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The light front densities of momentum, angular momentum, and intrinsic pressure are calculated for

the photon, both in the free case and at leading order in quantum electrodynamics. In the latter case, we

moreover decompose the form factors into photon and electron contributions. Circularly and linearly

polarized photons are both considered, with the latter containing significant azimuthal modulations in both

the momentum density and in intrinsic stresses. We find that theD-term of the photon is positive instead of

negative, and accordingly the intrinsic radial pressure of the photon is negative. Despite this, the radiation

pressure exerted by the photon is positive. We illustrate through explicit calculation how the intrinsic

pressure associated with the D-term and the radiation pressure exerted by the photon are different

quantities.
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I. INTRODUCTION

The energy-momentum tensor (EMT) has become an

increasingly relevant topic in the hadron physics com-

munity, owing largely to its implications for the proton

mass puzzle [1–7] and the proton spin puzzle [8–10].

Matrix elements of the EMT between hadron states

encode a slate of gravitational form factors (GFFs), which

are the primary objects of study in works on the subject.

In addition to the puzzles pertaining to properties of the

proton, much attention has been given to studies of

mechanical properties [11–13] and spatial densities

[13–16] related to the GFFs, especially the so-called

D-term [17] or Druck term [18].

In the companion paper [19], we determined the two-

dimensional light front densities associated with the

GFFs of spin-one targets. The formalism presented there

was focused primary on massive spin-one targets, but is

applicable (with little modification) to massless targets as

well. The photon is an especially pertinent case of a spin-

one target, which has previously been a considered as target

in theoretical hadron physics studies [20–24]. Its gravita-

tional form factors have also been calculated long ago

[25,26] to leading order in quantum electrodynamics

(QED). More recently, the QED electron at leading order

has been used as a toy model for studying the proton mass

puzzle [27], giving a precedent for using dressed particles

from QED as a playground for better understanding issues

related to the EMT for hadron physics. It is therefore

worthwhile considering what the EMT densities for a

photon target are—both for a free photon, and for the

QED photon at leading order.

In fact, the photon has a special peculiarity that makes it

especially pertinent. It is widely believed that negativity of

theD-term is a necessary condition for stability of a target.

In particular, it is believed to be related to positivity of

the radial pressure [13,14,16]. The negativity condition

already been called into question by the D-term of the

QED electron being infinite and positive [28], but con-

troversy remains on whether this is a pathology of long-

range forces that can be eliminated by a redefinition [29].

We find, however, that theD-term of the photon is positive

even for a free photon. It is worth noting, however, that the

photon being massless prevents it from decaying, so its

exception to the postulated stability criterion may not be

an issue.

We initiate this study alongside the companion paper

[19], precisely because the formalism of light front den-

sities of spin-one targets is necessary to even consider the

question. Although the physical meaning of Breit-frame

densities remains controversial [14–16,30–34], it is some-

times claimed that they give information about densities in

the rest frame of the target, possibly subject to “relativistic

corrections” [13]. It is clear—even if Breit-frame densities

do have such a physical meaning—that the meaning
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ascribed by such a framework is completely inapplicable to

a photon target. On the other hand, the physical mean-

ingfulness of light front densities requires only the pos-

sibility of localizing the target in the transverse plane

[16,31,32]—a feat that can, in principle, be accomplished

for a photon just as much as for any massive target.

This work is organized as follows. Section II presents the

few changes to the formalism of the companion paper [19]

needed to investigate the massless photon as a target.

Section III then obtains the densities of a free photon, and

Sec. IV subsequently obtains the densities of the QED

photon at leading order. Section V investigates the light

front density of transverse pressure exerted by a photon,

i.e., radiation pressure, in order to highlight the difference

between this and the intrinsic pressure that is encoded by

the D-term.

II. FORMALISM

The majority of the necessary formalism is presented in

the companion paper [19]. However, the photon possesses a

few special properties as a massless gauge boson. Firstly,

there are fewer independent gravitational form factors than

the massive case—three instead of six. Secondly, there

are no transversely polarized states, but superpositions of

helicity states instead give elliptically or linearly polarized

states. This section will address these special properties of

the photon.

A. Gravitational form factors of a massless photon

The photon has fewer gravitational form factors than other

spin-one targets by virtue of gauge invariance. This can be

seen by considering the massive spin-one EMT in Eq. (1) of

the companion paper [19] (see also Refs. [35–40]),

hp0λ0jTμνð0Þjpλi ¼ 2PμPν

�

−ðε · ε0�ÞG1ðtÞ þ
ðε · ΔÞðε0� · ΔÞ

2M2
G2ðtÞ

�

þ ΔμΔν − Δ2gμν

2

�

−ðε · ε0�ÞG3ðtÞ þ
ðε · ΔÞðε0� · ΔÞ

2M2
G4ðtÞ

�

þ 1

2
Pfμ½ε0�νgðε · ΔÞ − ενgðε0� · ΔÞ�G5ðtÞ

þ 1

4
½Δfμðε0�νgðε · ΔÞ þ ενgðε0� · ΔÞÞ − εfμε0�νgΔ2 − 2gμνðε · ΔÞðε0� · ΔÞ�G6ðtÞ; ð1Þ

but with M signifying an arbitrary positive quantity with

units of energy instead of the photon mass (which is of

course zero). Gauge invariance requires that the EMT

should be invariant under the substitutions

εðpÞ ↦ εðpÞ − iχ̃ðpÞp; ð2aÞ

ε0�ðp0Þ ↦ ε0�ðp0Þ þ iχ̃ðp0Þp0; ð2bÞ

which in turn places strong constraints on the form factors

appearing in Eq. (1). These constraints can be used to

remove any dependence of the EMT matrix element on the

arbitrary constant M, which now depends on only three

independent form factors.

There are multiple bases that can be used to represent

the three independent form factors. For the sake of

continuity of the literature, we use the notation of

Milton [26] in particular, in which the EMT of the photon

is decomposed as

hp0λ0jTμνð0Þjpλi ¼ Θ
μν
1 F1ðtÞ þ Θ

μν
2 F2ðtÞ þ Θ

μν
3 F3ðtÞ;

ð3aÞ

Θ
μν
1 ¼ −2PμPνðε · ε0�Þ þ 1

2
ðΔμΔν − Δ2gμνÞðε · ε0�Þ

þ Pfμ½ε0�νgðΔ · εÞ − ενgðΔ · ε�Þ�

−
1

2
½Δfμðε0�νgðΔ · εÞ þ ενgðΔ · ε0�ÞÞ

− εfμε0�νgΔ2 − 2gμνðΔ · εÞðΔ · ε0�Þ�; ð3bÞ

Θ
μν
2 ¼ 2ð2ðΔ · εÞðΔ · ε0�Þ − Δ2ðε · ε0�ÞÞðΔμΔν − Δ2gμνÞ;

ð3cÞ

Θ
μν
3 ¼ 4PμPνð2ðΔ · εÞðΔ · ε0�Þ − Δ2ðε · ε0�ÞÞ; ð3dÞ

where the brackets signify symmetrization; afμbνg ¼
aμbν þ aνbμ. It is worth noting that Θ

μν
1 is a traceless

tensor, whereas Θ
μν
2;3 are not traceless. However, all three

structures contain a nonzero traceless piece, i.e., a piece

that transforms under the (1, 1) representation of the

Lorentz group.

