonalization in the latter.

Model

We analyze a minimal Hamiltonian for studying the confluence of
AHEs and THEs. It can either arise from an “s-d model” of itinerant
electrons interacting with local moments in a metallic magnet with
SOC or serve as a phenomenological model for conduction electrons
in a metal proximate to a magnetic insulator where broken inversion
symmetry induces interfacial SOC. Our main conclusions are inde-
pendent of the form of the electronic dispersion or of the Rashba SOC
(see Supplementary Text for more detail). For concreteness and sim-
plicity, we consider the simple two-dimensional (2D) Hamiltonian

H——+ (2)

(p xZ)-6 - JM{E): 6+ Himp
which describes itinerant electrons of mass m and Rashba SOC A
whose spin ¢ is coupled to a given magnetic texture M = M;i(r)
via an exchange interaction J. The elastic scattering of electrons off
a disorder potentlal is described by Hlmp and leads to a mean-free
path ¢ > k;'. The small hats denote unit vectors, and the wide hats
denote quantum mechanical operators. On the basis of the separa-
tion of time scales associated with the itinerant electrons and the
dynamics of spins in the texture, we assume that the texture is static.
The model has three energy scales (the Fermi energy Eg, SOC A, and
exchange coupling J) and three length scales [the interparticle spacing
k;' (~a, the lattice spacing), the mean-free path £, and the length scale
Ly associated to the spatial variations of the magnetic texture]. We
will focus on the weak SOC regime A < J, E, relevant for experiments.
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Semiclassical equations of motion

Let us first focus on the semiclassical regime Ls > k;;'. To analyze
the dynamics of electron wave packets in phase space & = (x, y, ky,
ky), we follow the standard prescription (13) to construct the semi-
classical Hamiltonian

HE)=

+ d€)-o (3)
where d(§)= ak(k x Z) — Ji(r) captures the quantum mechanical nature
of the spin. The semiclassical eigenenergies are £.(§) = h’K*/2m +
| d(€) | . The corresponding wave functions have nontrivial phase-
space geometry encoded in the Berry curvatures
O} p(®) = +3d(2) (:A() x 9d(&)) (4)
each corresponding to one of the six orthogonal planes in the 4D
phase space spanned by &. The band index is a constant of motion
in the semiclassical theory, and each electronic band may be treated
independently; we will suppress the band index unless necessary.
The curvatures modify the equations of motion and the invariant
measure in phase space. To simplify the notation, we introduce a 4 x
4 matrix
(F©)]ap =

Qu,ﬁ(&)_[icy ®1]0h[3 (5)

to write the equations of motion

Ea(€)=[T7'(§) Jup (9pE (&) +eE 8p) /7 (6)
where E is the external electric field along the § direction, and the
electron charge is (—e). Here, £(&) ~ &(&) up to corrections of order
(MEg)(a/Ls) that can be ignored in the regime of interest. Our com-
pact notation hides all the familiar terms, including the anomalous
velocity, inside I (see Supplementary Text for more details).

The combination of a spatially varying magnetic texture and
SOC leads to finite real-space, momentum-space, and mixed real-
momentum-space curvatures. The electrons acquire an anomalous
velocity proportional to the momentum-space Berry curvature
Qix ky» an “anomalous force” proportional to the real-space Berry
curvature Q,, and corrections to the group velocity, and general-
ized force proportional to the mixed real-momentum-space Berry
curvatures.

Crucially, in addition to the equations of motion, the curvatures
also modify the volume element that remains invariant under phase-
space flows. Thus, to satisfy Liouville’s theorem, one must use the
integration measure dVe = vdet [I(§)] aie/ (2m)?V, where V is
the volume of the system (13). We note that in the presence of an
external magnetic field B.Z, \det [I'(§)] reduces to the well-known
factor of (1 + eQjyx,B./h) when only the momentum-space curva-
ture is present; however, we will need the more general result here.

Hall conductivity
With electric field applied along §, we must calculate the transverse
current along X

Jx=—eJdVe x(€) fE) @)

where f(§) is the electronic distribution function. The distribution
function reduces to the equilibrium Fermi-Dirac function f M)
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2
pAHE l <E) 2 / ﬁ m Momentum-space
o Er 14 v o curvature (Qp, k)
2 2
THE a d*r Real-space
Pay (Z) v m - Jpm x 8 my curvature (€2 )
N a " r Independent of curvatures
5Pwy (F) (f) / v (Opmg + 8y7ny) Boundary term, vanishes
F S for periodic textures

Fig. 1. Summary of results. The semiclassical wave packet follows the texture and is influenced by real-space Berry curvature arising from the presence of skyrmions, in
addition to the anomalous velocity that it acquires from an external electric field and momentum-space Berry curvature. Our results are obtained in the regime where
spin texture length scale L; » mean-free path / » g, the lattice spacing, and weak SOC A < Ef, the Fermi energy. The table summarizes the three contributions to p,y, their
scaling with these parameters, their dependence on the magnetic texture m (r), and their relation to Berry curvatures. Mixed momentum- and real-space curvatures

contribute to the Hall resistivity at higher order in (\/Eg) and (a/Ls).

in the absence of the external electric field. The goal is to find contri-
butions thatarelinear order in E to calculate the electric conductivity.

