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In classical viscous fluids, turbulent eddies are known to be responsible for the rapid spreading of
embedded particles. But in inviscid quantum fluids where the turbulence is induced by a chaotic
tangle of quantized vortices, dispersion of the particles can be achieved via a non-classical mecha-
nism, i.e., their binding to the evolving vortices. However, knowledge on how the vortices diffuse
and spread in quantum-fluid turbulence is very limited, especially for the so-called ultra-quantum
turbulence (UQT) generated by a random tangle of vortices. Here we report a systematic numerical
study of the apparent diffusion of vortices in UQT in superfluid helium-4 using the full Biot-Savart
simulation. We reveal that the vortices in the superfluid exhibit a universal anomalous diffusion
(superdiffusion) at small times, which transits to normal diffusion at large times. This behavior is
found to be the result of a generic scaling property of the vortex velocity. Our simulation at finite
temperatures also nicely reproduces recent experimental observations. The knowledge obtained from
this study may form the base for understanding turbulent transport and universal vortex dynamics
in various quantum fluids.

Turbulent diffusion in classical fluids has been stud-
ied extensively due to its wide range of applications such
as chemical mixing in star formation [1] and airborne
virus transmission [2]. It has been known that the turbu-
lent eddies can carry embedded particles, leading to some
well-known time scaling of the particle separation such as
the Richardson’s t3 law [3]. However, this knowledge does
not apply to inviscid quantum fluids such as superfluid
helium-4 (He II) and atomic Bose-Einstein condensates
(BECs), since the injected particles are not entrained
by the superfluid flow at low temperatures. Instead, a
distinct transport mechanism exists, i.e., binding to the
evolving quantized vortices.

In a quantum fluid, turbulence can be induced by a
chaotic tangle of quantized vortex lines [4], which are
line-shaped topological defects featured by a circulating
flow with a quantized circulation κ = h/m, where h is
Plank’s constant and m is the mass of the bosons consti-
tuting the superfluid [5]. The vortices evolve with time
chaotically, and they also undergo reconnections when
they move across each other [6]. Depending on the in-
ternal structure of the vortex tangle, two forms of tur-
bulent flows may emerge in a quantum fluid [7, 8]. The
first form is called quasiclassical turbulence where the
vortices in the tangle can polarize locally and form bun-
dles to mimic classical vortices [9]. In this case, the in-
duced velocity field can exhibit various classical features
at length scales greater than the mean vortex-line spacing

ℓ [10, 11]. On the other hand, when the vortices in the
tangle arrange themselves randomly, an ultra-quantum
turbulence (UQT) with no classical analogue is gener-
ated, where the flow field fluctuates at scales comparable
to ℓ without any large-scale motion [12]. Particles in a
quantum fluid can bind to the vortex cores and subse-
quently move together with the vortices [13–16]. Know-
ing how vortices diffuse in space is therefore crucial for
understanding turbulent transport in quantum fluids.

So far, there have been very limited studies on the ap-
parent diffusion of vortices in quantum-fluid turbulence.
On the theoretical side, the overall expansion of a decay-
ing random vortex tangle near a solid wall [17] and in bulk
He II [18] was simulated. But these studies only provide
limited insights into the diffusion behavior of vortices in a
fully developed turbulence. In a recent experiment, Tang
et al. decorated the vortices in UQT generated by coun-
terflow in He II with solidified deuterium tracer particles.
They observed that the vortices undergo anomalous diffu-
sion (superdiffusion) at small times [19]. Their measured
diffusion time exponent appears to be insensitive to both
the temperature and the vortex-line density, suggesting
possible generic nature of this vortex-diffusion behavior.
However, since the experiment was conducted in a nar-
row temperature range (i.e., 1.7 K to 2.0 K), a reliable
conclusion cannot be achieved.

