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Densities associated with the energy-momentum tensor are calculated for spin-one targets. These

calculations are done in a light front formalism, which accounts for relativistic effects due to boosts and

allows for arbitrary spatial localization of the target. These densities include the distribution of momentum,

angular momentum, and pressures over a two-dimensional plane transverse to the light front. Results are

obtained for both longitudinally and transversely polarized targets, and the formalism is tailored to allow

the possibility of massless targets. The momentum density and pressure distributions are calculated for a

deuteron target in a light cone convolution model, with which the properties of this model (such as helicity

dependence of the densities) is illustrated.
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I. INTRODUCTION

The energy-momentum tensor (EMT) has become a

major topic of interest in hadron physics. It touches on

several major outstanding problems in the field, including

the proton mass puzzle [1–7] and the proton spin puzzle

[8–10]. It is also believed by some to contain information

about the mechanical properties of hadrons, including

the spatial distributions of pressures and shear stresses

[11–13], as well as information about the mechanical

stability of hadrons.

Most research into the EMT of hadrons has focused on

the gravitational form factors (GFFs) of spin-zero and

spin-half targets. This is understandable, since the proton

is spin-half, and spin-zero is an especially simple case for

exploratory studies. However, spin-one targets play an

important role in our understanding of the strong nuclear

force, and are thus deserving of more attention in research

on GFFs. The deuteron is spin-one after all, and as the

simplest nucleus, it is an ideal testing ground for studies of

how the internucleon force arises from quantum chromo-

dynamics [14]. Spin-one targets more generally contain

extra information not present in lower-spin targets, such as

a gluon transversity distribution whose evolution decou-

ples from quarks [15].

Several recent theoretical studies [16–19] and model

calculations [20–23] have been done for the EMT and

GFFs of spin-one targets. However, there is yet no

investigation into the light front densities associated with

the GFFs of spin-one targets. Breit frame studies exist

[17,18], but there is considerable controversy regarding the

physical meaningfulness of Breit frame densities (see

Refs. [24–31] for a variety of perspectives), whereas light

front densities have a clear physical meaning and inter-

pretation as true densities [25,26,30,32,33]. It is thus

prudent to investigate the light front densities associated

with the GFFs of spin-one targets.

This work is an investigation into the general properties

and expressions for EMT densities in spin-one targets. A

companion paper [34] investigates the densities for a photon

target specifically.

This paper is organized into the following sections.

Section II considers the decomposition of EMT matrix

elements into GFFs, examining how this decomposition

depends on target polarization. Section III then obtains all

the relevant densities, including static moments and radii,

as well as their polarization dependence. Section IV

illustrates some of these densities with a simple light cone

convolution model of the deuteron, and Sec. V concludes

the work.

II. MATRIX ELEMENTS FOR DEFINITE-SPIN

STATES

For a massive spin-one system, the matrix element of the

conserved, symmetric EMT between spin-one plane wave

states is given by [16–18,20,21,35]
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hp0λ0jTμνð0Þjpλi ¼ 2PμPν

�

−ðε · ε0�ÞG1ðtÞ þ
ðε · ΔÞðε0� · ΔÞ

2M2
G2ðtÞ

�

þ Δ
μ
Δ

ν − Δ
2gμν

2

�

−ðε · ε0�ÞG3ðtÞ þ
ðε · ΔÞðε0� · ΔÞ

2M2
G4ðtÞ

�

þ 1

2
Pfμ½ε0�νgðε · ΔÞ − ενgðε0� · ΔÞ�G5ðtÞ

þ 1

4
½Δfμðε0�νgðε · ΔÞ þ ενgðε0� · ΔÞÞ − εfμε0�νgΔ2 − 2gμνðε · ΔÞðε0� · ΔÞ�G6ðtÞ; ð1Þ

where P ¼ 1
2
ðpþ p0Þ, Δ ¼ p0 − p, t ¼ Δ

2, where ε is a

polarization four-vector that depends on momentum p and

spin quantum number λ, and ε0 similarly on p0 and λ0, and
where fg denotes symmetrization without a factor 1

2
(i.e.,

afμbνg ¼ aμbν þ aνbμ). Note that several conventions exist
in the literature for naming the gravitational form factors.

We have here used the notation first found in Ref. [16] and

later adopted (and expanded) in Refs. [17,21]. Refer-

ence [18] gives a comparison of the existing conventions.

Several nonconserved form factors, namely G7−9ðtÞ, also
exist when examining the EMT contributions of a single

parton flavor, but in this work we examine only the total

EMT, which is conserved. The effects of nonconserved

GFFs on partonic densities are deferred to a future study.

Reference [17] additionally gives two more form factors,

G10;11ðtÞ for the asymmetric EMT, but a consistent appli-

cation of Noether’s second theorem to obtain the EMT has

been shown to reproduce the symmetric Belinfante EMT

for QCD [36], so we limit our attention to the symmetric

EMT here.

Clearly, Eq. (1) is not applicable to massless systems,

due to the presence of factors 1=M2. The presence of these

factors is somewhat artificial; standard form factor decom-

positions like Eq. (1) are designed so that (1) the form

factors are unitless and (2) poles do not occur in the form

factors nor in accompanying Lorentz structures that are not

present in the EMTmatrix element. Condition (2) precludes

using factors of 1=t instead of 1=M2 to accompany, e.g.,

G2ðtÞ. However, if condition (1) is relaxed, one can write a

variant of Eq. (1) with no factors of 1=M2 present, but

several unitful Lorentz scalar functions.

This work will examine light front densities of spin-one

systems, including massless systems such as the photon. It

is thus desirable to have a breakdown into Lorentz scalar

functions that is applicable to both massless and massive

systems. When considering light front densities in

particular, where Δ
þ ¼ 0 by virtue of integrating out

x− [30], the EMT matrix element can be decomposed as

follows:

hp0λ0jTμνð0Þjpλij
Δ

þ¼0 ¼ 2PμPνAλ0λðΔ⊥Þ − i
PfμϵνgPΔn

ðP · nÞ J λ0λðΔ⊥Þ þ
Δ

μ
Δ

ν − Δ
2gμν

2
Dλ0λðΔ⊥Þ

þ Pfμnνg

ðP · nÞ Eλ0λðΔ⊥Þ þ
nμnν

ðP · nÞ2 Hλ0λðΔ⊥Þ þ i
nfμϵνgPΔn

ðP · nÞ2 Kλ0λðΔ⊥Þ; ð2Þ

where n is the lightlike four-vector that defines the light

front coordinates, i.e., such that V · n ¼ Vþ and the

decomposition was constructed to be invariant under

scaling n by a factor. It should be remarked that the

Lorentz scalar functions Aλ0λðΔ⊥Þ etc. are not proper form
factors, owing to their dependence on the initial and final

target helicities, but can more accurately be called helicity

amplitudes. It should also be noted that this decomposition

is not defined when Pþ ¼ 0, which can occur in the

massless case for plane waves in the −z direction. This

decomposition has several unitful helicity amplitudes,

namely E, H and K, with units GeV2, GeV4 and GeV2,

respectively.

It should be stressed that we do not propose the helicity

amplitudes in Eq. (2) as a replacement for any of the

existing conventions; their utility lies specifically in the

ability to take light front Fourier transformations of these

helicity amplitudes to obtain physically interpretable den-

sities. In the respect that Fourier transforms of these

quantities produce light front densities (similarly to form

factors for spin-zero and spin-half targets), we will occa-

sionally refer to the helicity amplitudes as “effective form

factors”, but we stress that these quantities are not really

proper form factors.

In the massive case, the six helicity amplitudes in Eq. (2)

are linear combinations of the form factors found in Eq. (1),

with the particular combination depending on the initial

and final helicity. Of special interest are those that con-

tribute to the Galilean densities [27,30], which are the

densities corresponding to only theþ and transverse spatial

components of the EMT. These densities have the special

property of being covariant under the Galilean subgroup of
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the Poincaré group. Since nþ ¼ 0 and ni
⊥ ¼ 0 (we use bold

vectors with a ⊥ subscript to signify transverse spatial

components), only A, J , and D contribute to these

densities.

The relationships between the form factors in Eq. (1) and

helicity amplitudes in Eq. (2) can be found by evaluating

Eq. (1) explicitly using the spin-one polarization vectors

found in Ref. [37] at ξ≡ − Δ
þ

2Pþ ¼ 0 (which are also given in

Appendix A). For example, let us consider cases with no

helicity flip (λ0 ¼ λ), which are relevant to the Galilean

densities of light front helicity states. For helicity �1 states

we have

A��ðΔ⊥Þ ¼ G1ðtÞ −
t

4M2
G2ðtÞ; ð3aÞ

J ��ðΔ⊥Þ ¼ � 1

2
G5ðtÞ≡�J ðtÞ; ð3bÞ

D��ðΔ⊥Þ ¼ G3ðtÞ − G6ðtÞ −
t

4M2
G4ðtÞ; ð3cÞ

whereas for helicity-0 states we have

A00ðΔ⊥Þ ¼
�

1þ t

2M2

�

G1ðtÞ −
t

4M2
ð2G5ðtÞ þ G6ðtÞÞ

−
t2

8M4
G2ðtÞ; ð4aÞ

J 00ðΔ⊥Þ ¼ 0; ð4bÞ

D00ðΔ⊥Þ ¼ G3ðtÞ −
t

4M2
ð−2G3ðtÞ þ G6ðtÞÞ −

t2

8M4
G4ðtÞ:

ð4cÞ

The results for the other helicity amplitudes can be found in

Appendix B.

A. Transversely polarized states

We next consider transversely polarized states for

massive spin-one hadrons. Since the only sensible quan-

tization axis for the spin of massless particles is along the

direction of travel, transversely polarized states can only

sensibly be considered in the massive case. The transverse

polarization vectors are given by the following linear

combinations of light front helicity states [38],

ε
μ
T;�1 ¼

εþ1 �
ffiffiffi

2
p

eiϕsε0 þ e2iϕsε−1

2
; ð5aÞ

ε
μ
T;0 ¼

εþ1 − e2iϕsε−1
ffiffiffi

2
p ; ð5bÞ

and similarly for the final (primed) state. Accordingly, the

relevant EMT matrix elements will involve spin-flip con-

tributions. A catalog of all the individual contributions can

be found in Appendix B. Without loss of generality, we can

define x̂ ¼ s⊥, and for more compact formulas, we sup-

press explicit s⊥ dependence in the expressions to follow.