A peculiarity of Milton’s form factor breakdown is that

F2ðtÞ and F3ðtÞ are unitful, with units GeV−2. Normally,

one might introduce a factor of the target massM−2 into the

tensors Θ
μν
2;3 to keep the form factors unitless, but this
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cannot be done for a massless target. Analyticity also

prevents a pole at t ¼ 0 from appearing, so the only unit

GeV−2 quantities that could factor out of F2;3ðtÞ are masses

of other particles that interact with the photon. This of

course means that F2;3ðtÞ must vanish for a free photon. It

also means that a scale is introduced explicitly by the

interaction with massive charged particles. It’s a choice of

convention to leave F2;3ðtÞ unitful instead of introducing a

factor of m−2
e into the tensors Θ

μν
2;3.

In the companion paper [19], an alternative slate of

effective form factors was proposed in its Eq. (2). Restated

here for convenience, the expression is

hp0λ0jTμνð0ÞjpλijΔþ¼0 ¼ 2PμPνAλ0λðΔ⊥Þ − i
PfμϵνgPΔn

ðP · nÞ J λ0λðΔ⊥Þ þ
ΔμΔν − Δ2gμν

2
Dλ0λðΔ⊥Þ

þ Pfμnνg

ðP · nÞ Eλ0λðΔ⊥Þ þ
nμnν

ðP · nÞ2 Hλ0λðΔ⊥Þ þ i
nfμϵνgPΔn

ðP · nÞ2 Kλ0λðΔ⊥Þ: ð4Þ

These “effective form factors” depend on helicity and on

the four-vector n defining the light front, and are thus really

light front helicity amplitudes rather than proper form

factors. We consider them to be “effective form factors”

because their 2D Fourier transforms conveniently give

conventional Galilean densities. The helicity amplitudes

for the fixed-helicity case, which function as effective form

factors for helicity states, can be expressed For photons

in light front helicity states in particular, these effective

form factors can be expressed in terms of the Milton form

factors as

AλλðtÞ ¼ F1ðtÞ; ð5aÞ

J λλðtÞ ¼ λF1ðtÞ; ð5bÞ

DλλðtÞ ¼ F1ðtÞ; ð5cÞ

EλλðtÞ ¼ tF1ðtÞ; ð5dÞ

HλλðtÞ ¼
t2

4
F1ðtÞ; ð5eÞ

KλλðtÞ ¼ −λ
t

4
F1ðtÞ: ð5fÞ

Light front densities for helicity states thus depend only

on a single independent form factor F1ðtÞ. The other Milton

form factors appear instead in the helicity-flip amplitudes,

A�∓ðtÞ ¼ 2tF3ðtÞ; ð6aÞ

J �∓ðtÞ ¼ 0; ð6bÞ

D�∓ðtÞ ¼ 2tF2ðtÞ; ð6cÞ

E�∓ðtÞ ¼ 0; ð6dÞ

H�∓ðtÞ ¼ 0; ð6eÞ

K�∓ðtÞ ¼ 0: ð6fÞ

These two form factors thus contribute only to the densities

of photons with noncircular polarizations.

B. Linear polarization

We consider linearly polarized photons as an extreme

case of photons with a noncircular polarization in order to

study the effects of F2ðtÞ and F3ðtÞ on photon densities.

Horizontal polarization (electric fields oscillating along the

x axis) are considered for definiteness. In light of the

helicity vector conventions used in this work (which are

explicitly given in Eq. (A8) of the companion paper [19] ],

the horizontal and vertical polarization vectors can be

written

εH ¼ −εþ þ ε−
ffiffiffi

2
p ; ð7aÞ

εV ¼ iεþ þ iε−
ffiffiffi

2
p : ð7bÞ

Accordingly, helicity-flip contributions are present in the

effective form factors for linearly polarized photons. In

particular

AlinðΔ⊥Þ ¼ F1ðtÞ − 2tF3ðtÞ cos 2ϕ; ð8aÞ

J linðΔ⊥Þ ¼ 0; ð8bÞ

DlinðΔ⊥Þ ¼ F1ðtÞ − 2tF2ðtÞ cos 2ϕ; ð8cÞ

ElinðΔ⊥Þ ¼ tF1ðtÞ; ð8dÞ

HlinðΔ⊥Þ ¼
t2

4
F1ðtÞ; ð8eÞ

KlinðΔ⊥Þ ¼ 0; ð8fÞ
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where ϕ is the angle between the direction of the transverse

electric field and the direction of Δ⊥. Consequently,

linearly polarized photons can potentially have cos 2ϕ

modulations in their densities.

III. EMT AND DENSITIES OF A

FREE PHOTON

The energy-momentum tensor of the free photon field is

[41,42]

TμνðxÞ ¼ FμλFλ
ν þ 1

4
gμνFλρFλρ: ð9Þ

To find matrix elements of this EMT between single-

photon states, a normal mode decomposition of the four-

potential can be used

AμðxÞ ¼
X

λ

Z

dkþd2k⊥

2kþð2πÞ3 fε
μðk; λÞaðk; λÞe−ik·x

þ ε�μðk; λÞa†ðk; λÞeþik·xg: ð10Þ

Using normal ordering with Eq. (9) (to avoid an infinite

vacuum contribution), we find

hp0λ0j∶Tμνð0Þ∶jpλi ¼ Θ
μν
1 ; ð11Þ

where Θ
μν
1 is as defined in Eq. (3). Consequently, for the

free photon, one has

Ffree
1 ðtÞ ¼ 1; ð12aÞ

Ffree
2 ðtÞ ¼ Ffree

3 ðtÞ ¼ 0: ð12bÞ

Thus, linearly polarized free photons do not have angular

modulations in their densities. Since F2ðtÞ and F3ðtÞ are

unitful form factors, and a free photon does not have an

obvious mass scale, these quantities must necessarily

vanish in the free case.

We remind the reader that of the six light front helicity

amplitudes (or effective form factors), only A, J and D

contribute to the Galilean densities. All free photons have

the following effective form factors

AfreeðtÞ ¼ DfreeðtÞ ¼ 1; ð13Þ

and helicity states in particular have

J free
λ ðtÞ ¼ λ: ð14Þ

Since the free photon is pointlike, these results are almost

trivial. The momentum and spin sum rules Að0Þ ¼ 1 and

J λð0Þ ¼ λ are satisfied, and the corresponding Pþ and

angular momentum densities are delta functions at the

origin. The D-term has the surprising property, however,

that Dð0Þ ¼ 1 > 0. It has widely been postulated—first in

Ref. [12] and later elsewhere, see Refs. [13,14,16] for

instance—that Dð0Þ < 0 is required for stability of a

system. However, the free photon clearly violates this

condition. It is unnecessary for massless states to satisfy

the stability criterion, however, since their masslessness

prevents them from decay.

In fact, the result Dð0Þ ¼ 1 is true for the photon

by virtue of gauge invariance, and will also hold when

QED corrections are considered. This can be seen immedi-

ately from Eqs. (5) and (6). One must have F1ð0Þ ¼ 1 to

satisfy the sum rule Að0Þ ¼ 1, but as a consequence of

gauge invariance, we also have Dð0Þ ¼ F1ð0Þ. Thus,

the introduction of interactions will not make Dð0Þ
negative.

A. Densities and mechanical properties of the

free photon

Using Eq. (16a) of the companion paper [19]

ρ
ðλÞ
pþðb⊥Þ ¼ Pþ

Z

d2Δ⊥

ð2πÞ2 AλλðtÞe−iΔ⊥·b⊥ ; ð15Þ

the Pþ density of the free photon is

ρPþðb⊥Þ ¼ Pþδð2Þðb⊥Þ; ð16Þ

as expected of a point particle. For helicity states, the

angular momentum is similarly given by a delta function at

the transverse origin.

