

# Exploring the Links between Photoluminescence and Microstructure in $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$ Samples Doped with $\text{Pb}^{2+}$

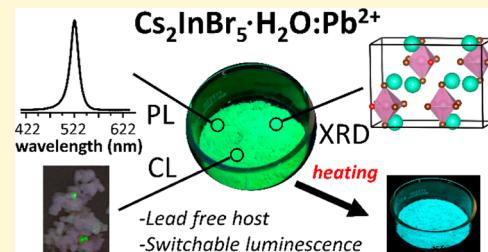
Jackson D. Majher, Victor da Cruz Pinha Barbosa, Chris Chae, T. Amanda Strom, Jinwoo Hwang, and Patrick M. Woodward\*



Cite This: *Chem. Mater.* 2023, 35, 482–489



Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

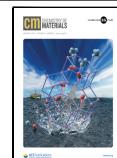
**ABSTRACT:** Precipitation of  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  from  $\text{HBr}(\text{aq})$  solutions containing  $\text{Pb}^{2+}$  ions results in powders that exhibit narrowband green photoluminescence ( $\lambda_{\text{max}} = 521 \text{ nm}$ ,  $\text{fwhm} = 89.9 \text{ meV}$ ). Synchrotron powder X-ray diffraction reveals trace amounts of  $\text{Cs}_4\text{PbBr}_6$  and  $\text{CsPbBr}_3$  that cannot be detected by laboratory powder diffraction measurements. Broadening of the  $\text{CsPbBr}_3$  diffraction peaks suggests crystals that are tens of nanometers in size. Evidence for the presence of  $\text{CsPbBr}_3$  can also be seen in diffuse reflectance spectra. Cathodoluminescence imaging shows that luminescence originates from small nanometer-sized regions. Taken together, these observations point to  $\text{CsPbBr}_3$  nanocrystal inclusions as the source of photoluminescence. Heating these samples to temperatures at or above  $80^\circ\text{C}$  triggers a reversible dehydration process that leads to an irreversible change in the photoluminescence from green to blue ( $\lambda_{\text{max}} \approx 480 \text{ nm}$ ,  $\text{fwhm} = 278 \text{ meV}$ ), accompanied by significant changes in the microstructure. Cathodoluminescence imaging indicates that the blue emission occurs over much larger micron-sized regions of the sample. The position of blue PL is similar to other hybrid lead bromide compounds where the emission has been assigned to  ${}^3\text{P}_1 \rightarrow {}^1\text{S}_0$  transitions on  $[\text{PbBr}_4]^{2-}$  ions. Based on the emission wavelength and cathodoluminescence imaging, the blue emission is assigned to isolated  $[\text{PbBr}_4]^{2-}$  ions that substitute for  $[\text{InBr}_5\cdot\text{H}_2\text{O}]^{2-}$  ions in the parent hydrate phase. This work provides new insight on the spontaneous formation of halide perovskite nanocrystals in an inert matrix, one that does not rely on the use of organic solvents and is stable in ambient atmospheres.



## INTRODUCTION

Halide perovskites with formula  $\text{ABX}_3$  ( $\text{A} = \text{Cs}^+$ ,  $\text{CH}_3\text{NH}_3^+$ ,  $\text{NH}_2\text{CHNH}_2^+$ ;  $\text{B} = \text{Pb}^{2+}$ ;  $\text{X} = \text{Cl}^-, \text{Br}^-, \text{I}^-$ ) have received considerable attention for their optoelectronic properties. Favorable characteristics include long diffusion lengths, high absorption coefficients, and chemical tunability.<sup>1–3</sup> Perovskite nanocrystals (NC) have also been extensively studied, motivated in large part by their highly efficient narrowband photoluminescence (PL) that can be compositionally tuned across the visible range.<sup>4–6</sup> The luminescence behavior of perovskite NCs has potential for use in a variety of applications including light emitting diodes (LEDs), scintillators, lasers, photodetectors, and quantum computing.<sup>7–10</sup> Despite their favorable optoelectronic properties, applications of halide perovskites are ultimately limited by the presence of  $\text{Pb}^{2+}$ , an ion that is well documented to have a variety of adverse health effects.

To help circumvent these issues, lead-free analogues of the halide perovskite structure have been explored. Halide double perovskites with formula  $\text{A}_2\text{BB}'\text{X}_6$  ( $\text{A} = \text{Cs}^+$ ;  $\text{B} = \text{Ag}^+$ ,  $\text{Na}^+$ ;  $\text{B}' = \text{Bi}^{3+}$ ,  $\text{In}^{3+}$ ;  $\text{X} = \text{Cl}^-, \text{Br}^-$ ) have a similar structure to lead-based perovskites but eliminate  $\text{Pb}^{2+}$  by replacing it with equal proportions of  $1+$  and  $3+$  ions.<sup>11–13</sup> Various strategies have been used to enhance the PL properties of these materials including doping with transition metal and rare earth activator


ions, symmetry-breaking to enhance self-trapped exciton emission, and doping with  $\text{ns}^2$  activator ions.<sup>14–22</sup> Doping with  $\text{ns}^2$  activators ( $\text{Sb}^{3+}$ ,  $\text{Bi}^{3+}$ , etc.) has led to efficient photoluminescent systems due to localized absorption and emission from the activator site, as exemplified by  $\text{Cs}_2\text{NaInCl}_6\text{:Sb}^{3+}$  which exhibits strong blue PL.<sup>19–21</sup> Other photoluminescent lead-free perovskite derivatives that have been developed include perovskite related phases such as  $\text{Cs}_2\text{SnCl}_6/\text{M}^{3+/4+}$  ( $\text{M} = \text{Bi}^{3+}$ ,  $\text{Sb}^{3+}$ ,  $\text{Te}^{4+}$ ), and  $\text{Rb}_3\text{InCl}_6\text{:Sb}^{3+}$ , as well as several hydrate phases with formula  $\text{A}_2\text{InX}_5\cdot\text{H}_2\text{O}\text{:Sb}^{3+}$  ( $\text{A} = \text{Cs}^+$ ,  $\text{Rb}^+$ ;  $\text{X} = \text{Cl}^-, \text{Br}^-$ ).<sup>23–30</sup>

$\text{Sb}^{3+}$ -doped hydrate phases have drawn significant interest due to their ease of synthesis, high quantum yield, and tunable PL.  $\text{Cs}_2\text{InCl}_5\cdot\text{H}_2\text{O}\text{:Sb}^{3+}$  has been prepared with PL quantum yield (PLQY) reaching an impressive 95.5% and emission that can be tuned from 580 to 660 nm through  $\text{Br}^-/\text{I}^-$  substitution.<sup>29</sup> By monitoring the change in PL triggered by dehydration,  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}\text{:Sb}^{3+}$  has been shown to act as a

Received: September 13, 2022

Revised: December 20, 2022

Published: January 3, 2023



sensitive moisture detector.<sup>30,31</sup> These phosphors have also demonstrated potential for phosphor-converted LEDs and high-resolution fluorescence imaging applications.<sup>29</sup>

Although many ns<sup>2</sup> ion dopants have been applied to enhance the PL properties of halide materials, there are relatively few studies of Pb<sup>2+</sup> activators in halide perovskite hosts. Recently, Cs<sub>4</sub>PbBr<sub>6</sub>, with isolated Pb-centered octahedra, has garnered significant interest due to its narrowband green emission. The origin of this luminescence is thought to arise from CsPbBr<sub>3</sub> NC inclusions that form spontaneously in the structure.<sup>32,33</sup> The Cs<sub>4</sub>PbBr<sub>6</sub> host structure encapsulates CsPbBr<sub>3</sub> NCs and improves their stability under ambient conditions. However, the presence of Pb<sup>2+</sup> in the host structure offers no relief from toxicity concerns associated with competing Pb-based halide perovskites.