The simplest manner to give results is in terms of the

effective form factors,

hp0; msjTμνð0Þjp;msi ¼ 2PμPνA
ðmsÞ
T ðΔ⊥Þ − i

PfμϵνgPΔn

ðP · nÞ J
ðmsÞ
T ðΔ⊥Þ þ

Δ
μ
Δ

ν − Δ
2gμν

2
D

ðmsÞ
T ðΔ⊥Þ

þ Pfμnνg

ðP · nÞ E
ðmsÞ
T ðΔ⊥Þ þ

nμnν

ðP · nÞ2H
ðmsÞ
T ðΔ⊥Þ þ i

nfμϵνgPΔn

ðP · nÞ2 K
ðmsÞ
T ðΔ⊥Þ; ð6Þ

wherems ∈ f−1; 0;þ1g is the magnetic spin number, i.e., the eigenvalue of s⊥ projected along the quantization axis. Each

of the effective form factors works out to have the form,

F
ð�1Þ
T ðΔ⊥Þ ¼

1

4
ðFþþðtÞ þ F−−ðtÞ þ 2F 00ðtÞÞ þ

t cos 2ϕΔ

8M2
F

cos 2ϕ
T ðtÞ � i

ffiffiffiffiffi

−t
p

sinϕΔ

2M
F

sinϕ
T ðtÞ; ð7aÞ

F
ð0Þ
T ðΔ⊥Þ ¼

1

2
ðFþþðtÞ þ F−−ðtÞÞ −

t cos 2ϕΔ

4M2
F

cos 2ϕ
T ðtÞ; ð7bÞ

where F stands in for any of the effective form factors in

Eq. (2) or Eq. (6), and where ϕΔ is the angle between Δ⊥

and s⊥. The F
sinϕ
T ðtÞ and F

cos 2ϕ
T ðtÞ that are relevant to the

Galilean light front densities are, in terms of the traditional

GFFs,

A
sinϕ
T ðtÞ ¼ G5ðtÞ − 2G1ðtÞ þ

t

2M2
G2ðtÞ; ð8aÞ

A
cos 2ϕ
T ðtÞ ¼ G2ðtÞ; ð8bÞ
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J
sinϕ
T ðtÞ ¼ 0; ð8cÞ

J
cos 2ϕ
T ðtÞ ¼ 0; ð8dÞ

D
sinϕ
T ðtÞ ¼ G6ðtÞ − 2G3ðtÞ þ

t

2M2
G4ðtÞ; ð8eÞ

D
cos 2ϕ
T ðtÞ ¼ G4ðtÞ: ð8fÞ

It should be clear from these results, combined with

Eqs. (3b) and (4b), that J T ¼ 0. This means that the Jz
density for transversely polarized states is zero, see Eq. (16b)

further down. To be sure, the structure of Eq. (2) means that

J T is a Jz density of transversely polarized states and not a

density of transverse angular momentum. This finding is not

surprising, since the expectation value of Jz in a transversely
polarized state is zero. The transverse angular momentum

operator is given by x−TþiðxÞ − xi⊥T
þ−ðxÞ, meaning that

this would entail a non-Galilean density and is thus beyond

the scope of this work. Indeed, this quantity would involve

several of the non-Galilean helicity amplitudes (those other

than A, J and D).

It may be instructive to consider Eq. (7) in terms of

unpolarized, vector polarized, and tensor polarized combi-

nations of the target. These polarization combinations are

defined for transversely polarized targets as follows:

F
ðUÞ
T ðΔ⊥Þ ¼

1

3
ðF ðþ1Þ

T ðΔ⊥Þ þ F
ð−1Þ
T ðΔ⊥Þ þ F

ð0Þ
T ðΔ⊥ÞÞ;

ð9aÞ

F
ðVÞ
T ðΔ⊥Þ ¼ F

ðþ1Þ
T ðΔ⊥Þ − F

ð−1Þ
T ðΔ⊥Þ; ð9bÞ

F
ðTÞ
T ðΔ⊥Þ ¼

1

2
ð2F ð0Þ

T ðΔ⊥Þ − F
ðþ1Þ
T ðΔ⊥Þ − F

ð−1Þ
T ðΔ⊥ÞÞ:

ð9cÞ

If we also define these states for longitudinally polarized

targets,

F
ðUÞ
L ðtÞ ¼ 1

3
ðFþþðtÞ þ F−−ðtÞ þ F 00ðtÞÞ; ð10aÞ

F
ðVÞ
L ðtÞ ¼ FþþðtÞ − F−−ðtÞ; ð10bÞ

F
ðTÞ
L ðtÞ ¼ 1

2
ð2F 00ðtÞ − FþþðtÞ − F−−ðtÞÞ; ð10cÞ

then we find for the transversely polarized states that

F
ðUÞ
T ðΔ⊥Þ ¼ F

ðUÞ
L ðtÞ ð11aÞ

F
ðVÞ
T ðΔ⊥Þ ¼

i
ffiffiffiffiffi

−t
p

sinϕΔ

M
F

sinϕ
T ðtÞ ð11bÞ

F
ðTÞ
T ðΔ⊥Þ ¼ −F

ðTÞ
L ðtÞ − t cos 2ϕΔ

4M2
F

cos 2ϕ
T ðtÞ: ð11cÞ

The modulations can thus be interpreted in terms of vector

and tensor polarization states, but these states actually differ

depending on the spin quantization axis. We will consider

general polarization below. Throughout the remainder of

this work, however, we focus on deuterons in specific

polarization states rather than mixtures. The reason for this

is that unpolarized, vector polarized, and tensor polarized

states are mixtures that are not present in the Hilbert space

of the target, and we choose to focus in this work on the

densities and properties of spin-one systems in pure states.

B. General polarization

An alternate way of considering the dependence on the

initial and final state helicities of the spin-one particle in

Eq. (2) is by tracing it with a spin-one density matrix

ρðλ; λ0Þ characterizing the ensemble,

⟪Tμνð0Þ⟫≡
X

λ;λ0
ρðλ; λ0Þhp0λ0jTμνð0Þjpλi: ð12Þ

We refer the reader to Appendix C for a summary of the

spin-one density matrix formalism and a definition of the

density matrix parameters (SL; ST ;ϕS; TLL; TLT ; TTT ;ϕTL
;

ϕTT
) appearing in the formulas that follow. By considering

the relevant contractions of the off-diagonal covariant

density matrix of Eq. (C12), evaluated at Δþ ¼ 0, with

tensors built from P, Δ, n and the 4D Levi-Civita tensor, we

obtain the following expressions for the density matrix

averaged effective form factors appearing in Eq. (2),

X

λ;λ0
ρðλ; λ0ÞAλ0λ ¼

�

2

3
þ TLL

��

G1ðtÞ −
t

4M2
G2ðtÞ

�

þ
�

1

3
− TLL

���

1þ t

2M2

�

G1ðtÞ −
t2

8M4
G2ðtÞ

−
t

2M2
G5ðtÞ −

t

4M2
G6ðtÞ

�

þ iST sinðϕS − ϕtÞ
ffiffiffiffiffi

−t
p

M

�

G1ðtÞ −
t

4M2
G2ðtÞ −

G5ðtÞ
2

�

þ TTT cosð2ϕTT
− 2ϕtÞ

t

4M2
G2ðtÞ; ð13aÞ
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X

λ;λ0
ρðλ; λ0ÞJ λ0λ ¼

SL

2
G5ðtÞ þ iTLT sinðϕTL

− ϕtÞ
ffiffiffiffiffi

−t
p

2M
ðG5ðtÞ þ G6ðtÞÞ; ð13bÞ

X

λ;λ0
ρðλ; λ0ÞDλ0λ ¼

�

2

3
þ TLL

��

G3ðtÞ −
t

4M2
G4ðtÞ − G6ðtÞ

�

þ
�

1

3
− TLL

���

1þ t

2M2

�

G3ðtÞ

−
t2

8M4
G4ðtÞ −

t

4M2
G6ðtÞ

�

þ iST sinðϕS − ϕtÞ
ffiffiffiffiffi

−t
p

M

�

G3ðtÞ −
t

4M2
G4ðtÞ −

G6ðtÞ
2

�

þ TTT cosð2ϕTT
− 2ϕtÞ

t

4M2
G4ðtÞ; ð13cÞ

where ϕt is the azimuthal angle of Δ⊥.

We point out that A and D depend on the same density

matrix parameters—namely, 1 (the unpolarized part),

TLL; ST sinðϕS − ϕtÞ, and TTT cosð2ϕTT
− 2ϕtÞ—while J

depends on SL and TLT sinðϕTL
− ϕtÞ. The first set of

parameters are scalars and the second set are pseudoscalars,

reflecting the parity properties of the central charge pþ and

pressure on the one hand, and particle spin on the other. The

modulations in the densities for the transversely polarized

states are identified with the transverse vector (ST sinϕ)
and mixed longitudinal-transverse tensor (TLT sinϕ) polar-

ized part of the density matrix for the sinϕ modulations,

and the completely transverse tensor part (TTT cos 2ϕ) for

the cos 2ϕ modulations.

For Eq. (13), our previous expressions for the helicity

[Eqs. (3) and (4)] and transversely polarized states [Eqs. (7)

and (8)] are recovered after identifying the corresponding

density matrix parameters for these ensembles. For pure

longitudinal polarized states we need the following rest

frame spin parameters

λ ¼ �1∶ SL ¼ �1; TLL ¼ 1=3;

ST ¼ TLT ¼ TTT ¼ 0; ð14aÞ

λ ¼ 0∶ TLL ¼ −2=3;

SL ¼ ST ¼ TLT ¼ TTT ¼ 0: ð14bÞ

For pure transversely polarized states one has

λ ¼ �1∶ ST ¼ �1; TLL ¼ −1=6; TTT ¼ 1=2;

ϕTT
¼ ϕS; SL ¼ TLT ¼ 0; ð15aÞ

λ ¼ 0∶ TLL ¼ 1=3; TTT ¼ −1;ϕTT
¼ ϕS;

ST ¼ SL ¼ TLT ¼ 0: ð15bÞ

III. PROPERTIES OF SPIN-ONE DENSITIES

For states with definite light front helicity, the effective

form factors as given in Eqs. (3) and (4) can be used to

obtain the azimuthally symmetric light front Pþ, angular

momentum, and pressure densities of a spin-one system

localized in the transverse plane. The formulas for the Pþ

density and comoving stress tensor are identical to those

already found in Refs. [27,30] for spin-zero or spin-half

hadrons, but withA andD substituted for A andD. We give

these relations again here (along with the angular momen-

tum density)

ρ
ðλÞ
pþðb⊥Þ ¼ Pþ

Z

d2Δ⊥

ð2πÞ2 AλλðtÞe−iΔ⊥·b⊥ ; ð16aÞ

ρ
ðλÞ
Jz
ðb⊥Þ ¼ λ

Z

d2Δ⊥

ð2πÞ2
�

J ðtÞ þ t
dJ ðtÞ
dt

�

e−iΔ⊥·b⊥ ; ð16bÞ

S
ij
λ ðb⊥Þ ¼

1

4Pþ

Z

d2Δ⊥

ð2πÞ2 ðΔ
i
⊥Δ

j
⊥ − Δ

2
⊥δijÞDλλðtÞe−iΔ⊥·b⊥ :

ð16cÞ

The only significant difference from the spin-zero and spin-

half cases is that the densities now depend on λ, meaning

that the distribution of momentum, angular momentum,

and forces will differ between spin-one hadrons of the same

species that are prepared in different helicity states.