Obtaining the light front comoving stress tensor is more

subtle. From its definition in Eq. (39) of the companion

paper [19]

D̃λðb⊥Þ ¼
1

4Pþ

Z

d2Δ⊥

ð2πÞ2DλλðtÞe−iΔ⊥·b⊥ ; ð17Þ

the light front Polyakov stress potential of the free photon

can be written as

D̃γðb⊥Þ ¼
1

4Pþ δð2Þðb⊥Þ ¼
1

4Pþ lim
σ→0

�

1

2πσ2
e
− 1

2σ2
b2
⊥

�

: ð18Þ

It is prudent to use a Gaussian representation for the delta

function, especially since the Gaussian wave packet is more

physical than the fully localized state (with only the former

having a representative in Hilbert space [43]). As discussed

in Refs. [16,32], one should in general defer taking the

σ → 0 limit until after all other calculations have been

performed, except in cases where the dominated conver-

gence theorem allows this limit to be commuted inside

any integrands or derivatives. Dealing with Gaussian wave

packets in this case specifically allows the pathologies of

delta functions to be avoided.
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The stress tensor can be fully parametrized by its

eigenpressures. For the free photon (as well as for helicity

states of interacting photons), these are the radial and

tangential pressures given by [14,16,19]

p
ðλÞ
r ðb⊥Þ ¼ pðλÞðb⊥Þ þ

sðλÞðb⊥Þ
2

¼ 1

b⊥

dD̃λðb⊥Þ
db⊥

; ð19aÞ

p
ðλÞ
t ðb⊥Þ ¼ pðλÞðb⊥Þ −

sðλÞðb⊥Þ
2

¼ d2D̃λðb⊥Þ
db2⊥

: ð19bÞ

For the free photon wave packet in particular

prðb⊥; σÞ ¼ −
1

4Pþ
1

2πσ4
e
− 1

2σ2
b2
⊥ ; ð20aÞ

ptðb⊥; σÞ ¼ −
1

4Pþ
1

2πσ4

�

1 −
b2
⊥

σ2

�

e
− 1

2σ2
b2
⊥ : ð20bÞ

The sign behavior of this is exactly the opposite of what is

typically expected for the radial and tangential pressures:

the radial pressure is negative-definite, while the tangential

pressure is negative at short distances from the origin and

positive at larger distances. This is of course related toDð0Þ
being positive instead of negative.

Typically, the radial pressure in particular is used to

define static mechanical properties of a system out of the

expectation that it is positive-definite. Despite the photon

radial pressure being negative, we can still proceed with

the usual definitions. The integral of the radial pressure is

negative, and diverges in the limit of wave packet locali-

zation,

Z

d2b⊥pr;γðb⊥; σÞ ¼ −
1

4Pþ
1

σ2
: ð21Þ

The b2
⊥-weighted moment is also negative, but finite,

Z

d2b⊥b
2
⊥pr;γðb⊥; σÞ ¼ −

1

2Pþ < 0: ð22Þ

Consequently, the mean squared mechanical radius, as

given by [16,44]

hb2⊥imechðσÞ ¼
R

d2b⊥b
2
⊥pr;γðb⊥; σÞ

R

d2b⊥pr;γðb⊥; σÞ
¼ 2σ2; ð23Þ

is positive at σ > 0, and goes to zero as σ → 0. The

mechanical radius of the free photon is zero, as one would

expect for a pointlike particle.

It appears almost absurd that the radial pressure of the

free photon should be negative. After all, photons are

known to exert positive radiation pressure [42]. Our

finding does not contradict this known result, however.

As previously explained in Ref. [16], the stress tensor

Tij as a whole consists of two pieces; a piece that encodes

the flow of the target in the transverse plane (both due

to average motion and wave function dispersion), and a

piece that encodes the stresses that would be measured

by an observer comoving with that transverse flow.

Previous works have not considered the contributions

of hadron flow explicitly, since their goal was to only

describe intrinsic structure. These works thus effectively

studied only the pressure as seen by the comoving

observer. This quantity is identified as an intrinsic

pressure of the system, and for the photon, this is negative.

The radiation pressure, however, includes the flow that

has been so far not included explicitly. We shall calculate

transverse radial radiation pressure in Sec. Vand comment

further there.

IV. LEADING-ORDER QED CORRECTIONS

In this section, we consider leading-order corrections to

the photon’s gravitational form factors arising from quan-

tum electrodynamics (QED). The full QED Lagrangian can

be written in the Gupta-Bleuler formalism [45,46] as

L ¼ ψ̄0

�

i

2
=∂
↔

− e0=A0 −m0

�

ψ0 −
1

4
F2
0 −

λ0

2
ð∂ · A0Þ2; ð24Þ

where we have explicitly noted that this expression is in

terms of the bare (unrenormalized) fields. The EMT for this

Lagrangian is [47,48]

Tμν ¼ i

4
ψ̄0γ

fμ
∂

↔νg
ψ −

1

2
e0ψ̄0γ

fμAνg
0 ψ0 þ F0

μσF0σ
ν

− λ0ð∂ · A0Þ∂fμAνg
0 − gμνL: ð25Þ

A. Renormalization at leading order

Loop diagrams will produce ultraviolet (UV) divergen-

ces that must be regularized and removed through renorm-

alization. The divergences in the total EMT can be

controlled and eliminated through conventional renormal-

ization of the QED Lagrangian. We use dimensional

regularization [49–51] with d ¼ 4 − 2ϵ to control these

divergences.

The bare quantities appearing in Eqs. (24) and (25) are

related to the renormalized quantities [52]

ψ0 ¼
ffiffiffiffiffi

Z2

p

ψ ; ð26aÞ

m0 ¼ Zmme; ð26bÞ

A
μ
0 ¼

ffiffiffiffiffi

Z3

p

Aμ; ð26cÞ

λ0 ¼ Z−1
3 λ; ð26dÞ
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e0 ¼ Zee; ð26eÞ

Z1 ≡
ffiffiffiffiffi

Z3

p

Z2Ze: ð26fÞ

By theWard identity, we have Z1 ¼ Z2 to all orders in QED

[53,54]. Using these standard renormalized quantities, the

EMT takes the form

TμνðxÞ ¼ Z3F
μλFλ

ν þ 1

4
gμνZ3F

λρFλρ

þ Z2ψ̄

�

i

4
∂

↔fμ
γ
νg
− Zmme

�

ψ −
1

2
eZ1ψ̄γ

fμAνgψ

− λð∂ · AÞ∂fμAνg þ 1

2
gμνλð∂ · AÞ2: ð27Þ

The values of the renormalization constants cannot be

determined without specifying a subtraction scheme. For

simplicity, we consider on-shell renormalization, in which

Zm is determined by requiring that me be the physical pole

mass of the electron, and Z2 and Z3 are determined by

requiring the residue of the renormalized Green’s functions

are 1 at the respective mass poles. At leading order, the

results for these constants are

Zm ¼ 1þ α

4π

�

−
3

ϵ
þ 3 log

�

m2
e

μ̄2

�

− 5

�

þOðα2Þ; ð28aÞ

Z2 ¼ 1þ α

4π

�

−
1

ϵ
þ 3 log

�

m2
e

μ̄2

�

− 2 log

�

μ2

μ̄2

�

− 5

�

þOðα2Þ; ð28bÞ

Z3 ¼ 1þ α

3π

�

−
1

ϵ
þ log

�

m2
e

μ̄2

��

þOðα2Þ; ð28cÞ

where μ̄2 ¼ 4πμ2e−γE . Order α corrections to Ze are not ne-

cessary for a leading-order calculation of photon structure.

