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Densities associated with the energy-momentum tensor are calculated for spin-one targets. These
calculations are done in a light front formalism, which accounts for relativistic effects due to boosts and
allows for arbitrary spatial localization of the target. These densities include the distribution of momentum,
angular momentum, and pressures over a two-dimensional plane transverse to the light front. Results are
obtained for both longitudinally and transversely polarized targets, and the formalism is tailored to allow
the possibility of massless targets. The momentum density and pressure distributions are calculated for a
deuteron target in a light cone convolution model, with which the properties of this model (such as helicity

dependence of the densities) is illustrated.
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I. INTRODUCTION

The energy-momentum tensor (EMT) has become a
major topic of interest in hadron physics. It touches on
several major outstanding problems in the field, including
the proton mass puzzle [1-7] and the proton spin puzzle
[8—10]. It is also believed by some to contain information
about the mechanical properties of hadrons, including
the spatial distributions of pressures and shear stresses
[11-13], as well as information about the mechanical
stability of hadrons.

Most research into the EMT of hadrons has focused on
the gravitational form factors (GFFs) of spin-zero and
spin-half targets. This is understandable, since the proton
is spin-half, and spin-zero is an especially simple case for
exploratory studies. However, spin-one targets play an
important role in our understanding of the strong nuclear
force, and are thus deserving of more attention in research
on GFFs. The deuteron is spin-one after all, and as the
simplest nucleus, it is an ideal testing ground for studies of
how the internucleon force arises from quantum chromo-
dynamics [14]. Spin-one targets more generally contain
extra information not present in lower-spin targets, such as
a gluon transversity distribution whose evolution decou-
ples from quarks [15].
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Several recent theoretical studies [16—19] and model
calculations [20-23] have been done for the EMT and
GFFs of spin-one targets. However, there is yet no
investigation into the light front densities associated with
the GFFs of spin-one targets. Breit frame studies exist
[17,18], but there is considerable controversy regarding the
physical meaningfulness of Breit frame densities (see
Refs. [24-31] for a variety of perspectives), whereas light
front densities have a clear physical meaning and inter-
pretation as true densities [25,26,30,32,33]. It is thus
prudent to investigate the light front densities associated
with the GFFs of spin-one targets.

This work is an investigation into the general properties
and expressions for EMT densities in spin-one targets. A
companion paper [34] investigates the densities for a photon
target specifically.

This paper is organized into the following sections.
Section II considers the decomposition of EMT matrix
elements into GFFs, examining how this decomposition
depends on target polarization. Section III then obtains all
the relevant densities, including static moments and radii,
as well as their polarization dependence. Section IV
illustrates some of these densities with a simple light cone
convolution model of the deuteron, and Sec. V concludes
the work.

II. MATRIX ELEMENTS FOR DEFINITE-SPIN
STATES

For a massive spin-one system, the matrix element of the
conserved, symmetric EMT between spin-one plane wave
states is given by [16-18,20,21,35]
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where P':%(p +p'), A=p' —p, t =A% where ¢ is a
polarization four-vector that depends on momentum p and
spin quantum number 4, and & similarly on p’ and #’, and
where {} denotes symmetrization without a factor % (ie.,

al*b*t = a#b¥ + a*b*). Note that several conventions exist
in the literature for naming the gravitational form factors.
We have here used the notation first found in Ref. [16] and
later adopted (and expanded) in Refs. [17,21]. Refer-
ence [18] gives a comparison of the existing conventions.
Several nonconserved form factors, namely G;_¢(t), also
exist when examining the EMT contributions of a single
parton flavor, but in this work we examine only the total
EMT, which is conserved. The effects of nonconserved
GFFs on partonic densities are deferred to a future study.
Reference [17] additionally gives two more form factors,
Gio11(¢) for the asymmetric EMT, but a consistent appli-
cation of Noether’s second theorem to obtain the EMT has
been shown to reproduce the symmetric Belinfante EMT
for QCD [36], so we limit our attention to the symmetric
EMT here.

|

|

Clearly, Eq. (1) is not applicable to massless systems,
due to the presence of factors 1/M?. The presence of these
factors is somewhat artificial; standard form factor decom-
positions like Eq. (1) are designed so that (1) the form
factors are unitless and (2) poles do not occur in the form
factors nor in accompanying Lorentz structures that are not
present in the EMT matrix element. Condition (2) precludes
using factors of 1/¢ instead of 1/M? to accompany, e.g.,
G, (t). However, if condition (1) is relaxed, one can write a
variant of Eq. (1) with no factors of 1/M? present, but
several unitful Lorentz scalar functions.

This work will examine light front densities of spin-one
systems, including massless systems such as the photon. It
is thus desirable to have a breakdown into Lorentz scalar
functions that is applicable to both massless and massive
systems. When considering light front densities in
particular, where AT =0 by virtue of integrating out
x~ [30], the EMT matrix element can be decomposed as
follows:

.P{ﬂel/}PAn AHAY — Azgﬂl/
(P X[T(0)|pA)|a-—o = 2P*P* Ayy (A L) — le/M(AL) t———5—Du(A)
plupyt ntn? _nluegriPan
T En(AL) TP n)ZHM(AL) - LWK“(AL), 2)

where n is the lightlike four-vector that defines the light
front coordinates, i.e., such that V-n= V" and the
decomposition was constructed to be invariant under
scaling n by a factor. It should be remarked that the
Lorentz scalar functions A;;(A ) etc. are not proper form
factors, owing to their dependence on the initial and final
target helicities, but can more accurately be called helicity
amplitudes. It should also be noted that this decomposition
is not defined when P™ =0, which can occur in the
massless case for plane waves in the —z direction. This
decomposition has several unitful helicity amplitudes,
namely & H and K, with units GeV?, GeV* and GeV?,
respectively.

It should be stressed that we do not propose the helicity
amplitudes in Eq. (2) as a replacement for any of the
existing conventions; their utility lies specifically in the

|

ability to take light front Fourier transformations of these
helicity amplitudes to obtain physically interpretable den-
sities. In the respect that Fourier transforms of these
quantities produce light front densities (similarly to form
factors for spin-zero and spin-half targets), we will occa-
sionally refer to the helicity amplitudes as “effective form
factors”, but we stress that these quantities are not really
proper form factors.

In the massive case, the six helicity amplitudes in Eq. (2)
are linear combinations of the form factors found in Eq. (1),
with the particular combination depending on the initial
and final helicity. Of special interest are those that con-
tribute to the Galilean densities [27,30], which are the
densities corresponding to only the + and transverse spatial
components of the EMT. These densities have the special
property of being covariant under the Galilean subgroup of
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the Poincaré group. Since n™ = 0 and n’, = 0 (we use bold
vectors with a | subscript to signify transverse spatial
components), only A, J, and D contribute to these
densities.

The relationships between the form factors in Eq. (1) and
helicity amplitudes in Eq. (2) can be found by evaluating
Eq. (1) explicitly using the spm one polarization vectors
found in Ref. [37] at £ = + = 0 (which are also given in
Appendix A). For example let us consider cases with no
helicity flip (' = 1), which are relevant to the Galilean
densities of light front helicity states. For helicity £1 states
we have

t

Acp(A) =Gi(1) - Wgz(m (3a)
Toe(AL) = %5G5(0) = %7 (1), (3b)
Dis(A1) = G(1) = Go(t) = 13 Galt). (3¢)

whereas for helicity-0 states we have

Aw(80) = (1453173610 = 41 0050 + Go(0)
t2
5

Joo(AL) =0, (4b)

Go(1), (4a)

) = 2P PP AT (ML) — i

(p', m|T"(0)

plegr}
e

£ (AL) +

P{ﬂev}PAn (m,)

ntn
P-n)?

