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C O N D E N S E D  M A T T E R  P H Y S I C S

Unified theory of the anomalous and topological Hall 
effects with phase-space Berry curvatures
Nishchhal Verma†, Zachariah Addison†, Mohit Randeria*

Spontaneously broken time-reversal symmetry in magnetic materials leads to a Hall response, with a nonzero 
voltage transverse to an applied current, even in the absence of external magnetic fields. It is common to analyze 
the Hall resistivity of chiral magnets as the sum of two terms: an anomalous Hall effect arising from spin-orbit 
coupling and a topological Hall signal coming from skyrmions, which are topologically nontrivial spin textures. 
The theoretical justification for such a decomposition has long remained an open problem. Using a controlled 
semiclassical approach that includes all phase-space Berry curvatures, we show that the solution of the Boltzmann 
equation leads to a Hall resistivity that is just the sum of an anomalous term arising from momentum-space cur-
vature and a topological term related to the real-space curvature. We also present numerically exact results from 
a Kubo formalism that complement the semiclassical approach.

INTRODUCTION
Skyrmions in chiral magnets are topological spin textures (1) that 
are of great interest both for their fundamental properties and their 
technological promise as new platforms for information storage and 
computation. These textures can be directly imaged using a variety 
of techniques, but their simplest experimental signature is in electri-
cal transport. The “topological charge” density of skyrmions affects 
the flow of electrons via a real-space Berry curvature and leads to the 
topological Hall effect (THE). This, however, is only part of the mea-
sured Hall resistivity data in chiral magnets.

Hall data in these systems are routinely analyzed as a sum of two 
nontrivial contributions, an anomalous Hall effect (AHE) that ex-
ists in the presence of a net magnetization and the THE described 
above, in addition to the ordinary Hall response proportional to the 
external field. This has become the standard way of interpreting Hall 
data in skyrmion materials ranging from conducting B20 crystals (2–4) 
and thin films (5–7) to heavy metal/magnetic insulator bilayers (8, 9).

Despite much effort, however, a rigorous theoretical justification 
for expressing the total Hall resistivity as the sum of these contribu-
tions has been lacking thus far. Here, we demonstrate that the Hall 
resistivity can be written as the sum of the AHE and THE within a 
controlled calculation. While our final result is simple, its derivation 
involves a complex route: developing a semiclassical formalism that 
takes into account all phase-space Berry curvature effects on an equal 
footing, including r-space, k-space, and mixed curvatures, and solv-
ing the Boltzmann transport equation in a controlled fashion.

To put our work in perspective, we note that existing theories of 
the AHE and THE are distinct, and efforts to combine them have 
not led to simple predictions in the past. Karplus and Luttinger (10) 
identified the importance of spin-orbit coupling (SOC) in the AHE.  
Their analysis is now best understood in terms of an anomalous 
velocity of conduction electrons arising from the k-space Berry cur-
vature of the band structure (11–13) in a system with a net magne-
tization. Additional extrinsic contributions to the AHE arise from 
scattering processes (14, 15) in the presence of SOC. However, it is 

well established that the intrinsic k-space Berry curvature effect 
dominates over the extrinsic scattering contribution in many AHE 
experiments (12, 16). We thus focus below only on the intrinsic part 
of the AHE.

Theories of THE, on the other hand, are based on a real-space 
Berry curvature effect that arises from the coupling of the conduc-
tion electrons to emergent electromagnetic field (1, 17, 18) of topo-
logical spin textures. There has been much work on refining these 
theories (19–23) and on analyzing the effects of SOC (24–32) on the 
conduction electrons interacting with skyrmions. In particular, 
Bouaziz et al. (32) have analyzed the scattering of electrons from a 
single skyrmion, without including the anomalous velocity arising 
from k-space Berry curvature, and have found a noncollinear Hall 
contribution in addition to THE and the extrinsic AHE.

We emphasize, however, that a single theory that incorporates both 
real- and momentum-space Berry curvature effects to calculate trans-
port has remained elusive. We present here a unified theory of THE 
and the intrinsic AHE in chiral magnets that accomplishes this goal.