Lastly, before proceeding to calculations and results, we

specify that we use Feynman gauge (λ ¼ 1) for ease of

calculation.

B. Leading-order calculations and results

As discussed for instance in Ref. [52], the matrix element

of the EMT vertex receives contributions from truncated

Feynman diagrams, i.e., those whose external legs do not

contain a self-energy part. The relevant diagrams are de-

picted in Fig. 1, where a graviton vertex is used to symbolize

an EMT operator insertion, as discussed in Ref. [39].

ð29Þ

ð30Þ

ð31Þ

FIG. 1. Feynman diagrams for leading-order QED corrections to the photon EMT. The EMT operator insertion is depicted as an

interaction with a graviton.
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Since the calculation is being done at leading order, any

Oðα2Þ terms that arise will be dropped.

The first diagram in Fig. 1 (the direct diagram) is

straightforward,

ð32Þ

The last two diagrams (the eye diagrams) we find to be

individually zero, so

ð33Þ

The last two diagrams (the triangle diagrams) are equal to

each other, and are constrained by consistency with Eq. (3)

to give, at leading order

ð34Þ

Our explicit results for F1−3ðtÞ are given in Eq. (35) below.
In principle, it would have been possible for individual

diagrams to give additional tensor structures beyond those

encountered in Eq. (3), since that equation is constrained to

satisfy momentum conservation and individual diagrams

are not. However, it happens to work out that no non-

conserving form factors appear for individual diagrams, in

stark contrast to the case for an electron target [27]. To be

sure, the direct diagram cannot contain nonconserved form

factors since it only rescales the tree level result, and since

the eye diagrams are zero, the triangle diagrams cannot

contain any new (nonconserved) tensor structures.

Summing the diagrams gives the following leading order

results for the gravitational form factors of the photon,

F1ðtÞ ¼ 1þ α

2π

�

35

18
−
13

6

1

τ
−
4

3

ffiffiffiffiffiffiffiffiffiffiffi

1þ τ

τ

r

sinh−1ð
ffiffiffi

τ
p

Þ
�

1 −
5

4

1

τ

�

−
ðsinh−1ð ffiffiffi

τ
p ÞÞ2

τ

�

1 −
1

2

1

τ

��

; ð35aÞ

2tF3ðtÞ ¼
α

2π

�

1

3
− 7

1

τ
þ 6

1

τ

ffiffiffiffiffiffiffiffiffiffiffi

1þ τ

τ

r

sinh−1ð
ffiffiffi

τ
p

Þ − 2
ðsinh−1ð ffiffiffi

τ
p ÞÞ2

τ

�

1 −
1

2

1

τ

��

; ð35bÞ

2tF2ðtÞ ¼
α

2π

�

1

3
þ 3

1

τ
− 2

1

τ

ffiffiffiffiffiffiffiffiffiffiffi

1þ τ

τ

r

sinh−1ð
ffiffiffi

τ
p

Þ − 1

τ

ðsinh−1ð ffiffiffi

τ
p ÞÞ2

τ

�

; ð35cÞ

where τ ¼ −t
4m2

e
. These results agree with those of

Refs. [25,26]. In contrast to the individual diagrams, the

form factors as a whole are independent of renormalization

scheme and scale—as expected, since the EMT is a

conserved current.

Numerical results for the gravitational form factors of the

photon are given in Fig. 2, where they are also compared to

the leading large −t behavior given in Eqs. (37).

The limiting behavior of the form factors is instructive to

consider, since their behavior at small −t is related to the

size of the system (for instance, via radii); and conversely,

the behavior at large −t is related to the behavior of the

Fourier transform at small impact parameters. The small −t
expansions for each of these form factors are

F1ðtÞ ≈ 1 −
α

2π

11

45
τ þOðτ2Þ; ð36aÞ

2tF3ðtÞ ≈
α

2π

2

45
τ þOðτ2Þ; ð36bÞ

2tF2ðtÞ ≈
α

2π

4

45
τ þOðτ2Þ; ð36cÞ
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while the large −t expansions are

F1ðtÞ ≈ 1þ α

2π

�

35

18
−
2

3
logð4τÞ þ −10þ 2 logð4τÞ − log2ð4τÞ

4τ
þO

�

1

τ2

��

; ð37aÞ

2tF3ðtÞ ≈
α

2π

�

1

3
þ −28þ 12 logð4τÞ − 2log2ð4τÞ

4τ
þO

�

1

τ2

��

; ð37bÞ

2tF2ðtÞ ≈
α

2π

�

1

3
þ 12 − 4 logð4τÞ

4τ
þO

�

1

τ2

��

: ð37cÞ

The leading terms in the large −t expansion agree with the

results previously obtained by Ref. [26].

Noting the small −t behavior in Eqs. (36), the leading-

order corrections to the form factors are clearly nonzero

only at nonzero t, so do not affect any static quantities. As

anticipated above, we find the following effective form

factors for photon states of any polarization,

Að0Þ ¼ 1; ð38aÞ

J ð0Þ ¼ 1; ð38bÞ

Dð0Þ ¼ 1; ð38cÞ

just as in the free case. ForAð0Þ and J ð0Þ, these results are
constrained by conservation laws (momentum and angular

momentum, respectively). Finding Dð0Þ to be unaltered by

leading order corrections appears a nontrivial result, but as

discussed above, this follows from gauge invariance, and

introducing more interactions and higher orders will not

make Dð0Þ negative for the photon.

C. Electron-photon decomposition

Let us now consider the breakdown into photon and

electron contributions. Of the diagrams in Fig. 1, only the

direct diagram corresponds to “photon” contributions to

the EMT. Thus, without additional renormalization, we

would have

F
ðγÞ
1 ðtÞ ¼ Z3; ð39aÞ

F
ðeÞ
1 ðtÞ ¼ −Z3 þ F1ðtÞ; ð39bÞ

but since Z3 is UV divergent, both of these quantities are

infinite. Additional renormalization is required for the

composite operators defining the electron and photon

contributions.

To simplify the renormalization procedure, we follow

Refs. [2,55] in separating the EMT into scalar (0, 0) and

traceless (1, 1) parts, with careful attention to this separa-

tion being done in d ¼ 4 − 2ϵ dimensions,

Tμν ¼ T̄μν þ T̂μν; ð40aÞ

T̂μν ¼ gμν

4 − 2ϵ
gαβT̂

αβ; ð40bÞ

FIG. 2. The gravitational form factors of the photon at leading order in QED, compared to their large −t asymptotic forms.

ADAM FREESE and WIM COSYN PHYS. REV. D 106, 114014 (2022)

114014-8



T̄μν ¼ Tμν − T̂μν: ð40cÞ

As stated in Refs. [2,55], the scalar and traceless parts do

not mix under renormalization, so we can deal with them

separately. Moreover, since there are no nonconserved form

factors, and all of the structures Θ
μν
1;2;3 defined in Eq. (3)

contain (1, 1) pieces, it is only necessary to consider

renormalization of the traceless piece of the EMT to obtain

form factor decompositions.

Therefore, let us consider how the traceless part of the

EMT can be decomposed into electron and photon pieces.