2

Dyo(A

= G3(1) = —5 (=2G5(1) + Go(1)) — == Gu(2).

(4¢)

4M2

The results for the other helicity amplitudes can be found in
Appendix B

A. Transversely polarized states

We next consider transversely polarized states for
massive spin-one hadrons. Since the only sensible quan-
tization axis for the spin of massless particles is along the
direction of travel, transversely polarized states can only
sensibly be considered in the massive case. The transverse
polarization vectors are given by the following linear
combinations of light front helicity states [38],

£41 =V 2eP ey + etie_,

e =
T+l )

(5a)

&y — e?ihse_
- = b
V2

and similarly for the final (primed) state. Accordingly, the
relevant EMT matrix elements will involve spin-flip con-
tributions. A catalog of all the individual contributions can
be found in Appendix B. Without loss of generality, we can
define X = s, and for more compact formulas, we sup-
press explicit s | dependence in the expressions to follow.

The simplest manner to give results is in terms of the
effective form factors,

ey = (5b)

AFAY — AZQ/H/ -
I + S Ay
nineriPAn

Ponr KY(AL), (6)

MY (AL +i

where m; € {—1,0, 41} is the magnetic spin number, i.e., the eigenvalue of s | projected along the quantization axis. Each

of the effective form factors works out to have the form,

FEVAL) = 1 (F ) + F(0) + 2F0(0) + 2020

FOM) =5 (F )+ F__(1) -

N[ =

where F stands in for any of the effective form factors in
Eq. (2) or Eq. (6), and where ¢, is the angle between A |
and's . The F3"?(¢) and F5>* (1) that are relevant to the
Galilean light front densities are, in terms of the traditional
GFFs,

1cos2¢
CaM?

rcos 2¢A cos 2¢ iy/—tsin d)A sin ¢
o e £ VTP e (7
]_-c052¢( ) (7b)
A (1) = Gs(1) — 26, (1) + Wgz(f)s (8a)
A;082¢(t) — gz(l‘)7 (8b)
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DI (1) = Gu(t). (8¢)

It should be clear from these results, combined with
Egs. (3b) and (4b), that J; = 0. This means that the J,
density for transversely polarized states is zero, see Eq. (16b)
further down. To be sure, the structure of Eq. (2) means that
Jr is a J, density of transversely polarized states and not a
density of transverse angular momentum. This finding is not
surprising, since the expectation value of J in a transversely
polarized state is zero. The transverse angular momentum
operator is given by x~7"(x) — x|, 7"~ (x), meaning that
this would entail a non-Galilean density and is thus beyond
the scope of this work. Indeed, this quantity would involve
several of the non-Galilean helicity amplitudes (those other
than A, J and D).

It may be instructive to consider Eq. (7) in terms of
unpolarized, vector polarized, and tensor polarized combi-
nations of the target. These polarization combinations are
defined for transversely polarized targets as follows:

1 -
Fi @A) =3 (F @A)+ Fr V@A) + FP(A).
(%)
F@A) =780 -7 (8)), (9b)
1 -
F @A) =5 FY (80 - F @A) - FrUAy).

(9¢)

If we also define these states for longitudinally polarized
targets,

FO) =3 (Fop () + F__(1) + Foolt),  (10a)

U)|>—A

v
t

G-

4M?

+ Trrcos(2pr, —2¢,) —— 4M2 G (1),

gﬁ<r>] Fisysings — )

FL0) = Fral)) = F_(0). (10b)
FIOW) =5 @Fwl) = Fosl) = (), (106)

then we find for the transversely polarized states that

FOM) =FD 1) (11a)
(V) i _tSin¢A sin ¢
F@AL) = =2 F ) (11b)
1CoS2Ppn —cos
Fa) = -F () - = 2t FE ). (1)

The modulations can thus be interpreted in terms of vector
and tensor polarization states, but these states actually differ
depending on the spin quantization axis. We will consider
general polarization below. Throughout the remainder of
this work, however, we focus on deuterons in specific
polarization states rather than mixtures. The reason for this
is that unpolarized, vector polarized, and tensor polarized
states are mixtures that are not present in the Hilbert space
of the target, and we choose to focus in this work on the
densities and properties of spin-one systems in pure states.

B. General polarization
An alternate way of considering the dependence on the
initial and final state helicities of the spin-one particle in
Eq. (2) is by tracing it with a spin-one density matrix
p(4,A) characterizing the ensemble,

(@) = S p(2)(p

A

AT (0)[pA).  (12)

We refer the reader to Appendix C for a summary of the
spin-one density matrix formalism and a definition of the
density matrix parameters (Sy, Sz, @5, Trr. Trrs Trrs ¢, s
¢r,) appearing in the formulas that follow. By considering
the relevant contractions of the off-diagonal covariant
density matrix of Eq. (C12), evaluated at A™ = 0, with
tensors built from P, A, n and the 4D Levi-Civita tensor, we
obtain the following expressions for the density matrix
averaged effective form factors appearing in Eq. (2),

S P ) Ay = < +TLL> <g1(t) —M’ﬂgz(t)> - (;—TLL> K 2M2>g1( ) - 8[];4%0)

(1) = 13 Ga(1) -

L (50 - 9

gs(f))

(13a)
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S P AT 3 = S50 + T sintr, - )3 (G5(6)+ Gelo). (13b)
A
1
S Pes = (347 ) (640~ gy =00 ) + (5T ) | (1455 )
2
_#g‘l(t) - #gﬁ(t)] + iSy sin(¢s — ;) ——— v (g3( )= 4]:/[2 Gu(t) - g62(t)>
+ Trr cos(2pr, — 2¢l)4M2 4(1), (13¢)

where ¢, is the azimuthal angle of A .

We point out that A and D depend on the same density
matrix parameters—namely, 1 (the unpolarized part),
Ty, Srsin(¢s — ¢,), and Trycos(2pr, — 2¢,)—while J
depends on S, and T,7sin(¢7, —¢,). The first set of
parameters are scalars and the second set are pseudoscalars,
reflecting the parity properties of the central charge p™ and
pressure on the one hand, and particle spin on the other. The
modulations in the densities for the transversely polarized
states are identified with the transverse vector (Sz sin ¢)
and mixed longitudinal-transverse tensor (7' r sin ¢b) polar-
ized part of the density matrix for the sin ¢ modulations,
and the completely transverse tensor part (7 7y cos 2¢) for
the cos 2¢) modulations.