In this paper, we report a systematic numerical study
of the apparent diffusion of individual vortices in UQT
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FIG. 1. (a) Snapshots of an evolving random vortex tangle. The red dots represents the vortex-filament points tracked for
diffusion analysis. (b) Variation of the corresponding vortex-line density L(t). The blow-up in the inset shows fluctuations in
L due to ring injections. (c) Mean square displacement of the vortices ⟨∆x2(t)⟩ in the x direction. The solid and dashed lines
are power-law fits to the data in the shaded regions. (d) Diffusion exponents γ averaged over x, y, and z directions versus the

mean vortex-line spacing ℓ = L−1/2. The error bars (barely visible for γ1) represent the standard deviations of the γ values for
diffusion in the three axial directions.

in He II using the full Biot-Savart simulation [20]. We
reveal that in pure superfluid the vortices in UQT in-
deed undergo superdiffusion at small times with a uni-
versal diffusion exponent regardless how dense the tangle
is. At large times, the superdiffusion transits to nor-
mal diffusion due to vortex reconnections. Our analy-
sis shows that this universal diffusion behavior is caused
by a generic temporal correlation of the vortex veloc-
ity, which should exist in other quantum fluids where
the Biot-Savart law applies. At finite temperatures, the
viscous effect is found to only mildly affect the vortex
diffusion, which nicely explains the experimental obser-
vations. Since UQT can be produced by counterflow in
quantum two-fluid systems such as He II [21, 22], atomic
BECs [23], and superfluid neutron stars [24, 25], and it
can also spontaneously emerge following a second-order
phase transition in quantum fluids via the Kibble-Zurek
mechanism [26, 27], the knowledge obtained in our study
may also offer valuable insights into the evolution and
quenching dynamics of these diverse quantum fluids.

Vortex diffusion in a pure superfluid.–Like many other

quantum fluids, He II can be considered as a mixture
of two miscible fluid components, i.e., an inviscid super-
fluid and a viscous normal fluid (i.e., collection of ther-
mal quasiparticles) [28]. The normal-fluid fraction in He
II drops with decreasing the temperature and becomes
negligible below 1 K. Experimentally, an UQT can be
produced in He II at zero-temperature limit by inject-
ing small vortex rings [12]. Here, we adopt a similar
method numerically to study vortex diffusion in UQT in
pure superfluid. As shown in Fig. 1 (a), we first place
64 randomly oriented vortex rings (radius: Rin = 0.11
mm) in a cubical computational box (side length: D = 1
mm) with periodic boundary conditions in all three axial
directions. These vortices are described by the vortex fil-
ament model [29], and each vortex filament is discretized
into a series of points. In the absence of the normal fluid,
a vortex-filament point at s moves at the local superfluid
velocity vs(s) as given by the Biot-Savart law [29, 30]:

ds

dt
= vs(s) =

κ

4π

∫
(s1 − s)× ds1

|s1 − s|3
. (1)
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The time evolution of the vortices can be obtained
through a temporal integration of the equation (1) (see
details and movies in Supplemental Materials [31], which
includes additional references [32–34]). When two vortex
filaments approach to have a minimum separation less
than 0.008 mm, we reconnect them at the location of the
minimum separation following the procedures as detailed
in references [30, 35]. We also inject a randomly oriented
vortex ring of radius Rin at a random location in the
computational box with a repetition time tin to balance
the cascade loss of the vortices [30]. Fig. 1 (a) shows the
evolution of the vortex tangle with tin = 0.08 s. The
variation of the vortex-line density L (i.e., vortex length
per unit volume) is shown in Fig. 1 (b). After about 10
s, L settles to a nearly constant level. This steady-state
L level can be tuned by varying tin.