For the bare operators,

T̄
μν
e0 ¼

i

4
ψ̄0γ

fμ
∂

↔νg
ψ0 −

1

2
e0ψ̄0γ

fμAνg
0 ψ0 −

gμν

4 − 2ϵ
me0ψ̄0ψ0;

ð41aÞ

T̄
μν
γ0 ¼ F

μλ
0 F0λ

ν þ gμν

4 − 2ϵ
F2
0 − λ0ð∂ · A0Þ

×

�

∂
μAν

0 þ ∂
νA

μ
0 −

1 − ϵ

2 − ϵ
gμνð∂ · A0Þ

�

: ð41bÞ

The renormalized operators (which we signify by square

brackets, following Ref. [51]) are in general mixtures of the

bare operators,

½T̄μν
e � ¼ ZeeT̄

μν
e0 þ ZeγT̄

μν
γ0; ð42aÞ

½T̄μν
γ � ¼ ZγeT̄

μν
e0 þ ZγγT̄

μν
γ0; ð42bÞ

where the notation Zee etc., comes from Ref. [2], and where

gauge-fixing and equation of motion terms that vanish for

physical states have been dropped.

In the absence of interactions (α ¼ 0), we would have

Zee ¼ Zγγ ¼ 1 and Zeγ ¼ Zγe ¼ 0, so it is helpful to define

Zee ¼ 1þ δee; ð43aÞ

Zγγ ¼ 1þ δγγ; ð43bÞ

where δee and δγγ are both OðαÞ. The additional require-

ment that ½T̄μν� ¼ T̄
μν
0 [2] gives us

Zγe ¼ −δee; ð44aÞ

Zeγ ¼ −δγγ: ð44bÞ

The divergent parts of δee and δγγ can be determined by

requiring that matrix elements of the renormalized oper-

ators are finite. For the photon target at Δ ¼ 0 in particular,

hγj½T̄μν
e �jγi ¼

�

α

3π

1

ϵ
− δγγ

�

Θ
μν
1 þ ðfiniteOðαÞÞ; ð45aÞ

hγj½T̄μν
γ �jγi¼

�

1þδγγ −
α

3π

1

ϵ

�

Θ
μν
1 þðfiniteOðαÞÞ; ð45bÞ

which determines δγγ at leading order in α to be

δγγ ¼
α

3π

1

ϵ
þ αC; ð46Þ

where C is a constant that is defined by the renormalization

scheme. The other constant, δee, does not contribute to

photon structure at leading order, since it is OðαÞ and

appears with another factor α in the relevant diagrams.

The finite electron-photon decomposition of the form

factors can now be performed by using the δγγ result we

have obtained. Using Milton’s basis for the form factors,

only F1ðtÞ receives additional renormalization, and the

decomposition can be written

F
ðeÞ
1 ðt; μ2Þ ¼ F1ðtÞ − 1þ α

3π

�

log

�

μ2

m2
e

�

þ logð4πÞ − γE

�

− αC; ð47aÞ

F
ðγÞ
1 ðt; μ2Þ ¼ 1 −

α

3π

�

log

�

μ2

m2
e

�

þ logð4πÞ − γE

�

þ αC:

ð47bÞ

The decomposition is notably scale and scheme dependent.

By contrast, one has (at leading order),

F2ðtÞ ¼ F
ðeÞ
2 ðtÞ; ð48aÞ

F3ðtÞ ¼ F
ðeÞ
3 ðtÞ; ð48bÞ

which are finite as they are.

Let us consider a couple of schemes for illustration. Note

that on-shell subtraction was used for renormalization of the

Lagrangian, and that the following schemes are only used for

operator renormalization on top of this. The following

decompositions would differ if we had used a different

subtraction scheme when renormalizing the Lagrangian.

The first scheme is minimal subtraction (MS), in which

counterterms are defined only to cancel divergences, and

contain no finite part. In this scheme, CMS ¼ 0.

The other scheme we consider is modified minimal

subtraction (MS), in which counterterms contain a finite

part that cancels factors of logð4πÞ − γE that show up

frequently in dimensional regularization. In this scheme,

we have

C
MS

¼ 1

3π
flogð4πÞ − γEg: ð49Þ

An interesting aspect of the MS scheme for operator

renormalization (when combined with on-shell

SPATIAL DENSITIES OF THE PHOTON ON THE LIGHT … PHYS. REV. D 106, 114014 (2022)

114014-9



renormalization for the Lagrangian) is that at a scale equal

to the electron mass (μ ¼ me), all of the photon target’s

light front momentum can be attributed to the photon itself;

i.e., one has

A
ðeÞ
MS

ð0;m2
eÞ ¼ 0; ð50aÞ

A
ðγÞ
MS

ð0;m2
eÞ ¼ 1: ð50bÞ

This can only be true at a single renormalization scale,

however, since the momentum fractions obey an evolution

equation [56–58].

1. Trace piece of the EMT

Although it is not necessary to obtain form factor

decompositions, it is interesting to look at the renormal-

ization of the pure trace part of the EMT. The relevant bare

operators are

T̂
μν
e0 ¼

gμν

4 − 2ϵ
me0ψ̄0ψ0; ð51aÞ

T̂
μν
γ0 ¼ gμν

�

1

4
−

1

4 − 2ϵ

�

ðF2
0 − 2λ0ð∂ · A0Þ2Þ

≈
gμν

4

ϵ

2
ðF2

0 − 2λ0ð∂ · A0Þ2Þ þOðϵ2Þ: ð51bÞ

The operator renormalization of the operators on the right-

hand side are highly standardized (see Refs. [2,4,27,59–62]).

The electron operator is a finite sigma term and is invariant

under renormalization

½meψ̄ψ � ¼ me0ψ̄0ψ0; ð52Þ

and accordingly the ϵ dependence of its prefactor can be

dropped. The photon operator, however, mixes under

renormalization,

½F2� ¼ ZFF
2
0 þ ZCme0ψ̄0ψ0: ð53Þ

The total renormalized EMT trace can be written as

½T̂μ
μ� ¼ ð1þ γmÞ½meψ̄ψ � þ

βðeÞ
2e

½F2�: ð54Þ

As explained in Refs. [5,27], it is somewhat arbitrary how

these pieces can be attributed to photon and electron

contributions, and a variety of schemes for breaking this

up exist.

For the case of a photon target, however, matrix elements

of ½F2� contribute at Oðα2Þ. To start, F2
0 itself evaluates to

zero at leading order, since only the direct diagram of Fig. 1

could contribute. Additionally, ZC is order α, and me0ψ̄0ψ0

only contributes through diagrams that already have two

electron-photon vertices. Thus, each term on the right-hand

side of Eq. (53) is at least order α2 and does not contribute

to the leading order EMT matrix element.

Accordingly, for photon states at leading order,

hp0λ0j½T̂μν�jpλi ¼ hp0λ0jT̂μν
e0jpλi þOðα2Þ

¼ hp0λ0j½T̂μν
e �jpλi þOðα2Þ: ð55Þ

Thus, the trace of the EMT for the photon at leading order

can be attributed entirely to the electron. To be sure, the

trace of the photon EMT vanishes at t ¼ 0, both because

Θ
μν
1 is traceless and because Θ

μν
2;3 vanish at t ¼ 0. Thus a

mass sum rule based on the trace of the EMT would be

trivial for photons.

Since Θ
μν
2;3 are not traceless, the renormalization of the

(0, 0) piece of the EMT could conceivably affect the breakup

of F2;3ðtÞ into electron and photon pieces. However, we

find that these form factors can be attributed entirely to the

electron at leading order, consistent with our finding when

considering the renormalization of the (1, 1) piece.

D. Radii and densities: Helicity states

As discussed in Refs. [14,16] as well as the companion

paper [19], two-dimensional densities of the photon in the

transverse plane can be obtained through 2D Fourier

transforms of its gravitational form factors.