For Eq. (13), our previous expressions for the helicity
[Egs. (3) and (4)] and transversely polarized states [Eqs. (7)
and (8)] are recovered after identifying the corresponding
density matrix parameters for these ensembles. For pure
longitudinal polarized states we need the following rest
frame spin parameters

A::tl' SLZZIZI,TLLZI/3,
ST = TLT = TTT = O, (143)
A=0: TLL:_2/3’
SL - ST - TLT - TTT - 0 (14b)
For pure transversely polarized states one has
/1::|:1: ST:j:17TLL:_1/67TTT:1/2’
br, = 5. S =Trr =0, (15a)
A=0: Ty =1/3,Trr =—1,¢7, = ¢s,
ST - SL - TLT - O (15b)

III. PROPERTIES OF SPIN-ONE DENSITIES

For states with definite light front helicity, the effective
form factors as given in Egs. (3) and (4) can be used to
obtain the azimuthally symmetric light front PT, angular

[

momentum, and pressure densities of a spin-one system
localized in the transverse plane. The formulas for the P™
density and comoving stress tensor are identical to those
already found in Refs. [27,30] for spin-zero or spin-half
hadrons, but with A and D substituted for A and D. We give
these relations again here (along with the angular momen-
tum density)

@) = dzAl —iA; b
Pp+(bl) —PJF/WAM(t)e A b , (163)
Dp )= [ LAL A7) i,
Py (bL) —ﬂ/(zﬂ)z{j(r)ﬂ (e . (16b)
ij 1 d’A _
Slf(bi) :F/ (2 )l (Al AJ Aiéij)p/u(t)e_lALbL-
(16c¢)

The only significant difference from the spin-zero and spin-
half cases is that the densities now depend on 4, meaning
that the distribution of momentum, angular momentum,
and forces will differ between spin-one hadrons of the same
species that are prepared in different helicity states.

For transversely polarized states of massive hadrons, the
effective form factors have azimuthal dependence. The exact
manner of this dependence varies between the densities
under consideration, so we will proceed to consider the
properties of each separately.

A. Light front momentum density

The Pt density for helicity states is given already by
Eq. (16a). The transversely polarized P* density contains
azimuthal dependence which is essentially carried over
from the azimuthal dependence of the effective form
factors, since

2A '
/d Aé i/—tsin g AsTinqﬁ(t)e—iALbL
Q)2 2M
_sing d d’A | sing iA b
_ —iALby 17
2M dbl/ (27)* e e
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d*A | 1COS2A cos2s —iA, b,
(ZE)ZW T (e

_COS2¢ d2 1 d dzAJ_ACOSZ(ﬁ _iA b,
= \a b db, | ] @epr e
T 14db ( ”)

(17b)

where on the right-hand side, ¢ is the angle between b | and
s | . In numerical applications, formulas involving deriva-
tives may not be stable, and it may be more helpful to use
Hankel transforms instead,

/dzAJ_ l\/_t sin ¢ ?n‘/’(t)e_mi'bi
(2r)? 2M

singy 1 sin
=g 5n kAT (1 = k2] (bL). (18a)
dzALtCOSZ¢A cos2¢p —iA| b,
@y awz AT 0
cos2¢ 1 cos
= 3 Tl AT (1= =k))(by),  (18b)

where the Hankel transform of order v is defined by [39]:

H,[F ()] (b) = / " kI, (BROF(K). (1)

0

and where J,(x) is the Bessel function of order v.
For the sake of more compact formulas, it is prudent to
define

sin ¢ P+ sin ¢
P b1 = T s (—k

T, R)b.).

(20a)

cos 2¢ P 1

PP (by) = 5 MalR AT (=) (by). (200)

The P density of a transversely polarized spin-one hadron
is thus given by

0
P b) +p0 (b))

Py (b)) = 3 +singppy? (b))
1
+ 5 c0s 2005 (b)), (21a)
P (1) = p\ (b)) = cos 2p " (b1), (21b)

where we have used p (b 1) = ;:)(b 1) to make the

formulas slightly shorter
The P* densities for all polarization states satisfy sum
rules. Integrating Eq. (16a) over all space gives

[ @b = Pray ). (22)
For this to equal P*, we have the sum rule

Au(0) =1, (23)

for each helicity A Since A(0) =G;(0) for massive
hadrons, this is compatible with the G;(0) = 1 sum rule
of Ref. [17]. Since the integrals of sin¢ and cos2¢ over
[0, 27) are zero, the azimuthal dependence of p(ij) (by,s,)
integrates to zero, and we also have

/dzblp(me)(bJ_’sJ) =P*. (24)

The P* density for both helicity and transversely polar-
ized states do not have P dipole moments, i.e., their center-
of-P™ is at the origin, as expected. A general explanation for
why this occurs can be found in Sec. 7 of Ref. [40]. For the
case of helicity states, it is easy to see that

[abbsfin —o (25)

For transversely polarized states, if we use coordinates
where s | = X,

syP*

(95(0) -26,(0)) =0

(26)

JEY RO

We know G,(0) =1 by momentum conservation. It has
been shown previously [16,17,20] that Gs5(0) = 2 follows
from angular momentum conservation. Thus, the center-
of-P* is at the origin, as expected.

On the other hand, the transversely polarized P* density
does exhibit a quadrupole moment. In two spatial dimen-
sions, we define the traceless quadrupole tensor as

Qlilsiom) = [ &b @KLY, - B3 (bus. )
(27)
The quadrupole moment itself can be identified with
Qurls L m,) = i) Qllspomy),  (28)
so that, conversely
(25 5] -

QijF(Sb mg) = 51’]’)QLF(SL’ mg).  (29)

We find through explicit evaluation that
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+1) = Pt 0) = ! 30

Qup(s, . £1) = Wgz( )= 3 Orr, (30a)
Pt

Qrr(s1,0) = —Wgz(o) =—Of. (30b)

The value of G,(0) is not constrained by any conservation
laws or sum rules, and is zero for a free boson [18]. A
nonzero quadrupole moment must thus be generated by
dynamics.

As is conventional in the nuclear physics literature [41],
a positive quadrupole moment indicates a prolate hadron
(elongated in the direction of the spin quantization axis),
while a negative quadrupole moment indicates an oblate
hadron (flattened in the direction of the spin axis). A
positive G,(0) would thus mean that the m; = +1 state is
prolate, and that the m; = O state is oblate. A negative value
for G,(0) would of course indicate the opposite.

The contrast with the Breit frame mass quadrupole
moment (see Refs. [17,18]) is remarkable. Comparing to
Ref. [17] in particular1 and using sum-rule enforced values
(and dropping nonconserved form factors)

Ouis =3 { G-~ 1-36,0)}. @D

The Breit-frame quadrupole moment depends on Gg(0) in
addition to G,(0). Remarkably, Gg(0) = —2 in the free
theory [18], meaning that the Breit-frame mass quadrupole
moment is also generated entirely by dynamics. However,
since Gg(0) also comes into play, the quadrupole moment
may turn out to have different magnitudes and even signs in
the Breit frame and on the light front. In Ref. [21], the rho
meson was found to have G)'(0)~0.158 >0 and
G (0) ~ —1, which means that the rtho meson (in this
model) has a positive P quadrupole moment on the light
front, but a negative mass quadrupole moment in the Breit
frame. Since G4(0) is involved in the Breit-frame quadru-
pole moment, the difference between this and the light front
quadrupole moment may be due to relativistic spin effects,
as was remarked for the electric quadrupole moment
in Ref. [42].

Let us lastly look at the P* radius of spin-one hadrons,
which is defined through

1 J0A(A
<b2¢>P+ = Pt dzbJ_bipgﬁ (bJ_) = 4% ) (32)
=0

and for massive hadrons differs between polarization states,
since the effective A(A | ) form factor differs. For helicity
states of massive hadrons

"The sign convention in Ref. [21] is the opposite as in
Ref. [17], the latter of which we follow in this work.