For transversely polarized states of massive hadrons, the

effective form factors have azimuthal dependence. The exact

manner of this dependence varies between the densities

under consideration, so we will proceed to consider the

properties of each separately.

A. Light front momentum density

The Pþ density for helicity states is given already by

Eq. (16a). The transversely polarized Pþ density contains

azimuthal dependence which is essentially carried over

from the azimuthal dependence of the effective form

factors, since

Z

d2Δ⊥

ð2πÞ2
i
ffiffiffiffiffi

−t
p

sinϕΔ

2M
A

sinϕ
T ðtÞe−iΔ⊥·b⊥

¼ −
sinϕ

2M

d

db⊥

Z

d2Δ⊥

ð2πÞ2A
sinϕ
T ðtÞe−iΔ⊥·b⊥ ; ð17aÞ
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Z

d2Δ⊥

ð2πÞ2
t cos 2ϕΔ

4M2
A

cos 2ϕ
T ðtÞe−iΔ⊥·b⊥

¼ cos 2ϕ

4M2

�

d2

db2⊥
−

1

b⊥

d

db⊥

�Z

d2Δ⊥

ð2πÞ2A
cos 2ϕ
T ðtÞe−iΔ⊥·b⊥ ;

ð17bÞ

where on the right-hand side, ϕ is the angle between b⊥ and

s⊥. In numerical applications, formulas involving deriva-

tives may not be stable, and it may be more helpful to use

Hankel transforms instead,

Z

d2Δ⊥

ð2πÞ2
i
ffiffiffiffiffi

−t
p

sinϕΔ

2M
A

sinϕ
T ðtÞe−iΔ⊥·b⊥

¼ sinϕ

2M

1

2π
H1½kAsinϕ

T ðt ¼ −k2Þ�ðb⊥Þ; ð18aÞ

Z

d2Δ⊥

ð2πÞ2
t cos 2ϕΔ

4M2
A

cos 2ϕ
T ðtÞe−iΔ⊥·b⊥

¼ cos 2ϕ

4M2

1

2π
H2½k2Acos 2ϕ

T ðt ¼ −k2Þ�ðb⊥Þ; ð18bÞ

where the Hankel transform of order ν is defined by [39]:

Hν½FðkÞ�ðbÞ ¼
Z

∞

0

dkkJνðbkÞFðkÞ; ð19Þ

and where JνðxÞ is the Bessel function of order ν.

For the sake of more compact formulas, it is prudent to

define

ρ
sinϕ
T ðb⊥Þ ¼

Pþ

2π

1

2M
H1½kAsinϕ

T ð−k2Þ�ðb⊥Þ; ð20aÞ

ρ
cos 2ϕ
T ðb⊥Þ ¼

Pþ

2π

1

4M2
H2½k2Acos 2ϕ

T ð−k2Þ�ðb⊥Þ: ð20bÞ

The Pþ density of a transversely polarized spin-one hadron

is thus given by

ρ
ð�1Þ
T ðb⊥Þ ¼

ρ
ðþÞ
pþ ðb⊥Þ þ ρ

ð0Þ
pþðb⊥Þ

2
� sinϕρ

sinϕ
T ðb⊥Þ

þ 1

2
cos 2ϕρ

cos 2ϕ
T ðb⊥Þ; ð21aÞ

ρ
ð0Þ
T ðb⊥Þ ¼ ρ

ðþÞ
pþ ðb⊥Þ − cos 2ϕρ

cos 2ϕ
T ðb⊥Þ; ð21bÞ

where we have used ρ
ðþÞ
pþ ðb⊥Þ ¼ ρ

ð−Þ
pþ ðb⊥Þ to make the

formulas slightly shorter.

The Pþ densities for all polarization states satisfy sum

rules. Integrating Eq. (16a) over all space gives

Z

d2b⊥ρ
ðλÞ
pþðb⊥Þ ¼ PþAλλð0Þ: ð22Þ

For this to equal Pþ, we have the sum rule

Aλλð0Þ ¼ 1; ð23Þ

for each helicity λ. Since Að0Þ ¼ G1ð0Þ for massive

hadrons, this is compatible with the G1ð0Þ ¼ 1 sum rule

of Ref. [17]. Since the integrals of sinϕ and cos 2ϕ over

½0; 2πÞ are zero, the azimuthal dependence of ρ
ðmsÞ
T ðb⊥; s⊥Þ

integrates to zero, and we also have

Z

d2b⊥ρ
ðmsÞ
T ðb⊥; s⊥Þ ¼ Pþ: ð24Þ

The Pþ density for both helicity and transversely polar-

ized states do not have Pþ dipole moments, i.e., their center-

of-Pþ is at the origin, as expected. A general explanation for

why this occurs can be found in Sec. 7 of Ref. [40]. For the

case of helicity states, it is easy to see that

Z

d2b⊥b⊥ρ
ðλÞ
pþðb⊥Þ ¼ 0: ð25Þ

For transversely polarized states, if we use coordinates

where s⊥ ¼ x̂,

Z

d2b⊥b⊥ρ
ðmsÞ
T ðb⊥; s⊥Þ ¼

msŷP
þ

2M
ðG5ð0Þ − 2G1ð0ÞÞ ¼ 0:

ð26Þ

We know G1ð0Þ ¼ 1 by momentum conservation. It has

been shown previously [16,17,20] that G5ð0Þ ¼ 2 follows

from angular momentum conservation. Thus, the center-

of-Pþ is at the origin, as expected.

On the other hand, the transversely polarized Pþ density

does exhibit a quadrupole moment. In two spatial dimen-

sions, we define the traceless quadrupole tensor as

Q
ij
LFðs⊥; msÞ ¼

Z

d2b⊥ð2bi⊥b
j
⊥ − b2⊥δijÞρ

ðmsÞ
T ðb⊥; s⊥Þ:

ð27Þ

The quadrupole moment itself can be identified with

QLFðs⊥; msÞ ¼ si⊥s
j
⊥Q

ij
LFðs⊥; msÞ; ð28Þ

so that, conversely

Q
ij
LFðs⊥; msÞ ¼ ð2si⊥s

j
⊥ − δijÞQLFðs⊥; msÞ: ð29Þ

We find through explicit evaluation that
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QLFðs⊥;�1Þ ¼ Pþ

2M2
G2ð0Þ≡

1

2
QLF; ð30aÞ

QLFðs⊥; 0Þ ¼ −
Pþ

M2
G2ð0Þ≡ −QLF: ð30bÞ

The value of G2ð0Þ is not constrained by any conservation

laws or sum rules, and is zero for a free boson [18]. A

nonzero quadrupole moment must thus be generated by

dynamics.

As is conventional in the nuclear physics literature [41],

a positive quadrupole moment indicates a prolate hadron

(elongated in the direction of the spin quantization axis),

while a negative quadrupole moment indicates an oblate

hadron (flattened in the direction of the spin axis). A

positive G2ð0Þ would thus mean that the ms ¼ �1 state is

prolate, and that thems ¼ 0 state is oblate. A negative value

for G2ð0Þ would of course indicate the opposite.

The contrast with the Breit frame mass quadrupole

moment (see Refs. [17,18]) is remarkable. Comparing to

Ref. [17] in particular
1
and using sum-rule enforced values

(and dropping nonconserved form factors)

QBreit ¼
1

M

�

G2ð0Þ − 1 −
1

2
G6ð0Þ

�

: ð31Þ

The Breit-frame quadrupole moment depends on G6ð0Þ in
addition to G2ð0Þ. Remarkably, G6ð0Þ ¼ −2 in the free

theory [18], meaning that the Breit-frame mass quadrupole

moment is also generated entirely by dynamics. However,

since G6ð0Þ also comes into play, the quadrupole moment

may turn out to have different magnitudes and even signs in

the Breit frame and on the light front. In Ref. [21], the rho

meson was found to have GNJL
2 ð0Þ ≈ 0.158 > 0 and

GNJL
6 ð0Þ ≈ −1, which means that the rho meson (in this

model) has a positive Pþ quadrupole moment on the light

front, but a negative mass quadrupole moment in the Breit

frame. Since G6ð0Þ is involved in the Breit-frame quadru-

pole moment, the difference between this and the light front

quadrupole moment may be due to relativistic spin effects,

as was remarked for the electric quadrupole moment

in Ref. [42].

Let us lastly look at the Pþ radius of spin-one hadrons,

which is defined through

hb2⊥iPþ ¼ 1

Pþ

Z

d2b⊥b
2
⊥ρpþðb⊥Þ ¼ 4

∂AðΔ⊥Þ
∂t

	

	

	

	

t¼0

; ð32Þ

and for massive hadrons differs between polarization states,

since the effective AðΔ⊥Þ form factor differs. For helicity

states of massive hadrons

hb2⊥iPþðλ ¼ �1Þ ¼ 4
dG1ðtÞ
dt

	

	

	

	

t¼0

−
G2ð0Þ
M2

; ð33aÞ

hb2⊥iPþðλ¼ 0Þ¼ 4
dG1ðtÞ
dt

	

	

	

	

t¼0

þ 1

M2

× ð2G1ð0Þ−2G5ð0Þ−G6ð0ÞÞ; ð33bÞ

while for transversely polarized states

hb2⊥iPþðms ¼ �1Þ ¼ 1

2
ðhb2⊥iPþðλ ¼ �1Þ

þ hb2⊥iPþðλ ¼ 0ÞÞ; ð33cÞ

hb2⊥iPþðms ¼ 0Þ ¼ hb2⊥iPþðλ ¼ �1Þ; ð33dÞ

The average Pþ density between the three polarization

states (of massive hadrons) is the same for helicity and

transversely polarized states,

ρ̄pþðb⊥Þ ¼
Z

d2Δ⊥

ð2πÞ2
�

G1ðtÞ þ
t

6M2

�

G1ðtÞ − G2ðtÞ − G5ðtÞ

−
1

2
G6ðtÞ

�

−
t2

24M4
G2ðtÞ

�

e−iΔ⊥·b⊥ ; ð34Þ

and likewise is the corresponding radius [21]

hb2⊥iPþ ¼ 4
dG1ðtÞ
dt

	

	

	

	

t¼0

þ 2

3M2

×

�

G1ð0Þ−G2ð0Þ−G5ð0Þ−
1

2
G6ð0Þ

�

: ð35Þ

B. Angular-momentum density

The Jz angular-momentum density for helicity states is

given in Eq. (16b), and for transversely polarized states is

identically zero, as already discussed in Sec. II. As with the

Pþ density, it may be helpful for numerical applications to

be able to take a single Hankel transform of J ðtÞ itself.

