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The observation of 1/B-periodic behavior in Kondo insulators and semiconductor
quantum wells challenges the conventional wisdom that quantum oscillations (QOs)
necessarily arise from Fermi surfaces in metals. We revisit recently proposed theories for
this phenomenon, focusing on a minimal model of an insulator with a hybridization
gap between two opposite-parity light and heavy mass bands with an inverted band
structure. We show that there are characteristic differences between the QO frequencies
in the magnetization and the low-energy density of states (LE-DOS) of these insulators,
in marked contrast to metals where all observables exhibit oscillations at the same fre-
quency. The magnetization oscillations arising from occupied Landau levels occur at the
same frequency that would exist in the unhybridized case. The LE-DOS oscillations in a
disorder-free system are dominated by gap-edge states and exhibit a beat pattern between
two distinct frequencies at low temperature. Disorder-induced in-gap states lead to an
additional contribution to the DOS at the unhybridized frequency. The temperature
dependence of the amplitude and phase of the magnetization and DOS oscillations are
also qualitatively different and show marked deviations from the Lifshitz—Kosevich form
well known in metals. We also compute transport to ensure that we are probing a regime
with insulating upturns in the direct current (DC) resistivity.

quantum oscillations | Kondo insulators | hybridization-gap insulator

Metals are characterized by electronic excitations that are gapless on a locus in momentum
space called the Fermi surface. The most direct probe of the Fermi surface is quantum
oscillations (1) in various thermodynamic and transport measurements that are periodic
in the inverse magnetic field. Insulators, on the other hand, are characterized by a gap,
i.e., the absence of low-energy excitations that respond to electromagnetic fields. It thus
came as a great surprise that Kondo insulators SmBg and YbB12 were found to exhibit
1/ B-periodic oscillations (2-6), despite the absence of gapless electronic excitations in
the bulk. Quantum oscillations have now also been observed in InAs/GaSb semiconductor
quantum wells (7, 8).

Soon after the first experiments, Knolle and Cooper (KC) (9) pointed out that a
simple model of an insulator with a hybridization gap can exhibit deHass van Alphen
(dHvA) oscillations in the magnetization even in the absence of a Fermi surface. The
KC ideas have been extended to include more realistic band structure, hybridization (10,
11), and impurity states (12) with a focus on the low-energy density of states (LE-DOS)
oscillations, which are a proxy for the Shubnikov deHass (SdH) oscillations in transport.

Kondo insulators are strongly correlated, and many exotic mechanisms (Majorana
fermions, fractionalized phases, topological excitations, magnetoexcitons) (13—19) have
also been proposed for understanding the observed oscillations. However, their obser-
vation in semiconductor quantum wells strongly suggests that this phenomenon is not
restricted to correlated materials and is more general than previously anticipated.

In this paper we revisit the hybridization gap insulator (9, 10, 12, 20-26) motivated
by the following question that has not been addressed in earlier work. What actually
determines the frequency of quantum oscillations in an insulator, since—unlike metals—
there is no Fermi surface whose extremal area is being probed? We find a surprising
answer. In marked contrast to metals, different observables in hybridization gap insulators
show different frequencies, for which we find analytical expressions and provide a simple
physical semiclassical picture.

For a clean insulator without any disorder, we show that all occupied Landau levels
contribute to the magnetization (dHvA) oscillations, whose frequency Fj is governed by
the area of the Fermi surface that would have existed in the absence of hybridization.
On the other hand, the low-temperature SdH oscillations in the LE-DOS are dominated
by gap-edge states and exhibit two distinct frequencies Fyy £ 0 F' corresponding to the
locus of the top (bottom) of the valence (conduction) band. We also show that the dHvA
and SdH oscillations exhibit characteristic T-dependent amplitudes and field damping,
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Table 1.
insulator with indirect gap A, > impurity broadening

Summary of results for the low-energy DOS and magnetization (M) oscillations in a hybridization-gap

Observable Contributing states Frequency Field dependence of amplitude T dependence (T — 0 limit)

LE-DOS Gap-edge states Fo = 6F exp [—%} Nonmonotonic [exp (—4,/2T)]
In-gap states (impurities) Fo exp <— z’fhﬁ’c) Monotonically decreasing (constant)

Magnetization M All occupied states Fo exp (f 2’;3’() Nonmonotonic (constant)

o= (h/Zwe)wkE is the unhybridized frequency, 6F = —(m, — my)A,/(4he), and the cyclotron frequency wc = eB/(my + m5), where kg is the unhybridized crossing in k space
between bands with masses m; and m,. The “nonmonotonic” T dependence is qualitatively different from the LK result in metals, while the “monotonically decreasing” amplitude is of

the LK form; see main text.

which differ from the standard Lifshitz—Kosevich (LK) results for
metals (1). Our main results are summarized in Table 1.
Disorder induces in-gap states that impact the quantum oscil-
lations in interesting ways. The dHvA frequency is unchanged,
while the LE-DOS exhibits additional oscillations at F|y along
with those arising from the gap edges. Our results, for which we
provide a simple physical picture, are obtained using analytical
saddle-point calculations in the semiclassical regime, together
with extensive numerical calculations, and give insight into the
frequency, phase, and amplitude of the quantum oscillations and
their dependence on temperature, magnetic field, and disorder.
We introduce in Section 2 our minimal model of a hybridiza-
tion gap insulator and describe its Landau-level spectrum (Fig. 1).
In Section 3 we explain the physical origin of the differences

AW

Fig. 1. Band structure and Landau levels. (A) Energy dispersion £4 (k) in the
absence of disorder. Inset shows the indirect (A;) and direct (Ap) gaps. (B)
Energy levels &, (Eq. 2) for different LL indexes plotted as a function of
1o/ hwe o< 1/B. We focus here on the regime B < B, the critical field (vertical
dashed line) above which the system undergoes a field-induced insulator to
metal transition; see main text and S/ Appendix, section 3 for details. Energy is
given in units of Ap. For our numerical calculations we use m,/m; = 10 and
Ap = 0.04W.
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between the dHvA and SdH oscillations in an insulator, which
are summarized in Fig. 2. Our analytical and numerical results for
the low-energy DOS are described in Section 4 and the results
for magnetization in Section 5. We conclude in Section 6 with
a brief discussion of quantum oscillation experiments in Kondo
insulators and semiconductor quantum wells.