Here, we report the synthesis and characterization of Cs<sub>2</sub>InBr<sub>5</sub>·H<sub>2</sub>O samples that have been precipitated from HBr(aq) solutions containing Pb<sup>2+</sup> ions. Samples synthesized at low temperature exhibit narrowband green emission that is characteristic of CsPbBr<sub>3</sub> NC. Synchrotron powder X-ray diffraction (PXRD) analysis provides evidence for the presence of CsPbBr<sub>3</sub> in green emitting samples. Heating these samples to induce dehydration initiates a change in the microstructure and changes the PL from green to blue, a feature not before observed in Cs<sub>4</sub>PbBr<sub>6</sub> hosts or any other material containing perovskite NC. The blue emission is attributed to isolated Pb<sup>2+</sup> ions that substitute for In<sup>3+</sup> in the Cs<sub>2</sub>InBr<sub>5</sub>·H<sub>2</sub>O host crystal. Cathodoluminescence (CL) measurements provide further evidence to support the origins of green and blue PL.

## ■ EXPERIMENTAL SECTION

CsBr (Alfa Aesar, 99%), In<sub>2</sub>O<sub>3</sub> (Alfa Aesar, 99.994%), InBr<sub>3</sub> (Fisher Scientific, 99.99%), PbBr<sub>2</sub> (Alfa Aesar, 98+%), Sb<sub>2</sub>O<sub>3</sub> (Acros Organics, 99+%), HBr (Sigma-Aldrich, 40 wt % in H<sub>2</sub>O), dimethyl sulfoxide (DMSO) (Fisher Scientific, 99.6%), and diethyl ether (Fisher Scientific, 99%) were all used as received.

The synthesis of undoped Cs<sub>2</sub>InBr<sub>5</sub>·H<sub>2</sub>O was carried out using conditions similar to those reported in ref 29. First, In<sub>2</sub>O<sub>3</sub> (2 mmol) was added to HBr (20 mL, 60 °C) and stirred until the solution was clear. CsBr (8 mmol) was then added, triggering precipitation of the product. The solution was allowed to stir for another hour and then separated from the solution via vacuum filtration through a fritted funnel. The precipitate was washed with diethyl ether during filtration to promote drying. The product thus obtained was a white powder that was stored under ambient conditions. Samples of Cs<sub>2</sub>InBr<sub>5</sub>·H<sub>2</sub>O/Sb<sup>3+</sup> were prepared in the same manner, but Sb<sub>2</sub>O<sub>3</sub> (0.2 mmol) dissolved in solution before addition of CsBr. The resulting product was a white powder that exhibited orange PL.

Samples of Cs<sub>2</sub>InBr<sub>5</sub>·H<sub>2</sub>O:Pb<sup>2+</sup> that exhibited green PL were synthesized as follows. First, In<sub>2</sub>O<sub>3</sub> (2 mmol) and a variable amount of PbBr<sub>2</sub> (0.4–2 mmol) were dissolved in hydrobromic acid (20 mL, room temperature) and stirred until the solution was clear. The flask was then placed in an ice bath and stirred for 15 min. CsBr (8 mmol) was then added to trigger the precipitation of the product. The solution was monitored with a 365 nm UV flashlight until the emergence of green PL was observed. This typically occurred approximately 10 min after CsBr addition. The solution was stirred for an additional hour and then separated from the solvent via vacuum filtration through a fritted funnel. While on the vacuum line, the powder was washed twice with fresh HBr, left for 30 min, and then washed with diethyl ether. If the sample is not washed with fresh HBr an orange powder formed upon diethyl ether washing. Apparently, this step helps wash away excess Pb<sup>2+</sup> ions.

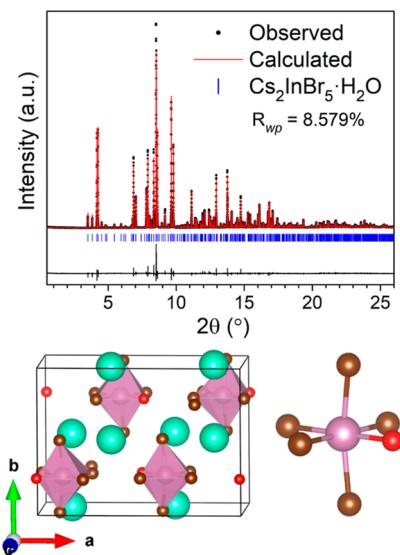
Two methods were used to obtain Cs<sub>2</sub>InBr<sub>5</sub>·H<sub>2</sub>O:Pb<sup>2+</sup> samples that exhibited blue PL. One approach was to prepare Cs<sub>2</sub>InBr<sub>5</sub>·H<sub>2</sub>O:Pb<sup>2+</sup> with green PL as described above, but before filtration, the flask was

transferred to an oil bath and heated at 80 °C for 2–12 h. After this “annealing” step, the powder was isolated from the solution by filtration. An alternative approach was to heat dry Cs<sub>2</sub>InBr<sub>5</sub>·H<sub>2</sub>O:Pb<sup>2+</sup> powders to 80 °C for 10 h and then cool back to room temperature.

The synthesis of Cs<sub>4</sub>PbBr<sub>6</sub> was carried out as follows. First, PbBr<sub>2</sub> (3.5 mmol) was dissolved in 10 mL of DMSO. In a separate vessel, CsBr (7 mmol) was dissolved in 5 mL of HBr. The CsBr solution was then added dropwise to the solution containing PbBr<sub>2</sub> leading to precipitation of the product. The solution was stirred for several hours and then filtered via vacuum filtration in a fritted funnel. The product was washed with ethanol and isolated as a yellow powder with green PL.

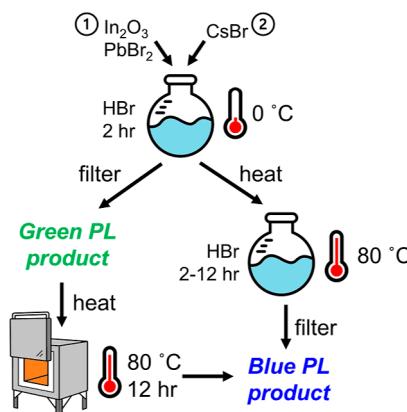
PXRD data were collected on a Bruker D8 ADVANCE powder diffractometer (40 kV, 40 mA, sealed Cu X-ray tube) equipped with an incident beam monochromator (Johansson type SiO<sub>2</sub> crystal) that selects only Cu K $\alpha$ 1 radiation ( $\lambda = 1.5406 \text{ \AA}$ ) and a Lynxeye XE-T position-sensitive detector. Synchrotron PXRD was collected on the 11-BM beamline at the advanced photon source (APS). Samples were packed into 0.8 mm Kapton tubes and sealed with clay. Rietveld refinements of laboratory PXRD data were carried out using the TOPAS-Academic (Version 6) software package to determine the crystal structure.<sup>34</sup> Crystal structure images were generated with Vesta 3.<sup>35</sup>

UV-vis diffuse reflectance spectra were obtained with a PerkinElmer Lambda 950 spectrometer with a 60 mm InGaAs integrating sphere. Steady-state PL data were obtained using a Jovin Horiba FluoroMax4 (Xenon source, 3 nm excitation and emission slit widths, 1 nm step size) equipped with a solid-state sample holder and R928 PMT detector. Luminescent data were analyzed using the FluorEssence (v3.5) software powered by Origin. Internal photoluminescent quantum yield (PLQY) measurements were performed with a Jovin Horiba FluoroMax4 equipped with a Quanta- $\varphi$  integrating sphere (15 cm) and a PTFE sample cup with a fused quartz cover slip. An equivalent volume of non-luminescing barium sulfate was used as the blank reference sample. Radiometric, sphere, and dark count corrections were applied during data acquisition, while corrections for filters and integration time differences were applied in the FluorEssence analysis package for Quantum Yield (FluorEssence v3.8.0.60, Origin v8.6001). Additional details are available in the Supporting Information.