To study vortex diffusion, we track randomly chosen
vortex-filament points and analyze their mean square
displacement (MSD) along each axis (see Supplemental
Materials [31]). Fig. 1 (c) shows the MSD of the vor-
tices in the x direction ⟨∆x2(t)⟩ = ⟨[x(t0 + t) − x(t0)]

2⟩
in a representative case, where t0 is the reference time
when a vortex-filament point is tracked and the angle
brackets denote an ensemble average of all the tracked
points in the steady state. Usually, a power-law scal-
ing ⟨∆x2(t)⟩ ∝ tγ is expected, where the exponent γ
defines different diffusion regimes, i.e., normal diffusion
(γ = 1) and anomalous diffusion (superdiffusion at γ >1
and subdiffusion at γ <1) [36]. Our data exhibit a clear
superdiffusion regime (γ1 = 1.58) at small t and a nor-
mal diffusion regime (γ2 = 0.97) at large t. Simulations
conducted at other L also show similar behaviors. The
derived γ1 and γ2 are plotted in Fig. 1 (d) as a function
of the mean vortex-line spacing ℓ = L−1/2. It is clear
that γ1 is about 1.6 at all ℓ values. γ2 is around 1 but
has sizable variations in the three axial directions. These
variations are caused by the reduced sample numbers at
large t as well as the limited size of the computational
box (see Supplemental Materials [31]).

Explanation on vortex diffusion scaling.–
Superdiffusion has been observed in various systems,
such as hopping of cold atoms in an optical lattice [37]
and cellular transport in biological systems [38]. For
systems involving random walkers, the appearance of
superdiffusion is usually attributed to Lévy flights,
i.e., occasional long-distance hops of the walkers [39].
These flights lead to power-law tails of the walker’s
displacement distribution P (∆x) ∝ |∆x|−α, which is flat
enough (i.e., α < 3) to cause superdiffusion [40]. In He
II, large displacements of the vortices over short times
can occur at the locations of vortex reconnections [41].
However, we find that these reconnections always result
in tails of the vortex displacement distribution P (∆x)
steeper than |∆x|−3 (see Supplemental Materials [31]).
Therefore, they cannot account for the observed vortex
superdiffusion. On the other hand, superdiffusion can
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FIG. 2. (a) Vortex-velocity temporal correlation function
Cx(t

′) for a representative tangle exhibiting a power-law scal-
ing that leads to the observed superdiffusion. (b) ⟨∆x2(t)⟩
data for two selected groups of vortex-filament points (i.e.,
blue circles and red crosses) which encountered their first re-
connection event in the diffusion time intervals shaded by the
respective colors.

emerge if the motion of the walkers is not completely
random but has extended temporal correlations [40, 42].
To see this, we write the MSD of a vortex-filament point
⟨∆x2(t)⟩ in terms of its velocity vx(t) as [43]:

⟨∆x2(t)⟩ = 2

∫ t

0

dt0

∫ t−t0

0

dt′⟨vx(t0)vx(t0 + t′)⟩. (2)

For a fully developed random tangle, the vortex-velocity
temporal correlation function Cx(t

′) = ⟨vx(t0)vx(t0+ t′)⟩
only depends on the lapse time t′. If Cx(t

′) shows a
power-law scaling Cx(t

′) ∝ t′−β over a large time inter-
val, ⟨∆x2(t)⟩ would scale as ⟨∆x2(t)⟩ ∝ t2−β according
to equation 2 and can exhibit superdiffusion when β < 1.
In Fig. 2 (a), we show the calculated Cx(t

′) for a rep-
resentative tangle with ℓ = 0.16 mm. There is a clear
power-law scaling with a fitted exponent β = 0.42, which
leads to ⟨∆x2(t)⟩ ∝ t1.58, matching nicely the superdiffu-
sion exponent reported in Fig. 1. Similar results are ob-
tained for other cases at different ℓ, which confirms that
the universal vortex superdiffusion at small t is caused
by the temporal correlation of the vortex velocity. This
correlation is an intrinsic feature of UQT.
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The transition to the normal diffusion at large t was
also observed experimentally by Tang et al. [19]. They
proposed that this transition is caused by vortex re-
connections, which effectively randomize the motion of
the participating vortex-filament points and hence sup-
press their velocity temporal correlation. To verify this
view, we show the MSD of two selected groups of vortex-
filament points for the case with ℓ = 0.195 mm in
Fig. 2 (b). These two groups encountered their first
reconnection event in the diffusion time interval t =
0.1 − 0.15 s and t = 0.6 − 0.65 s, respectively. Obvi-
ous deviation from the superdiffusion scaling is observed
for each group following the reconnection event, which
clearly proves the causality between vortex reconnections
and the transition towards the normal diffusion.