1. Model

We consider a two-dimensional (2D) model of an insulator with
two opposite-parity bands, a light “d” band and an inverted heavy
“f “ band (Fig. 14), with p-wave hybridization. The Hamiltonian

/szk(d;r fkT)Ho(k)(dk fk)Tisgivenby

El(k)l

k)= |

vk~a’], [1]

62(’6)1

Here k = (ky, k), 0 = (04,0,) are Pauli matrices and 1 is
the identity matrix in the spin space for the electron operators
dr = (dit diy)T and fi = (fer fry)”. The dispersion of the
unhybridized bands is €1 (k) = h?k?/2m; and ex(k) = W —
h%k?/2mg. Unless otherwise mentioned, we set the chemical
potential i at g = Wmy/my, corresponding to the crossing of
the unhybridized bands. Here m.y = mymg/(ma & my ), and the
Fermi wave vector kg = /2m W /h.

The parameter v, which couples opposite spins in the two
bands, controls the hybridization gap. As shown in Fig. 14, the

insulator has a direct band gap Ap =24/2my Wo/hi and an
indirect band gap A = 2[\/mimg/(m1 + m2)]Ap. We choose
v so that Ap < pg, so that the hierarchy of energy scales is
myv?/h? < Ap < Ap < pp < W. A table of symbols used in
our analysis is given in S/ Appendix, section 1 for ready reference.

The minimal model of Eq. 1. has been widely used to study
electronic properties (27) and quantum oscillations (10, 12) in
Kondo insulators. It also has close similarity with models of
InAs/GaSb quantum wells (7, 8, 11).

We incorporate the effects of impurities, following ref. 12,
with an effective non-Hermitian Hamiltonian H (k) obtained by
replacing €; (k) — €; (k) —oI'; for bands j = 1,2 in Eq. 1. The
frequency- and momentum-independent imaginary self-energies
are impurity scattering rates 'y, I's > 0 for the light- and heavy-
mass bands, respectively. For our numerical calculations we con-
sider both I'y > T'y and I'y < T'g. The ratio of the light- and
heavy-band scattering rates is not important for any of our main
conclusions and analytical derivations.

H(k) can be diagonalized to obtain complex eigenvalues
gi(k) = (61 + €3 — oI+ \/(61 — €2 — Z"}/)z + 4U2k2)/2,
whereI' =T'; + I'yand v =1"; — I's. Each eigenvalue is twofold
degenerate given the 1| and |1 hybridization.

Disorder leads to a finite DOS at the chemical potential. We
focus here on the insulating regime (]| < Ap) with a finite
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Fig. 2. Physical origin of the distinct frequencies for LE-DOS and magnetization oscillations. (A and B) Band structure and Landau levels in the limit of zero
hybridization v = 0. For chemical potential at the band crossing energy o = h2kZ/2m; at the wavevector kg, the SdH and dHvA oscillations have the same
frequency F, determined by the Fermi surface area wkZ. The fields B and B’ (B < B') correspond to two successive crossings of an LL through . (C and D) At
finite hybridization v # 0, the LE-DOS or SdH oscillations arise through thermal activation from crossing of energy levels through the hybridization-gap edges
& and &, of the conduction [£4 (k)] and valence [£_ (k)] bands, respectively. The areas wk? and 7k? at the gap edges determine the frequencies. In addition,
in the presence of disorder, the impurity-induced in-gap DOS (green shaded) has 1/B-periodic modulation with frequency Fy. (E and F) The dHVA oscillations
in magnetization arise from a fictitious particle-hole symmetric band structure £ (k) centered around zero energy. At T = 0, the oscillations occur due to
sequential entries or exits of additional energy levels, e.g., at fields B and B’, into the electron-like part (yellow shaded) of £_ (k) from the hole-like part (blue
shaded) of the band through the gap edge at —Ap/2. The latter corresponds to the semiclassical orbit at wavevector ke with area wkZ and thus the frequency

Fo of dHVA oscillations in the hybridization-gap insulator.

gap Re[&4 (kr) — E_(kr)] = /A% — 72 at kr (12). We do not
discuss the semimetallic regime (|| > A p) with zero gap, which
exhibits usual (metallic) quantum oscillations.

The effect of Landau quantization in the presence of a magnetic
field B = Bz in the Hamiltonian H (k) breaks the degeneracy of
the eigenvalues for the 1| and |1 combinations, and we get four
eigenvalues

8lv2eB
€1,0, + €0y — ol & \/(61,& —egp —1Y)? + S
5 .

vt =

(2]

Here the Landau-level (LL) index [ >1 with £, = 1,0} =
I—1 for b=1], and £, =1 — 1,4, =1 for b =]t hybridiza-
tions. The =+ signs refer to antibonding/bonding bands. €; ; =
hwer(1+1/2) and €3 = W — hwa(I 4 1/2) are LL energies
for the unhybridized bands with cyclotron frequencies w.; =
eB/my and weo = eB/my. The I =0 LLs remain unchanged
with energies €1 o and €3¢ even for nonzero hybridization, but
these are not relevant for the semiclassical limit pig /w1 >> 1 that
we focus on.