Thermogravimetric analysis (TGA) was performed on a Thermogravimetric Analyzer TGA Q50. Samples were heated under a nitrogen stream of 50 mL/min with a heating rate of 10 °C/min between 25 and 800 °C.

Scanning electron microscopy (SEM) images were obtained by using a Thermo Scientific Apreo FEG SEM. The microscope is equipped with a retractable CL detector for direct imaging of red, blue, or green light generated when the samples are exposed to the high energy electrons. The microscope operated in low vacuum mode, where water vapor is added to partially neutralize the electron beam since the sample is non-conducting. The micrographs were taken at an accelerating voltage of 20 kV and a current of 1.6 nA.

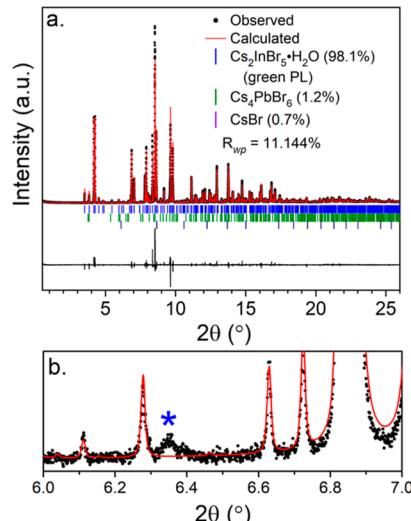
## ■ RESULTS


Cs<sub>2</sub>InBr<sub>5</sub>·H<sub>2</sub>O is isostructural to a large family of metal halide hydrates with the general formula A<sub>2</sub>MX<sub>5</sub>·H<sub>2</sub>O (A = Cs<sup>+</sup>, Rb<sup>+</sup>, K<sup>+</sup>; M = In<sup>3+</sup>, Tl<sup>3+</sup>, Y<sup>3+</sup>, Sc<sup>3+</sup>, Fe<sup>3+</sup>; X = Cl<sup>-</sup>, Br<sup>-</sup>). The structure is composed of isolated [InBr<sub>5</sub>(H<sub>2</sub>O)]<sup>2-</sup> octahedra separated by Cs<sup>+</sup> ions. The cesium cation is coordinated by 10 bromide ions. The In–Br bonds are all fairly similar in length (~2.61–2.66 Å), and the In–OH<sub>2</sub> distance is shorter (~2.37 Å) resulting in a distorted octahedral environment. The crystal structure is similar to a vacancy ordered perovskite, A<sub>2</sub>MX<sub>6</sub> (e.g., Cs<sub>2</sub>SnBr<sub>6</sub>), where the oxidation state of the B-site is reduced from +4 to +3, and a Br<sup>-</sup> ion is replaced by a neutral H<sub>2</sub>O ligand (Figure S1). Synchrotron PXRD was used to confirm the purity of synthesized samples, and Rietveld refinement confirmed the compound crystallizes in the *Pnma*

space group with refined lattice parameters  $a = 14.95285(2)$  Å,  $b = 10.90493(2)$  Å,  $c = 7.70033(1)$  Å (Figures 1 and S2) in close agreement to those found in the literature.<sup>31</sup>



**Figure 1.** Top: Rietveld fit of undoped  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$ . Synchrotron diffraction data taken on beamline 11-BM ( $\lambda = 0.458162$  Å) at the APS. Observed data are given in black, Rietveld fit is given in red, allowed peak positions for  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  ( $\text{Pnma}$ ) are indicated with blue tick marks. The difference between observed and calculated patterns is represented by the black curve at the bottom. Bottom: unit cell and a view of the  $[\text{InBr}_5(\text{H}_2\text{O})]^{2-}$  complex ion. The  $\text{In}^{3+}$  cation is shown in purple,  $\text{Cs}^+$  in cyan,  $\text{Br}^-$  in brown, and  $\text{O}^{2-}$  in red.

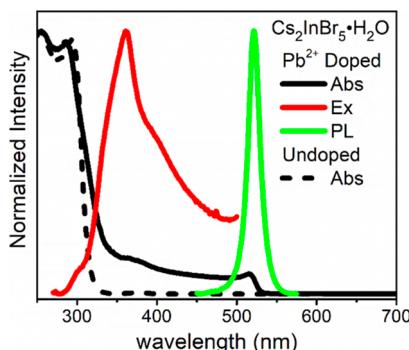

The addition of  $\text{PbBr}_2$  to solution before triggering precipitation was found to produce a product which exhibits either green or blue PL depending upon details of the synthetic procedure. Figure 2 depicts the synthetic routes that lead to



**Figure 2.** Synthetic routes to either green emitting or blue emitting  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$ . Additional details are provided in the experimental section.

$\text{Pb}^{2+}$ -doped  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  samples with either green or blue PL. Interestingly, it was found that lowering the synthesis temperature, such as doing the reaction in an ice bath, favored the formation of product with narrowband green luminescence. If the precipitation step was initiated at higher temperatures (e.g., 80 °C), the product would exhibit weak or no luminescence.

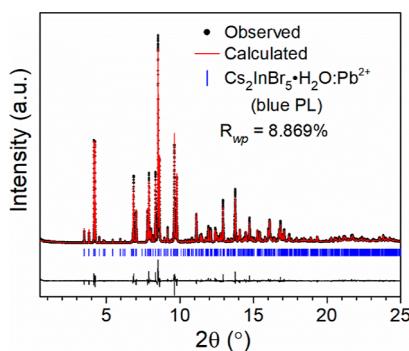
Laboratory PXRD was not able to resolve any differences between the diffraction patterns of undoped  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  and samples doped with  $\text{Pb}^{2+}$  that exhibited either green or blue PL (Figure S3). However, analyzing samples of  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  with green PL via high resolution synchrotron PXRD revealed small quantities of  $\text{Cs}_4\text{PbBr}_6$  (1.2% by mass) and  $\text{CsBr}$  (0.7% by mass) as determined through Rietveld refinements (Figures 3, S4 and S5). Furthermore, the presence