RESULTS
The semiclassical approach has been tremendously successful in 
understanding electronic transport in metals (33). It is the natural 
avenue to study the effects of both r-space and k-space Berry curva-
tures on an equal footing, which also requires the inclusion of mixed 
phase-space curvatures in our analysis (13, 34). The derivation of 
the semiclassical equations of motion (13) of suitably defined wave 
packets in phase space is rigorously justified when there is a separa-
tion of length scales: Both the scale Ls on which the spin texture varies 
and the mean-free path 𝓁 from impurity scattering must be much 
larger than the microscopic-scale ​​k​F​ −1​​ of order the lattice spacing a.

To determine the Hall resistivity, we solve the Boltzmann equa-
tion to linear order in the electric field in the presence of all phase-
space curvatures and real- and momentum-space derivatives of the 
semiclassical energy eigenvalues. This solution is simplest in the re-
gime ​​L​ s​​ ≫ ℓ ≫ ​k​F​ −1​ ≃ a​. In addition, we exploit the fact that in 
the materials of interest, the SOC is weak with  ≪ EF, the Fermi en-
ergy. Systematically classifying the resulting array of terms in the solu-
tion of the Boltzmann equation in powers of the small parameters 
/EF and 𝓁/Ls and extracting the leading contributions, we find that
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	​​ ​ xy​​  = ​ ​xy​ AHE​ + ​​xy​ THE​ + ​​ xy​​​	 (1)

Our semiclassical results are summarized in the table in Fig. 1, 
where we show how each term depends (i) on the small parameters 
that control our calculation, (ii) on the spatially varying magnetiza-
tion ​M = ​M​ s ​​ ​̂  m​(r)​, and (iii) on the Berry curvatures. While the first 
two terms represent the AHE and THE, respectively, the correction 
term xy is a curvature-independent boundary contribution pro-
portional to the vorticity of the local electronic velocity field. It van-
ishes when the spin texture is periodic, e.g., a skyrmion crystal, and 
is negligible for a disordered skyrmion array in the thermodynamic 
limit. We show that the mixed curvatures contribute to the Hall 
resistivity at higher order in the small parameters (/EF) and (a/Ls) 
than the terms shown in Fig. 1.

Last, we also present results using the Kubo formula in the oppo-
site regime, where ​ℓ ≫ ​ L​ s​​  ≳ ​ k​F​ −1​  ≃  a​. We focus on a disorder-free 
system with 𝓁 = ∞, use exact diagonalization in the magnetic unit 
cell of a skyrmion crystal, and compute the total Hall conductivity using the 
TKNN (Thouless, Kohomoto, Nightingale and den Nijs) formula (35) in 
the magnetic Brillouin zone, which includes the effects of both the 
anomalous velocity and of the skyrmion topological charge density.

These numerically exact results do not allow a simple partitioning 
of the Hall effect into well-defined separate contributions; nevertheless, 
we can get qualitative insights into aspects of these results by com-
paring them with the analytical results in the semiclassical regime.

Chiral magnets host skyrmion textures (36) with length scales 
10 ≲ Ls ≲ 500 nm, while 10 ≲ kF𝓁 ≲ 103, so that the mean-free path 
is in the range of 1 ≲ 𝓁 ≲ 100 nm. Thus, all regimes of 𝓁/Ls can be 
relevant depending on the material. We focus here on the two limits 
a ≪ 𝓁 ≪ Ls and a ≲ Ls ≪ 𝓁 where we have control on the analysis, 
semiclassics in the former and exact diagonalization in the latter.

Model
We analyze a minimal Hamiltonian for studying the confluence of 
AHEs and THEs.  It can either arise from an “s-d model” of itinerant 
electrons interacting with local moments in a metallic magnet with 
SOC or serve as a phenomenological model for conduction electrons 
in a metal proximate to a magnetic insulator where broken inversion 
symmetry induces interfacial SOC. Our main conclusions are inde-
pendent of the form of the electronic dispersion or of the Rashba SOC 
(see Supplementary Text for more detail). For concreteness and sim-
plicity, we consider the simple two-dimensional (2D) Hamiltonian