In the semiclassical limit ¢ ~¢=1 and 8l?eB/h=~
8lpv?eB/h= A% (with lp ~ pg/hw.1) in Eq. 2 for Ap, T,
v < po and energies near p; see SI Appendix, section 2. Thus
Eq. 2 reduces to the two doubly degenerate eigenvalues,

= [61,1 +e—il'+ \/(61,1 — €2 — i’)’)Q-i-AZD} /2. 3]

The above LLs correspond to the k-space energy dispersion

Es(k)= |:€1+62 —I'+ \/(el — € — )2+ AQD] /2. [4]
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We use Egs. 3 and 4 for our analytical calculations and to
construct a simple physical picture of the SdH and dHvVA oscil-
lations in the insulator. We note that, in the absence of impu-
rity scattering, our model has a field-induced transition from a
gapped insulator to an gapless metal above a critical field B, =
VmimgAp [ eh (SI Appendix, section 3). This can also be seen in
Fig. 1B. We focus on the insulating regime B < B, in this paper.

2. Physical Picture of Quantum Oscillations in
Insulators

Before turning to the details of our calculations, we present a
physical picture to see why the LE-DOS (SdH) and magnetization
(dHvA) oscillations in a hybridization-gap insulator differ from
each other and why these results are so different from standard
quantum oscillations in metals.

First, consider the limit of zero hybridization (v = 0) in the
disorder-free Hamiltonian of Eq. 1, which is a metal with over-
lapping electron and hole bands that cross at kg at an energy 1o
(Fig. 2 A and B). Both the bands give rise to SdH and dHvA oscil-
lations with same frequency Fy = (h/2me)mk2 corresponding to
the area of the semiclassical orbit at g = h? k§/2m1. LE-DOS
oscillations arise due to the 1/B-periodic passing of LLs across
the chemical potential ;1 = pio. This occurs whenever €; matches
1 and leads to SdH oscillations at frequency Fy. Each time a
LL passes through p, the total number of occupied LLs has a
discrete jump leading to sharp periodic changes of the total energy
E(B)=Ngp3_, <,(€ — ), where Ng = eB/h is the LL de-
generacy. As a result, the 7' = 0 magnetization M = —(0E/JB)
oscillates as a function of 1/ B with the same frequency Fj.

Next, consider the LE-DOS oscillations in the hybridization-
gap insulator, focusing first on the disorder-free case, with
the chemical potential £ in the gap at the crossing of the
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unhybridized bands (Fig. 2 C and D). The conduction-band
edge & = min &, (k) occurs at k = k¢, and the valence-band
edge &, =max&_ (k) at k=k,, with £, =po+ Ar/2.
The LE-DOS oscillations arise from 1/B-periodic passage of
LLs through the conduction- and valence-band gap edges. In
Fig. 2C it is at a field B and in Fig. 2D at higher field B’
corresponding to successive crossing of a LL through band edges;
ie, E141,+(B) =&y and E+(B) = &, /. This immediately
leads to a 1/ B-periodic modulation of the DOS with frequencies
Fy determined by k. and k, of the gap-edge states, distinct
from F{y corresponding to the unhybridized kr. We show below
in Section 4 (and SI Appendix, section 4) the SdH oscillations
have frequencies Fy = Fy F (mg — my)Ar/(4dhe). Clearly
these oscillations need thermal excitation to the gap edge,
which thus leads to an exp(—A;/2T) factor in the amplitude.
What is less obvious is a field-damping (Dingle) factor of
exp(—mA; T /(hw,)?) that we find in our analysis below.

Impurities lead to in-gap spectral weight (12) at pg that leads
to oscillations at the unhybridized Fy with an LK-like 7" de-
pendence. We show below (using a semiclassical saddle-point
analysis) that the LE-DOS oscillation is the sum of three pieces,
the band-edge oscillations at Fiy = § F' and the impurity-induced
oscillations at Fyy, each with their characteristic 7' dependence and
Dingle factors.

Finally, let us turn to the magnetization oscillations in the
disorder-free insulator, which have a very different origin from
that of the LE-DOS oscillations described above. The total
energy E(B)= Np)_,(&— — ) is given by a sum over all
occupied states &_ below the chemical potential p, which
is inside the gap. We next show that there is an unusual
aspect (SI Appendix, section 8.A) to this sum that can be best

seen by splitting &_ into &_ =&, + gl, with &_ =
(W +heBl/m_)/2 and &_=—[(W — heBl/my)* +
AQDP/2/2. This decomposition leads to E(B) = Eyosc + Fosc-
It is easy to verify that Eyosc = ,[€1— — p] is a smooth
monotonic fynction of B and the oscillations arise entirely from
Eosc = Zl &,

Thus the dHvA oscillations can be thought to arise from the va-
lence band of a “fictitious” particle-hole symmetric band structure

gi(k) = £[(W — h%k?/2m)? + A%]1/2 /2. Landau quanti-
zation of &4 (k) leads to energy levels £,4 for B#0 shown in
Fig. 2 E and F. The total energy E(B) changes abruptly as

the energy level £ periodically enters the electron-like part of
the fictitious valence band from the hole-like part through the
gap edge (maximum) &, = —Ap/2 for some [ and B. This
occurs when & = &, or equivalently iieBl/my = W, which
leads to dHvA oscillations with unhybridized frequency Fy. This
frequency corresponds to the semiclassical orbit of area Tk%
originating from the gap edge of the fictitious energy dispersion
E_(k). Remarkably, the actual chemical potential y plays no role
here and enters only the nonoscillatory part Ej,oc as long as it lies
in the gap.