**Figure 3.** (a) Rietveld fit of  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  exhibiting green PL. Synchrotron diffraction data taken on beamline 11-BM ( $\lambda = 0.458162$  Å) at the APS. Refined phases include  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$ ,  $\text{Cs}_4\text{PbBr}_6$ , and  $\text{CsBr}$ . Experimental data are shown with black points, the calculated pattern in red, and allowed peak positions for  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  ( $\text{Pnma}$ ) are denoted with blue,  $\text{Cs}_4\text{PbBr}_6$  ( $\text{R}3\text{c}$ ) green, and  $\text{CsBr}$  ( $\text{Pm}\bar{3}\text{m}$ ) purple tick marks. The difference between observed and calculated patterns is given below in black. (b) Zoomed in region of the top figure. The blue asterisk denotes a peak that is tentatively assigned to  $\text{CsPbBr}_3$ , as discussed in the text.

of  $\text{CsPbBr}_3$  was signaled by a weak, broad peak positioned at  $\sim 6.3^\circ$   $2\theta$ , which is the expected position of the overlapping (121), (200), and (002) reflections of the orthorhombic structure of  $\text{CsPbBr}_3$ . In the PXRD pattern of bulk  $\text{CsPbBr}_3$ , these overlapping peaks together constitute the strongest reflection in the pattern, so their presence here is taken as evidence for  $\text{CsPbBr}_3$ . This peak is considerably broader than those around it, suggesting size broadening due to small crystallite size (Figure 3). Neglecting the very subtle splitting of the three peaks (the orthorhombic structure of  $\text{CsPbBr}_3$  is highly pseudocubic) Scherrer analysis of the peak width suggests a crystallite size of approximately 30 nm, comparable to what has been found previously in green-emissive  $\text{Cs}_4\text{PbBr}_6$  phases (Figures S6 and S7).<sup>36</sup>

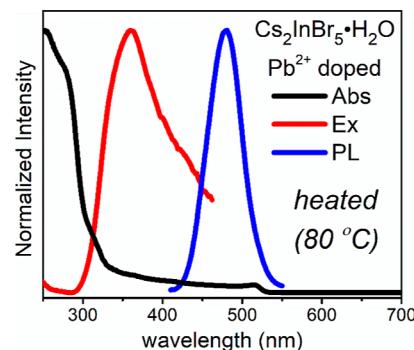
Absorption spectra were approximated by applying a Kubelka–Munk transformation to diffuse reflectance measurements on powder samples. Undoped  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  has an absorption onset at 3.86 eV (321 nm), consistent with prior reports.<sup>31</sup> Samples doped with  $\text{Pb}^{2+}$  exhibit an absorption tail that extends well below the band edge of undoped  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$ . The onset of absorption for the sub-band gap feature was determined to be 2.33 eV (532 nm), a value similar to the onset reported for  $\text{CsPbBr}_3$  NCs (Figure S8).<sup>37</sup> Excitation measurements show a maximum at 3.43 eV (361 nm), but excitation extends well into the visible region and continues


out to wavelengths approaching the emission peak. Narrow-band emission of green light occurs with  $\lambda_{\text{max}} = 521 \text{ nm}$  and  $\text{fwhm} = 89.9 \text{ meV}$  (19.8 nm) (Figures 4 and S9). The samples



**Figure 4.** Absorption, excitation, and PL spectra of  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  with green PL. Absorption of undoped  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  is given by the dashed line.

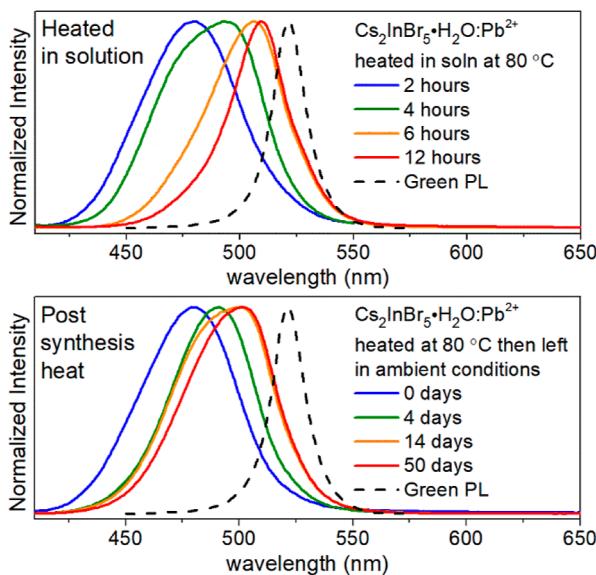
with the highest PLQY (7%) were obtained when 0.15 mol  $\text{PbBr}_2$  per mole of  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  was added to the solution (Figure S10). The optical properties of  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  samples exhibiting green PL are compared to those of  $\text{Cs}_4\text{PbBr}_6$  in the Supporting Information (Figures S11–S14). The weak sub-band gap absorption characteristics, narrowband green emission, and small Stokes shift are very similar in both materials, suggesting the luminescence in  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  comes from  $\text{CsPbBr}_3$  NCs.


Samples exhibiting green PL are stable under ambient conditions indefinitely, with no change in PL observed after several months (Figure S15). However, heating these dry, powder samples in air or vacuum to 80 °C for 10 h results in an irreversible shift from green to blue emission. Blue PL may be also be achieved by heating freshly precipitated  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  to 80 °C while still in solution prior to filtration and washing (Figure 2). Synchrotron PXRD analysis of samples prepared by the solution route reveals only  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$ , with no sign of the secondary phases  $\text{Cs}_4\text{PbBr}_6$ ,  $\text{CsBr}$ , or  $\text{CsPbBr}_3$  (Figures 5 and S16). The presence of blue PL in samples containing only  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  strongly suggests that PL is coming from that phase and not from embedded  $\text{CsPbBr}_3$  NCs. A similar analysis of  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  samples where



**Figure 5.** Rietveld fit of  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  exhibiting blue PL. Synchrotron diffraction data taken on beamline 11-BM ( $\lambda = 0.45816 \text{ \AA}$ ) at the APS. Collected data are given in black, Rietveld fit is given in red, expected peak positions for  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  ( $Pnma$ ) are denoted with blue tick marks. The difference between the observed data and the fit is given below in black.

blue PL is obtained by heating to 80 °C post-synthesis shows a reduction of the intensities of peaks associated with  $\text{Cs}_4\text{PbBr}_6$  and accompanied by an increase in intensity and narrowing of the XRD peak associated with  $\text{CsPbBr}_3$  (Figure S17). This change indicates a growth in particle size of the  $\text{CsPbBr}_3$  phase upon heating and may explain the slight orange discoloration seen in these samples. This would seem to suggest that the  $\text{CsPbBr}_3$  NCs are expelled from the  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  matrix and coalesce into crystals too large to show PL at room temperature.


The blue emission is centered at 480 nm with a larger fwhm of 278.5 meV (Figures 6 and S18). The PLQY for the



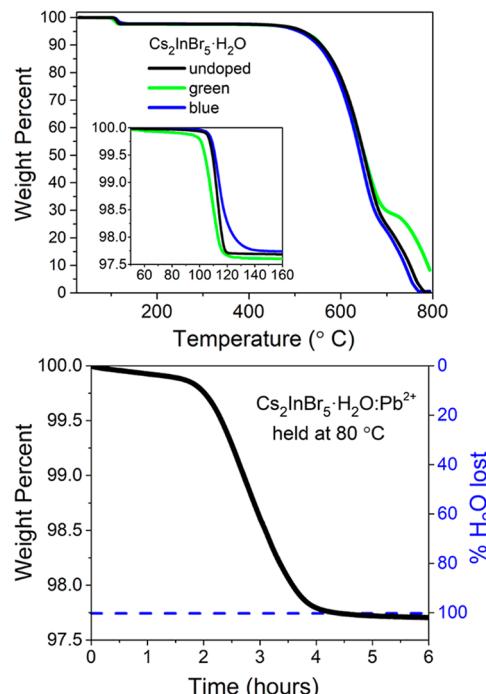

**Figure 6.** Absorption, excitation, and PL spectra of  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  with blue PL. This sample was heat-treated at 80 °C for 10 h post-synthesis.