Finite-temperature effect.–At finite temperatures, the
vortices experience a drag force as they move through the
normal fluid due to scattering of the thermal quasiparti-
cles in He II [44]. The velocity of a vortex-filament point
at s is now given by [29, 30]:

ds/dt = vs(s)+αs′×(vn−vs)−α′s′×[s′×(vn−vs)], (3)

where α and α′ are temperature dependant mutual fric-
tion coefficients [45], s′ is the unit tangent vector along
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FIG. 4. (a) Diffusion exponent γ1 versus ℓ for vortex tangles
produced by counterflow at various T . (b) γ1 versus ℓ for
tangles produced by vortex-ring injection.

the filament, and vn is the normal-fluid velocity. We
then generate a steady-state vortex tangle using two dis-
tinct methods. The first method is the same as the one
adopted at 0 K, i.e., by randomly injecting small vor-
tex rings in the computational box with static normal
fluid (i.e., vn = 0). The second method is via thermal
counterflow as adopted in Tang et al ’s experiment [19].

In He II, a counterflow can be generated by an ap-
plied heat flux q, where the normal fluid moves in the
heat flow direction at a mean velocity Un = q/ρsT while
the superfluid moves oppositely at Us = (ρn/ρs)Un [28].
Here, ρ = ρn + ρs is the total density, and s is the He
II specific entropy [46]. To compare with the experiment
where the normal-fluid flow is laminar, we set vn = Unêz
and vs as the sum of −Usêz and the induced velocity
given in equation (1). We then place a few randomly ori-
ented seed vortex rings in the computational box. These
rings can grow and reconnect, eventually leading to a
fully developed tangle [20]. A snapshot of such a tangle
at T = 1.6 K and Un = 5 mm/s is shown in Fig. 3 (a),
and the line-density evolution is given in Fig. 3 (b). In
the steady-state time window (i.e., 5−20 s), we track ran-
domly selected vortex-filament points and analyze their
MSD in the directions perpendicular to the counterflow.
Representative data for ⟨∆x2(t)⟩ are shown in Fig. 3 (c).
Again, a superdiffusion regime is observed at small t,
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which transits to normal diffusion at large t.

In Fig. 4 (a) and (b), we collect the derived superdif-
fusion exponent γ1 for tangles generated respectively by
counterflow and ring injections at various ℓ and T . It
is clear that γ1 is around 1.6 nearly independent of ℓ,
which is in good agreement with the experimental obser-
vations [19]. We also see that γ1 increases by less than
0.3 from 1.1 K to 1.9 K, which is hardly resolvable in
the narrow temperature range examined in the experi-
ment. At a given T , the γ1 value for tangles produced
by counterflow is slightly larger than that for random
tangles produced by ring injections. This difference be-
comes more visible as T increases. Interestingly, it has
been known that the vortex tangle produced by counter-
flow becomes increasingly anisotropic as T increases [20].
This tangle anisotropy could be the origin of the observed
difference, which is a topic for future research.

Discussion.–The weak temperature dependence of γ1
indeed reflects interesting physics. To explain it, we show
in Fig. 5 the normalized Cx(t