B 4G (1) G,(0)

(b)) p(A==+1)=4 (it L 12‘42 , (33a)

=0 =451
x(261(0)-265(0) - G6(0)). ~ (33b)

while for transversely polarized states

(B3 (m, = £1) = 2 ((B)p- (2 = £1)

+(b1)p: (2 =0)). (33¢)
(b1)p+(my = 0) = (b )p+ (2 =£1).  (33d)

The average P density between the three polarization
states (of massive hadrons) is the same for helicity and
transversely polarized states,

_ dzAJ_ t
o (bs) = [ G590+ g1 (6100 - G0 - 650
19 t i G, (1) pe~iALby 34
) 6() ~amt 2(1) pe ) (34)
and likewise is the corresponding radius [21]
2 o dgl(t) 2
<bL>P4r =4 dr t:0+3M2

«(610-6:00-0:0)-3640) ). (9

B. Angular-momentum density

The J, angular-momentum density for helicity states is
given in Eq. (16b), and for transversely polarized states is
identically zero, as already discussed in Sec. II. As with the
P density, it may be helpful for numerical applications to
be able to take a single Hankel transform of 7(7) itself.
Some straightforward algebra can be used to show that

o0 =TT B, (30

From this density, the total angular momentum projected
along the z axis is

[l =70 <3650 G7)

Since this must be A, we reproduce the finding of
Refs. [16,17,20] that G5(0) = 2.
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For helicity 4 = %1 states, an angular momentum radius
can be defined as
1
A

dJ (1)
Cdr

:4(195([)

(b1)s =
1l o ds

G

r:O'
(38)

C. The comoving stress tensor

Following Refs. [13,30], the comoving stress tensor can
most easily be dealt with using the following auxiliary
density (which we call the Polyakov stress potential)

- 1 dzA
D,(b.) / A

4Pt | 2z aa(t)eAsbs, (39)

for which
$(by) = (Vio, ~VAV)D,(bL).  (40)

Analogously to spin-zero and spin-half helicity states
[13,27,30], the comoving stress tensor for spin-one helicity
states can be decomposed into an isotropic pressure p(b )
and shear stress (or pressure anisotropy) function s(b, ) as
follows:

i i
biby _ 150) sA(by).  (41)

Sij(bl) - 5ijp(/1)(bJ_) + < ® 5
1

This decomposition entails radial and tangential eigenpres-
sures, given by

@(b,) 1 dD,(b))
() — @ sW(b, _ L arby 10
pil(by) =pW(by)+ > b, db, (42a)
s (b d*D,(b
p(by) = p(by) - ) _IDalbs) gy

2 dr?

As with the P* density, it may be helpful for numerical
applications to obtain these quantities through higher-order
Hankel transforms, rather than through derivatives. The
isotropic pressure and shear stress can be shown to be

1 1

pW(by) = —gpT oy o Du(=R)](br),  (433)
S0(b1) = =y TP~ (b1). (43b)

1. Transverse polarization

For transversely polarized states, the structure of the
comoving stress tensor becomes significantly more

complicated. The Polyakov stress potential obtains mod-
ulations completely analogous to those in the P* density;
we define

1 1

~sin 1 sin
Dy ¢(b¢) = %mm’”l[kpr ¢(—k2)](bﬁ’ (44a)

Db ) =5

1 D
D=5 D (=k)](b1). (44b)

where the effective form factor modulations are as defined
in Eq. (8). The Polyakov potentials for transversely
polarized states are given by

by)+ Dy(b,)
2

1 -
+ 5 ¢os 2¢DT" 2(/'(bL),

- D o
DY (b,) = + + singpDS"? (b))

(45a)

DP(b,) =D, (b)) - cos2¢pDS (b)), (45b)
where we have used D (b,) = D_(b,) to make the
formulas slightly shorter. The comoving stress tensor is
then given by

S7(b.my) = (V36 = Vi)D" (by).  (46)

This stress tensor no longer has the simple decomposition
of Eq. (41); it contains a new tensor structure, and the
functions multiplying each structure now contain azimuthal
modulations,

i m i L\
S b = 99 (b, + (851 - 157 ) )
+ (07 + @B (b ). (47)

Here, b and (,1’3 are unit vectors in the radial and counter-
clockwise tangential directions, respectively. Note that each

of the tensor structures except for the § accompanying

p(TmQ(b ) is traceless, so P<Tm“)

the isotropic pressure.

To obtain the functions py, s7, and vy, one can contract
the comoving stress tensor with multiples of the associated
tensors

(b, ) can be understood as

1 i
§5ijs7{(blvms)7

SynS)(bL) = <

Py (b)) = (48a)
PUDNE B .
b'b 5 5w> S7(b,,my), (48b)

b'd + D)7 (b my).  (48¢)
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With some straightforward but tedious algebra, combining these equations with Eq. (46) yields

2 2
) (@ 1 0 1 6 \am
b)=-1" + -2 DI (b
pr(by) 2{6bi+blabl+b2 ap? (B1).

2 2
m)p oy J_ o 1 0 10 Lam,
sp(by) { o> Tbiob, b agtf T (b.),

( S) 1 1 ( T)
b = ———-‘r D b

(49a)

(49b)

(49c¢)

It will be helpful for numerical applications to have expressions for the functions py, sy, and vy in terms of Hankel
transforms rather than coordinate derivatives. Some algebra and identities for Bessel functions can be used to accomplish
this. We spare the reader the details of the derivation, stating only the results. For specific polarization states, these functions

are given by

(b O (p 1
:tl)(bl) _ p ( J_) ;’p ( ) + Sln¢psm(/)(bl) —|—2COS2¢pcog2¢(bL),

(+) 0) |
S(Til)(bJ_) _ N (bJ_) ;’ s (bJ_) + Sll’l(}’)Ssqu(bJ_) + ZCOS 2¢Scos2¢( l)’

( )(bl) = cosqﬁvm’/’(bl) %s1n2¢v“n2‘/’( 1)
and for the m; = 0 state are
Py (by) = p(b1) — cos2p™* (b.).
sg))(bl) =5 (b)) = cos 2¢SC0$2¢(17L),

Ug))(bl) = —Sln2¢”m2¢( 1)

The ¢ modulations in these functions are given by

G 1 1 1 l
sin ¢ o 3 smqﬁ 2
; 1 1 1
sin ¢ _ - = 0
s b0 =5 i

cos 11 1 f1 sin
501 = s | He P -0

and the 2¢ modulations by

. 1 1 1 1 .

cos2¢ _ COS 2¢p

Pr (bJ_) - 24})-&- 4M> {_EHZ[k4DT (_kz)](bl)}’
1 1

1
cos2¢ b -
st ) = e

T
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(50d)
(50e)

(50f)

(51a)

(51b)

(51c¢)
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1 1 1

5EH01) = e e HO D (6,) - DT =)0 . (511)

For transversely polarized states, the eigenpressures will no longer be radial and tangential. The eigenpressures are
instead given by2

P (by) = py (by) & ﬁ (s (b 1)) + (o (b)) (522)

These eigenpressures are normal stresses along ¢-dependent unit vectors é,, whose angles with respect to the spin
quantization axis §; = X are given by