	​ ​̂  ℋ​  = ​  ​​  p​​​ 2​ ─ 2m ​ + ​ a ─ ħ ​(​̂  p​ × ​   z​ ) · − J ​̂  m​(​   r​ ) ·  + ​​̂  ℋ​​ imp​​​	 (2)

which describes itinerant electrons of mass m and Rashba SOC  
whose spin  is coupled to a given magnetic texture ​M = ​ M​ s​​  ​̂  m​(r)​ 
via an exchange interaction J. The elastic scattering of electrons off 
a disorder potential is described by ​​​̂  ℋ​​ imp​​​ and leads to a mean-free 
path ​ℓ ≫ ​ k​F​ −1​​. The small hats denote unit vectors, and the wide hats 
denote quantum mechanical operators. On the basis of the separa-
tion of time scales associated with the itinerant electrons and the 
dynamics of spins in the texture, we assume that the texture is static. 
The model has three energy scales (the Fermi energy EF, SOC , and 
exchange coupling J) and three length scales [the interparticle spacing ​​
k​F​ −1​​ (≈a, the lattice spacing), the mean-free path 𝓁, and the length scale 
Ls associated to the spatial variations of the magnetic texture]. We 
will focus on the weak SOC regime  ≪ J, EF, relevant for experiments.

Semiclassical equations of motion
Let us first focus on the semiclassical regime ​​L​ s​​ ≫ ​ k​F​ −1​​. To analyze 
the dynamics of electron wave packets in phase space  = (x, y, kx, 
ky), we follow the standard prescription (13) to construct the semi-
classical Hamiltonian

	​ ℋ( ) = ​ ​ħ​​ 2​ ​k​​ 2​ ─ 2m  ​ + d( ) · ​	 (3)

where ​d( ) = a(k ×  ​   z​ ) −  J​̂  m​(r)​ captures the quantum mechanical nature 
of the spin. The semiclassical eigenenergies are ℰ±() = ħ2k2/2m ± 
∣d()∣. The corresponding wave functions have nontrivial phase-
space geometry encoded in the Berry curvatures

	​​ ​,​ 
± ​ () = ± ​ 1 ─ 2 ​​̂  d​( ) ·(​∂​ ​​​  d​() × ​∂​  ​​​  d​( ))​	 (4)

each corresponding to one of the six orthogonal planes in the 4D 
phase space spanned by . The band index is a constant of motion 
in the semiclassical theory, and each electronic band may be treated 
independently; we will suppress the band index unless necessary.

The curvatures modify the equations of motion and the invariant 
measure in phase space. To simplify the notation, we introduce a 4 × 
4 matrix

	​​ [( ) ]​ ,​​  = ​ ​ ,​​( ) − ​[i ​​ y​​ ⊗ 1]​ 
,

​​​	 (5)

to write the equations of motion

	​​​  ̇ ​​ ​​( ) = ​[​​​ −1​( ) ]​ ​​ (​∂​ ​​​   ℰ ​( ) + eE ​​ ,y​​ ) / ħ​	 (6)

where E is the external electric field along the ​​  y​​ direction, and the 
electron charge is (−e). Here, ​​̃  ℰ​( ) ≃  ℰ()​ up to corrections of order 
(/EF)(a/Ls) that can be ignored in the regime of interest. Our com-
pact notation hides all the familiar terms, including the anomalous 
velocity, inside −1 (see Supplementary Text for more details).

The combination of a spatially varying magnetic texture and 
SOC leads to finite real-space, momentum-space, and mixed real-
momentum–space curvatures. The electrons acquire an anomalous 
velocity proportional to the momentum-space Berry curvature 
kx,ky, an “anomalous force” proportional to the real-space Berry 
curvature x,y and corrections to the group velocity, and general-
ized force proportional to the mixed real-momentum–space Berry 
curvatures.

Crucially, in addition to the equations of motion, the curvatures 
also modify the volume element that remains invariant under phase-
space flows. Thus, to satisfy Liouville’s theorem, one must use the 
integration measure ​d ​V​ ​​  = ​ √ 

_
 det  [()] ​  ​d​​ 4​  / ​(2)​​ 2​ V​, where V is 

the volume of the system (13). We note that in the presence of an 
external magnetic field ​​B​ z​​​   z ​​, ​​√ 

_
 det [( ) ] ​​ reduces to the well-known 

factor of (1 + ekx,kyBz/ħ) when only the momentum-space curva-
ture is present; however, we will need the more general result here.

Hall conductivity
With electric field applied along ​​  y​​, we must calculate the transverse 
current along ​​  x​​

	​​ j​ x​​ = − e∫ ​dV​ ​​ ​x ̇ ​() f()​	 (7)

where f() is the electronic distribution function. The distribution 
function reduces to the equilibrium Fermi-Dirac function f 0[ℰ()] 
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in the absence of the external electric field. The goal is to find contri-
butions that are linear order in E to calculate the electric conductivity.