Some straightforward algebra can be used to show that

ρ
ðλÞ
Jz
ðb⊥Þ ¼

λb⊥

2π
H1½kJ ð−k2Þ�ðb⊥Þ: ð36Þ

From this density, the total angular momentum projected

along the z axis is

Z

d2b⊥ρ
ðλÞ
Jz
ðb⊥Þ ¼ λJ ð0Þ ¼ λ

2
G5ð0Þ: ð37Þ

Since this must be λ, we reproduce the finding of

Refs. [16,17,20] that G5ð0Þ ¼ 2.

1
The sign convention in Ref. [21] is the opposite as in

Ref. [17], the latter of which we follow in this work.
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For helicity λ ¼ �1 states, an angular momentum radius

can be defined as

hb2⊥iJ ¼
1

λ

Z

d2b⊥b
2
⊥ρ

ðλÞ
Jz
ðb⊥Þ¼ 8

dJ ðtÞ
dt

	

	

	

	

t¼0

¼ 4
dG5ðtÞ
dt

	

	

	

	

t¼0

:

ð38Þ

C. The comoving stress tensor

Following Refs. [13,30], the comoving stress tensor can

most easily be dealt with using the following auxiliary

density (which we call the Polyakov stress potential)

D̃λðb⊥Þ ¼
1

4Pþ

Z

d2Δ⊥

ð2πÞ2 DλλðtÞe−iΔ⊥·b⊥ ; ð39Þ

for which

S
ij
λ ðb⊥Þ ¼ ð∇2

⊥δij − ∇
i
⊥∇

j
⊥ÞD̃λðb⊥Þ: ð40Þ

Analogously to spin-zero and spin-half helicity states

[13,27,30], the comoving stress tensor for spin-one helicity

states can be decomposed into an isotropic pressure pðb⊥Þ
and shear stress (or pressure anisotropy) function sðb⊥Þ as
follows:

S
ij
λ ðb⊥Þ ¼ δijpðλÞðb⊥Þ þ

�

bi⊥b
j
⊥

b2⊥
−
1

2
δij
�

sðλÞðb⊥Þ: ð41Þ

This decomposition entails radial and tangential eigenpres-

sures, given by

p
ðλÞ
r ðb⊥Þ ¼ pðλÞðb⊥Þ þ

sðλÞðb⊥Þ
2

¼ 1

b⊥

dD̃λðb⊥Þ
db⊥

; ð42aÞ

p
ðλÞ
t ðb⊥Þ ¼ pðλÞðb⊥Þ −

sðλÞðb⊥Þ
2

¼ d2D̃λðb⊥Þ
db2⊥

: ð42bÞ

As with the Pþ density, it may be helpful for numerical

applications to obtain these quantities through higher-order

Hankel transforms, rather than through derivatives. The

isotropic pressure and shear stress can be shown to be

pðλÞðb⊥Þ ¼ −
1

8Pþ
1

2π
H0½k2Dλλð−k2Þ�ðb⊥Þ; ð43aÞ

sðλÞðb⊥Þ ¼ −
1

4Pþ
1

2π
H2½k2Dλλð−k2Þ�ðb⊥Þ: ð43bÞ

1. Transverse polarization

For transversely polarized states, the structure of the

comoving stress tensor becomes significantly more

complicated. The Polyakov stress potential obtains mod-

ulations completely analogous to those in the Pþ density;

we define

D̃
sinϕ
T ðb⊥Þ ¼

1

2π

1

4Pþ
1

2M
H1½kDsinϕ

T ð−k2Þ�ðb⊥Þ; ð44aÞ

D̃
cos2ϕ
T ðb⊥Þ¼

1

2π

1

4Pþ
1

4M2
H2½k2Dcos2ϕ

T ð−k2Þ�ðb⊥Þ; ð44bÞ

where the effective form factor modulations are as defined

in Eq. (8). The Polyakov potentials for transversely

polarized states are given by

D̃
ð�1Þ
T ðb⊥Þ ¼

D̃þðb⊥Þ þ D̃0ðb⊥Þ
2

� sinϕD̃
sinϕ
T ðb⊥Þ

þ 1

2
cos 2ϕD̃

cos 2ϕ
T ðb⊥Þ; ð45aÞ

D̃
ð0Þ
T ðb⊥Þ ¼ D̃þðb⊥Þ − cos 2ϕD̃

cos 2ϕ
T ðb⊥Þ; ð45bÞ

where we have used D̃þðb⊥Þ ¼ D̃−ðb⊥Þ to make the

formulas slightly shorter. The comoving stress tensor is

then given by

S
ij
T ðb⊥; msÞ ¼ ð∇2

⊥δij − ∇
i
⊥∇

j
⊥ÞD̃

ðmsÞ
T ðb⊥Þ: ð46Þ

This stress tensor no longer has the simple decomposition

of Eq. (41); it contains a new tensor structure, and the

functions multiplying each structure now contain azimuthal

modulations,

S
ij
T ðb⊥; msÞ ¼ δijp

ðmsÞ
T ðb⊥Þ þ

�

b̂ib̂j −
1

2
δij
�

s
ðmsÞ
T ðb⊥Þ

þ ðb̂iϕ̂j þ ϕ̂ib̂jÞvðmsÞ
T ðb⊥Þ: ð47Þ

Here, b̂ and ϕ̂ are unit vectors in the radial and counter-

clockwise tangential directions, respectively. Note that each

of the tensor structures except for the δij accompanying

p
ðmsÞ
T ðb⊥Þ is traceless, so p

ðmsÞ
T ðb⊥Þ can be understood as

the isotropic pressure.

To obtain the functions pT , sT , and vT , one can contract

the comoving stress tensor with multiples of the associated

tensors

p
ðmsÞ
T ðb⊥Þ ¼

1

2
δijS

ij
T ðb⊥; msÞ; ð48aÞ

s
ðmsÞ
T ðb⊥Þ ¼

�

b̂ib̂j −
1

2
δij
�

S
ij
T ðb⊥; msÞ; ð48bÞ

v
ðmsÞ
T ðb⊥Þ ¼

1

2
ðb̂iϕ̂j þ ϕ̂ib̂jÞSijT ðb⊥; msÞ: ð48cÞ
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With some straightforward but tedious algebra, combining these equations with Eq. (46) yields

p
ðmsÞ
T ðb⊥Þ ¼

1

2

�

∂
2

∂b2⊥
þ 1

b⊥

∂

∂b⊥
þ 1

b2⊥

∂
2

∂ϕ2

�

D̃
ðmsÞ
T ðb⊥Þ; ð49aÞ

s
ðmsÞ
T ðb⊥Þ ¼

�

−
∂
2

∂b2⊥
þ 1

b⊥

∂

∂b⊥
þ 1

b2⊥

∂
2

∂ϕ2

�

D̃
ðmsÞ
T ðb⊥Þ; ð49bÞ

v
ðmsÞ
T ðb⊥Þ ¼

�

−
1

b⊥

∂

∂b⊥
þ 1

b2⊥

�

∂

∂ϕ
D̃

ðmsÞ
T ðb⊥Þ: ð49cÞ

It will be helpful for numerical applications to have expressions for the functions pT , sT , and vT in terms of Hankel

transforms rather than coordinate derivatives. Some algebra and identities for Bessel functions can be used to accomplish

this. We spare the reader the details of the derivation, stating only the results. For specific polarization states, these functions

are given by

p
ð�1Þ
T ðb⊥Þ ¼

pðþÞðb⊥Þ þ pð0Þðb⊥Þ
2

� sinϕp
sinϕ
T ðb⊥Þ þ

1

2
cos 2ϕp

cos 2ϕ
T ðb⊥Þ; ð50aÞ

s
ð�1Þ
T ðb⊥Þ ¼

sðþÞðb⊥Þ þ sð0Þðb⊥Þ
2

� sinϕs
sinϕ
T ðb⊥Þ þ

1

2
cos 2ϕs

cos 2ϕ
T ðb⊥Þ; ð50bÞ

v
ð�1Þ
T ðb⊥Þ ¼ cosϕv

cosϕ
T ðb⊥Þ þ

1

2
sin 2ϕv

sin 2ϕ
T ðb⊥Þ; ð50cÞ

and for the ms ¼ 0 state are

p
ð0Þ
T ðb⊥Þ ¼ pðþÞðb⊥Þ − cos 2ϕp

cos 2ϕ
T ðb⊥Þ; ð50dÞ

s
ð0Þ
T ðb⊥Þ ¼ sðþÞðb⊥Þ − cos 2ϕs

cos 2ϕ
T ðb⊥Þ; ð50eÞ

v
ð0Þ
T ðb⊥Þ ¼ − sin 2ϕv

sin 2ϕ
T ðb⊥Þ: ð50fÞ

The ϕ modulations in these functions are given by

p
sinϕ
T ðb⊥Þ ¼

1

2π

1

4Pþ
1

2M

�

−
1

2
H1½k3Dsinϕ

T ð−k2Þ�ðb⊥Þ
�

; ð51aÞ

s
sinϕ
T ðb⊥Þ ¼

1

2π

1

4Pþ
1

2M
fH1½k3Dsinϕ

T ð−k2Þ�ðb⊥Þ −
2

b⊥
H2½k2Dsinϕ

T ð−k2Þ�ðb⊥Þg; ð51bÞ

v
cosϕ
T ðb⊥Þ ¼

1

2π

1

4Pþ
1

2M

�

1

b⊥
H2½k2Dsinϕ

T ð−k2Þ�ðb⊥Þ
�

; ð51cÞ

and the 2ϕ modulations by

p
cos 2ϕ
T ðb⊥Þ ¼

1

2π

1

4Pþ
1

4M2

�

−
1

2
H2½k4Dcos 2ϕ

T ð−k2Þ�ðb⊥Þ
�

; ð51dÞ

s
cos 2ϕ
T ðb⊥Þ ¼

1

2π

1

4Pþ
1

4M2

�

−
1

2
H0½k4Dcos 2ϕ

T ð−k2Þ�ðb⊥Þ −
1

2
H4½k4Dcos 2ϕ

T ð−k2Þ�ðb⊥Þ
�

; ð51eÞ
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v
sin 2ϕ
T ðb⊥Þ ¼

1

2π

1

4Pþ
1

4M2

�

1

4
H0½k4Dcos 2ϕ

T ð−k2Þ�ðb⊥Þ −
1

4
H4½k4Dcos 2ϕ

T ð−k2Þ�ðb⊥Þ
�

: ð51fÞ

For transversely polarized states, the eigenpressures will no longer be radial and tangential. The eigenpressures are