(ms)
m 1 2vp (b m
6" (b)) = ¢+5tan‘1(—<i> ( “) + 05" (b1)) . (520)
st (b1) 2
T 1
where ©(x) is the Heaviside step function. The unit eigenvectors are then written
2" (b) = cos(8" (b.))x + sin(61" (b,))3. (52¢)
It is also possible to categorize the eigenpressures in an alternative way
P(mx) b — (my) b : (my) b l (my) b 2 (my) b 2 53
v (b1) = pr 7 (by) +sign(sy (b)) /7 (s (b1))” + (077 (b))%, (53a)
I_)(m.s) b _(my) b o (my) b 1 (my) b 2 (my) b 2 53b
v (b1) = pr(by) =sign(sy ™ (b1))y /7 (57 (b1))* + (o7 (b))%, (53b)
whose angles with respect to the spin quantization axis are
(ms)
—(m 1 2 b
6" (b)) = ¢ +tan”! (718; ) ( l)) (53¢)
2 sy (by)
7(m) 1 1 27)(Tm“)(bﬁ T
0, (bL):(ﬁ—f—Etan‘ BCAr +§ (53(1)
sy (by)

Atevery b |, these of course furnish the same pair of eigenvectors and eigenvalues as Eq. (52); the difference lies in how the
pairs are sorted into b | -dependent functions. The eigenvalue/eigenvector pairs in Eq. (53) in particular reduce to the
familiar radial and tangential eigenpressures in the helicity case (where v = 0). However, there is benefit to using Eq. (52)
instead of Eq. (53) for transversely polarized states; namely, that when vy # O, only the former are continuous across
s7 = 0. This can be seen both in the square root function in the pressure functions themselves, and in how the step function
in the angle functions compensates the Z discontinuity between 1 tan~!(c0) and between Jtan™' (—co).

2. Mechanical radius

It has been hypothesized [12,13,27,30] that the radial pressure is a positive-definite quantity for stable systems, and can
thus be used to define a positive-definite “mechanical radius” that gives an estimate of a hadron’s size

_ &b bip. (b))

b2 mech ™
WLhne =T, (b,)

(54)

%A capital P is used to signify transverse eigenpressures to assist visually distingiushing them from other auxilliary functions such as

P,
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For transversely polarized states the radial pressure is not
an eigenpressure, but it is nevertheless a normal stress along

the b direction, and is given by
), ) — LODF(by) | FDI (b))
P DL = b, o

(55)

In both the numerator and denominator, the integrals over
the azimuthal modulations become zero. Thus, for either
helicity or transversely polarized states, the numerator
becomes, via integration by parts,

[@bbip b =500, (56)

The denominator, with a little integration calculus, can be
shown to be

~iex P+/ dt/ d¢D(A,). (57)

where the modulations again integrate to zero. The
mechanical radius is thus given by

/d byp,(by)=

4D(0)
JO_ drD(1)

<b2 >mech (58)

sin ¢p=0,cos 2¢p=0

For specific helicity states of massive hadrons, we have

) 4(G:(0) - G4(0)
<b >mech(i il) f() dl ( ) _ gﬁ(t)) ’ (593)
() ms(d = 0) = ot s (59b)

while for specific transverse-polarization states, we have

oy HG:(0)~1G(0)
<b2L>mech,T<ms - il) - f?w dt(g3(t)2—%gﬁ(t)) s (59(3)
_ 4(G5(0 ) 96(0))
<bi>mech,T(ms - 0) f() dl g6( )) (59(1)

For the unpolarized state, the numerator and denominator
need to be averaged separately. The unpolarized mechani-
cal radius of a massive hadron is given by

4(5(0 )—2%( )
J2e d1(G3(1) = 5G6(1))

<b2 >mech (60)

IV. NUMERICAL ILLUSTRATION

As a simple numerical illustration, we present light
front densities for the deuteron in a light cone convolution

model [43-46]. The model provides a description of
deuteron structure in terms of on-shell nucleons, which
allows for on-shell gravitational form factors to be used
for the nucleon, according to the standard formulas (e.g.,
Eq. (6) of Ref. [13]).

A potential downside of the light cone model is that it
breaks manifest Lorentz covariance by truncating the Fock
state at a two-nucleon state—a truncation that is invariant
under the kinematic subgroup, but not under dynamical
transformations. The form factor and helicity amplitude
breakdowns in Egs. (1) and (2) are a consequence of
Lorentz covariance, and accordingly, the helicity amplitudes
calculated in this model through different components of the
EMT may be inconsistent. (Compare to Refs. [43,45],
where polynomiality breaks down for generalized parton
distributions of the deuteron, which makes extraction of the
GFFs ambiguous.) Additionally, the components 7" and
T’/ are “bad” components [47,48], in the sense that they mix
Fock states with different numbers of particles, and the
truncation of the deuteron Fock state at two nucleons
accordingly drops potentially relevant physics.

Despite this potential shortcoming, we adopt the model
in question, largely due to the lack of alternatives with the
desirable covariance property. Moreover, this section is
primarily meant to illustrate the general formalism devel-
oped above—a purpose for which the model is perfectly
adequate. To deal with the issue of inconsistent helicity
amplitudes, we consider specifically components of the
EMT that give expected behavior of the GFFs at 1 = 0,
namely that the # = O results for all helicity transitions are
zero [e.g., Jo(0) = 0], and that D,;(0) is finite for all
and A'.

We calculate in a frame where P, = 0. We have AT =0
by construction, and it also follows that A~ = 0. Without
loss of generality, we can consider A* = \/—t and AY = 0.
In the convolution the momentum of the “active” nucleon
enters the matrix element of the EMT. This has the same
AT and A as for the deuteron, whereas A~ does not enter
into the relevant matrix elements.

We find the following EMT matrix elements to provide
GFFs with the required ¢t = 0 behavior

sy AT P = As(). (61)
5 ATt = T (61b)
—2(p'X|T**|p2) = tDy;. (61c)

where the R and L components are defined via
al = a* + ia”, (62a)
al =a* —ia. (62b)
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These allow us to calculate the necessary helicity ampli-
tudes directly. Specifically, off-diagonal matrix elements
contribute to the sin¢ (one unit helicity difference) and
cos 2¢p (two units) modulations for the transversely polar-
ized states.

Because of Lorentz covariance violations by the con-
volution model, several symmetry relations laid out in
Appendix B are violated by applying Eq. (61) to the model.
For instance, we find J,(t) # —J;,(¢). In this case
specifically, we find J((0) =0 but J,,(0) # 0. Since
physically this helicity amplitude should vanish at t = 0, we
use Eq. (61) to calculate [J_(¢) specifically, and then set
Jo(t) = =T o(1). (If we use T*L rather than THF to
calculate these same helicity amplitudes, their behavior is
actually reversed. This behavior reversal is an inevitable
consequence of stricter symmetry properties than Lorentz
covariance, namely hermiticity and parity invariance.) In all
cases where the relations in Appendix B are violated, we
restore the relations by fiat and use Eq. (61) to calculate the
specific helicity amplitude with the required ¢ = 0 behavior.

To proceed, we also need the following matrix elements
for the nucleon light front EMT, obtained by evaluating
Eq. (27) of Ref. [30]. For T** matrix elements

(PN |pd) = ("’—N) A, (63a)

2

e~ 1T o) = —(“—N)zﬁ AG) = 20(0).