The anomalous Hall contribution to the current derives from the 
intrinsic anomalous velocity and couples to the equilibrium distri-
bution function f 0[ℰ()]. We isolate the terms in ​​x ̇ ​​ linear in E to find

	​​ ​xy​ AHE​ = − ​ ​e​​ 2​ ─ ħ ​ ​ ∑ 
l=±

​​​∫ ​ ​d​​ 2​ r ​d​​ 2​ k ─ 
​(2)​​ 2​ V

 ​ ​​​k​ x​​,​k​ y​​​ 
l  ​() ​f ​l​ 

0​ [ ​ℰ​ l​​( ) ]​	 (8)

where l = ± indexes the two bands. We emphasize that ​​√ 
_

 det [( ) ] ​​ 
in the measure exactly cancels the determinant factor in −1() so 
that the final answer depends only on the momentum-space Berry 
curvature. We further expand kx,ky() to the lowest order in /J to find

	​​ ​xy​ AHE​ ≈ − ​ ​e​​ 2​ ​a​​ 2​ ─ 2ħ  ​ ​​ _ m ​​ z​​ ​( / J)​​ 2​ ​ ∑ 
l=±

​​​ l ​n​ l​​​	 (9)

where ​​​ _ m ​​ z​​ =  ∫ ​d​​ 2​ r  ​​  m​​ z​​(r)/V​ is the average out-of-plane magnetiza-
tion and the band-resolved density is nl = ∫ d2k f0[ℰl(k)]/(2)2 with 
ℰl(k) = ℰl(k;  = 0).

The corresponding resistivity is found from the conductivity via 
​​​ xy​​ =  − ​​ xy​​ / (​​xx​ 2 ​  + ​​xy​ 2 ​ )​, where xy ≪ xx = (e2/h)kF𝓁. This relation-
ship will be used to convert conductivities to resistivities for each 
contribution to the Hall effect. For the AHE, this leads to the scaling 
relation ​​​xy​ AHE​  ∼ ​ ( / ​E​ F​​)​​ 2​ ​(a/ℓ)​​ 2​​.

All other contributions to the Hall response involve the electric 
field–induced perturbations to the distribution function determined 
by solving the Boltzmann equation. We expand the distribution 
function to linear order in the electric field, f = f 0 + g + O(E2), and 
substitute it into the Boltzmann equation with a relaxation time  = 
𝓁/vF to find the equation for g

	​ (1 +  ​​ ̇ ​​​ 
(I)

​ · ​∇​ ​​ ) g() = −  ​​ ̇ ​​​ 
(D)

​ · ​∇​ ​​ ​f​​ 0​ [ ℰ()]​	 (10)

where ​​​ ̇ ​​​ 
(I)

​​ and ​​​ ̇ ​​​ 
(D)

​​ are the electric field–independent and electric 
field–dependent parts of ​​ ̇ ​​ in Eq. 6. We now take advantage of the 
fact that ​ ​​ ̇ ​​​ (I)​ · ​𝛁​ ​​  ∼  (ℓ / ​L​ s​​ ) (a / ​L​ s​​ )  ≪  1​ when 𝓁/Ls ≪ 1 to invert the 
operator on the left-hand side and solve for g(). This is analogous 
to the Zener-Jones calculation (33) of the Hall conductivity in the 
weak field regime c ≪ 1. Solving the Boltzmann equation for 
Ls ≪ 𝓁 is technically much harder. We will investigate aspects of 
this regime using the Kubo formalism below.

The term g(1)() linear in  does not contribute to the Hall con-
ductivity, and the leading order contribution proportional to 2 is

	​​ g​​ (2)​() = ​​​ 2​ ​​ ̇ ​​​ 
(I)

​ · ​∇​ ​​(​​ ̇ ​​​ 
(D)

​ · ​∇​  ​​ ​f​​ 0​ [ ℰ()])​	 (11)

We emphasize that this equation involves all six curvatures along 
with mixed derivatives of the semiclassical eigenenergies. Combining 
g(2)() with Eq. 7, we calculate the current that is linear in E

	​​ j​x​ (2)​  =  − e ​​​ 2​∫ ​dV​ ​​ ​​x ̇ ​​​ (I)​() ​​ ̇ ​​​ 
(I)

​ · ​∇​ ​​(​​ ̇ ​​​ 
(D)

​ · ​∇​ ​​ ​f​​ 0​ [ ℰ()])​	 (12)

We organize the calculation of the conductivity by classifying 
the various terms in Eq. 12 in powers of the small parameters /EF 
and a/Ls (see Supplementary Text for details). We now discuss the 
leading order contributions.