$\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  sample prepared from a solution that had been heated to 80 °C was measured to be 41%, significantly higher than that measured for green emitting samples and also higher than a blue emitting  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  sample heated post-synthesis, which had a PLQY of 16%. No significant change is observed in the absorption or excitation features of the phosphor and the sub-band gap absorption feature remains regardless of the synthesis route. Unlike the green emission, the emission profile of blue PL  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  is not stable and gradually shifts to longer wavelengths over time (Figure 7). For samples heated post-synthesis, this redshift happens slowly whereas when heated in solution, this process happens more rapidly with full conversion happening over the course of 12 h (Figure 7). Despite the redshift of the emission, there was no observation of complete conversion back to the green PL product. Re-heating the samples to around 80 °C did not return the emission peak back to 480 nm but instead seemed to accelerate the shifting to its new position at 510 nm. Heating either green PL or blue PL to higher temperatures (300 °C) leads to an orange coloration of the powder, suggestive of bulk  $\text{CsPbBr}_3$  formation, and loss of luminescence (Figure 8). CIE coordinates of the green PL product and blue PL products are provided in the Supporting Information.

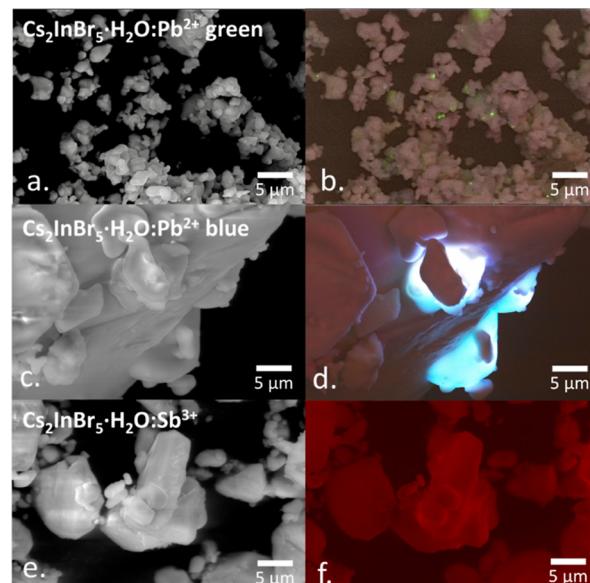
To probe the cause of the PL change, TGA measurements were taken to monitor any decomposition of the sample in this temperature range. TGA shows an initial 2.5% weight loss starting at approximately 100 °C, which is in close agreement to the theoretical mass percent of  $\text{H}_2\text{O}$  in the sample of 2.3%, indicating a dehydration mechanism upon heating. Further decomposition is not observed until 450 °C. Because conversion from the green to blue PL product occurs at 80 °C, seemingly below the dehydration temperature; further measurements were carried out at this temperature to probe



**Figure 7.** Evolution of PL in blue emitting  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  samples as a function of time. The top figure is for samples that were heated in solution for varying amounts of time, then removed from solution, and PL was measured. The bottom figure is for a sample left under ambient conditions with periodic PL measurements. The PL of a green emitting  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  sample (dashed line) is included to show that PL does not fully return to its original state.




**Figure 8.** Sample appearance under ambient light and UV light after being synthesized and heated to various temperatures. Pictures were taken after each sample cooled down to room temperature.


stability. In fact, holding the sample at 80 °C is sufficient to trigger the dehydration of the product over a period of 4.5 h (Figure 9). Thus, the dehydration/rehydration process of  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  is closely linked to the transformation from green PL to blue PL.

Next, we turned to CL imaging to better understand the spatial distribution of PL. As seen in Figure 10, emission in green PL samples is localized to very small regions of the sample. This is consistent with CL measured on  $\text{Cs}_4\text{PbBr}_6$  samples where PL is thought to occur from  $\text{CsPbBr}_3$  NC.<sup>38</sup> Interestingly, the CL profile of blue PL samples is strikingly different. It is more diffusive and originates from much larger micron-sized regions of the sample. SEM images also show that the dehydration/rehydration process leads to significant growth in grain size.

As a comparison, CL analysis was carried out on  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  samples doped with  $\text{Sb}^{3+}$ . Luminescence in this system is



**Figure 9.** Top: TGA of undoped and  $\text{Pb}^{2+}$ -doped  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  samples highlighting the region near 100 °C where the material loses water. Bottom: TGA of sample held at 80 °C for 6 h showing the loss of water as a function of time.



**Figure 10.** (a) SEM and (b) CL of green emitting  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$ ; (c) SEM and (d) CL of blue emitting  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$ ; (e) SEM and (f) CL of orange emitting  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Sb}^{3+}$ . Additional images are provided in the Supporting Information.

understood to arise from a simple  $\text{Sb}_{\text{In}}$  substitution mechanism yielding orange-red emission.<sup>29,30</sup> Figure 10 shows that the spatial variations in CL intensity are visually similar to blue PL, as seen in  $\text{Pb}^{2+}$  doped samples, suggesting that the blue PL arises from isolated  $\text{Pb}^{2+}$  dopants rather than localized  $\text{CsPbBr}_3$  NC. An alternative explanation for the blueshifted PL could be the shrinking of NC domains in the green PL samples, leading to increased quantum confinement effects and a blueshift of

the emission peak. However, CL and synchrotron PXRD provide evidence that directly contradicts this hypothesis. In fact, the breadth and peak position of blue PL samples is remarkably similar to that reported for  $\text{Bmpip}_2\text{PbBr}_4$ , a hybrid material possessing isolated  $\text{PbBr}_4^{2-}$  ions with  $\text{Pb}^{2+}$  in disphenoidal (seesaw) coordination.<sup>39</sup>

## ■ DISCUSSION

The characteristics of the excitation and emission bands, the presence of a broad peak associated with  $\text{CsPbBr}_3$  in the synchrotron PXRD pattern, and the localized emission seen in the CL all point toward the green PL seen in these samples as originating from  $\text{CsPbBr}_3$  NC. Given the available data, we cannot conclusively determine if the  $\text{CsPbBr}_3$  NC are embedded in the hydrate phase itself or within  $\text{Cs}_4\text{PbBr}_6$  crystals that make up 1–2% of the sample. Diffuse reflectance spectra show similar intensity of the sub-band gap absorption attributed to  $\text{CsPbBr}_3$  in both  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  and  $\text{Cs}_4\text{PbBr}_6$  samples, yet the strong  $\text{Cs}_4\text{PbBr}_6$  absorption band is not detected in the former (Figure S12). This observation suggests that  $\text{CsPbBr}_3$  NC can be stabilized in a  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  matrix and do not need to be surrounded by  $\text{Cs}_4\text{PbBr}_6$ .