instead given by
2

P
ðmsÞ
T;� ðb⊥Þ ¼ p

ðmsÞ
T ðb⊥Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
ðsðmsÞ

T ðb⊥ÞÞ2 þ ðvðmsÞ
T ðb⊥ÞÞ2

r

: ð52aÞ

These eigenpressures are normal stresses along ϕ-dependent unit vectors ê�, whose angles with respect to the spin

quantization axis s⊥ ¼ x̂ are given by

θ
ðmsÞ
� ðb⊥Þ ¼ ϕþ 1

2
tan−1

�

2v
ðmsÞ
T ðb⊥Þ

s
ðmsÞ
T ðb⊥Þ

�

þ Θð�s
ðmsÞ
T ðb⊥ÞÞ

π

2
; ð52bÞ

where ΘðxÞ is the Heaviside step function. The unit eigenvectors are then written

ê
ðmsÞ
� ðb⊥Þ ¼ cosðθðmsÞ

� ðb⊥ÞÞx̂þ sinðθðmsÞ
� ðb⊥ÞÞŷ: ð52cÞ

It is also possible to categorize the eigenpressures in an alternative way

P̄
ðmsÞ
T;r ðb⊥Þ ¼ p

ðmsÞ
T ðb⊥Þ þ signðsðmsÞ

T ðb⊥ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
ðsðmsÞ

T ðb⊥ÞÞ2 þ ðvðmsÞ
T ðb⊥ÞÞ2;

r

ð53aÞ

P̄
ðmsÞ
T;t ðb⊥Þ ¼ p

ðmsÞ
T ðb⊥Þ − signðsðmsÞ

T ðb⊥ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
ðsðmsÞ

T ðb⊥ÞÞ2 þ ðvðmsÞ
T ðb⊥ÞÞ2

r

; ð53bÞ

whose angles with respect to the spin quantization axis are

θ̄
ðmsÞ
r ðb⊥Þ ¼ ϕþ 1

2
tan−1

�

2v
ðmsÞ
T ðb⊥Þ

s
ðmsÞ
T ðb⊥Þ

�

; ð53cÞ

θ̄
ðmsÞ
t ðb⊥Þ ¼ ϕþ 1

2
tan−1

�

2v
ðmsÞ
T ðb⊥Þ

s
ðmsÞ
T ðb⊥Þ

�

þ π

2
: ð53dÞ

At every b⊥, these of course furnish the same pair of eigenvectors and eigenvalues as Eq. (52); the difference lies in how the

pairs are sorted into b⊥-dependent functions. The eigenvalue/eigenvector pairs in Eq. (53) in particular reduce to the

familiar radial and tangential eigenpressures in the helicity case (where vT ¼ 0). However, there is benefit to using Eq. (52)

instead of Eq. (53) for transversely polarized states; namely, that when vT ≠ 0, only the former are continuous across

sT ¼ 0. This can be seen both in the square root function in the pressure functions themselves, and in how the step function

in the angle functions compensates the π
2
discontinuity between 1

2
tan−1ð∞Þ and between 1

2
tan−1ð−∞Þ.

2. Mechanical radius

It has been hypothesized [12,13,27,30] that the radial pressure is a positive-definite quantity for stable systems, and can

thus be used to define a positive-definite “mechanical radius” that gives an estimate of a hadron’s size

hb2⊥imech ¼
R

d2b⊥b
2
⊥prðb⊥Þ

R

d2b⊥prðb⊥Þ
: ð54Þ

2
A capital P is used to signify transverse eigenpressures to assist visually distingiushing them from other auxilliary functions such as

p
ðmsÞ
T .
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For transversely polarized states the radial pressure is not

an eigenpressure, but it is nevertheless a normal stress along

the b̂ direction, and is given by

p
ðmsÞ
Tr ðb⊥Þ ¼

1

b⊥

∂D̃
ðmsÞ
T ðb⊥Þ
∂b⊥

þ ∂
2D̃

ðmsÞ
T ðb⊥Þ
∂ϕ2

: ð55Þ

In both the numerator and denominator, the integrals over

the azimuthal modulations become zero. Thus, for either

helicity or transversely polarized states, the numerator

becomes, via integration by parts,

Z

d2b⊥b
2
⊥prðb⊥Þ ¼ −

1

2Pþ Dð0Þ: ð56Þ

The denominator, with a little integration calculus, can be

shown to be

Z

d2b⊥prðb⊥Þ ¼ −
1

16πPþ

Z

0

−∞

dt

Z

2π

0

dϕDðΔ⊥Þ; ð57Þ

where the modulations again integrate to zero. The

mechanical radius is thus given by

hb2⊥imech ¼
4Dð0Þ

R

0
−∞

dtDðtÞ

	

	

	

	

sinϕ¼0;cos 2ϕ¼0

: ð58Þ

For specific helicity states of massive hadrons, we have

hb2⊥imechðλ ¼ �1Þ ¼ 4ðG3ð0Þ − G6ð0ÞÞ
R

0
−∞

dtðG3ðtÞ − G6ðtÞÞ
; ð59aÞ

hb2⊥imechðλ ¼ 0Þ ¼ 4G3ð0Þ
R

0
−∞

dtG3ðtÞ
; ð59bÞ

while for specific transverse-polarization states, we have

hb2⊥imech;Tðms ¼ �1Þ ¼ 4ðG3ð0Þ − 1
2
G6ð0ÞÞ

R

0
−∞

dtðG3ðtÞ − 1
2
G6ðtÞÞ

; ð59cÞ

hb2⊥imech;Tðms ¼ 0Þ ¼ 4ðG3ð0Þ − G6ð0ÞÞ
R

0
−∞

dtðG3ðtÞ − G6ðtÞÞ
: ð59dÞ

For the unpolarized state, the numerator and denominator

need to be averaged separately. The unpolarized mechani-

cal radius of a massive hadron is given by

hb2⊥imech ¼
4ðG3ð0Þ − 2

3
G6ð0ÞÞ

R

0
−∞

dtðG3ðtÞ − 2
3
G6ðtÞÞ

: ð60Þ

IV. NUMERICAL ILLUSTRATION

As a simple numerical illustration, we present light

front densities for the deuteron in a light cone convolution

model [43–46]. The model provides a description of

deuteron structure in terms of on-shell nucleons, which

allows for on-shell gravitational form factors to be used

for the nucleon, according to the standard formulas (e.g.,

Eq. (6) of Ref. [13]).

A potential downside of the light cone model is that it

breaks manifest Lorentz covariance by truncating the Fock

state at a two-nucleon state—a truncation that is invariant

under the kinematic subgroup, but not under dynamical

transformations. The form factor and helicity amplitude

breakdowns in Eqs. (1) and (2) are a consequence of

Lorentz covariance, and accordingly, the helicity amplitudes

calculated in this model through different components of the

EMT may be inconsistent. (Compare to Refs. [43,45],

where polynomiality breaks down for generalized parton

distributions of the deuteron, which makes extraction of the

GFFs ambiguous.) Additionally, the components Tþi and

Tij are “bad” components [47,48], in the sense that they mix

Fock states with different numbers of particles, and the

truncation of the deuteron Fock state at two nucleons

accordingly drops potentially relevant physics.

Despite this potential shortcoming, we adopt the model

in question, largely due to the lack of alternatives with the

desirable covariance property. Moreover, this section is

primarily meant to illustrate the general formalism devel-

oped above—a purpose for which the model is perfectly

adequate. To deal with the issue of inconsistent helicity

amplitudes, we consider specifically components of the

EMT that give expected behavior of the GFFs at t ¼ 0,

namely that the t ¼ 0 results for all helicity transitions are

zero [e.g., J þ0ð0Þ ¼ 0], and that Dλλ0ð0Þ is finite for all λ

and λ0.
We calculate in a frame where P⊥ ¼ 0. We have Δþ ¼ 0

by construction, and it also follows that Δ− ¼ 0. Without

loss of generality, we can consider Δx ¼
ffiffiffiffiffi

−t
p

and Δ
y ¼ 0.

In the convolution the momentum of the “active” nucleon

enters the matrix element of the EMT. This has the same

Δ
þ and Δ⊥ as for the deuteron, whereas Δ− does not enter

into the relevant matrix elements.

We find the following EMT matrix elements to provide

GFFs with the required t ¼ 0 behavior

1

2ðPþÞ2 hp
0λ0jTþþjpλi ¼ Aλ0λðtÞ; ð61aÞ

−
1

Pþ ffiffiffiffiffi

−t
p hp0λ0jTþRjpλi ¼ J λ0λðtÞ; ð61bÞ

−2hp0λ0jTRRjpλi ¼ tDλ0λ; ð61cÞ

where the R and L components are defined via

aR ¼ ax þ iay; ð62aÞ

aL ¼ ax − iay: ð62bÞ
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These allow us to calculate the necessary helicity ampli-

tudes directly. Specifically, off-diagonal matrix elements

contribute to the sinϕ (one unit helicity difference) and

cos 2ϕ (two units) modulations for the transversely polar-

ized states.

Because of Lorentz covariance violations by the con-

volution model, several symmetry relations laid out in

Appendix B are violated by applying Eq. (61) to the model.

For instance, we find J þ0ðtÞ ≠ −J �
0þðtÞ. In this case

specifically, we find J þ0ð0Þ ¼ 0 but J 0þð0Þ ≠ 0. Since

physically this helicity amplitude should vanish at t ¼ 0, we

use Eq. (61) to calculate J þ0ðtÞ specifically, and then set

J 0þðtÞ ¼ −J �
þ0ðtÞ. (If we use TþL rather than TþR to

calculate these same helicity amplitudes, their behavior is

actually reversed. This behavior reversal is an inevitable

consequence of stricter symmetry properties than Lorentz

covariance, namely hermiticity and parity invariance.) In all

cases where the relations in Appendix B are violated, we

restore the relations by fiat and use Eq. (61) to calculate the

specific helicity amplitude with the required t ¼ 0 behavior.