We first focus on the zeroth-order term in (/EF). Without SOC, 
all curvatures vanish except the real-space curvature that leads to 
the topological Hall contribution

	​​​ ​xy​ THE​  = ​  ​e​​ 2​ ​​​ 2​ ─ 
​ħ​​ 3​

 ​  ​n​ sk​​ ​ ∑ 
l=±

​​​ ​K​ l​​( ) ∣​ 
=0

​​​	 (13)

Here, ​​n​ sk​​  =  ∫ ​d​​ 2​ r  ​̂ m​  · (​∂​ x ​​​ m ​ × ​∂​ y ​​​ m​  )/(4V)​ is the skyrmion den
sity and

	​​​ K​ ±​​( ) = ∓ ​ħ​​ 4​∫ ​ ​d​​ 2​ k ─ (4) ​​(​​ ​ 
∂ ​f​±​ 0 ​

 ─ ∂ ℰ ​​)​​ ​v​​ T​(​𝕄​​ −1​ − Tr ​𝕄​​ −1​ ) v​​	 (14)

is a Fermi surface integral that depends on the chemical potential  
(or filling n) and the band index. Here, v = ∇kℰ()/ħ is the band 
velocity vector, and ​​𝕄​​ −1​  = ​ ∂​ ​k​ ​​,​k​ ​​​​ ℰ( ) / ​ħ​​ 2​​ is the inverse mass tensor. 
The semiclassical theory illuminates the relationship between the 
real-space Berry curvature that is a property of the spatial evolution 
of the semiclassical Bloch eigenstates and the skyrmion density that 
is a property of the spatial evolution of the magnetization vector. In 
the absence of SOC, ​​​x,y​ ± ​   =  ∓  ​̂  m​ · (​∂​ x ​​​  m​ × ​∂​ y ​​​  m​ ) / 2​. The result of Eq. 13 
bears a notable resemblance to the canonical solution (33) for the 
semiclassical Hall conductivity with the real-space Berry curvature 
x,y playing the role of an external magnetic field, in agreement with 
the intuitive picture behind THE. The corresponding resistivity is 
independent of  and scales as ​​​xy​ THE​ ∼ ​ (a / ​L​ s​​)​​ 2​​.

Next, we focus on terms linear in (/EF). Although there are several 
terms, there is only one that is linear in (a/Ls). It originates from 
mixed spatial- and momentum-space derivatives of the semiclassi-
cal energies ℰ() and is independent of all Berry curvatures

	​​ ​ xy​​  =  − ​ ​e​​ 2​ ​​​ 2​ ─ 2m ​ ​ ∑ 
l=±

​​​ ​​ l​​ ​n​ l​​​	 (15)

Fig. 1. Summary of results. The semiclassical wave packet follows the texture and is influenced by real-space Berry curvature arising from the presence of skyrmions, in 
addition to the anomalous velocity that it acquires from an external electric field and momentum-space Berry curvature. Our results are obtained in the regime where 
spin texture length scale Ls ≫ mean-free path l ≫ a, the lattice spacing, and weak SOC  ≪ EF, the Fermi energy. The table summarizes the three contributions to xy, their 
scaling with these parameters, their dependence on the magnetic texture ​​  m​ (r)​, and their relation to Berry curvatures. Mixed momentum- and real-space curvatures 
contribute to the Hall resistivity at higher order in (/EF) and (a/Ls).
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where ​​​ l​​  =  1 / V ∫ ​d​​ 2​ r  ​   z​ · (​𝛁​ r​​ ×  ​v​ l​​(r ) )​ is the average “vorticity” of 
electrons in band l with velocity vl(r) that is linear in  (see Supple-
mentary Text for details) and nl is the band-resolved density defined 
below Eq. 9. The intuition behind this term is that real-space gradients 
of the magnetic texture can lead to orbital electronic motion akin to 
the dynamics induced by an external magnetic field. For the Rashba 
SOC considered here, the vorticity simplifies to ​∼  ∫ dr ​𝛁​ r​​ · ​  m​(r)​. 
This term has been discussed in the literature (24, 26, 29, 30) as a 
O() correction to the emergent magnetic field arising from skyrmions. 
Here, this contribution arises not from SOC corrections to the 
real-space Berry curvature but instead from mixed momentum- 
and real-space derivatives of the semiclassical eigenvalues. Similar 
to THE, the corresponding resistivity is independent of  but instead 
scales as xy ∼ (a/Ls)(/EF). We note, however, that xy vanishes 
identically for any periodic spin texture, such as a skyrmion crystal. 
More generally, for any smooth texture for which v(r) has continuous 
first-order partial derivatives, we can use Stokes’ theorem and show 
that the vorticity leads only to a boundary term that is negligible in 
the thermodynamic limit.