We note that the same argument also gives a simple under-
standing of the dHvA oscillations in the original KC model (9)
where one of the bands has infinite mass. The energy eigenvalues
of the KC model can be obtained as the limiting case of Eq. 3 for
my — oo and I' = 0.

Does the unusual dichotomy between the SdH and dHvA
oscillations that requires two different semiclassical orbit pictures
(Fig. 2 C—F) indicate the failure of Onsager’s rule of semiclassical
area quantization for the hybridization-gap insulator? This is a
crucial question, since in the general case of a nonparabolic
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dispersion the LL energy eigenvalues for the full quantum Hamil-
tonian in a field are not available and we must rely on Onsager’s
rule to deduce the quantum oscillation (QO) frequency. To an-
swer this question, we explicitly verify Onsager’s rule in our case by
applying it to the energy dispersion £1 (k) of Eq. 4. The dispersion
is isotropic and thus the allowed k-space orbits in a B field
are circles with quantized area 7k = 27leB /I corresponding to
semiclassical energy eigenvalues £ (k;). This exactly matches the
LL energies of Eq. 4 obtained from our full quantum treatment.
Thus, we will get the correct frequencies for SAH and dHvA
oscillations and encounter the same dichotomy between them if
the energy eigenvalues from Onsager’s prescription are inserted
into the expressions of LE-DOS and magnetization. In this sense,
there is no violation of the semiclassical quantization rule for the
hybridization-gap insulator. What is different from the standard
theory, however, is that different parts of these energy eigenvalues
contribute to the QOs in the LE-DOS and magnetization, This,
as discussed above and shown in Fig. 2 C-F, leads to different
effective semiclassical orbit pictures for dHvA and SdH oscilla-
tions. Hence, a “universal” semiclassical picture that applies to all
physical quantities, like in a metal, does not work in hybridization-
gap insulators.

3. Low-Energy DOS

In this section we discuss the oscillations in LE-DOS, a proxy for
SdH oscillations, defined as

/ dfanF &)y A(€). [5]

The Fermi function np(§, T') = (655 +1)~! with 3=1/T
(ks=1), and the single-particle DOS (per unit area)

(e S e

- &
I,b,p==+ Lbp

A(§) =

is obtained from the complex eigenvalues of Eq. 2, and Np =
Be/h is the LL degeneracy.

We focus only on the oscillatory part of DOS and LE-DOS,
and to make analytical progress, we convert the LL sum in Eq. 6
into an integral using the Poisson summation formula. In the limit
o > hw.1 using the semiclassical approximation & p+ ~ &+
(Eq. 3) we obtain

7# o omkt_Cp(§)
A =gz Im Y /Z:O, e 7

p=4,k#0

The integer & labels harmonics, and 1,(§) and ¢, (&) are the
poles and residues of (§ + po — &)~
(81 Appendix, section 5).

For 19 > hwe1, we can extend the lower limit of the integral

to —oo since Re(ly) > 1 and the poles are far from the origin.
The oscillatory part (12) of the DOS is thus

A(f)z#lm > s (©e

k#£0,p==+

Lin the complex [ plane

5)627le8p(€)lp(£)’ [8]

with s, = sgn[Im([,)]. Substituting this in Eq. 5, we obtain the
oscillatory part of D(T') by evaluating the energy integral as
follows (see SI Appendix, section 6 for details):

At low temperature T' < Ay, the main contribution comes
from two saddle points in the complex &-plane &4+ ~ —i['. +
Ar/2+ O(k*T?/h*w?), where w.=eB/(m; + mz) and
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e = (mI'y + mel'3)/(my + mg). In addition, the region near
& =0 on the real axis contributes to the energy integral in Eq. 5
when A(§ =0) # 0, i.e., in the presence of nonzero in-gap DOS
for I" # 0. Incorporating all the contributions, we obtain an
expression for D(T') by deforming the path of integration from
the real axis to a suitably chosen contour on the complex plane
that passes through the two saddle points and the region near
& = 0 on the real axis (S/ Appendix, section 06).

Thus, we get D(T') = Dg(T) + Do(T'), where Dy(T') is the
gap-edge contribution arising from the two saddle points and
Dy(T) is the impurity-induced in-gap DOS. The saddle-point

contribution

1 —7k/we|T) 127ks,
DQ(T):ﬁReZ MkpCRTe k/wel k?p|62 ksip (Fe/B)
k,p.¢

9]

corresponds to the oscillations from energy levels passing
through the gap edges £/, shown in Fig. 2 C and D. Here
k labels the harmonics, p =24, ( ==£. The 7T-dependent
amplitude Rp = (mA;/T)/? exp (—A;/2T) has a Schottky-
like activated form controlled by the indirect gap. The Dingle
damping is controlled by a field, temperature, and impurity
scattering-dependent 1/|7y,|, where h/7y, = [2ymy/(m1 +
my) + pkm(A; T /hw.)] with ¥ =T’y — I's. The factor My is
given by My, = —C(psip)®/? exp (—1CT ./ T)(my + my) /2,
where s, = sgn(7gp ).

We emphasize several important features of Eq. 9. The most
significant result here is the analytical expression Fi = Fjy F
(mg — mq)Ar/(4he) for the oscillation frequencies. How these
frequencies originate from the gap-edge states was discussed in
Section 2 (Fig. 2 C and D). In our analysis, they can be traced to

the real part of the pole I, ({kc) = (F¢/B) 4 1/ (2weTyyp ) at the
complex saddle point.