To proceed, we also need the following matrix elements

for the nucleon light front EMT, obtained by evaluating

Eq. (27) of Ref. [30]. For Tþþ matrix elements

1

2ðPþÞ2 hp
0
NλjTþþjpNλi ¼

�

αN

2

�

2

AðtÞ; ð63aÞ

1

2ðPþÞ2 hp
0
N − jTþþjpNþi ¼ −

�

αN

2

�

2
ffiffiffiffiffi

−t
p

2M
½AðtÞ − 2JðtÞ�;

ð63bÞ

1

2ðPþÞ2 hp
0
N þ jTþþjpN−i ¼

�

αN

2

�

2
ffiffiffiffiffi

−t
p

2M
½AðtÞ − 2JðtÞ�;

ð63cÞ

for TþR matrix elements,

−
1

Pþ ffiffiffiffiffi

−t
p hp0

NλjTþRjpNλi ¼
αN

2

�

−2
PR
N
ffiffiffiffiffi

−t
p AðtÞ þ λJðtÞ

�

;

ð64aÞ

−
1

Pþ ffiffiffiffiffi

−t
p hp0

N − jTþRjpNþi¼ αN

2

PR
N

M
½AðtÞ− 2JðtÞ�; ð64bÞ

−
1

Pþ ffiffiffiffiffi

−t
p hp0

N þ jTþRjpN−i

¼ −
αN

2

PR
N

M

�

AðtÞ þ
�

PL
N

PR
N

− 1

�

JðtÞ
�

; ð64cÞ

and for TRR matrix elements,

2hp0
NλjTRRjpNλi ¼ 4ðPR

NÞ2AðtÞ − tDðtÞ − 2λ
ffiffiffiffiffi

−t
p

PR
NJðtÞ;
ð65aÞ

2hp0
N − jTRRjpNþi ¼ −

ffiffiffiffiffi

−t
p

2M
½4ðPR

NÞ2AðtÞ − tDðtÞ�

þ 2

ffiffiffiffiffi

−t
p

M
ðPR

NÞ2JðtÞ; ð65bÞ

2hp0
N þ jTRRjpN−i ¼

ffiffiffiffiffi

−t
p

2M
½4ðPR

NÞ2AðtÞ − tDðtÞ�

þ 2

ffiffiffiffiffi

−t
p

M
PR
NP

L
NJðtÞ: ð65cÞ

Here, αN is related to the light front momentum fraction of

the active nucleon,

αN ¼ 2pþ
N

pþ ¼ 2p0þ
N

pþ : ð66Þ

For the nucleon form factors, we use simple multipole

parametrizations, motivated by the investigations of

Ref. [49] (see Sec. V.C thereof in particular),

AðtÞ ¼ 2JðtÞ ¼ 1

ð1 − t=m2
f2ð1270ÞÞð1 − t=m2

f2ð1430ÞÞ
; ð67aÞ

DðtÞ ¼ Dð0Þ
ð1 − t=m2

f2ð1270ÞÞð1 − t=m2
f2ð1430ÞÞð1 − t=m2

σð800ÞÞ
;

ð67bÞ

with Dð0Þ ¼ −2, motivated by lattice QCD findings [50].

The helicity amplitudes in this model are presented in

Fig. 1. From these, a variety of light front densities can be

obtained. We present a selected sample of these densities, in

order to not take up too much space. In particular, pþ

densities can be calculated using Eqs. (16a) and (20), and

the pressure distributions using Eqs. (43), (50), (51),

and (52).

First, in Fig. 2, we present light front momentum (pþ)
densities for both λ ¼ 0 and λ ¼ þ1 helicity states, as well

as for the ms ¼ 0 and ms ¼ þ1 transversely polarized

states. The pþ densities obtained from this model are

especially robust, since they are obtained through the

“good” component Tþþ of the EMT. They also provide

the clearest, most transparent description of the deuteron’s

structure.

A curious aspect of thems ¼ þ1 state is its deformation

towards theþy direction. This is a peculiarity of the use of
light front coordinates, and has been noticed for the

deuteron’s electric charge density previously in Ref.

[38,42], as well as in both the charge density [25] and

pþ density [51] of a transversely polarized proton. In

Ref. [25], this deformation was interpreted in terms of
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FIG. 1. The helicity amplitudes AðtÞ, J ðtÞ and DðtÞ of the deuteron for various helicity combinations. Those not explicitly given in

the plots are determined from these using the relations in Appendix B.

FIG. 2. The pþ density of the deuteron in various polarization states, with pþ divided out to provide a boost-invariant density that is

normalized to 1. A left-handed coordinate system is used, so that the z direction is into rather than out of the page. The panels are (top-

left) helicity state with λ ¼ 0, (top-right) helicity state with λ ¼ þ1, (bottom-left) transverse polarization along x axis with ms ¼ 0, and

(bottom-right) transverse polarization along x axis with ms ¼ þ1.
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distortions created by the point of view of an observer

moving quickly towards the target. However, no such

reference frame has actually been chosen here.

The transverse deformations are likely due to a mix of

different effects, including the use of fixed xþ rather than

fixed x0, the fact that x− has been integrated out, and that

we are considering a density of Pþ rather than a density of

P0. Note that there is more P3 on one side of the axis of

rotation than the other, since the axis of rotation is along the

x axis, and modulations in the P3 density would be present

in the Pþ density as well, even in a three-dimensional

instant form density in the rest frame. There may also be

modulation effects from Wigner-Melosh rotations connect-

ing states with light front spin and canonical spin, as was

observed in Refs. [29,42,52] for spin-half systems.

Let us consider the static quantities associated with the

momentum densities. Starting with the radii, using

Eq. (32), we find the following radii for helicity states

hb⊥ipþðλ ¼ 0Þ ¼ 1.77 fm; ð68aÞ

hb⊥ipþðλ ¼ 0Þ ¼ 1.69 fm; ð68bÞ

hb⊥ipþ ¼ 1.72 fm: ð68cÞ

These results are roughly compatible with the known

charge radius of the deuteron. The Breit frame deuteron

charge radius is 2.130 fm [53], which scaled down by
ffiffiffiffiffiffiffiffi

2=3
p

to give a rough estimate for a 2D charge radius, gives

1.739 fm.

For the transversely polarized states, we can calculate a

quadrupole moment. Using Eqs. (30) and (B3), the light

front quadrupole moment is found to be

QLF ¼ 4lim
t→0

A−þðtÞ
t

¼ 0.27pþ-fm; ð69Þ

which is surprisingly close to the empirical value of the

electric quadrupole moment, 0.2859e-fm [54–56].

The pressure distributions are of special interest, due to

the amount of attention these have received in the hadron

physics community recently. Unfortunately, the light cone

convolution model is less trustworthy for these quantities

because they correspond to “bad” components of the EMT,

namely, Tij. An ideal situation would be to obtain Dλλ0ðtÞ
from a manifestly covariant model. Nonetheless, for

illustration of the formalism, we present the pressure

distributions obtained from this model.

A selection of eigenpressures are presented in Fig. 3,

with the selection limited to save space. For helicity states,

the radial pressure is selected, and for transversely

polarized states, the “þ” eigenpressure is selected accord-

ing to Eq. (52). The color is selected to show magnitude

and sign of the pressure, and two-sided arrows to signify

direction.

We feel it is important to reiterate the physical meaning of

intrinsic pressure and its sign in this context, as was

explained previously in Ref. [51]. Since the deuteron is

in equilibrium, the expectation value of the force acting over

any region of the transverse plane is exactly zero. By

Gauss’s theorem, this means that the integral of F⊥ · n̂ over

the surface of any region must be zero. The stresses encoded

by the expectation value of Tij correspond to forces acting

on this region from all directions, which sum to a net force

of zero. A positive pressure therefore does not indicate a net

repulsive force from the center, nor does a negative pressure

signify a confining force towards the center, as was claimed

in Ref. [57]. A positive pressure means that particles in this

region of space are experiencing pushing forces from both

directions, and a negative pressure likewise means they are

experiencing pulling forces from both directions. For the

radial eigenpressures (helicity states), these directions are

towards and away from the center of the deuteron, while for

transversely polarized states, the directions are indicated by

white arrows overlaid on the plot.

In fact, since the densities obtained in this formalism

correspond to stresses seen by transversely comoving

observers, the pressures are static pressures or intrinsic

pressures, and should be contrasted by dynamic pressures

which include impulse imparted by flow or motion of the

medium (see for instance Chapter 4-3 of Ref. [58]).

It has been postulated throughout the literature

[13,27,30] that the radial pressure should be positive as

a stability condition. Our result for the λ ¼ 0 radial

pressure, in the top-left panel of Fig. 3, violates this

expectation. Although the stability requirement is merely a

conjecture lacking proof, it is premature to declare our

model result to be a counter-example, owing to the

possible shortcomings of a light cone convolution model.

For now, we consider the results here to be tentative and

open to replacement by results from a manifestly covariant

calculation.

If we do however take the results in Fig. 3 at face value,

they paint an interesting picture of the dynamics at play

within the deuteron. There appears to be a ring of roughly

half a femtometer at which pressure is more intense. Within

this ring, near the center, the pressure becomes negative for

the helicity zero state—specifically in the region where the

pþ density is depleted (see Fig. 2). The exact meaning of

this negative pressure (and its reality, given limitations of the

model) is unclear. One possibility is that the negative

pressure corresponds to attractive forces pulling particles

inside the ring towards the ring, and that the pressure

remains negative because the pressure exerted by other

particles crowding the area is not present.

Let us consider static quantities associated with the

comoving stress tensor. First of all, the static D-terms

for helicity states are

D0ð0Þ ¼ −24.33; ð70aÞ
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D�1ð0Þ ¼ −24.16: ð70bÞ

These values are large, negative, and nearly identical. It is

worth noting that negativity of Dð0Þ has been frequently

postulated [12,13,27,30] as a looser stability criterion than

the radial pressure being positive, and that our deuteron

model at least satisfies this condition. Next, we consider

mechanical radii calculated according to Eq. (58),

hb⊥imechðλ ¼ 0Þ ¼ 2.39 fm; ð71aÞ

hb⊥imechðλ ¼ þ1Þ ¼ 1.06 fm; ð71bÞ

hb⊥imech ¼ 1.24 fm: ð71cÞ

These results are surprising. It is worth stressing, as

discussed above, that the “average” involves averaging

the numerator and denominator separately, rather than

taking the mean of the three radii; this is why the average

mechanical radius is not close to the mean of the three

polarization states’ radii. In any case, the disparity between

the radii is stark, and can be understood clearly by looking

at Fig. 3; the negative presssure near the center of the

helicity-zero state greatly enhances its mechanical radius.