The synthesis of the green emitting phosphors studied here differs in important ways from other routes to  $\text{CsPbBr}_3$  NC. The formation of  $\text{CsPbBr}_3$  NC consists of a hot injection method consisting of rapid addition of  $\text{Cs}^+$  to a solution of  $\text{PbX}_2$  salts in a nonpolar solvent at high temperatures (140–200 °C) under an inert atmosphere. Alternatively, perovskite nanowires have been grown using a ligand-assisted reprecipitation method at ice bath temperatures in anhydrous solvents such as dimethylformamide (DMF) and toluene.<sup>40</sup> A  $\text{CsPbBr}_3$  NC encapsulated in a  $\text{Cs}_4\text{PbBr}_6$  host is prepared by combining the halide salts in a mixture of DMF and DMSO. To the best of our knowledge, there are no reported syntheses of green emitting  $\text{Cs}_4\text{PbBr}_6$  samples without the addition of DMF or DMSO. The switch to precipitation from an aqueous solution reported here offers a more facile and environmentally friendly synthesis route.

The PL changes from green to blue upon heating samples to a sufficiently high temperature to induce dehydration. This is accompanied by a reduction in the intensity of  $\text{Cs}_4\text{PbBr}_6$  PXRD peaks and a significant sharpening of the  $\text{CsPbBr}_3$  diffraction peaks. The latter observation is consistent with the presence of larger  $\text{CsPbBr}_3$  crystallites. SEM images also show significant grain growth of the main  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  crystallites. Upon dehydration,  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  is reported to undergo a phase change to a mixture of  $\text{Cs}_3\text{In}_2\text{Br}_9$  and  $\text{CsBr}$ .<sup>31</sup> Based on our studies, when cooled back to room temperature and exposed to air, the material rehydrates in a matter of minutes, reforming the  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  phase. The transformation of the hydrate phase to the dehydrated phase not only changes the microstructure, it appears to also redistribute the  $\text{Pb}^{2+}$  ions. CL analysis shows that the PL no longer originates from a few small regions on the nanometer length scale but rather from micron-sized crystallites. In those samples that are heated to 80 °C in solution prior to filtration, no evidence for the presence of  $\text{Cs}_4\text{PbBr}_6$  or  $\text{CsPbBr}_3$  can be seen in synchrotron PXRD scans, yet blue PL is seen that is very similar to powdered samples that were heated above the dehydration temperature and cooled back to room temperature. These observations provide strong evidence that the blue PL originates from  $\text{Pb}^{2+}$  ions that are substituted into  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  crystals.

Substitution of  $\text{Pb}^{2+}$  on an  $\text{In}^{3+}$  site would presumably be accompanied by charge compensating defects. A bromide vacancy near the  $\text{Pb}^{2+}$  impurity would charge-balance the dopant site, and in the absence of coordinating  $\text{H}_2\text{O}$  molecules, this would create  $[\text{PbBr}_4]^{2-}$  complex ions. We hypothesize that these ions are the source of blue emission seen in  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  samples that have been heated above the dehydration temperature. The emission profile seen in the blue PL samples studied here is very similar to that of  $[\text{PbBr}_4]^{2-}$  species found in compounds such as  $\text{Bmpip}_2\text{PbBr}_4$  and  $(\text{C}_{13}\text{H}_{19}\text{N}_4)_2\text{PbBr}_4$ . In both of these compounds, the emission is thought to arise from the  $^3\text{P}_1 \rightarrow ^1\text{S}_0$  transition of isolated  $[\text{PbBr}_4]^{2-}$  polyhedra in a disphenoidal (seesaw) configuration.<sup>39,41</sup> The continual redshift of emission that occurs over time in  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  samples with blue PL reflects the inherent instability of these aliovalent doping sites.

The synthesis of perovskite NCs has been widely studied, and routes to stable nanoparticles are of great interest. The  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  system affords a greener synthesis route to perovskite NCs compared to  $\text{Cs}_4\text{PbBr}_6$  which requires organic solvents such as DMSO or DMF. Unlike phase-pure  $\text{CsPbBr}_3$  NC, emission from these NCs embedded in a  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  matrix are stable when exposed to ambient conditions. Although  $\text{Pb}^{2+}$  is still present in this material, its concentration is much reduced compared to  $\text{CsPbBr}_3$  NC embedded in a  $\text{Cs}_4\text{PbBr}_6$  host where lead is an intrinsic part of the structure. Furthermore, the emission characteristics can be transformed by mild heat treatment to a strong blue emission with moderately high quantum yield (41%). While the blue emitting samples are not as stable upon exposure to ambient atmospheres as the green emitting samples, this work shows that the  $\text{Pb}^{2+}$  ion is a viable activator in metal halide phosphors and luminescent materials.

## ■ CONCLUSIONS

$\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  samples prepared via precipitation from  $\text{HBr}(\text{aq})$  solutions in the presence of  $\text{Pb}^{2+}$  exhibit narrowband green PL. Synchrotron PXRD, optical properties, and CL imaging analysis indicate that the emission originates in  $\text{CsPbBr}_3$  NC. Unlike pure  $\text{CsPbBr}_3$  NC, these samples and their PL are stable indefinitely upon exposure to ambient atmosphere. Upon heating to 80 °C, samples can be converted from green emitting to blue emitting powders. This is triggered by a dehydration and subsequent rehydration of the  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  structure, resulting in grain growth and partial dissolution of  $\text{Cs}_4\text{PbBr}_6$  and/or  $\text{CsPbBr}_3$  inclusions leading to a more uniform dispersion  $\text{Pb}^{2+}$  ions. PL in blue emitting samples appears to originate from isolated  $\text{Pb}^{2+}$  ions that substitute on  $\text{In}^{3+}$  sites of the host structure.

## ■ ASSOCIATED CONTENT

### SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.chemmater.2c02817>.

Laboratory and synchrotron PXRD data; Scherrer analysis used to estimate the domain size of  $\text{CsPbBr}_3$  crystallites; Tauc plot and emission spectrum for a green emitting  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$ ; PLQY analysis; UV-vis diffuse reflectance spectra, emission spectra, and excitation spectra of green emitting  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}:\text{Pb}^{2+}$  and  $\text{Cs}_4\text{PbBr}_6$ ; emission spectrum for a blue emitting  $\text{Cs}_2\text{InBr}_5\cdot\text{H}_2\text{O}$  sample; refined lattice parameters of

various samples; CIE coordinates for various luminescence; CL images of both green and blue emitting  $\text{Cs}_2\text{InBr}_5\text{-H}_2\text{O:Pb}^{2+}$  as well as orange emitting  $\text{Cs}_2\text{InBr}_5\text{-H}_2\text{O:Sb}^{3+}$  (PDF)

## AUTHOR INFORMATION

### Corresponding Author

Patrick M. Woodward – Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States;  [orcid.org/0000-0002-3441-2148](https://orcid.org/0000-0002-3441-2148); Email: [woodward.55@osu.edu](mailto:woodward.55@osu.edu)

### Authors

Jackson D. Majher – Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States;  [orcid.org/0000-0002-4160-4201](https://orcid.org/0000-0002-4160-4201)

Victor da Cruz Pinha Barbosa – Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States

Chris Chae – Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States

T. Amanda Strom – Department of Material Science, UC Santa Barbara, Santa Barbara, California 93106, United States

Jinwoo Hwang – Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States

Complete contact information is available at:  
<https://pubs.acs.org/10.1021/acs.chemmater.2c02817>

### Author Contributions

J.D.M. conceived this study and carried out all of the synthesis and characterization except as noted below. V.d.C.P.B. performed the TGA. T.A.S. performed the PLQY measurements. C.C. and J.H. performed the SEM and CL measurements. J.D.M. and P.M.W. interpreted the results and took the lead in writing the manuscript, which was completed through contributions of all authors. All authors have given approval to the final version of the manuscript.

### Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

The authors would like to acknowledge Matthew Gray for helpful discussions while composing the manuscript. Funding was provided by the National Science Foundation under award number DMR-2003793. Chae and Hwang acknowledge support by National Science Foundation, DMR-2011876. The MRL Shared Experimental Facilities are supported by the MRSEC Program of the NSF under Award no. DMR-1720256; a member of the NSF-funded Materials Research Facilities Network ([www.mrfn.org](http://www.mrfn.org)). Use of the APS at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357.

## REFERENCES

- Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. *Chem. Rev.* **2019**, *119*, 3036–3103.
- Kim, J. Y.; Lee, J.; Jung, H.; Shin, H.; Park, N. High-Efficiency Perovskite Solar Cells. *Chem. Rev.* **2020**, *120*, 7867–7918.
- Kang, J.; Wang, L. High Defect Tolerance in Lead Halide Perovskite  $\text{CsPbBr}_3$ . *J. Phys. Chem. Lett.* **2017**, *8*, 489–493.
- Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L. D.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. *Chem. Rev.* **2019**, *119*, 3296–3348.
- Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Espallargas, G. M. M.; Bolink, R. E.; Galian, J.; Pérez-Prieto, J. Nontemplate Synthesis of  $\text{CH}_3\text{NH}_3\text{PbBr}_3$  Perovskite Nanoparticles. *J. Am. Chem. Soc.* **2014**, *136*, 850–853.
- Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotewelt, M. J.; Kovalenko, M. V. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites ( $\text{CsPbX}_3$ , X = Cl, Br, I). *Nano Lett.* **2015**, *15*, 5635–5640.
- Lin, K.; Xing, J.; Quan, L. N.; de Arquer, P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; Li, W.; Liu, X.; Lu, Y.; Kirman, J.; Sargent, E. H.; Xiong, W.; Wei, Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. *Nature* **2018**, *562*, 245–248.
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-inorganic perovskite nanocrystal scintillators. *Nature* **2018**, *561*, 88–93.
- Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X.-Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. *Nat. Mater.* **2015**, *14*, 636–642.
- Ricci, F.; Marougail, V.; Varnavski, O.; Wu, Y.; Padgaonkar, S.; Irgen-Giorgi, S.; Weiss, S.; Goodson, E. A.; Goodson, T., III Enhanced Exciton Quantum Coherence in Single  $\text{CsPbBr}_3$  Perovskite Quantum Dots using Femtosecond Two-Photon Near-Field Scanning Optical Microscopy. *ACS Nano* **2021**, *15*, 12955–12965.
- McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M.  $\text{Cs}_2\text{AgBiX}_6$  (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors. *Chem. Mater.* **2016**, *28*, 1348–1354.
- Volonakis, G.; Haghhighirad, A. A.; Milot, R. L.; Sio, W. H.; Filip, M. R.; Wenger, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J.  $\text{Cs}_2\text{InAgCl}_6$ : A New Lead-Free Halide Perovskite with Direct Band Gap. *J. Phys. Chem. Lett.* **2017**, *8*, 722–778.
- Wu, Y.; Li, X.; Zeng, H. Lead-Free Halide Double Perovskites: Structure, Luminescence, and Applications. *Small Struct.* **2021**, *2*, 20000071.
- Majher, J. D.; Gray, M. B.; Strom, T. A.; Woodward, P. M.  $\text{Cs}_2\text{NaBiCl}_6\text{:Mn}^{2+}$ —A New Orange-Red Halide Double Perovskite Phosphor. *Chem. Mater.* **2019**, *31*, 1738–1744.
- Zhao, F.; Song, Z.; Zhao, J.; Liu, Q. Double perovskite  $\text{Cs}_2\text{AgInCl}_6\text{:Cr}^{3+}$ : broadband and near-infrared luminescent materials. *Inorg. Chem. Front.* **2019**, *6*, 3621–3628.
- Li, S.; Hu, Q.; Luo, J.; Jin, T.; Liu, J.; Li, J.; Tan, Z.; Han, Y.; Zheng, Z.; Zhai, T.; et al. Self-trapped Exciton to Dopant Energy Transfer in Rare Earth Doped Lead-Free Double Perovskite. *Adv. Opt. Mater.* **2019**, *7*, 1901098.
- Liu, Y.; Rong, X.; Li, M.; Molokeev, M.; Zhao, J.; Xia, Z. Incorporating Rare-Earth Terbium(III) Ions into  $\text{Cs}_2\text{AgInCl}_6\text{:Bi}$  Nanocrystals toward Tunable Photoluminescence. *Angew. Chem., Int. Ed.* **2020**, *59*, 11634–11640.
- Luo, J.; Wang, X.; Li, S.; Liu, J.; Guo, Y.; Niu, G.; Yao, L.; Fu, Y.; Gao, L.; Dong, Q.; et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. *Nature* **2018**, *563*, 541–545.
- Gray, M. B.; Hariyani, S.; Strom, T. A.; Majher, J. D.; Brzoch, J.; Woodward, P. M. High-efficiency blue photoluminescence in the  $\text{Cs}_2\text{NaInCl}_6\text{:Sb}^{3+}$  double perovskite phosphor. *J. Mater. Chem. C* **2020**, *8*, 6797–6803.
- Zeng, R.; Zhang, L.; Xue, Y.; Ke, B.; Zhao, Z.; Huang, D.; Wei, Q.; Zhou, W.; Zou, B. Highly Efficient Blue Emission from Self-

Trapped Excitons in Stable Sb<sup>3+</sup>-Doped Cs<sub>2</sub>NaInCl<sub>6</sub> Double Perovskites. *J. Phys. Chem. Lett.* **2020**, *11*, 2053–2061.

(21) Noculak, A.; Morad, V.; McCall, K. M.; Yakunin, S.; Shynkarenko, Y.; Wörle, M.; Kovalenko, M. V. Bright Blue and Green Luminescence of Sb(III) in Double Perovskite Cs<sub>2</sub>MInCl<sub>6</sub> (M = Na, K) Matrices. *Chem. Mater.* **2020**, *32*, 5118–5124.

(22) Arfin, H.; Kshirsagar, A. S.; Kaur, J.; Mondal, B.; Xia, Z.; Chakraborty, S.; Nag, A. ns<sup>2</sup> Electron (Bi<sup>3+</sup> and Sb<sup>3+</sup>) Doping in Lead-Free Metal Halide Perovskite Derivatives. *Chem. Mater.* **2020**, *32*, 10255–10267.

(23) Tan, Z.; Li, J.; Zhang, C.; Li, Z.; Hu, Q.; Xiao, Z.; Kamiya, T.; Hosono, H.; Niu, G.; Lifshitz, E.; Cheng, Y.; Tang, J. Highly Efficient Blue-Emitting Bi-Doped Cs<sub>2</sub>SnCl<sub>6</sub> Perovskite Variant: Photoluminescence Induced by Impurity Doping. *Adv. Funct. Mater.* **2018**, *28*, 1801131.