The two close-by frequencies Iy give rise to a beat pattern
at low T. We can see this clearly in our numerical results in
Fig. 3C, which were obtained by numerically evaluating D(T")
using Eqs. 5 and 6. We analytically show in S7 Appendix, section 4
that Fi; s emerge from the 1/B-periodic crossing of energy levels
&+ through the gap edges £/, (Fig. 2 B and C). This is also
demonstrated in Fig. 3C, where we plot the gap or the difference
Ay(B) = (E4y—FE_) of maximum and minimum energy eigen-
values (Eq. 2) corresponding to the valence and conduction bands
as a function of 1/B. The beat pattern in LE-DOS oscillations at
low temperature correlates with A, (B).

Following ref. 26, this B-dependent gap A, can be used
to construct a simple model for resistivity oscillations for the
disorder-free case at low temperature through the relation
p~exp[Agy(B)/T]. This leads to similar oscillatory behavior
(Fig. 3C) and nonmonotonic non-LK temperature dependence
of oscillation amplitude (Fig. 4A4) at low temperatures for the
resistivity as in the LE-DOS.

Another important feature of Eq. 9 is the Dingle damping that
arises from the imaginary part of the pole. Note the unusual 7" and
B dependence of the Dingle factor ~exp [—km?(A; T /h*w?)]
in the absence of impurities. This leads to a Gaussian peak in
the Fourier transform (FT) spectrum of the oscillations unlike the
usual Lorentzian peak.

The low-temperature beat pattern has been alluded to in ref.
22 based on numerical calculations for a model with a constant
hybridization. Here, we give a controlled analytical derivation and
clear physical picture (Fig. 2 C and D) of the beat frequencies
and obtain the field, temperature, and disorder dependence of the
associated oscillations.
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Fig. 3. LE-DOS and magnetization oscillations. (A) LE-DOS vs. 1/B for " =0
and chemical potential ug at three temperatures indicated in B. The vertical
dashed lines are a guide to the eye for the w-phase shift between low- and
high-temperature oscillations. The oscillation amplitude becomes very small
at T=0.2Ap, close to T =T, where the w-phase shift occurs. (B) Magne-
tization oscillations for three different temperatures. The amplitude shows
nonmonotonic temperature dependence. The contrast of dHVA oscillations
with LE-DOS oscillations (A), unlike in a metal, is evident. (C) The beat pattern
in LE-DOS oscillations at low temperature (T = 0.035Ap) correlates with the
difference (E4 — E_) in eigenenergies closest to the gap edges &, (Fig. 2 £
and F). All the results in A-C are obtained using the energy eigenvalues &,
in Eq. 2. Ex — E_ in Cis given in units of Ap.

We next turn to the impurity-induced in-gap LE-DOS, arising
from the region near £ = 0 in the integral of Eq. 5, which is given

by

2 F O -
Do) = Tz cos [2” (;)} S My Ry e

k.,p
[10]

https://doi.org/10.1073/pnas.2208373119 5 of 9


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://doi.org/10.1073/pnas.2208373119

Downloaded from https://www.pnas.org by OHIO STATE UNIVERSITY LIBRARIES LIBRARY TECH CENTER S/ER on May 8, 2023 from IP address 140.254.86.189.

0 02 04 06 08 1
T/A,,

O U O O
|

0 0.2 0.4 0.6 0.8 1

TIA,
C 1500 ‘ ‘
+T=0.005A
W
"g +T=0.03AD
X 1000+ +T=0.1A, |
§~ T=0.2A,
S +T=0.4A
~ 500
o
0
0.5 1 15 2
F/IF,

Fig. 4. Temperature dependence of LE-DOS and magnetization oscillation
amplitude. (A) LE-DOS oscillation amplitude D at frequency Fo as a function
of temperature for different impurity-scattering rates, as indicated in B. D is
extracted from the FT spectrum of LE-DOS oscillations and is normalized by
the T = 0 value of the amplitude D,_(0) for zero hybridization. Small scat-
tering rates I'y = I'; = 0.0005Ap have been used for numerical computation
of LE-DOS in the disorder-free case (blue line). For all finite I'ys, I', = 0.1Ap.
(B) Magnetization oscillation amplitude at Fy, M(T), normalized by its T=0
value M,—o(0) for zero hybridization (see S/ Appendix, section 9 for details).
The results in A and B are obtained using the energy eigenvalues &, in Eq. 2.
(C) FT spectrum at several temperatures for the disorder-free system. The
peaks at frequencies F. from gap-edge oscillations are visible at T = 0.03A,.

This result is the same as that derived in ref. 12, which,
however, did not obtain D, (T). Here M, =(1/2)[(mq + mg)

Fc/\/F% + (4]/2)2 + p(m1 - mg)] and RT,’C[) = X/ Sinhx,
with x = 272 M, kT /heB, is an effective LK-like T-dependent
factor governed by both band masses and impurity scattering. The

Dingle damping factor is 1/7, = [\/I'2 + (A;/2)? + pI',]/h
with ', = (m1F1 — mgFg)/(ml + mg).
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The amplitudes of the LE-DOS oscillations due to gap edges
(Eq. 9) and the in-gap states (Eq. 10) have completely different
temperature dependences. The former is identically zero at 7' =0
and increases in an activated manner with 7" irrespective of the
strength of impurity scattering. In contrast, the amplitude of
oscillations from in-gap states decreases as a function of 1" with
an effective LK form and is present only for I" # 0.