′)/Cx(0) curves for vortex
tangles produced by counterflow at various T with ℓ in
the range of 0.14 − 0.16 mm. The curve for a random
tangle produced by ring injections at 0 K with ℓ = 0.16
mm is also included as a reference. Compared to the
T = 0 curve, a major difference of the curves at finite T
is that they saturate to 1 at larger t′. This saturation,
which corresponds to ballistic motion of the vortices (i.e.,
⟨∆x2(t)⟩ ∝ t2 according to equation (2)), is controlled by
how the turbulent energy decays. At 0 K, the turbulent
energy can cascade to scales smaller than ℓ by exciting
Kelvin waves on the vortices [47]. These waves result
in small-scale deformations of the vortices, which can
cause rapid directional change of the vortex velocity [30]
and hence suppress the velocity temporal correlation. As

such, Cx(t
′) at 0 K remains far from saturation down to

t′ = 10−3 s. At finite T , the mutual friction from the nor-
mal fluid damps out the Kelvin waves and terminates the
energy cascade at scales comparable to ℓ [48, 49], which
results in smoother vortices. Therefore, the vortices can
maintain their ballistic motion to larger t′. The exten-
sion of the ballistic region first makes the Cx(t

′)/Cx(0)
curve steeper in the power-law region, leading to a larger
exponent β as compared to the 0-K case. As T further
increases, the power-law region gradually shrinks and lev-
els off, which reduces β. The decrease in β then causes
γ1 to gradually rise as observed in Fig. 4.
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I. VORTEX FILAMENT METHOD

In the framework of the vortex filament model [S1],
all the quantized vortex lines are represented by zero-
thickness filaments. These filaments are discretized into
a series of points with a spatial separation ∆ξ in the
range of ∆ξmin = 0.008 mm to ∆ξmax = 0.024 mm in our
simulations. In the absence of the viscous normal fluid,
a vortex-filament point at s moves at the local superfluid
velocity vs(s) as:

ds

dt
= vs(s) = v0(s) + vin(s), (S1)

where v0(s) is the applied background superfluid velocity
and vin(s) denotes the velocity induced at s by all the
vortices according to the Boit-Savart law [S1]:

vin(s) =
κ

4π

∫
(s1 − s)× ds1

|s1 − s|3
, (S2)

where the integration is supposed to be performed along
all the vortex filaments. However, since the integrant di-
verges at s for an ideal zero-thickness filament, we follow
Adachi et al. [S2] and calculate the integral as the sum
of the local contribution and the non-local contribution:

vin(s) = βls
′ × s′′ +

κ

4π

∫ ′ (s1 − s)× ds1
|s1 − s|3

, (S3)

where the prime denotes the derivative with respect to
the arc length of the vortex filament at s (i.e., s′ be-
ing the unit vector along the filament, and s′′ being the
unit vector in the binormal direction divided by the local
curvature radius [S1]), and the non-local term represents
the integral along the rest of the filament and all other
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vortices. The coefficient βl is given by [S1]:

βl =
κ

4π
ln

(
2(l+l−)

1/2

e1/4a0

)
(S4)

where l+ and l− are the distances from the point at s
to its two nearest neighbour points along the same fila-
ment, and the cut-off parameter a0 ≃ 1 Å denotes the
vortex core radius in He II. At finite temperatures, the
vortices also experience a mutual friction force from the
viscous normal fluid. The equation of motion of the
vortex-filament points is then given by Eq. (3) in the
main paper.

In our ring-injection simulations, the normal-fluid ve-
locity is set to vn = 0 and so is the background superfluid
velocity v0 = 0. On the other hand, in the counterflow
simulations we set vn = Unêz and v0 = −Usêz. The time
evolution of the vortices can be obtained through a tem-
poral integration of the Eq. (1) or the Eq. (3) in the main
paper using the fourth-order Runge-Kutta method [S3]
with a time step ∆t = 10−4 s. We have confirmed that
our spatial and time resolutions are sufficient such that
the simulation results are independent of the resolutions.
In the evolution of the vortex tangle, whenever two vor-
tex filaments approach to have a minimum separation less
than ∆ξmin, we reconnect the two filaments at the loca-
tion of the minimum separation following the procedures
as detailed in ref. [S4, S5]. Furthermore, to maintain the
spatial resolution along the filaments, at each time step
we delete (or insert) a vortex-filament point between any
two adjacent points that have a separation ∆ξ < ∆ξmin

(or ∆ξ > ∆ξmax). In all of our simulations, we also re-
move small vortex loops with lengths less than 5∆ξmin

to account for the cascade loss of the vortices [S4].