V. SUMMARY AND OUTLOOK

In this work, we obtained the two-dimensional light front

densities of momentum, angular momentum, and pressures

within spin-one targets. In contrast to the spin-half case, the

densities have helicity dependence, and the densities of

FIG. 3. The radial (or þ) eigenpressure of the deuteron in various polarization states, multiplied by pþ to provide a boost-invariant

density. See Eq. (52) and the discussion around it for an explanation of the eigenpressures. The arrows indicate directions in which the

pressure is acting, and are double-sided because pressures from both directions act with the same magnitude and result in a net zero force

(see text for further elaboration). A left-handed coordinate system is used, so that the z direction is into rather than out of the page. The

panels are (top-left) helicity state with λ ¼ 0, (top-right) helicity state with λ ¼ þ1, (bottom-left) transverse polarization along x axis

with ms ¼ 0, and (bottom-right) transverse polarization along x axis with ms ¼ þ1.
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transversely polarized spin-one hadrons can exhibit quad-

rupole deformations that are related to the differences

between the helicity-one and helicity-zero densities. All

of these special properties of spin-one light front densities

have been illustrated with a light front convolution model

of the deuteron.

Experimentally, the spatial densities for the deuteron

could be extracted from data for coherent hard exclusive

reactions on the deuteron. These are challenging measure-

ments, however, due to the steeper t-slopes of the coherent
deuteron cross section compared to that of the nucleon.

Current data is scarce: the HERMES Collaboration has

measured deeply virtual Compton scattering (DVCS) on

the deuteron with both unpolarized [59] and polarized

targets [60], and Jefferson Lab (JLab) has more recent

results for coherent π0 electroproduction on the deuteron

[61]. In the future, more data should be forthcoming from

JLab [62,63], and especially the future electron-ion collider

[64,65] with its dedicated far-forward detectors setup.

Accessing the gravitational form factors from these data

is a nontrivial inverse problem, as they are related to Mellin

moments of twist-2 vector generalized parton distributions

(GPDs) [17], which are present in the amplitudes in the

Compton form factors, being x-convolutions of the GPDs

with a hard scattering coefficient.

In a following companion paper [34], we apply the

formalism developed here to the photon as a special case. A

few minor modifications are made to accommodate the

massless case, but these result in simplifications of the

formalism. The photon is an especially pertinent target to

consider, since the employment of a light front formalism

allows for its densities to be calculated.
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APPENDIX A: LIGHT FRONT SPIN-ONE

POLARIZATION VECTORS

This appendix uses the polarization vectors from

Refs. [37,43,45], but at ξ ¼ 0, which is the case relevant

to local operators such as the EMT. Note that

Δ
þ ¼ −2ξPþ, so having ξ ¼ 0 is equivalent to having

Δ
þ ¼ 0, and we take Δ

þ ¼ ðn · ΔÞ ¼ 0 throughout the

paper (including this appendix).

The polarization basis vectors are given explicitly by

ε
μ
0 ¼

1

M

�

pμ −M2
nμ

ðP · nÞ

�

; ðA1Þ

ε
0μ
0 ¼ 1

M

�

p0μ −M2
nμ

ðP · nÞ

�

; ðA2Þ

ε
μ
1 ¼

1
ffiffiffiffiffi

−t
p

�

Δ
μ þ t

nμ

2ðP · nÞ

�

; ðA3Þ

ε
0μ
1 ¼ 1

ffiffiffiffiffi

−t
p

�

Δ
μ − t

nμ

2ðP · nÞ

�

; ðA4Þ

ε
μ
2 ¼ ε

0μ
2 ¼ −

1
ffiffiffiffiffi

−t
p

ϵ
μ
ναβP

ν
Δ

αnβ

ðP · nÞ ; ðA5Þ

where the Levi-Civita symbol is normalized to satisfy

ε0123 ¼ þ1. These polarization basis vectors satisfy the

following orthogonality and normalization relations,

εi · εj ¼ ε0i · ε
0
j ¼ −δij; ðA6Þ

εi · p ¼ ε0i · p
0 ¼ 0: ðA7Þ

The positive and negative helicity vectors are defined

via [45]
3

ε� ¼∓ e�iϕΔ

ε1 � iε2
ffiffiffi

2
p ; ðA8Þ

and equivalently for the primed four-vectors, where ϕΔ is

the azimuthal angle of the momentum transfer Δ⊥ with

respect to a fixed x̂ axis. The positive and negative helicity

vectors satisfy

ε�þ · εþ ¼ ε0�− · ε0− ¼ −1; ðA9Þ

ε�þ · ε− ¼ ε0�− · ε0þ ¼ 0; ðA10Þ

ε0 · p ¼ εþ · p ¼ ε− · p ¼ 0; ðA11Þ

ε00 · p
0 ¼ ε0þ · p0 ¼ ε0− · p0 ¼ 0: ðA12Þ

For ε� (and their primed counterparts) specifically,

εþ · n ¼ ε0þ · n ¼ ε− · n ¼ ε0− · n ¼ 0: ðA13Þ

For massless spin-one particles such as the photon, using

ε� as the polarization vectors thus amounts to using light

cone gauge.

Several helpful explicit four-products include

ðε0 · ΔÞ ¼
−t

2M
; ðA14Þ

3
Note that Refs. [37,43] take ϕΔ ¼ π and define ϵ

μ
1; ϵ

μ
2 (and

primed equivalent vectors) with an opposite sign.
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ðε00 · ΔÞ ¼
þt

2M
; ðA15Þ

ðε1 · ΔÞ ¼ ðε01 · ΔÞ ¼ −
ffiffiffiffiffi

−t
p

; ðA16Þ

ðε2 · ΔÞ ¼ ðε02 · ΔÞ ¼ 0; ðA17Þ

and several explicit outer products include

1

2
ε
fμ
0 ε

0νg
0 ¼ 1

M2

�

PμPν −
1

4
Δ

μ
Δ

ν

�

−
nfμPνg

ðP · nÞ þ
M2nμnν

ðP · nÞ2 ;

ðA18Þ

1

2
ε
fμ
1 ε

0νg
1 ¼ −

Δ
μ
Δ

ν

t
þ t

4

nμnν

ðP · nÞ2 ; ðA19Þ

1

2
ε
fμ
2 ε

0νg
2 ¼ −gμν −

�

1 −
t

4M2

�

M2nμnν

ðP · nÞ2 þ
nfμPνg

ðP · nÞ þ
Δ

μ
Δ

ν

t
:

ðA20Þ

APPENDIX B: EXPLICIT EMT

MATRIX ELEMENTS

In this appendix we give explicit evaluations of all the

helicity amplitudes in Eq. (2) in terms of the G1−6ðtÞ form
factors in Eq. (1), using all combinations of the polarization

vectors in Appendix A.

Firstly, for the A results:

A00 ¼
�

1þ t

2M2

�

G1ðtÞ −
t

4M2
ð2G5ðtÞ þ G6ðtÞÞ

−
t2

8M4
G2ðtÞ; ðB1Þ

Aþþ ¼ A−− ¼ G1ðtÞ −
t

4M2
G2ðtÞ; ðB2Þ

A0þ¼A−0 ¼−A�
þ0 ¼−A�

0−

¼−

ffiffiffiffiffi

−t
p
ffiffiffi

2
p

M

�

G1ðtÞ−
1

2
G5ðtÞ−

t

4M2
G2ðtÞ

�

eiϕΔ ; ðB3Þ

A−þ ¼ A�
þ− ¼ t

4M2
G2ðtÞe2iϕΔ : ðB4Þ

Next, for J ðtÞ:

J 00 ¼ 0; ðB5Þ

J þþ ¼ −J −− ¼ 1

2
G5ðtÞ; ðB6Þ

J 0þ ¼ −J −0 ¼ −J �
þ0 ¼ J �

0− ¼ −

ffiffiffiffiffi

−t
p

4
ffiffiffi

2
p

M

× fG5ðtÞ þ G6ðtÞgeiϕΔ ; ðB7Þ

J −þ ¼ J �
þ− ¼ 0: ðB8Þ

Next, for DðtÞ:

D00 ¼
�

1þ t

2M2

�

G3ðtÞ −
t

4M2
G6ðtÞ −

t2

8M2
G4ðtÞ; ðB9Þ

Dþþ ¼ D−− ¼ G3ðtÞ − G6ðtÞ −
t

4M2
G4ðtÞ; ðB10Þ

D0þ¼D−0¼−D�
þ0¼−D�

0−

¼−

ffiffiffiffiffi

−t
p
ffiffiffi

2
p

M

�

G3ðtÞ−
1

2
G6ðtÞ−

t

4M2
G4ðtÞ

�

eiϕΔ ; ðB11Þ

D−þ ¼ D�
þ− ¼ t

4M2
G4ðtÞe2iϕΔ : ðB12Þ

Next, for EðtÞ:

E00 ¼
t

2
ðG5ðtÞ þ G6ðtÞÞ; ðB13Þ

Eþþ ¼ E−− ¼ t

4
ðG5ðtÞ − G6ðtÞÞ; ðB14Þ

E0þ ¼ E−0 ¼−E�
þ0 ¼−E�

0−

¼−

ffiffiffiffiffi

−t
p

M

2
ffiffiffi

2
p

��

1þ t

4M2

�

G5ðtÞþ
t

4M2
G6ðtÞ

�

eiϕΔ ;

ðB15Þ

E−þ ¼ E�
þ− ¼ −

t

4
ðG5ðtÞ þ G6ðtÞÞe2iϕΔ : ðB16Þ

Next, for HðtÞ:

H00 ¼ −
tM2

2
G6ðtÞ; ðB17Þ

Hþþ ¼ H−− ¼ tM2

4

�

1 −
t

2M2

�

G6ðtÞ; ðB18Þ

H0þ ¼H−0¼−H�
þ0¼−H�

0− ¼
t
ffiffiffiffiffi

−t
p

M

4
ffiffiffi

2
p G6ðtÞeiϕΔ ; ðB19Þ

H−þ ¼ H�
þ− ¼ tM2

4
G6ðtÞe2iϕΔ : ðB20Þ

Lastly, for KðtÞ:

K00 ¼ 0; ðB21Þ

Kþþ ¼ −K−− ¼ t

8
G6ðtÞ; ðB22Þ
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K0þ ¼K−0 ¼−K�
þ0 ¼−K�

0− ¼−

ffiffiffiffiffi

−t
p

M

4
ffiffiffi

2
p G6ðtÞeiϕΔ ; ðB23Þ

K−þ ¼ K�
þ− ¼ 0: ðB24Þ

We also state the expressions for the non-Galilean effective form factors for general polarization