2 2M

(63b)
o+ o) = (%) a0 - 2200

(63c¢)
for TTR matrix elements,
e AT ) =5 (<2 )+ 000,

(64a)
= 1T R =PV (4 —20(1). (64b)

P=i PN =y ’

1 /
————(ply + IT**|py—
P+\/—_l‘<pN | |pN >

C(pr Pll\‘;
= _OININ A+ (2N -
zMW*(a’e

)J(t)} . (64c)

and for TRR matrix elements,

2(phAITRR | pyd) = 4(PEVA(H) - 1D(1) = 227/=1PRJ (1),

(65a)

)

=

2(py — TR |py+) =

+ 2L (P)2I0), (65b)
2ph + [T py=) = = (P 2A(0) - 1D(1)
+ 2%&1@%1@). (65¢)

Here, ay is related to the light front momentum fraction of
the active nucleon,

2py _ 20N
ay = — = T -
p p

(66)

For the nucleon form factors, we use simple multipole
parametrizations, motivated by the investigations of
Ref. [49] (see Sec. V.C thereof in particular),

1

A(r) =2J(1) = a t/m o t/m 1430)), (67a)

_ D(0)
D) S = /M3 1)) (1= 8/ 1430 (1= t/m2 500))
(67b)

with D(0) = —2, motivated by lattice QCD findings [50].

The helicity amplitudes in this model are presented in
Fig. 1. From these, a variety of light front densities can be
obtained. We present a selected sample of these densities, in
order to not take up too much space. In particular, p*
densities can be calculated using Egs. (16a) and (20), and
the pressure distributions using Eqgs. (43), (50), (51),
and (52).

First, in Fig. 2, we present light front momentum (p™)
densities for both A = 0 and 4 = +1 helicity states, as well
as for the my =0 and m; = 41 transversely polarized
states. The p*t densities obtained from this model are
especially robust, since they are obtained through the
“good” component 7" of the EMT. They also provide
the clearest, most transparent description of the deuteron’s
structure.

A curious aspect of the m; = +1 state is its deformation
towards the 4y direction. This is a peculiarity of the use of
light front coordinates, and has been noticed for the
deuteron’s electric charge density previously in Ref.
[38,42], as well as in both the charge density [25] and
p*t density [51] of a transversely polarized proton. In
Ref. [25], this deformation was interpreted in terms of
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FIG. 1. The helicity amplitudes A(¢), 7 (¢) and D(¢) of the deuteron for various helicity combinations. Those not explicitly given in
the plots are determined from these using the relations in Appendix B.
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FIG. 2. The p™ density of the deuteron in various polarization states, with p™ divided out to provide a boost-invariant density that is
normalized to 1. A left-handed coordinate system is used, so that the z direction is into rather than out of the page. The panels are (top-
left) helicity state with 4 = 0, (top-right) helicity state with A = +1, (bottom-left) transverse polarization along x axis with m; = 0, and
(bottom-right) transverse polarization along x axis with m; = +1.
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distortions created by the point of view of an observer
moving quickly towards the target. However, no such
reference frame has actually been chosen here.

The transverse deformations are likely due to a mix of
different effects, including the use of fixed x* rather than
fixed x°, the fact that x~ has been integrated out, and that
we are considering a density of P rather than a density of
PY. Note that there is more P> on one side of the axis of
rotation than the other, since the axis of rotation is along the
x axis, and modulations in the P* density would be present
in the P' density as well, even in a three-dimensional
instant form density in the rest frame. There may also be
modulation effects from Wigner-Melosh rotations connect-
ing states with light front spin and canonical spin, as was
observed in Refs. [29,42,52] for spin-half systems.

Let us consider the static quantities associated with the
momentum densities. Starting with the radii, using
Eq. (32), we find the following radii for helicity states

(b)), (2=0) =177 fm, (68a)
(by),+(A=0) = 1.69 fm, (68b)
(by), =172 fm, (68c)

These results are roughly compatible with the known
charge radius of the deuteron. The Breit frame deuteron
charge radius is 2.130 fm [53], which scaled down by

v/2/3 to give arough estimate for a 2D charge radius, gives
1.739 fm.

For the transversely polarized states, we can calculate a
quadrupole moment. Using Egs. (30) and (B3), the light
front quadrupole moment is found to be

O = 41i118“4%(t) =0.27p*-fm, (69)
—

which is surprisingly close to the empirical value of the
electric quadrupole moment, 0.2859¢-fm [54-56].

The pressure distributions are of special interest, due to
the amount of attention these have received in the hadron
physics community recently. Unfortunately, the light cone
convolution model is less trustworthy for these quantities
because they correspond to “bad” components of the EMT,
namely, 7. An ideal situation would be to obtain D, (1)
from a manifestly covariant model. Nonetheless, for
illustration of the formalism, we present the pressure
distributions obtained from this model.

A selection of eigenpressures are presented in Fig. 3,
with the selection limited to save space. For helicity states,
the radial pressure is selected, and for transversely
polarized states, the “+” eigenpressure is selected accord-
ing to Eq. (52). The color is selected to show magnitude
and sign of the pressure, and two-sided arrows to signify
direction.

We feel it is important to reiterate the physical meaning of
intrinsic pressure and its sign in this context, as was
explained previously in Ref. [51]. Since the deuteron is
in equilibrium, the expectation value of the force acting over
any region of the transverse plane is exactly zero. By
Gauss’s theorem, this means that the integral of F | - 71 over
the surface of any region must be zero. The stresses encoded
by the expectation value of T/ correspond to forces acting
on this region from all directions, which sum to a net force
of zero. A positive pressure therefore does not indicate a net
repulsive force from the center, nor does a negative pressure
signify a confining force towards the center, as was claimed
in Ref. [57]. A positive pressure means that particles in this
region of space are experiencing pushing forces from both
directions, and a negative pressure likewise means they are
experiencing pulling forces from both directions. For the
radial eigenpressures (helicity states), these directions are
towards and away from the center of the deuteron, while for
transversely polarized states, the directions are indicated by
white arrows overlaid on the plot.

In fact, since the densities obtained in this formalism
correspond to stresses seen by transversely comoving
observers, the pressures are static pressures or intrinsic
pressures, and should be contrasted by dynamic pressures
which include impulse imparted by flow or motion of the
medium (see for instance Chapter 4-3 of Ref. [58]).

It has been postulated throughout the literature
[13,27,30] that the radial pressure should be positive as
a stability condition. Our result for the A =0 radial
pressure, in the top-left panel of Fig. 3, violates this
expectation. Although the stability requirement is merely a
conjecture lacking proof, it is premature to declare our
model result to be a counter-example, owing to the
possible shortcomings of a light cone convolution model.
For now, we consider the results here to be tentative and
open to replacement by results from a manifestly covariant
calculation.

If we do however take the results in Fig. 3 at face value,
they paint an interesting picture of the dynamics at play
within the deuteron. There appears to be a ring of roughly
half a femtometer at which pressure is more intense. Within
this ring, near the center, the pressure becomes negative for
the helicity zero state—specifically in the region where the
p* density is depleted (see Fig. 2). The exact meaning of
this negative pressure (and its reality, given limitations of the
model) is unclear. One possibility is that the negative
pressure corresponds to attractive forces pulling particles
inside the ring towards the ring, and that the pressure
remains negative because the pressure exerted by other
particles crowding the area is not present.