Remarkably, these two contributions coexist as shown by the
contour integral calculation above. This analysis, however, is valid
only at low temperature 7' < Aj. For higher temperatures, Ay <
T < hw,1, we complement our analytical results by numerical
evaluation of Eq. 5. The results for the LE-DOS as a function of
tto/fiw,y in the disorder-free case are shown in Fig. 34 for three
different temperatures. We find similar features for I" # 0. We also
see, consistent with ref. 10, that there is a 7-phase shift of the
oscillations at a temperature T ~ Ay/2, which coincides with

the temperature at which the FT amplitude D vanishes, as shown
in Fig. 4A. T shifts to a slightly lower value for nonzero I'. The

vanishing of D and the phase shift arise from an interference effect
between oscillations with different frequencies. It is tempting to
ascribe this to Berry phase effects (10) near the band edges, since
the Hamiltonian of Eq. 1 has nontrivial band topology (10, 24,
27). However, we have numerically found similar interference
effects even in a model with a constant hybridization that is
topologically trivial.

The presence of different frequencies arising from the gap edges
and from in-gap states can also be seen in our numerical FT
spectrum in Fig. 4C. At higher temperatures A; < T' < fiw,1, the
effect of the gap becomes negligible due to thermal excitations and
we expect to recover standard oscillations of a metal. Thus, in our
numerical FT spectrum in Fig. 4C, we find that two frequencies
Fy &+ 6 F, seen at low temperature, merge into a single frequency
Fy at higher temperature.

In Fig. 44, for the chosen range of values of I', the FT

amplitude D = D(Fp) at frequency Fyy decreases with increas-
ing impurity scattering as expected from the Dingle damping

in both Dy(T) (Eq. 9) and Dy(T) (Eq. 10). However, the

amplitude D(Fp) can have much more subtle nonmonotonic
dependence on both T and I, for different choices of I, as
we show in SI Appendix, section 7. This is because the saddle-
point contribution Dg(T') leads to a Gaussian peak at frequency
F¢ in the FT spectrum and affects the amplitude at the close-
by frequency Fyy due to its finite width arising from the Dingle
damping in Eq. 9. As a result, LK-like temperature dependence
of Dy(T') and activated behavior of Dy(T') both contribute to

temperature dependence of D in general, leading to complicated
nonmonotonic 7" dependence (S7 Appendix, section 7).

4. Magnetization

In Section 3, the dHvA oscillations at T'= 0 were explained in
terms of a fictitious particle-hole symmetric gapped spectrum €4
(Fig. 2 E and F), where the semiclassical k-space orbits at the
gap edges have exactly the same area as the unhybridized crossing
(Fig. 2 A and B) corresponding to the frequency Fy. Here we
confirm that the oscillations with frequency Fy persist at finite
temperature and obtain an analytical expression for the oscillatory
part of M for T < Ay, hw, via a saddle-point approximation.
We show that the saddle point for M is completely different
from the one that contributes to LE-DOS gap-edge oscillations
and thus affirm the unusual dichotomy between dHvA and SdH
oscillations in hybridization-gap insulators. We corroborate our
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analytical approximations through numerical calculations that
extend to higher temperature.

To compute the magnetization, we use the Matsub-
ara representation of the grand potential (9, 28) Q(T) =

—TNB[> 0, >0.10p 10 (E1bp — 110 — wn) e 4 c.c.], where
wp=(2n + 1)w T'(n € Z) are fermionic frequencies (S Appendix,
section 8.B). In the semiclassical limit pug > hw.1 we can write
the oscillatory part of magnetization M (T) = —0Q(T) /0B as

87T TILLO >
Fip ( [11]
hwerdo k:z1 r;) '

Here Fp(n) = Fyp(wy,) is given by the expression Fi, (n) =
sin 27k (Fy/ B)]e?mksy (MImll ()] 1 (n) denotes the pole [, (€)
in Eq. 7 with £ — w,, (S Appendix, sections 5 and 8.B) and
sp(n) = sgolimiL, () 1]

As shown in ST Appendix, section 8.C, we evaluate the Matsub-
ara sum in Eq. 11 for T < Ay, hw,. using the Euler—Maclaurin
formula

< d T
TS Fipln) = [ 9 Fip() + 3 [Fip(0) + Fig(o0)
n=0
[12]

where we have used dn = dw/(27T) and Fj,(n—o00)=0.
The integral in the first term does not depend on tempera-
ture and can be evaluated using a saddle-point approximation.
The saddle point @ = (=I'c — m,;A;/24/1 — m2), with m, =
(mg — mq)/(my1 + ma), is different from the saddle points that
govern the LE-DOS integral (Eq. 5). The saddle point here
leads to the pole at [, (:0) = (Fo/B) + 1/(2w.Tp) with 1/7, =
[2myy/(m1 +ma) + (p + m2)A;1/(24/1 — m2)]/h. The real
part of the pole gives rise to an oscillation frequency Fj, as if the
system has a Fermi surface with an area k2 like a metal. But,
unlike a metal, here the frequency appears from the underlying
fictitious particle-hole symmetric gapped system of Fig. 2 F
and F.

The temperature dependence in M (T') comes from the next
order terms in Eq. 12. Keeping only the leading correction in

T /v/hw A|, we obtain

. Fy — [(1—m2)*? __,
M o sin [27rk < )] Z {Te Tk /we| |
B p,k=1 \/E
nT —7k/werip(T) }
+ foetn(T) 4] 13
,7ch]€ [13]

Here we have assumed A; > to simplify the expression
(SI Appendix, section 8.C). This result implies a Dingle damping
exp (—m A1 /2w, ) for the clean system (I' = 0).