X

λ;λ0
ρðλ; λ0ÞEλ0λ ¼

�

2

3
þ TLL

�

t

4
ðG5ðtÞ − G6ðtÞÞ þ

�

1

3
− TLL

�

t

2
ðG5ðtÞ þ G6ðtÞÞ

þ iST sinðϕS − ϕtÞ
M

ffiffiffiffiffi

−t
p

2

��

1þ t

4M2

�

G5ðtÞ þ
t

4M2
G6ðtÞ

�

− TTT cosð2ϕTT
− 2ϕtÞ

t

4
ðG5ðtÞ þ G6ðtÞÞ; ðB25Þ

X

λ;λ0
ρðλ; λ0ÞHλ0λ ¼

��

2

3
þ TLL

�

M2t

4

�

1 −
t

2M2

�

−

�

1

3
− TLL

�

M2t

2
ðB26Þ

− iST sinðϕS − ϕtÞ
Mt

ffiffiffiffiffi

−t
p

4
þ TTT cosð2ϕTT

− 2ϕtÞ
M2t

4

�

G6ðtÞ; ðB27Þ

X

λ;λ0
ρðλ; λ0ÞKλ0λ ¼

�

SL
t

8
þ iTLT sinðϕTL

− ϕtÞ
M

ffiffiffiffiffi

−t
p

2

�

G6ðtÞ: ðB28Þ

APPENDIX C: SPIN-ONE DENSITY MATRIX

The density matrix ρðλ; λ0Þ of a spin-one system is a 3 × 3 Hermitian matrix with unit trace,
P

λ;λ0 ρðλ; λ0Þ ¼ 1. In the rest

frame (RF) of the spin-one system it can be specified in a basis of single-particle states jp ¼ 0; λi, where the momentum is

zero and the spin is quantized along the z-axis, with spin projection λ ¼ ð−1; 0; 1Þ. The density matrix can be parametrized

in the form [66]

ρ≡ ρðλ; λ0Þ ¼ 1

3
þ 1

2
SiSi þ TijT ij: ðC1Þ

Here, Si are the 3 × 3matrices describing the spin operators in the spin-one representation for e� ¼∓ 1
ffiffi

2
p ðex � ieyÞ; e0 ¼ ez,

Sx ¼
1
ffiffiffi

2
p

0

B

@

0 1 0

1 0 1

0 1 0

1

C

A
; Sy ¼

i
ffiffiffi

2
p

0

B

@

0 −1 0

1 0 −1

0 1 0

1

C

A
; Sz ¼

0

B

@

1 0 0

0 0 0

0 0 −1

1

C

A
; ðC2Þ

and their symmetric traceless rank-2 tensors

T ij ¼
1

2
ðSiSj þ SjSiÞ −

2

3
δij; ðC3Þ

and i; j ¼ ðx; y; zÞ denote the Cartesian components. The parameters in Eq. (C1) are a three-dimensional vector Si and a

traceless symmetric tensor Tij. They coincide, respectively, with the expectation value of the spin operators and their traceless

tensor products

Si ¼ Tr½ρŜi� ¼ hŜii; ðC4aÞ

Tij ¼ Tr½ρT̂ ij� ¼ hT̂ iji: ðC4bÞ
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In the rest frame of a particle, the covariant spin-one density matrix ρβα½RF� can be introduced as

ρβα½RF� ¼
X

λ;λ0
ρðλ; λ0Þϵβðk; λÞϵ�αðk; λ0Þ ¼ 1

3

�

−gβα þ kβkα

M2

�

−
i

2M
ϵβαs½RF�k − tβα½RF�; ðC5Þ

where kμ ¼ ðM; 0; 0; 0Þ. In the rest frame, the spin vector sμ½RF� and tensor tβα½RF� only have spatial components, which

are identical to the spin parameters appearing in Eq. (C1). The spin tensor is traceless. In formulas

si½RF�≡ Si; s0½RF� ¼ 0; ðC6aÞ

tij½RF�≡ Tij; t0α½RF� ¼ tβ0½RF� ¼ 0; tμμ½RF� ¼ 0: ðC6bÞ

It is advantageous to consider the following ð2þ 1ÞD (transverse, longitudinal) decomposition of the rest-frame spin vector

and tensor,

S ¼ ðSx; Sy; SxÞ≡ SLð0; 0; 1Þ þ STðcosϕS; sinϕS; 0Þ; ðC7aÞ

T ¼

0

B

B

B

@

Txx−Tyy

2
−

Tzz

2
Txy Txz

Txy −
Txx−Tyy

2
−

Tzz

2
Tyz

Txz Tyz Tzz

1

C

C

C

A

≡

�

TTT −
TLL

2
12×2 TLT

TLT TLL

�

;

TLT ¼ ðTxz; TyzÞ≡ TLTðcosϕTL
; sinϕTL

Þ; ðC7bÞ

TTT ¼
 Txx−Tyy

2
Txy

Txy −
Txx−Tyy

2

!

≡
TTT

2

�

cos 2ϕTT
sin 2ϕTT

sin 2ϕTT
− cos 2ϕTT

�

; ðC7cÞ

where TTT is symmetric and traceless in transverse coordinates.

In cases where one considers an outer product of two polarization vectors with specific helicity values λ; λ0, one can

obtain the value of ϵβðk; λÞϵ�αðk; λ0Þ by making the following substitutions in Eq. (C5) for the unpolarized, vector and tensor

polarized parts, see Eqs. (C4a) and (C4b),

1 → δλ;λ0 ; ðC8aÞ

Si → hλ0jSijλi; ðC8bÞ

Tij → hλ0jT ijjλi: ðC8cÞ

Similar statements apply for the polarization parameters introduced in Eq. (C7).

For the case of particles with nonzero three-momentum we can introduce the density matrix by applying Lorentz boosts

to the polarization four vectors in Eq. (C5) [17,46,66]. Different choices of standard boosts transforming the rest frame

particle to the moving one result in different expressions for the polarization vectors (connected by the so-called Melosh

rotations) [47,67]. As we consider the EMT on the light front, we only consider light front boosts ΛLFðpÞ here

ρβαðpÞ ¼
X

λ;λ0
ρðλ; λ0ÞΛLFðpÞβμϵμðk; λÞΛLFðpÞανϵ�νðk; λ0Þ

¼
X

λ;λ0
ρðλ; λ0Þϵβðp; λÞϵ�αðp; λ0Þ ¼ 1

3

�

−gβα þ pβpα

M2

�

−
i

2M
ϵβαsp − tβα; ðC9Þ

where the covariant spin vector and tensor are introduced as

pμ ¼ ΛLFðpÞμνkμ; sμ ¼ ΛLFðpÞμνsν½RF�; ðspÞ ¼ 0; ðC10aÞ
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tμν ¼ ΛLFðpÞμρΛLFðpÞνσtρσ½RF�; tβαpα ¼ pβt
βα ¼ 0; tμμ ¼ 0: ðC10bÞ

To compute the spatial densities of the EMT, we need off-diagonal bilinears of spin-one polarization four vectors. We

therefore need the expression for the off-diagonal covariant density matrix. Wewrite this expression using the averaged spin

vector s̄ and tensor t̄ [68], which are obtained by boosting the rest frame ones of Eq. (C6) with the average momentum

P ¼ pþp0

2
,

s̄μ ¼ ΛLFðPÞμνsν½RF�; ðC11aÞ

t̄μν ¼ ΛLFðPÞμρΛLFðPÞνσtρσ½RF�: ðC11bÞ

The off-diagonal density matrix then becomes

ρ
βα
LFðp; p0Þ ¼

X

λ;λ0
ρðλ; λ0ÞΛLFðpÞβμϵμðk; λÞΛLFðp0Þανϵ�νðk; λ0Þ

¼ 1

3

�

−gβα þ PβPα

M2
−
Δ

β
Δ

α

4M2
þ P½β

Δ
α�

2M2
þ Δ

½βnα� þ ξΔfβnαg

ð1 − ξ2ÞðP · nÞ þ Δ
2

2ð1 − ξ2Þ
nβnα

ðP · nÞ2
�

þ i

2MD

�

ϵβαs̄P − ðD − 1Þðs̄ · nÞ M2

ðP · nÞ2 ϵ
βαþP − ðD − 1ÞP

½βϵα�ns̄P

ðP · nÞ þD

2

Δ
fβϵαgns̄P

ðP · nÞ

−DðD − 1Þ M2

ð1 − ξ2ÞðP · nÞ2 ðn
½βϵα�ns̄P − ξnfβϵαgns̄PÞ þ ϵnΔs̄P

2ð1 − ξ2ÞðP · nÞ2
�

−2DðD − 1Þ M2

ðP · nÞ n
βnα

− ðD − 1ÞðPfβnαg þ ξP½βnα�Þ þD

2
ðΔ½βnα� þ ξΔfβnαgÞ

�

−
nfβϵαgΔs̄P − ξn½βϵα�Δs̄P

2ð1 − ξ2ÞðP · nÞ

þ ðD − 1Þ ðs̄ · nÞðP · nÞM
2
nfβϵαgΔnP − ξn½βϵα�ΔnP

2ð1 − ξ2ÞðP · nÞ2
�

− t̄βα þ Δ
½β t̄α�n

2ðP · nÞ −
n½β t̄α�Δ − ξnfβ t̄αgΔ

2ð1 − ξ2ÞðP · nÞ þ t̄nn
Δ

β
Δ

α

4ðP · nÞ2

− t̄nΔ
nfβΔαg − ξn½βΔα�

4ð1 − ξ2ÞðP · nÞ2 þ t̄ΔΔ
nβnα

4ð1 − ξ2ÞðP · nÞ2 ; ðC12Þ

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
t

4M2

r

; ðC13aÞ

afμbνg ¼ aμbν þ aνbμ; a½μbν� ¼ aμbν − aνbμ: ðC13bÞ

[1] X.-D. Ji, Phys. Rev. Lett. 74, 1071 (1995).

[2] X.-D. Ji, Phys. Rev. D 52, 271 (1995).
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[7] C. Lorcé, A. Metz, B. Pasquini, and S. Rodini, J. High

Energy Phys. 11 (2021) 121.

[8] J. Ashman et al. (European Muon Collaboration), Phys.

Lett. B 206, 364 (1988).

[9] X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997).

[10] E. Leader and C. Lorcé, Phys. Rep. 541, 163
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