The anomalous Hall contribution to the current derives from the
intrinsic anomalous velocity and couples to the equilibrium distri-
bution function f o [E()]. We isolate the terms in  linear in E to find

ot = £ Zf‘izr)d ECHEIG) (®)
where [ = + indexes the two bands. We emphasize that v/det [T'(§)]
in the measure exactly cancels the determinant factor in F_l(é) S0
that the final answer depends only on the momentum-space Berry
curvature. We further expand Qyx,(&) to the lowest order inA/J to find

2 2
AHE ., _e‘a” __ 2
Oxy = o m, (M) l;lnl 9)

where 7, = [d*r fii,(r)/V is the average out-of-plane magnetiza-
tion and the band-resolved density is n; = [ d°k f°[£(k)]/(2x)* with
&E(k) =&k 1 =0).

The corresgonding resistivity is found from the conductivity via
Pxy = —Ouxyl (O + G;Z(y), where 0, < Oy = (€*/h)kgt. This relation-
ship will be used to convert conductivities to resistivities for each
contrlbutlon to the Hall effect. For the AHE, this leads to the scaling
relation px}, ~ (MEp)* (alt)™

All other contributions to the Hall response involve the electric
field-induced perturbations to the distribution function determined
by solving the Boltzmann equation. We expand the distribution
function to linear order in the electric field, f = f* + g + O(E?), and
substitute it into the Boltzmann equation with a relaxation time t =
£/vg to find the equation for g

(1+18".ve)g®= -1 vef1£©)] (10)

where é(l) and é(D) are the electric field-independent and electric
field- dependent parts of  in Eq. 6. We now take advantage of the
fact that t& 0 - Ve ~ (8/Ls) (a/Ls) < 1 when £/Ls < 1 to invert the
operator on the left-hand side and solve for g(§). This is analogous
to the Zener-Jones calculation (33) of the Hall conductivity in the
weak field regime .t < 1. Solving the Boltzmann equation for
Ly <4 is technically much harder. We will investigate aspects of
this regime usmg the Kubo formalism below.

The term g m) (&) linear in 1 does not contribute to the Hall con—
ductivity, and the leading order contribution proportional to t* is
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@)= v (e vefree)) (11)

We emphasize that this equation involves all six curvatures along
with mixed derivatives of the semiclassical eigenenergies. Combining
(2)(@ with Eq. 7, we calculate the current that is linear in E

2 = —e?ave V@) £V ve(e” Ve 1E©))  (12)

We organize the calculation of the conductivity by classifying
the various terms in Eq. 12 in powers of the small parameters A/Egp
and a/L; (see Supplementary Text for details). We now discuss the
leading order contributions.

We first focus on the zeroth-order term in (A/Er). Without SOC,
all curvatures vanish except the real-space curvature that leads to
the topological Hall contribution

2
oy = & h3 sklZlCz(u (13)

Here, ng = [d*ri- (9 . x d,im)/(4nV) is the skyrmion den-
sity and

Kau)=#h'[ S k<af0> M -TeM Ty (4)

is a Fermi surface integral that depends on the chemical potential n
(or filling n) and the band index. Here, v = Vi &E(E)/h is the band
velocity vector, and M;VI = Ok.k EE)/ 12 is the inverse mass tensor.
The semiclassical theory illuminates the relationship between the
real-space Berry curvature that is a property of the spatial evolution
of the semiclassical Bloch eigenstates and the skyrmion density that
is a property of the spatial evolution of the magnetization vector. In
the absence of SOC, Qiy = ¥ - (0,M x d,1)/2. Theresult of Eq. 13
bears a notable resemblance to the canonical solution (33) for the
semiclassical Hall conductivity with the real-space Berry curvature

Q,, playing the role of an external magnetic field, in agreement with
the intuitive picture behind THE The correspondlng resistivity is
independent of T and scales as px}, ~ (alLg)*.