In Eq 13, mp(T)= (T +T)% + (Ar/2))2 +
p(I'y — m,7T)] is a temperature-dependent damping factor.
This suggests the existence of a peak in the amplitude of
one of the oscillation components (p=-) at a temperature
Tpeak =~ [myAr/(2y/1 —m2) —T'.]/m, which shifts toward
lower temperature with increasing impurity-scattering I'c. The
peak eventually goes away when I'. 2 A, as one anticipates
the impurity-induced DOS to fill up the gap completely in this
limit. We note that the low-temperature expansion in Eq. 13
is not strictly valid at 7'~ Tpeax ~ Ap; however, we expect
it to reproduce the qualitative features even at intermediate
temperatures. Our numerical results confirm this expectation

PNAS 2022 Vol. 119 No.42 2208373119

as we discuss below. The low-T" expression of Eq. 13 leads to
non-LK temperature dependence of dHvA oscillations in the
hybridized insulator.

For our numerical calculations in the disorder-free case I' = 0,
we compute M (T') using

Q(T):-/_ dga"Féi’ Do

for the grand potential at finite temperature with chemical po-
tential po. Here Q(&, T=0) = Np Z;bp(517bp — po — &) is the
grand potential or total energy at T=0, where the sum is re-
stricted to Epp < o + & (8] Appendix, section 9). The numeri-
cal results for the magnetization oscillations obtained using the
energy eigenvalues of Eq. 2 with I' = 0 are shown in Fig. 3B as a
function of 1/ B for three temperatures. The oscillation frequency
is indeed Fy, in agreement with our analytical results in the

Q¢ T=0), [14]

semiclassical limit. The FT amplitude M= M(F o) at frequency

Fy is shown in Fig. 4B; M exhibits nonmonotonic behavior with
T with a peak at intermediate temperature, as predicted by the
low- T expansion in Eq. 13.

To obtain the magnetization oscillations in a disordered system
with I" # 0, we use a semiclassical expression similar to Eq. 11,
albeit generalized to incorporate the actual energy eigenvalues
(Eq. 2), as discussed in S Appendix, section 9. Again, we find M
oscillations with unhybridized frequency Fy. The FT amplitude

M is shown as a function of temperature for several I'; for fixed
I's <T'; in Fig. 4B. The amplitude shows a peak at intermediate
temperature, like the I' = 0 case; however, the peak gets weaker
with increasing I, in qualitative agreement with the analytical
result (Eq. 13). We find qualitatively the same result for I'y < I'y,
as shown in S7 Appendix, Fig. S3 in SI Appendix, section 9.

5. Discussion and Conclusions

We have focused in this paper on a minimal model of a
hybridization-gap insulator and our results are summarized
in Table 1. The physical picture explaining the origin of
SdH and dHvA oscillations, and why they differ qualitatively,
is summarized in Fig. 2. In this section, we conclude with
a discussion of the assumptions underlying our model, the
universality of our main results, and their possible relation to
experiments.

Our results are obtained in an insulating regime when the
chemical potential lies in the gap. The insulating nature of the
state requires that certain conditions be met. First, we need B <
B, = \/mymyAp/he, the critical field above which the system
undergoes an insulator-to-metal transition even in the absence
of disorder (Fig. 1B). Second, when we include the effects of
impurities, we must ensure that they do not drive the system
metallic.

The role of impurities in an insulator where a heavy inverted
band hybridizes with a light band has been analyzed in detail in ref.
29. The nature of the impurity-bound state wavefunction in such
a band structure differs qualitatively from that in ordinary semi-
conductors and results in a localized “impurity band.” However,
the long-range Coulomb interactions that lead to this behavior are
hard to include in the analysis of quantum oscillations. Thus, we
treat impurity effects following ref. 12 as self-energies that arise in
an approximation akin to the coherent potential approximation

(CPA).

https://doi.org/10.1073/pnas.2208373119 7 of 9


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208373119/-/DCSupplemental
https://doi.org/10.1073/pnas.2208373119

Downloaded from https://www.pnas.org by OHIO STATE UNIVERSITY LIBRARIES LIBRARY TECH CENTER S/ER on May 8, 2023 from IP address 140.254.86.189.

We focus on the regime of weak disorder broadening |I'; —
I'y| < Ap, the direct band gap, or else the system enters a
semimetallic regime (12) as deduced from the real part of the
energy eigenvalues of the non-Hermitian Hamiltonian. To check
the insulating nature of the weak disorder regime, we have com-
puted the direct current (DC) conductivity at B =0 using the
Kubo formula within an approximation that includes impurity
self-energies in Green’s functions but ignores vertex corrections
(SI Appendix, section 10). We find that there is an insulating
upturn in the DC resistivity (dp/dT < 0), which nevertheless
has a large but finite value at 7' =0 in the disordered system.
In the absence of impurities, we would of course get an activated
resistivity that diverges at 7' = 0.

Our results are based on an insulating gap arising from the
hybridization of two bands, although we focused on odd-parity
hybridization that is not essential for our analysis. An important
question is the extent to which our results give insight into systems
where the insulating gap results from interaction as in the Kondo
insulators (3—5, 30) or excitonic insulators, which may be relevant
for the semiconductor superlattices (7, 8).

We note that, within a mean-field theory (MFT) of both these
systems, one simply obtains an effective two-band model like the
one we analyze. The analog of the direct gap Ap in our model
is determined by the exciton condensate order parameter in the
MEFT (31-34) for exciton insulators. Similarly, A p is determined
by the hybridization amplitude in the slave-boson MFT of Kondo
insulators (35, 36). One important difference with our model
is that the mean-field order parameters, and thus the resulting
hybridization, may have nontrivial B dependence, as noted in ref.
34. However, these authors show that these effects are expected to
influence only the higher harmonics of the quantum oscillations
and not to modify the characteristic features of fundamental
harmonics, which is our main focus.