Let us consider static quantities associated with the
comoving stress tensor. First of all, the static D-terms
for helicity states are

Dy(0) = —24.33, (70a)
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Helicity state (A = +1)
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The radial (or +) eigenpressure of the deuteron in various polarization states, multiplied by p* to provide a boost-invariant

density. See Eq. (52) and the discussion around it for an explanation of the eigenpressures. The arrows indicate directions in which the
pressure is acting, and are double-sided because pressures from both directions act with the same magnitude and result in a net zero force
(see text for further elaboration). A left-handed coordinate system is used, so that the z direction is into rather than out of the page. The
panels are (top-left) helicity state with 1 = 0, (top-right) helicity state with A = +1, (bottom-left) transverse polarization along x axis
with m; = 0, and (bottom-right) transverse polarization along x axis with m; = +1.

D.,(0) = =24.16. (70b)
These values are large, negative, and nearly identical. It is
worth noting that negativity of D(0) has been frequently
postulated [12,13,27,30] as a looser stability criterion than
the radial pressure being positive, and that our deuteron
model at least satisfies this condition. Next, we consider
mechanical radii calculated according to Eq. (58),

(b ) meen (A = 0) = 2.39 fm, (71a)
(b )meen(A = +1) = 1.06 fm, (71b)
(b Vet = 1.24 fm. (71c)

These results are surprising. It is worth stressing, as
discussed above, that the ‘“average” involves averaging
the numerator and denominator separately, rather than
taking the mean of the three radii; this is why the average
mechanical radius is not close to the mean of the three
polarization states’ radii. In any case, the disparity between
the radii is stark, and can be understood clearly by looking
at Fig. 3; the negative presssure near the center of the
helicity-zero state greatly enhances its mechanical radius.

V. SUMMARY AND OUTLOOK

In this work, we obtained the two-dimensional light front
densities of momentum, angular momentum, and pressures
within spin-one targets. In contrast to the spin-half case, the
densities have helicity dependence, and the densities of
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transversely polarized spin-one hadrons can exhibit quad-
rupole deformations that are related to the differences
between the helicity-one and helicity-zero densities. All
of these special properties of spin-one light front densities
have been illustrated with a light front convolution model
of the deuteron.

Experimentally, the spatial densities for the deuteron
could be extracted from data for coherent hard exclusive
reactions on the deuteron. These are challenging measure-
ments, however, due to the steeper #-slopes of the coherent
deuteron cross section compared to that of the nucleon.
Current data is scarce: the HERMES Collaboration has
measured deeply virtual Compton scattering (DVCS) on
the deuteron with both unpolarized [59] and polarized
targets [60], and Jefferson Lab (JLab) has more recent
results for coherent 7° electroproduction on the deuteron
[61]. In the future, more data should be forthcoming from
JLab [62,63], and especially the future electron-ion collider
[64,65] with its dedicated far-forward detectors setup.
Accessing the gravitational form factors from these data
is a nontrivial inverse problem, as they are related to Mellin
moments of twist-2 vector generalized parton distributions
(GPDs) [17], which are present in the amplitudes in the
Compton form factors, being x-convolutions of the GPDs
with a hard scattering coefficient.

In a following companion paper [34], we apply the
formalism developed here to the photon as a special case. A
few minor modifications are made to accommodate the
massless case, but these result in simplifications of the
formalism. The photon is an especially pertinent target to
consider, since the employment of a light front formalism
allows for its densities to be calculated.
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APPENDIX A: LIGHT FRONT SPIN-ONE
POLARIZATION VECTORS

This appendix uses the polarization vectors from
Refs. [37,43,45], but at £ = 0, which is the case relevant
to local operators such as the EMT. Note that
AT = —=2EPT, s0 having £ =0 is equivalent to having
AT =0, and we take AT = (n-A) =0 throughout the
paper (including this appendix).

The polarization basis vectors are given explicitly by

_i a2 n#
=5 (- )

(A1)

elﬂzi p—M? " (A2)
"M (P-n))’

1 n#
EEra) W
L VI
el == A# ) (A4)

w1 P
hoef == (AY)

V-t

where the Levi-Civita symbol is normalized to satisfy
€912 = 11, These polarization basis vectors satisfy the
following orthogonality and normalization relations,

(P-n) ~

— ol /
. j—é‘i'é’j——éij,

(A6)

ep=6 - p =0 (A7)
The positive and negative helicity vectors are defined
via [45]

&1 + i82
\/E 9’

and equivalently for the primed four-vectors, where ¢, is
the azimuthal angle of the momentum transfer A, with
respect to a fixed X axis. The positive and negative helicity
vectors satisfy

ey =F etits (A8)

e e, =€ =—1, (A9)
e e =¢r¢€, =0, (A10)
e-p=e-p=e_-p=0, (Al1)
e-p=¢-p=€-p=0. (A12)

For ¢, (and their primed counterparts) specifically,
e,on=¢ -n=e_ -n=¢ -n=0. (Al3)

For massless spin-one particles such as the photon, using
&, as the polarization vectors thus amounts to using light
cone gauge.

Several helpful explicit four-products include

-1

(EO'A):ZM

(Al14)

*Note that Refs. [37,43] take ¢, = x and define ", €, (and
primed equivalent vectors) with an opposite sign.
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+t
[OA) = —— AlS5
(- &) = (AL5)
(e1-A) = (€ - A) = =1, (A16)
(- A) = (- A) =0, (A17)
and several explicit outer products include
Loy _ 1 1 nltpyt MPninY
= PHPY ——AFAY ) — ,
250 % M2< 4 > (P-n)+(P-n)2
(A18)
1 {u 1w} A*AY t ntnf
Z Al19
21 t 4P (A19)
U um w_ (11 Mzn”n”+n{”P”}+A”A”
—e v ] =
2f2 %2 =79 aM2) (P2 TPy 1
(A20)

APPENDIX B: EXPLICIT EMT
MATRIX ELEMENTS

In this appendix we give explicit evaluations of all the
helicity amplitudes in Eq. (2) in terms of the G,_¢(¢) form
factors in Eq. (1), using all combinations of the polarization
vectors in Appendix A.

Firstly, for the A results:

A = (14 5572 ) 910 = 3373 (205(1) + Go(0)

.
— 2 Gal0), (B1)
Ay = A =Gi(1) = 15 Ga(0) (B2)
Agy = Ay = Ay = —Ay_
=610 300100 fes. (B3)
A=A = 4—At42g2(t)e2fm. (B4)
Next, for J(¢):
Too=0 (B5)
Tos =T =5050). (B6)
Tor ==T0==T=Tp = —4@
X {Gs(1) + Go(1) e, (B7)

I =T5 =0. (BS)
Next, for D(t):

2
P = (1+ 3372 ) 9s0) = 5372060 = gz Gu). (89
Do\ =D = Gu(1) = Golt) = 115 Gal0) (B10)

Do =D_g==Dg==D,_

e 1 t b
=030 G0 e, (1)
t .
D_+ = D:_ = Wg4([)ezl¢A. (B12)
Next, for £(1):