1. Light front momentum density

Let us first consider the Pþ density. For helicity states,

this is given by Eq. (15) with AðtÞ ¼ F1ðtÞ. In particular,

the 2D Fourier transform of an azimuthally-symmetric

function such as F1ðtÞ can be written as

ρPþðb⊥Þ ¼
Pþ

2π

Z

∞

0

dk kF1ð−k2ÞJ0ðb⊥kÞ

¼ Pþ

2π
H0½F1ð−k2Þ�ðb⊥Þ; ð56Þ

where Hν½FðkÞ�ðbÞ signifies the Hankel transform of order

ν. Analytic results for the Hankel transforms of the

functions in Eq. (35) do not exist in the mathematics

literature, but a numerical Hankel transform can be used to

obtain the densities, provided the growing and constant

asymptotic behavior at large −t [as given in the leading

terms of Eq. (37a)] is subtracted off. The two-dimensional

Fourier transforms of the functions describing this asymp-

totic behavior are as follows:

Z

d2Δ⊥

ð2πÞ2 e
−ib⊥·Δ⊥ ¼ δð2Þðb⊥Þ; ð57Þ

Z

d2Δ⊥

ð2πÞ2 log
�

Δ
2
⊥

m2
e

�

e−ib⊥·Δ⊥ ¼ −
Θðmeb⊥Þ

πb2⊥
; ð58Þ
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whereΘðxÞ is the Heaviside step function. The first of these
identities is well-known; the second follows from Eq. (A1),

which is proved in the Appendix.

Since the large −t behavior of the form factor governs

the small b⊥ behavior of the density, we can expect the Pþ

density at small (but nonzero) impact parameter to take the

form,

ρPþðb⊥Þ ≈
αPþ

3π2
1

b2⊥
þOðb−1⊥ Þ; ð59Þ

with the b−2⊥ behavior coming specifically from the Fourier

transform of the logarithm in Eq. (37a). In the left panel of

Fig. 3, the exact Pþ density is compared to its limiting form

at small impact parameter as given in Eq. (59)—as well as

to the Jz density, which shall be described in more

depth below.

The Pþ radius is given by the derivative of the form

factor, 4F0
1ð0Þ, as discussed for instance in the companion

paper [19]. The value can be read off from the small −t
expansion in Eq. (36a),

hb2⊥iPþ ¼ 11

90π

α

m2
e

≈ ð6.5 fmÞ2: ð60Þ

This especially large radius is due to the photon easily

forming a large-sized configuration as an eþe− pair, owing

to the small mass of the electron. This large radius can also

be understood through the small b⊥ form of Eq. (59)—

which is a fairly slow falloff—holding quite well up to

about b⊥ ≈ 10 fm, as seen in the left panel of Fig. 3.

2. Angular-momentum density

As explicated in Eq. (16b) of the companion paper [19],

ρ
ðλÞ
Jz
ðb⊥Þ ¼ λ

Z

d2Δ⊥

ð2πÞ2
�

J ðtÞ þ t
dJ ðtÞ
dt

�

e−iΔ⊥·b⊥ : ð61Þ

For a λ ¼ þ1 helicity state, J ðtÞ ¼ F1ðtÞ. It is helpful to
note that

F1ðtÞ þ t
dF1ðtÞ
dt

¼ 1þ α

2π

�

23

18
þ 5

6

1

τ
−
1

3

ffiffiffiffiffiffiffiffiffiffiffi

τ

1þ τ

r

sinh−1ð
ffiffiffi

τ
p

Þ
�

4þ 5

τ
þ 1

τ2

�

−
1

2

ðsinh−1ð ffiffiffi

τ
p ÞÞ2

τ2

�

; ð62Þ

where τ ¼ −t
4m2

e
as before. The small −t expansion is

given by

F1ðtÞ þ t
dF1ðtÞ
dt

≈ 1 −
α

2π

22

45
τ þOðτ2Þ ð63Þ

and the large −t limiting form by

F1ðtÞ þ t
dF1ðtÞ
dt

≈
α

2π

�

23

18
−
2

3
logð4τÞ þ 2 − 2 logð4τÞ

4τ

�

þOðτ−2Þ: ð64Þ

The small −t expansion tells us that the angular-momentum

radius is

FIG. 3. The light front densities of a helicity state photon. For the Pþ density, we have divided out Pþ to make the quantity boost-

invariant, and so that it could be compared to the Jz density. The pressure distributions have similarly been multiplied by Pþ to produce

boost-invariant quantities.
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hb2⊥iJ ¼
11

45π

α

m2
e

≈ ð13 fmÞ2; ð65Þ

which is twice the Pþ radius.

The coefficient attached to the logarithm in Eqs. (37a)

and (64) is the same, and accordingly the Pþ and Jz
densities will have the same small b⊥ asymptotics. This can

be seen clearly in the numerical result in the left panel of

Fig. 3. The larger Jz radius must be attributed to the

difference between the Pþ and Jz densities at larger b⊥,
where the angular momentum density becomes larger.

3. Pressure distributions

The Polyakov stress potential D̃ðb⊥Þ is related to the

Fourier transform of DðtÞ, and since DðtÞ ¼ AðtÞ ¼ F1ðtÞ
for a helicity state photon, we effectively have

D̃ðb⊥Þ ¼
1

4ðPþÞ2 ρP
þðb⊥Þ: ð66Þ

The radial and tangential eigenpressures can be obtained

from this stress potential through Eqs. (19). The derivatives

can be done numerically for the exact densities, but

analytically for the limiting forms at small b⊥. These

limiting forms are

prðb⊥Þ ≈ −
α

6π2Pþ
1

b4⊥
þOðb−3⊥ Þ; ð67aÞ

ptðb⊥Þ ≈þ α

2π2Pþ
1

b4⊥
þOðb−3⊥ Þ: ð67bÞ

Numerical results for the eigenpressures in a helicity

state photon are plotted in the right panel of Fig. 3. Because

of the b−4⊥ behavior, these pressures become highly singular

near the transverse origin. The magnitude of the actual

pressures depends on Pþ (being inversely proportional to

it), but a boost-invariant quantity can be obtained by

multiplying the pressures by Pþ (as is done in the plot).

The radial pressure, in contrast to the usual expectations

(of e.g., Refs. [12–14,16]), is not strictly positive, but in fact

highly negative. This is, however, in line with our findings

for the free photon. The negative pressure for the QED

photon now has spatial extent, rather than being localized at

the origin through a delta function. Despite the spatial

extent, however, the mechanical radius remains zero.

Considering Eq. (54) of the companion paper [19]

hb2⊥imech ¼
R

d2b⊥b
2
⊥prðb⊥Þ

R

d2b⊥prðb⊥Þ
; ð68Þ

F1ð0Þ—which appears in the numerator—is still finite,

but the denominator (which integrates F1ðtÞ over all t)
is infinite.