Next, we focus on terms linear in (A Eg). Although there are several
terms, there is only one that is linear in (a/Ls). It originates from
mixed spatial- and momentum-space derivatives of the semiclassi-
cal energies £(&) and is independent of all Berry curvatures

621?2
8(5)()/ = _WE_ w;n (15)
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where @; = 1/V[d’r Z - (V, x vi(r)) is the average “vorticity” of
electrons in band [ with velocity vi(r) that is linear in A (see Supple-
mentary Text for details) and #; is the band-resolved density defined
below Eq. 9. The intuition behind this term is that real-space gradients
of the magnetic texture can lead to orbital electronic motion akin to
the dynamics induced by an external magnetic field. For the Rashba
SOC considered here, the vorticity simplifies to ~fdr V, - m(r).
This term has been discussed in the literature (24, 26, 29, 30) as a
O() correction to the emergent magnetic field arising from skyrmions.
Here, this contribution arises not from SOC corrections to the
real-space Berry curvature but instead from mixed momentum-
and real-space derivatives of the semiclassical eigenvalues. Similar
to THE, the corresponding resistivity is independent of t but instead
scales as dpyy ~ (a/Ls)(AM/Ep). We note, however, that p,, vanishes
identically for any periodic spin texture, such as a skyrmion crystal.
More generally, for any smooth texture for which v(r) has continuous
first-order partial derivatives, we can use Stokes’ theorem and show
that the vorticity leads only to a boundary term that is negligible in
the thermodynamic limit.

All other contributions to o, including the mixed curvature terms,
scale as (AMJ)? (£/Ly)* and hence will be negligible compared to the
dominant anomalous Hall G)%,HE ~ (M))? and topological Hall
GI},{E ~ (£/Lg)? contributions (see Supplementary Text for details).
Thus, we have used the semiclassical approach that treats all curva-
tures on equal footing to conclude that AHE and THE are additive
and the largest contribution to the Hall effect for Ly > £.

We briefly comment on (37), which presents a Hall calculation
that ignores the spatial dependence of the distribution function and
focuses only on the mixed curvature, neglecting Q. x, and Q.. Thus,
they do not obtain our result (Eq. 1), which is just the sum of THE
and the intrinsic AHE.

Kubo formula analysis

We next turn to the opposite limit of small skyrmions such thata ~
ki' S Ly < €and numerically demonstrate that, although the re-
gime of interest is physically very different from the semiclassical
regime described above, some of the qualitative features of the Hall
signal remain intact. We set the mean-free path to infinity and use
an exact Kubo formula to numerically calculate the Hall conductivity
for a lattice model of itinerant electrons in the presence of a skyrmion

>

crystal (see Supplementary Text for details). The starting Hamiltonian
is a tight-binding generalization of Eq. 2 describing electrons on a
lattice with nearest neighbor hopping t and Rashba SOC A, coupled
to a background spin texture described by local moments m; at each
lattice site i. The skyrmion crystal defines an enlarged N x N unit
cell, where N, = L¢/a, and results in a magnetic Brillouin zone with
Ny = 2N?bands. We present here results for a triangle lattice, but
as we show in Supplementary Text, our results are independent of
the lattice for low densities.

We use exact diagonalization to compute the energy eigenvalues
and eigenfunctions of our lattice Hamiltonian and then use the TKNN
formula (35) to determine the Hall conductivity in terms of the
momentum-space Berry curvature in the magnetic Brillouin zone.
Note that this numerically exact procedure includes all the effects of
the anomalous velocity and the real-space Berry curvature arising
from the skyrmions; however, unlike the semiclassical theory, it is
hard to decompose the final result into AHE and THE contributions.
We thus proceed as follows. We first show that in various limits,
one obtains just the AHE (in a ferromagnetic background) or just
the THE (in a skyrmion crystal with A = 0). Last, we consider the full
problem and gain qualitative insights into the numerical results by
comparing them with the semiclassical results described above.

First, consider the simplest ferromagnetic case with uniform mag-
netization m; = Z (independent of i). which is just the lattice version
of the continuum model analyzed in (13) with their Ao, correspond-
ing to our Jo,. An AHE is seen in this case, provided that both A and
J are nonzero. The SOC A breaks the twofold spin degeneracy of the
bands everywhere except at the time-reversal invariant momenta
(TRIM) where time reversal (TR) enforces a Kramers degeneracy. A
nonzero J destroys TR symmetry, causes band inversion, and creates
Berry curvature hotspots at TRIMs that then lead to an enhance-
ment of the AHE conductivity whenever the Fermi level falls near
the TRIM points.