II. RANDOMNESS OF VORTEX TANGLE

As discussed in the main paper, ultra-quantum turbu-
lence can be induced by a random tangle of quantized
vortices. To check whether the tangles that we presented
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FIG. S1. The vortex-tangle anisotropy parameter I as a func-
tion of time t for a representative random vortex tangle pro-
duced by injection of vortex rings at T = 0 K.

in the paper are indeed random, we may evaluate the di-
mensionless anisotropy parameter as commonly adopted
in the literature [S2]:

Ii =
1

ΩL

∫
L

[
1− (s′ · êi)2

]
dξ, (S5)

where L is the vortex-line density (i.e., the total length
of the vortices divided by the total volume Ω of the com-
putational box), s′ is the unit vector along a vortex seg-
ment dξ, êi is the unit vector in the direction of the
axis i (where i = x, y, z), and the integral goes over all
the vortex lines in the volume Ω. If the vortex tangle is
isotropic, one should expect Ix = Iy = Iz = 2/3. On
the other hand, in the extreme case that all the vortices
are polarized to be perpendicular to the i-axis, Ii = 1.
In Fig. S1, we show the calculated Ix, Iy, and Iz val-
ues as functions of the evolution time t for a represen-
tative random tangle produced by vortex-ring injection
at T = 0 K in our simulation. It is clear that Ix, Iy,
and Iz quickly evolve to values close to 2/3, suggesting
excellent isotropy of the tangle starting from short evolu-
tion times. This result confirms that the method we have
adopted for producing the vortex tangle, i.e., by starting
with randomly oriented and located vortex rings and by
repetitively injecting randomly oriented vortex rings, can
efficiently generate and sustain a random vortex tangle.

III. VORTEX-POINT TRACKING

In order to study the apparent diffusion of the vortex-
filament points, we give every point a unique index so
that it can be identified and tracked during its lifetime.
However, tracking a vortex-filament point for long times
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FIG. S2. Sample number versus diffusion time t for a repre-
sentative case at T = 0 K with ℓ = 0.16 mm.

(i.e., over a second) is very challenging. This is because
as we adjust the spatial resolution along the vortex fil-
aments at each time step, some vortex-filament points
are removed and new points are added. A given vortex-
filament point can hardly survive many time steps, which
limits the number of samples at large diffusion times. To
mitigate this issue, in our typical simulation we randomly
tag 200 vortex-filament points in the tangle. When a
tagged point and its nearest neighbour point have a sepa-
ration less than ∆ξmin, we always retain the tagged point
and remove its nearest neighbour. This procedure can
significantly increase the lifetime of the tagged vortex-
filament points. Nevertheless, these tagged points may
still get removed in some situations. For instance, when
two adjacent points are both tagged points with a separa-
tion less than ∆ξmin, one of them will be removed. Fur-
thermore, if a tagged point exists in a vortex loop with a
length less than 5∆ξmin, it will be removed together with
the loop. Finally, due to the vortex reconnection proce-
dures [S4, S5], there is a certain chance that a tagged
point may get removed when it is involved in a recon-
nection event. Whenever a tagged point is removed, we
randomly choose a new point to tag so that there are al-
ways 200 tagged points at every time step. Nonetheless,
due to the aforementioned loss mechanisms, the averaged
lifetime of the tagged points is still limited to few seconds.