E. Linear polarization and density modulations

Photons in superpositions of helicity states have azimu-

thal modulations in their densities. The magnitudes of these

modulations are governed by F2ðtÞ (for stress distributions)
and F3ðtÞ (for Pþ densities). We consider linear polariza-

tion here as an extreme case. Taking the appropriate 2D

Fourier transforms of Eq. (8) gives

ρlinear
Pþ ðb⊥Þ ¼ ρcircular

Pþ ðb⊥Þ þ cos 2ϕ
Pþ

2π

×H2½−2k2F3ð−k2Þ�ðb⊥Þ; ð69aÞ

D̃linearðb⊥Þ ¼ D̃circularðb⊥Þ þ cos 2ϕ
1

2π

1

4Pþ

×H2½−2k2F2ð−k2Þ�ðb⊥Þ; ð69bÞ

for the Pþ density and Polyakov stress potential. The stress

tensor can be decomposed into three functions, as described

by Eq. (47) of the companion paper [19]

S
ij
T ðb⊥; msÞ ¼ δijp

ðmsÞ
T ðb⊥Þ þ

�

b̂ib̂j −
1

2
δij

�

s
ðmsÞ
T ðb⊥Þ

þ ðb̂iϕ̂j þ ϕ̂ib̂jÞvðmsÞ
T ðb⊥Þ: ð70Þ

The relevant functions can be shown (with a little calculus

and Bessel function identities) to be

plinearðb⊥Þ ¼ pcircularðb⊥Þ þ cos 2ϕ
1

2π

1

8Pþ H2

× ½−2k4F2ð−k2Þ�ðb⊥Þ; ð71aÞ

slinearðb⊥Þ ¼ scircularðb⊥Þ þ cos 2ϕ
1

2π

1

8Pþ

× fH0½−2k4F2ð−k2Þ�ðb⊥Þ
þH4½−2k4F2ð−k2Þ�ðb⊥Þg; ð71bÞ

vlinearðb⊥Þ ¼ sin 2ϕ
1

2π

1

8Pþ f−H0½−2k4F2ð−k2Þ�ðb⊥Þ

þH4½−2k4F2ð−k2Þ�ðb⊥Þg: ð71cÞ

From these, the eigenpressures of the linearly polarized

photon can be obtained using Eq. (52) of the companion

paper [19]

P
ðmsÞ
T;� ðb⊥Þ ¼ p

ðmsÞ
T ðb⊥Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
ðsðmsÞ

T ðb⊥ÞÞ2þðvðmsÞ
T ðb⊥ÞÞ2;

r

ð72aÞ

θ
ðmsÞ
� ðb⊥Þ ¼ ϕþ1

2
tan−1

�

2v
ðmsÞ
T ðb⊥Þ

s
ðmsÞ
T ðb⊥Þ

�

þΘð�s
ðmsÞ
T ðb⊥ÞÞ

π

2
;

ð72bÞ
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ê
ðmsÞ
� ðb⊥Þ ¼ cosðθðmsÞ

� ðb⊥ÞÞx̂þ sinðθðmsÞ
� ðb⊥ÞÞŷ: ð72cÞ

Numerical results for the Pþ density of a horizontally-

polarized photon are depicted in Fig. 4. Because of the

∼ b−2⊥ behavior of the density at small impact parameter, the

gradient is exceedingly steep in these plots, and the density

values above an arbitrary maximum have been clipped to

prevent the plots from displaying as an isolated white pixel.

The left panel, which uses a linear color map, clearly shows

that the photon is effectively elongated in the direction of

polarization (i.e., the direction of the electric field oscil-

lations). The right panel uses a logarithmic color map to

make the gradient more visible.

Since the Pþ density is not azimuthally symmetric, there

is a quadrupole moment associated with it. This moment

can be evaluated using Eq. (28) of the companion paper

[19], but with the linear polarization direction (in this case,

x̂) used instead of a spin vector. In terms of the form factors,

the quadrupole moment works out to be

QLF ¼ −8F3ð0Þ: ð73Þ

As can be seen in Eq. (36), F3ð0Þ is finite, and in particular

QLF ¼
α

45π

1

m2
e

≈ 7.7 fm2: ð74Þ

This is a remarkably large quadrupole moment, and is

positive, indicating that the photon is prolate in the

direction of polarization. This is of course compatible with

what is visible in Fig. 4.

Using Eq. (71), along with Eq. (72), the eigenpressures

of a horizontally polarized photon can be obtained.

Numerical results for these eigenpressures are depicted

in Fig. 5. In contrast to transversely-polarized states of

massive hadrons, neither of these eigenpressures can be

interpreted as a deformed radial or tangential pressure.

V. RADIATION PRESSURE

For both the free photon and the QED photon at leading

order, we found a negative radial light front pressure. This

is a strange result that appears to contradict our intuition

(and known results [42]) that photons should exert positive

pressure. However, this contradiction is only apparent.

Radiation pressure—the pressure exerted by photons—

includes contributions from the total transverse motion

of the electromagnetic field, which is to say it contains

contributions from AðtÞ that are neglected by looking at

only the transversely -comoving part of the stress tensor.

(See Ref. [16], especially Sec. III thereof, for further

explanation.)

Let us consider the stress tensor as a whole. As explained

in Ref. [16], this diverges for states that are localized at the

transverse origin. Wave packets with a finite spatial extent

must be used to define such a density, which cannot be

interpreted as describing intrinsic structure (in contrast to

the comoving stress tensor). Let us consider a Gaussian

wave packet with average transverse momentum k⊥ and a

finite transverse spatial width σ,

hpþ;p⊥; λjΨi ¼
ffiffiffiffiffiffi

2π
p

ð2σÞe−σ2ðp⊥−k⊥Þ2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþð2πÞδðpþ − PþÞ
p

: ð75Þ

Using Eq. (6) of Ref. [16] with the local operator Ô ¼ Tij,

and noting the breakdown of the EMT in terms of helicity

amplitudes in Eq. (4), we find

FIG. 4. Pþ density of a horizontally polarized photon. The left panel uses a linear color map, but clips values above the maximum

depicted in the color bar. The right panel uses a logarithmic color map to make the gradient less steep, and values are still clipped above

the maximum depicted in the color bar. Both densities have had Pþ divided out to make them boost invariant.
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Tijðb⊥;k⊥; σÞ ¼
1

2Pþ

Z

d2P⊥

ð2πÞ2
Z

d2Δ⊥

ð2πÞ2
�

2Pi
⊥P

j
⊥AðtÞ þ 1

2
ðΔi

⊥Δ
j
⊥ − δijΔ2

⊥ÞDðtÞ
�

e−iΔ⊥·b⊥e−2
σ2

2
ðP−kÞ2

⊥e−
σ2

2
Δ

2
⊥ : ð76Þ

Explicitly evaluating the P⊥ integral gives the following result for the full stress tensor,

Tijðb⊥;k⊥; σÞ ¼
1

2Pþ

Z

d2Δ⊥

ð2πÞ2
��

2ki
⊥k

j
⊥ þ δij

2σ2

�

AðtÞ þ 1

2
ðΔi

⊥Δ
j
⊥ − δijΔ2

⊥ÞDðtÞ
�

e−iΔ⊥·b⊥e−
σ2

2
Δ

2
⊥ : ð77Þ

For the photon in a helicity state, AðtÞ ¼ DðtÞ ¼ F1ðtÞ.
Using this, and noting that the radial pressure is obtained by

contracting the stress tensor with b̂ib̂j (with b̂ being the unit

radial vector in the transverse plane), we find

Prðb⊥;k⊥; σÞ ¼
1

4Pþ

�

4k2
⊥cos

2ðϕbkÞ þ
1

σ2
þ 1

b⊥

d

db⊥

�

×

Z

d2Δ⊥

ð2πÞ2 F1ðtÞe−iΔ⊥·b⊥e−
σ2

2
Δ

2
⊥ ; ð78Þ

where ϕbk ¼ ϕ − ϕΔ and a script Pr is used to differentiate

from the intrinsic radial pressure pr. Unlike pr, Pr contains

contributions from AðtÞ, which include both the average

motion of the photon and statistical motion due to wave

function dispersion.