We next look at a skyrmion crystal but set A = 0 so that there is
no AHE (although the net M, is nonzero). The Fourier modes of the
periodic texture cause scattering between momentum eigenstates and
lead to band folding. At strong coupling J/t > 1, the bands separate
into two sectors with the spins aligned/antialigned with the local mag-
netic texture. The corresponding Hall conductivity is the THE arising
from a nonzero skyrmion number. It shows a nontrivial dependence on

N

Ozy [62/ h}

100<

oryle*/h]

LoJt=0010 0050 10
1071
n=01e 005 e ]

0.10

0.05
N J

05 1.0 0.00

J/t

Fig. 2. Kubo formula results for Hall conductivity. (A) The blue curve is THE calculated at A = 0 with J/t = 10. The red curve shows £ = K, + K_ (Eq. 14) plotted as a
function of density n, which describes how the band structure controls the semiclassical result of Eq. 13. Despite their different regimes of validity, the Kubo ,, and semi-
classical K(n) have the same sign and vanish at the van Hove fillings where the Fermi surface undergoes a Lifshitz transition. (B) o, as a function of J/t for two densities n =
0.1 (blue) and 0.05 (green); circles are at A = 0 and triangles at A/t = 0.1. 6, rises linearly for small J/t and asymptotes at large J/t to a constant that scales roughly with n,
consistent with the semiclassical results (see the main text). The n dependence of the slope at small J/t is not seen in the semiclassical regime. (C) Variation of 6, (log scale)
with A/J at fixed n = 0.1 for different J/t values. The fractional change due to SOC is seen to be largest at small J/t.
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the band filling as seen in Fig. 2A (blue curve). Comparing this with
the semiclassical THE prediction of Eq. 13 (red curve), we see that
these results, although obtained in very different regimes, share some
qualitative features. Both have the same sign at each density and
vanish at the van Hove filling where the Fermi surface undergoes a
Lifshitz transition.

Next, we examine the J/t dependence of the Kubo results for o,
in Fig. 2B. We see a linear regime at small ]/ crossing over to satu-
ration at large J/t. We can gain some insight into these results, at least
at A = 0, by looking at the J dependence of the semiclassical result
(Eq. 13), which predicts both an initial linear rise and an asymptotic
large J value that scales with n (see Supplementary Text). However,
the semiclassical result has an initial slope independent of density #,
unlike what is seen in Fig. 2B.

Last, we turn to the SOC dependence of the Kubo results. From
Fig. 2B, we already see that the relative effect of A is smaller in the “strong
coupling” regime J/t 2 1. To see this more clearly, we plot in Fig. 2C
Oxyon alog scale as a function of A/J for various values of J/t. We see
that the effect of SOC is, in general, small, with the largest fractional
change observed for small J/t. The A-dependent change to the topolog-
ical Hall signal at A = 0 is, by definition, some form of an AHE. The
numerically exact Kubo results, however, do not allow us to definitively
identify its physical origin, which could be related to, e.g., the intrinsic
AHE proportional to the magnetization M; or the chiral Hall effect
arising from a single spatial gradient of the magnetic texture (31).

DISCUSSION

We have presented a complete semiclassical analysis in the weak
SOC A < Eg regime for a <« £ < Ls and demonstrated that the Hall
resistivity is the sum of an anomalous Hall contribution, arising
from the momentum-space Berry curvature and proportional to the
average out-of-plane magnetization, and a topological Hall contri-
bution, arising from the real-space Berry curvature and proportion-
al to the skyrmion density. All corrections were explicitly shown to
be higher order in the small parameters. The semiclassical results
are valid for any spin texture without any assumption about its pe-
riodicity. In the opposite limit Ly <« € = o (zero disorder), we have
presented exact Kubo formula results for skyrmion crystals.

We conclude by noting effects that we have not included and ques-
tions for further study. We focused on the intrinsic AHE, arising for
momentum-space Berry curvature, often the dominant contribution
(12) to the AHE, but did not consider extrinsic effects such as skew
and side jump scattering. We have also not analyzed nonperiodic
spin textures that vary on a length scale Ly < € (23). Such a regime
has been analyzed (32) in the context of electrons scattering off a single
skyrmion with the prediction of a noncollinear Hall effect propor-
tional to the SOC. It would be interesting to extend our semiclassi-
cal analysis to this regime.

In the semiclassical regime that we have examined in detail, we
found a previously unidentified vorticity term that is linear in A (Eq. 15).
We were able to use Stokes’ theorem to reduce it to a boundary term that
vanishes for periodic textures. An interesting question for further study
is the fate of this term in the presence of singularities, such as Bloch
points, that may act as obstructions to the use of Stokes theorem.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq2765
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