Finally, we turn to insulating systems—semiconductor quan-
tum wells and Kondo insulators—where quantum oscillations are
well established, even though the experiments are often seemingly
inconsistent with each other. We do not discuss quantum oscil-
lations (37) in insulating monolayer WTey since their intrinsic
nature is under debate (38).

In semiconductor quantum wells, the band structure is not
“rigid” and is expected to change significantly due to changes
in screening when the system is gated from a metallic to an
insulating regime. The two InAs/GaSb experiments of refs. 7
and 8 find an order of magnitude difference in the observed
SdH frequencies in the insulating regime. This large difference
in frequencies could be the result of different band structure
renormalizations in the two samples, which is beyond the scope
of our theory. Given an appropriate insulating band structure,
however, a model similar to ours should be applicable once (s lies
within the gap. Importantly, we note that the SdH amplitudes
in the two InAs/GaSb experiments see qualitatively different T
dependences. A monotonically decreasing LK-like 7" dependence
is observed in ref. 8 (Fig. 24), whereas a monotonical increase
is seen in ref. 7 (Fig. 3C). According to our theory, the LK-
like behavior in ref. 8 suggests dominance of impurity-induced
in-gap DOS oscillations in the system, whereas increase of the
amplitude with temperature in ref. 7 points toward the role of gap-
edge oscillations. Thus, these experimental observations imply
that the consideration of both gap-edge and in-gap contribu-
tions to SdH oscillations, emphasized in our work, is crucial for
a proper understanding of the T dependence of SdH oscilla-
tions when impurity effects can widely vary from one system to
another.
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The beat pattern from gap-edge oscillations at frequencies
Fy £ 0F has not yet been reported in SAH experiments. We
emphasize that the resolution of the beat frequencies might be
difficult in practice due to three close-by frequencies in a narrow
band-gap insulator with field damping and impurity scattering
and due to the limited range of the low-temperature regime where
the beats are expected to exist (Fig. 4C). As shown in Fig. 44
and SI Appendix, Fig. S2 (SI Appendix, section 7), the existence of
the three close-by frequencies, even when they cannot be clearly
resolved, leads to complex temperature dependence of the SdH
amplitude depending on the disorder strength. Such anomalous T'
dependence might be easier to observe and analyze in experiments
than to resolve the beat frequencies directly.

Quantum oscillations have been seen in two Kondo insulators
SmBg and YbB13. In SmBg, the data of refs. 3, 30, and 39 show
bulk dHvA oscillations with an amplitude exhibiting a remarkable
increase over the LK form at the lowest temperatures. Other
experiments (2, 40), however, do not see bulk oscillations in SmBg
and report dHvA oscillations only from the sample surface, which
is perhaps not surprising in a topological Kondo insulator with
protected surface states. The unusual temperature dependence of
the dHvA oscillation amplitude of refs. 3 and 30 is not captured
within the model we have analyzed nor in any other theory that
we are aware of. Also, this non-LK T dependence is not seen in
other Kondo insulators like YbB15 as we discuss below.

Although SdH oscillations in transport have not been reported
in SmBg;, very recently, quantum oscillations have been observed
in specific heat (41), although the T' dependence of the amplitude
has not been studied. We expect specific heat oscillations to be
qualitatively similar to those in the LE-DOS, effectively controlled
by the lowest-energy excitations to the gap edges and disorder-
induced in-gap states as in the semiclassical picture of Fig. 2 C
and D.

Quantum oscillations with an LK-like 7" dependence have
been reported in YbB12 by two groups (4, 5), but there are signif-
icant differences in their observed frequencies and their 3D/2D
nature. Ref. 5 reports bulk dHvA oscillations. Ref. 4 reports both
dHvA and SdH oscillations, ascribing their SdH data to the bulk,
but it is not clear whether the dHvA data arise from the surface
or the bulk (42, 43). An additional complication in YbB14 is the
field-induced transitions in the insulating state (42) that make it
hard to analyze quantum oscillations over a sufficiently broad field
range.

Within the noninteracting model of a hybridization-gap insu-
lator discussed in this paper, the observation of LK-like behavior
implies a dominant role of impurity-induced in-gap states. How-
ever, interaction effects beyond the noninteracting model (35, 36)
may play a vital role in the strongly correlated insulators like SmBg
and YbBlg.

Even though none of the existing theories can make quantita-
tive connections with the observed quantum oscillations, we em-
phasize that any theory of such oscillations in an insulator where
the gap results from an effective hybridization will necessarily have
to build on the theory of quantum oscillations that is developed
here. Our analytical results will serve as a template to incorporate
more subtle and exotic effects of interactions, at the very least
through frequency-dependent self-energies, in strongly correlated
Kondo insulators. The features that we have unearthed through
our analytical semiclassical results, and for which we provide a
simple physical picture, are universal insofar as the dichotomy
between dHvA and SdH oscillation frequencies, the nature of the
field and temperature dependence of the amplitudes, and the role
of disorder in giving an in-gap contribution that adds to the gap-
edge oscillations in the low-energy DOS.
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Materials and Methods

The details of the analytical calculations presented in the main text are described
in SI Appendix. We also describe some details of our numerical calculations and
present additional numerical results (44). In S/ Appendix, Table S1 we define
symbols used in the main text. We then discuss how one takes the semiclassical
limit of our model and analytically compute the frequency of the gap-edge
oscillations and the field at which an insulator-to-metal transition occurs. We
then discuss in detail the saddle-point analysis for the LE-DOS oscillations, both
in the clean case and with the inclusion of disorder. Next, we describe in detail
the analytical and numerical calculations for the magnetization oscillations. We
conclude with a brief discussion of transport in the disordered insulator.
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