For the free photon, the transverse radiation pressure

given by Eq. (78) is strictly non-negative. When F1ðtÞ ¼ 1,

as in the free case, one has

Z

d2Δ⊥

ð2πÞ2 e
−iΔ⊥·b⊥e−

σ2

2
Δ

2
⊥ ¼ 1

2πσ2
e
− 1

2σ2
b2
⊥ ; ð79Þ

and it is easy to see that

�

1

σ2
þ 1

b⊥

d

db⊥

�

e
− 1

2σ2
b2
⊥ ¼ 0: ð80Þ

The k2
⊥ term is strictly positive at k⊥ ≠ 0 by virtue of

positivity of the light front momentum density, which is

guaranteed by the probability interpretation of the “good”

components of light front densities (in this case, Tþþ)
[63,64]. When σ → 0, the total radial pressure becomes a

delta function, and the free photon accordingly behaves like

a pointlike particle that exerts a positive total pressure.

The radiation pressure described by Eq. (78) is non-

negative even for the interacting photon, and this holds to

all orders in any gauge-invariant theory of photon inter-

actions. In fact, the only assumptions we need to prove non-

negativity are Eq. (78) and the positivity of ρpþðb⊥Þ. Let us
first consider the k⊥ ¼ 0 case, since the k2

⊥ term is positive

anyway. Using the convolution theorem, Eq. (78) can be

rewritten as

Z

d2Δ⊥

ð2πÞ2 F1ðtÞe−iΔ⊥·b⊥e−
σ2

2
Δ

2
⊥

¼ 1

2πσ2Pþ

Z

d2b0
⊥ρpþðb0⊥Þe

− 1

2σ2
ðb⊥−b

0
⊥
Þ2
; ð81Þ

FIG. 5. Eigenpressures of a horizontally polarized photon. The color maps have been clipped above the shown maximum and

minimum values.
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where ρpþðb⊥Þ was defined in Eq. (15). From Eq. (78), the

radiation pressure for k⊥ ¼ 0 is then

Prðb⊥;k⊥ ¼ 0;σÞ ¼ 1

8πσ2ðPþÞ2
Z

d2b0
⊥ρpþðb0⊥Þ

×

�

1

σ2
þ 1

b⊥

d

db⊥

�

e
− 1

2σ2
ðb⊥−b

0
⊥
Þ2
: ð82Þ

Performing the derivative with respect to b⊥ ¼ jb⊥j gives

Prðb⊥;k⊥ ¼ 0; σÞ ¼ 1

8πσ4ðPþÞ2
Z

d2b0
⊥ρpþðb0⊥Þ

×
b⊥ · b0

⊥

b2⊥
e
− 1

2σ2
ðb⊥−b

0
⊥
Þ2
: ð83Þ

Using polar coordinates, with ϕ signifying the angle

between b⊥ and b0
⊥, gives

Prðb⊥;k⊥ ¼ 0; σÞ ¼ 1

8πσ4ðPþÞ2b⊥
e
− 1

2σ2
b2
⊥

×

Z

db0⊥b
02
⊥ρpþðb0⊥Þe

− 1

2σ2
b02

⊥

×

Z

dϕ cosϕe
þ

b⊥b0
⊥

σ2
cosϕ

: ð84Þ

Now, the quantity

Z

2π

0

dϕ e
þ

b⊥b0
⊥

σ2
cosϕ

cosϕ ¼ 2πI1

�

b⊥b
0
⊥

σ2

�

; ð85Þ

which is a modified Bessel function of the first kind [65], is

positive since it receives larger weights from the exponen-

tial when cosϕ is positive than when cosϕ is negative. The

remaining factors in the b0⊥ integral are non-negative.

If ρpþðb0⊥Þ is a delta function (as in the free case), the

result is zero (as we saw explicitly in the free case), but if

ρpþðb0⊥Þ is positive in any extended region, then it follows

that Prðb⊥;k⊥ ¼ 0; σÞ is positive. Therefore, we find that

the transverse radiation pressure of a photon is strictly non-

negative, and is in fact positive if the light front momentum

density has any finite spatial extent (as it does in QED).

VI. SUMMARY AND CONCLUSIONS

We calculated the momentum, angular momentum, and

pressure densities of a photon on the light front, both for a

free photon and for a QED photon at leading order. We

calculated both the intrinsic pressure and the radiation

pressure, clarifying the difference between these. The

intrinsic pressure in particular is encoded by the D-term,

and exhibits different properties than the radiation pressure,

only the latter of which is positive for a photon. TheD-term

of the photon is positive, in stark contrast to the negativity

criterion for stability of massive systems, and entailing that

the intrinsic pressure density of a photon is negative.
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APPENDIX: HANKEL TRANSFORM

OF LOGARITHM

To the best of our knowledge the zeroth order Hankel

transform of a logarithm has not been tabulated in the

mathematics or physics literature. We will prove in this

section that

H0½logðkÞ�ðbÞ ¼
Z

∞

0

dk kJ0ðbkÞ logðkÞ ¼ −
ΘðbÞ
b2

; ðA1Þ

where ΘðbÞ is the Heaviside step function.

To obtain this result, first consider the variable trans-

formation k ↦ sk in the original integral,

FðbÞ≡H0½logðkÞ�ðbÞ

¼ s2
Z

∞

0

dk kJ0ðbskÞ logðskÞ

¼ s2FðsbÞ þ s2 logðsÞ
Z

∞

0

dk kJ0ðbskÞ: ðA2Þ

Next, note that the Hankel transform of a constant is a delta

function,

Z

∞

0

dk kJ0ðbkÞ ¼
δðbÞ
b

: ðA3Þ

This gives us

FðsbÞ ¼ 1

s2
FðbÞ − logðsÞ δðbÞ

b
: ðA4Þ

Differentiating with respect to s and then taking s ¼ 1 gives

a differential equation for FðbÞ,

bF0ðbÞ þ 2FðbÞ ¼ −2π
δðbÞ
b

: ðA5Þ

This can be solved by substituting the ansatz,

FðbÞ ¼ fðbÞ
b2

; ðA6Þ
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with fðbÞ satisfying

1

b
f0ðbÞ ¼ −

δðbÞ
b

: ðA7Þ

This has the solution,

fðbÞ ¼ C − ΘðbÞ; ðA8Þ

and therefore the desired Hankel transform is

FðbÞ ¼ C − ΘðbÞ
b2

: ðA9Þ

To determine C, we can find the mean-squared radius

associated with FðbÞ when it has been multiplied by a

Gaussian falloff. Unless C ¼ 1, the radius associated with

FðbÞ itself will diverge, so the Gaussian falloff factor is

necessary. The quantity in question is defined as

hb2iðσÞ≡
Z

d2b b2FðbÞe−
b2

2σ2 : ðA10Þ

From direct evaluation, we find

hb2iðσÞ ¼ σ2ðC − 1Þ: ðA11Þ

Now, we compare to the radius result obtained by evalu-

ating in momentum space. Using the convolution theorem,

the product in this integral can be written as the 2D Fourier

transform of a convolution,

FðbÞe−
b2

2σ2 ¼
Z

d2k

ð2πÞ2 e
−ik·b

×

Z

d2k0

ð2πÞ2 ð2πσ
2e−

σ2

2
ðk−k0Þ2Þ logðk0Þ: ðA12Þ

Using integration by parts, the mean-squared radius can be

written as

hb2iðσÞ ¼ −2πσ2
Z

d2k0

ð2πÞ2 ∇
2
k½e−

σ2

2
ðk−k0Þ2 �jk¼0 logðk0Þ

¼ σ4

2

Z

∞

0

dκ

�

1 −
1

2
σ2κ

�

e−
σ2

2
κ log κ: ðA13Þ

Evaluating this integral gives

hb2iðσÞ ¼ −σ2; ðA14Þ

thus requiring C ¼ 0, and proving Eq. (A1).
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