All other contributions to xy, including the mixed curvature terms, 
scale as (/J)2 (𝓁/Ls)2 and hence will be negligible compared to the 
dominant anomalous Hall ​​​xy​ AHE​ ∼ ​ ( / J)​​ 2​​ and topological Hall ​​
​xy​ THE​  ∼ ​ (ℓ / ​L​ s​​)​​ 2​​ contributions (see Supplementary Text for details). 
Thus, we have used the semiclassical approach that treats all curva-
tures on equal footing to conclude that AHE and THE are additive 
and the largest contribution to the Hall effect for Ls ≫ 𝓁.

We briefly comment on (37), which presents a Hall calculation 
that ignores the spatial dependence of the distribution function and 
focuses only on the mixed curvature, neglecting kx,ky and x,y. Thus, 
they do not obtain our result (Eq. 1), which is just the sum of THE 
and the intrinsic AHE.

Kubo formula analysis
We next turn to the opposite limit of small skyrmions such that ​a  ≈ ​
k​F​ −1​  ≲ ​ L​ s​​  ≪  ℓ​ and numerically demonstrate that, although the re-
gime of interest is physically very different from the semiclassical 
regime described above, some of the qualitative features of the Hall 
signal remain intact. We set the mean-free path to infinity and use 
an exact Kubo formula to numerically calculate the Hall conductivity 
for a lattice model of itinerant electrons in the presence of a skyrmion 

crystal (see Supplementary Text for details). The starting Hamiltonian 
is a tight-binding generalization of Eq. 2 describing electrons on a 
lattice with nearest neighbor hopping t and Rashba SOC , coupled 
to a background spin texture described by local moments mi at each 
lattice site i. The skyrmion crystal defines an enlarged Ns × Ns unit 
cell, where Ns = Ls/a, and results in a magnetic Brillouin zone with ​​
N​ b​​  =  2 ​N​s​ 

2​​ bands. We present here results for a triangle lattice, but 
as we show in Supplementary Text, our results are independent of 
the lattice for low densities.

We use exact diagonalization to compute the energy eigenvalues 
and eigenfunctions of our lattice Hamiltonian and then use the TKNN 
formula (35) to determine the Hall conductivity in terms of the 
momentum-space Berry curvature in the magnetic Brillouin zone. 
Note that this numerically exact procedure includes all the effects of 
the anomalous velocity and the real-space Berry curvature arising 
from the skyrmions; however, unlike the semiclassical theory, it is 
hard to decompose the final result into AHE and THE contributions. 
We thus proceed as follows. We first show that in various limits, 
one obtains just the AHE (in a ferromagnetic background) or just 
the THE (in a skyrmion crystal with  = 0). Last, we consider the full 
problem and gain qualitative insights into the numerical results by 
comparing them with the semiclassical results described above.

First, consider the simplest ferromagnetic case with uniform mag-
netization ​​​  m​​ i​​  = ​    z​​ (independent of i). which is just the lattice version 
of the continuum model analyzed in (13) with their z correspond-
ing to our Jz. An AHE is seen in this case, provided that both  and 
J are nonzero. The SOC  breaks the twofold spin degeneracy of the 
bands everywhere except at the time-reversal invariant momenta 
(TRIM) where time reversal (TR) enforces a Kramers degeneracy. A 
nonzero J destroys TR symmetry, causes band inversion, and creates 
Berry curvature hotspots at TRIMs that then lead to an enhance-
ment of the AHE conductivity whenever the Fermi level falls near 
the TRIM points.