(24) Li, J.; Tan, Z.; Hu, M.; Chen, C.; Luo, J.; Li, S.; Gao, L.; Xiao, Z.; Niu, G.; Tang, J. Antimony doped Cs<sub>2</sub>SnCl<sub>6</sub> with bright and stable emission. *Front. Optoelectron.* **2019**, *12*, 352–364.

(25) Zeng, R.; Bai, K.; Wei, Q.; Chang, T.; Yan, J.; Ke, B.; Huang, J.; Wang, L.; Zhou, W.; Cao, S.; Zhao, J.; Zou, B. Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs<sub>2</sub>SnCl<sub>6</sub> perovskite variants. *Nano Res.* **2021**, *14*, 1551–1558.

(26) Jing, Y.; Liu, Y.; Zhao, J.; Xia, Z. Sb<sup>3+</sup> Doping-Induced Triplet Self-Trapped Excitons Emission in Lead-Free Cs<sub>2</sub>SnCl<sub>6</sub> Nanocrystals. *J. Phys. Chem. Lett.* **2019**, *10*, 7439–7444.

(27) Majher, J. D.; Gray, M. B.; Liu, T.; Holzapfel, N. P.; Woodward, P. M. Rb<sub>3</sub>InCl<sub>6</sub>: A Monoclinic Double Perovskite Derivative with Bright Sb<sup>3+</sup>-Activated Photoluminescence. *Inorg. Chem.* **2020**, *59*, 14478–14485.

(28) Zhu, D.; Zaffalon, M. L.; Zito, J.; Cova, F.; Meinardi, F.; De Trizio, L. D.; Infante, I.; Brovelli, S.; Manna, L. Sb-Doped Metal Halide Nanocrystals: A 0D versus 3D Comparison. *ACS Energy Lett.* **2021**, *6*, 2283–2292.

(29) Jing, Y.; Liu, Y.; Jiang, X.; Molokeev, M. S.; Lin, Z.; Xia, Z. Sb<sup>3+</sup> Dopant and Halogen Substitution Triggered Highly Efficient and Tunable Emission in Lead-Free Metal Halide Single Crystals. *Chem. Mater.* **2020**, *32*, 5327–5334.

(30) Liu, X.; Xu, X.; Li, B.; Liang, Y.; Li, Q.; Jiang, H.; Xu, D. Antimony-Doping Induced Highly Efficient Warm-White Emission in Indium-Based Zero-Dimensional Perovskites. *CCS Chem.* **2020**, *2*, 216–224.

(31) Zhou, L.; Liao, J.; Huang, Z.; Wei, J.; Wang, X.; Li, W.; Chen, H.; Kuang, D.; Su, C. A Highly Red-Emissive Lead-Free Indium-Based Perovskite Single Crystal for Sensitive Water Detection. *Angew. Chem., Int. Ed.* **2019**, *58*, 5277–5281.

(32) Saidaminov, M. I.; Almutlaq, J.; Sarmah, S.; Dursun, I.; Zhumekenov, A. A.; Begum, R.; Pan, J.; Cho, N.; Mohammed, O. F.; Bakr, O. M. Pure Cs<sub>4</sub>PbBr<sub>6</sub>: Highly Luminescent Zero-Dimensional Perovskite Solids. *ACS Energy Lett.* **2016**, *1*, 840–845.

(33) Quan, L.; Quintero-Bermudez, R.; Voznyy, O.; Walters, G.; Jain, A.; Fan, J. Z.; Zheng, X.; Yang, Z.; Sargent, E. H. Highly Emissive Green Perovskite Nanocrystals in a Solid-State Crystalline Matrix. *Adv. Mater.* **2017**, *29*, 16059.

(34) Topas Academic. *General Profile and Structural Analysis for Powder Diffraction Data*; Bruker AXS: Karlsruhe, Germany, 2004.

(35) Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* **2011**, *44*, 1272–1276.

(36) Chen, Y.; Zhou, Y.; Zhao, Q.; Zhang, J.; Ma, J.; Xuan, T.; Guo, S.; Yong, Z.; Wang, J.; Kuroiwa, Y.; Moriyoshi, C.; Sun, H. Cs<sub>4</sub>PbBr<sub>6</sub>/CsPbBr<sub>3</sub> Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White-Light-Emitting Diode Application. *ACS Appl. Mater. Interfaces* **2018**, *10*, 15905–15912.

(37) Nedulcu, G.; Protesescu, L.; Yankunin, S.; Bodnarchuk, M. I.; Grotewelt, M. J.; Kovalenko, M. V. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX<sub>3</sub>, X = Cl, Br, I). *Nano Lett.* **2015**, *15*, 5635–5640.

(38) Riesen, N.; Lockrey, M.; Badek, K.; Riesen, H. On the origins of the green luminescence in the “zero-dimensional perovskite” Cs<sub>4</sub>PbBr<sub>6</sub>: conclusive results from cathodoluminescence imaging. *Nanoscale* **2019**, *11*, 3925–3932.

(39) Morad, V.; Shynkarenko, Y.; Yakunin, S.; Brumberg, A.; Schaller, R. D.; Kovalenko, M. V. Disphenoidal Zero-Dimensional Lead, Tin, and Germanium Halides: Highly Emissive Singlet and Triplet Self-Trapped Excitons and X-ray Scintillation. *J. Am. Chem. Soc.* **2019**, *141*, 9764–9768.

(40) Kostopoulou, A.; Sygletou, M.; Brintakis, K.; Lappas, A.; Stratakis, E. Low-temperature benchtop-synthesis of all-inorganic perovskite nanowires. *Nanoscale* **2017**, *9*, 18202–18207.

(41) Lin, H.; Zhou, C.; Chaaban, M.; Xu, L.; Zhou, Y.; Neu, J.; Worku, M.; Berkwits, E.; He, Q.; Lee, S.; Tin, X.; Siegrist, T.; Du, M.; Ma, B. Bulk Assembly of Zero-Dimensional Organic Lead Bromide Hybrid with Efficient Blue Emission. *ACS Mater. Lett.* **2019**, *1*, 594–598.

## □ Recommended by ACS

### Growth Process and Optical Properties of Cs<sub>2</sub>ZrCl<sub>6</sub> Doped with Ce<sup>3+</sup> and Li<sup>+</sup> Crystals

Xinhui Jia, Jiyang Wang, et al.

APRIL 12, 2023

CRYSTAL GROWTH & DESIGN

READ ▾

### Luminescence and Mechanism of Mn<sup>2+</sup> Substitution in Cs<sub>2</sub>Cd<sub>3</sub>Br<sub>13</sub> with Two Types of Coordination Number

Chengzhi Yang, Bingsuo Zou, et al.

FEBRUARY 08, 2023

INORGANIC CHEMISTRY

READ ▾

### Ultra-sharp-Line Emission in Isotopic c-<sup>10</sup>BP

Siqi Zhu, Wei Zheng, et al.

FEBRUARY 28, 2023

THE JOURNAL OF PHYSICAL CHEMISTRY C

READ ▾

### Red-NIR Luminescence in Rare-Earth and Manganese Ions Codoped Cs<sub>2</sub>CdBi<sub>2</sub>Cl<sub>12</sub> Vacancy-Ordered Quadrupole Perovskites

Peipei Dang, Jun Lin, et al.

FEBRUARY 07, 2023

CHEMISTRY OF MATERIALS

READ ▾

Get More Suggestions >