Em = %(gsm +Gs(1)), (B13)
Evy =€ = 2(G5(1) = Gol0). (B14)
50+—(€ 0= 5 _—58_

/—tM t b
I (14 ) 90+ sl e
(B15)
£ = €1 = = 1(Gs(r) + Golr)) e, (B16)
Next, for H(z):
MZ
HOO—_[TQG(t)v (B17)
M? t
e == (1= 307 )6l (B13)
—tM .
Ho. =g ==tsg =i =G e, (19
2
Mo = Hi =" Gyl (B20)
Lastly, for /C(1):
Koo =0, (B21)
Koy ==K = £Gel0) (B22)
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\/“M
NG

K_, =Ki_ =0. (B24)

Koy =K_g==K}g ==K ==~ —=Gs(1)e"", (B23)

We also state the expressions for the non-Galilean effective form factors for general polarization

S22 = (54 T ) 51050 = 6o + (5= Tuw ) 5 (050 + Gel)

—
+ iSysin(¢s — ¢,) ‘/_K 4M2>95() 4;42960)}

(Gs(1) + Go(1)), (B25)

I

—Trr COS(2¢T - 2¢,)

Mt t 1 M?t
> P AV Hy, = K +TLL> 1 (1—W>—<§—TLL>T (B26)

ywa
2
— iy sin(s = 40 2L Ty costad, - 205 Gt (B27)
S s = (S + Tursintor, - 0025600 (B2%)
20

APPENDIX C: SPIN-ONE DENSITY MATRIX

The density matrix p(4, 1) of a spin-one system is a 3 x 3 Hermitian matrix with unit trace, ) _, ; p(4,4") = 1. In the rest
frame (RF) of the spin-one system it can be specified in a basis of single-particle states [p = 0; 1), where the momentum is
zero and the spin is quantized along the z-axis, with spin projection A = (-1, 0, 1). The density matrix can be parametrized
in the form [66]

1

Here, S; are the 3 x 3 matrices describing the spin operators in the spin-one representation for e, =5 % (e, L iey);ep =e,,

. 01 0 ({0 -1 0 1 0 O
i
Si=—|1 0 1], Ss=—=|1 0 -1]1, S,=10 0 0], C2
7 =7 : ()
010 0 1 O 0 0 -1
and their symmetric traceless rank-2 tensors
1
T;j 5(85 +8;8;) =56 (C3)

and i, j = (x,y, z) denote the Cartesian components. The parameters in Eq. (C1) are a three-dimensional vector S; and a
traceless symmetric tensor 7';;. They coincide, respectively, with the expectation value of the spin operators and their traceless
tensor products

S = Tr[ﬂgi] = <Sz> (C4a)

Ti; = TrlpT ;) = (T,). (C4b)
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In the rest frame of a particle, the covariant spin-one density matrix p”*[RF] can be introduced as

(] AW] *a i 1 a kﬂka i PasRF|k pa
PPIRF) = "p(A X)eP (k. A)ex (k. 1) =3 —gf + )~ — 2[R, (C5)
A

where k* = (M, 0,0,0). In the rest frame, the spin vector s*[RF] and tensor #*#[RF] only have spatial components, which
are identical to the spin parameters appearing in Eq. (C1). The spin tensor is traceless. In formulas

s'[RF] = S;, s°[RF] = 0, (Cé6a)

AI[RF =T [RF] = #[RF] =0,  #,[RF] =0. (C6b)

ijs

It is advantageous to consider the following (2 + 1)D (transverse, longitudinal) decomposition of the rest-frame spin vector
and tensor,

S = (8,.8,.8,) =5.,(0,0,1) + Sy(cos ¢bg, sin . 0), (C7a)
Ty _T)' y T,
2 2 xy ‘ T y T T
— T 2 12x2 | LT
re| o, chemen | g = ,
xy 2 2 Yz T,y ‘ Tir
sz Tyz ‘ Tzz
Tir = (T, Tyz) =T, r(cos ¢r,,sin ¢TL)» (C7b)
Ttx_T'v 1
_— Bl T,y _ Tyr (cos 2¢7,  sin2¢r, > (CTc)
T — _ =5 : ’
- - Tx.szyy 2 sin2¢y,  —cos2¢r,

where T'7r is symmetric and traceless in transverse coordinates.

In cases where one considers an outer product of two polarization vectors with specific helicity values 4, A, one can
obtain the value of ¢/ (k, 1)e**(k, /') by making the following substitutions in Eq. (C5) for the unpolarized, vector and tensor
polarized parts, see Eqgs. (C4a) and (C4b),

1 - 5}“1/, (Cga)
S; = (V|S:]4), (C8b)

Similar statements apply for the polarization parameters introduced in Eq. (C7).

For the case of particles with nonzero three-momentum we can introduce the density matrix by applying Lorentz boosts
to the polarization four vectors in Eq. (C5) [17,46,66]. Different choices of standard boosts transforming the rest frame
particle to the moving one result in different expressions for the polarization vectors (connected by the so-called Melosh
rotations) [47,67]. As we consider the EMT on the light front, we only consider light front boosts A;(p) here

PP*(p) =Y P4 X)ALe(p) e (K, A)Ar(p)®, e (K, 4)

A2
= S @ (p e (po ) =+ (= 4 BEL) < oL sr (©9)
— 3 M? 2M
where the covariant spin vector and tensor are introduced as
P* = Ap(p)* Kk, s* = ALg(p)¥,s*[RF], (sp) =0, (Cl10a)
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" = Ae(p) ,ALe(p)”,1”°[RF],

#ep, = pst* =0, #,=0. (C10b)

To compute the spatial densities of the EMT, we need off-diagonal bilinears of spin-one polarization four vectors. We
therefore need the expression for the off-diagonal covariant density matrix. We write this expression using the averaged spin
vector § and tensor 7 [68], which are obtained by boosting the rest frame ones of Eq. (C6) with the average momentum

/

P2,
5 = ALp(P)* s*[RF], (Clla)
E/ﬂ/ - ALF(P)ﬂpALF(P)yGZPG[RF]. (Cllb)
The off-diagonal density matrix then becomes
Pf%(P,P/) = ZP(/L AI)ALF(P)ﬁW”(k’ M Ap(p')* e (k)
A
1 o Pipe APAC N PYA  APpel 4 EAPp N N
-3 M?>  AM?  2M? (1=&)P-n) 2(1-&)(P-n)?
i B M P[/iea]nSP D A{ﬁea}niP
pasP _ D—-1)(s- pa+P _ D—-1 _
+2MD{€ (D=DE-n) e C-Doy T2 o
M2 B B enAEP M2
-D(D—=1)———— (plPeaInsP _ g, {Ba}nsP - |12D(D-1 b
PO gy e e ey PP TV ey
D n{ﬁea}AiP _ fl’l[ﬁea]AEP
—(D = 1) (P¥#pxt Py 1 = (AP, APty | —
N (D 1) (3, . I’l) 5 n{ﬂea}AnP _ fn[ﬁea]AnP » N A[ﬁ’fa]n n[ﬂ?a]A _ fn{ﬂfa}A AﬂAa
(P-n) 2(1-8)(P-n)? 2(P-n)  2(1-&)(P-n) 4(P-n)?
_ nfbAdt —gplBpAd P e
—ml 2 e 2 as n2n 2° (C12)
4(1=&)(P-n) 4(1=¢&)(P-n)
where
_ L (C13a)
B aM*
al“p*t = a'b* + a*b*, atb’l = a*b* — a'bt. (C13b)
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