We next look at a skyrmion crystal but set  = 0 so that there is 
no AHE (although the net Mz is nonzero). The Fourier modes of the 
periodic texture cause scattering between momentum eigenstates and 
lead to band folding. At strong coupling J/t ≫ 1, the bands separate 
into two sectors with the spins aligned/antialigned with the local mag-
netic texture. The corresponding Hall conductivity is the THE arising 
from a nonzero skyrmion number. It shows a nontrivial dependence on 

A B C

Fig. 2. Kubo formula results for Hall conductivity. (A) The blue curve is THE calculated at  = 0 with J/t = 10. The red curve shows ​K  = ​ K​ +​​ + ​K​ −​​​ (Eq. 14) plotted as a 
function of density n, which describes how the band structure controls the semiclassical result of Eq. 13. Despite their different regimes of validity, the Kubo xy and semi-
classical ​K(n)​ have the same sign and vanish at the van Hove fillings where the Fermi surface undergoes a Lifshitz transition. (B) xy as a function of J/t for two densities n = 
0.1 (blue) and 0.05 (green); circles are at  = 0 and triangles at /t = 0.1. xy rises linearly for small J/t and asymptotes at large J/t to a constant that scales roughly with n, 
consistent with the semiclassical results (see the main text). The n dependence of the slope at small J/t is not seen in the semiclassical regime. (C) Variation of xy (log scale) 
with /J at fixed n = 0.1 for different J/t values. The fractional change due to SOC is seen to be largest at small J/t.
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the band filling as seen in Fig. 2A (blue curve). Comparing this with 
the semiclassical THE prediction of Eq. 13 (red curve), we see that 
these results, although obtained in very different regimes, share some 
qualitative features. Both have the same sign at each density and 
vanish at the van Hove filling where the Fermi surface undergoes a 
Lifshitz transition.

Next, we examine the J/t dependence of the Kubo results for xy 
in Fig. 2B. We see a linear regime at small J/t crossing over to satu-
ration at large J/t. We can gain some insight into these results, at least 
at  = 0, by looking at the J dependence of the semiclassical result 
(Eq. 13), which predicts both an initial linear rise and an asymptotic 
large J value that scales with n (see Supplementary Text). However, 
the semiclassical result has an initial slope independent of density n, 
unlike what is seen in Fig. 2B.

Last, we turn to the SOC dependence of the Kubo results. From 
Fig. 2B, we already see that the relative effect of  is smaller in the “strong 
coupling” regime J/t ≳ 1. To see this more clearly, we plot in Fig. 2C 
xy on a log scale as a function of /J for various values of J/t. We see 
that the effect of SOC is, in general, small, with the largest fractional 
change observed for small J/t. The -dependent change to the topolog-
ical Hall signal at  = 0 is, by definition, some form of an AHE. The 
numerically exact Kubo results, however, do not allow us to definitively 
identify its physical origin, which could be related to, e.g., the intrinsic 
AHE proportional to the magnetization Mz or the chiral Hall effect 
arising from a single spatial gradient of the magnetic texture (31).

DISCUSSION
We have presented a complete semiclassical analysis in the weak 
SOC  ≪ EF regime for a ≪ 𝓁 ≪ Ls and demonstrated that the Hall 
resistivity is the sum of an anomalous Hall contribution, arising 
from the momentum-space Berry curvature and proportional to the 
average out-of-plane magnetization, and a topological Hall contri-
bution, arising from the real-space Berry curvature and proportion-
al to the skyrmion density. All corrections were explicitly shown to 
be higher order in the small parameters. The semiclassical results 
are valid for any spin texture without any assumption about its pe-
riodicity. In the opposite limit Ls ≪ 𝓁 = ∞ (zero disorder), we have 
presented exact Kubo formula results for skyrmion crystals.

We conclude by noting effects that we have not included and ques-
tions for further study. We focused on the intrinsic AHE, arising for 
momentum-space Berry curvature, often the dominant contribution 
(12) to the AHE, but did not consider extrinsic effects such as skew 
and side jump scattering. We have also not analyzed nonperiodic 
spin textures that vary on a length scale Ls ≲ 𝓁 (23). Such a regime 
has been analyzed (32) in the context of electrons scattering off a single 
skyrmion with the prediction of a noncollinear Hall effect propor-
tional to the SOC. It would be interesting to extend our semiclassi-
cal analysis to this regime.

In the semiclassical regime that we have examined in detail, we 
found a previously unidentified vorticity term that is linear in  (Eq. 15). 
We were able to use Stokes’ theorem to reduce it to a boundary term that 
vanishes for periodic textures. An interesting question for further study 
is the fate of this term in the presence of singularities, such as Bloch 
points, that may act as obstructions to the use of Stokes theorem.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq2765
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