When we calculate the mean square displacement
(MSD) ⟨∆x2(t)⟩ = ⟨[x(t0 + t) − x(t0)]

2⟩, the number
of vortex trajectories for ensemble averaging drops with
increasing the diffusion time t. Fig. S2 shows a repre-
sentative curve of the sample number versus t. Clearly,
the sample number drops drastically as t becomes greater
than 1 s, which limits the range of the normal diffusion
regime and increases the uncertainty of the fitted expo-
nent γ2. Another factor that also limits the accuracy of
γ2 is our computational box size. Note that our box size
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(i.e., 1 mm) is not too much larger than the typical line
spacing ℓ. Therefore, the vortex tangle is non-uniform
at large scales even for tangles produced by random ring
injections. Some large-scale variations of the vortex tan-
gle can be clearly seen in Fig. 1 (a) in the main paper.
This non-uniformity can lead to sizeable variations of γ2
in the three axial directions.

IV. VORTEX RECONNECTION AND
DISPLACEMENT DISTRIBUTION

For systems involving random walkers, it has been
known that the superdiffusion can emerge as a conse-
quence of the so-called Lévy flights, i.e., long-distance
hops of the walkers [S6]. In a short time interval ∆t, if
one measures the displacement ∆x = x(t0 +∆t)− x(t0)
of the random walkers and calculates the displacement
distribution P (∆x,∆t), this distribution usually exhibits
power-law tails P (∆x,∆t) ∝ |∆x|−α with α < 3 as
caused by the Lévy events [S6]. After many steps, the
resulted displacement distribution P (∆x, t) can converge
to a standard Lévy distribution with the same power-law
tails [S7]. Mathematically, these flat tails would cause
the MSD ⟨∆x2⟩ of the walkers to diverge. However, one
may introduce a pseudo MSD through a scaling argu-
ment and derive that ⟨∆x2(t)⟩ ∝ tγ with γ= 2

α−1 [S7].

Therefore, an apparent superdiffusion of the walkers (i.e.,
γ > 1) can emerge when α < 3. On the other hand, if the
tails of P (∆x,∆t) is not sufficiently flat (i.e., if α ≥ 3),
the central limit theorem then warrants a Gaussian dis-
tribution of P (∆x, t), which would then lead to a normal
diffusion of the walkers [S7].
For quantized vortices in a random vortex tangle in He
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various diffusion time t. The analysis was performed for the
same vortex-tangle case as in Fig. S3.

II, the vortex-filament points move chaotically as con-
trolled by both the local superfluid velocity induced by
all the vortices and the mutual friction force from the
normal-fluid component [S8]. Interestingly, the vortex-
filament points do exhibit occasional long-distance hops
over short time intervals when they are sufficiently close
to other vortex filaments or are involved in vortex recon-
nections [S9]. This is because when the vortex-filament
points are close to the cores of other vortices, the induced
velocity according to the Biot-Savart law can become ex-
ceptionally large [S8]. These high vortex-velocity occur-
rences are known to lead to non-Gaussian |v|−3 tails of
the vortex-velocity distribution [S9, S10]. In Fig. S3, we
show the calculated probability density function (PDF)
P (vx) of the vortex velocity vx in the x-direction for a
representative tangle produced by ring injections at 1.6 K
with ℓ = 0.176 mm. This PDF is generated by analyzing
the velocities of all the tracked vortex-filament points
in the steady-state time window. The |vx|−3 tails are
clearly visible. Similar results were reported for vortices
in a drop of Bose-Einstein Condensate [S11] and in He
II counterflow turbulence [S12]. Since the displacement
of a vortex-filament point over a short time interval ∆t
is ∆x = vx · ∆t, the displacement distribution of the
vortex-filament points should acquire similar power-law
tails P (∆x,∆t) ∝ |∆x|−3.

However, these flat tails of P (∆x,∆t) do not lead to
the superdiffusion of the vortices. This is because the ve-
locities of the vortex-filament points drop rapidly as they
move away from nearby vortex cores or the reconnection
sites. Therefore, over longer time t the total displacement

of a vortex-filament point ∆x=
∫ t

0
vx(t

′)dt′ would rarely
exhibit exceptionally large values. As a consequence, the
tails of P (∆x, t) are gradually suppressed as t increases.
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To see this effect, we show in Fig. S4 the calculated dis-
placement distribution P (∆x, t) at various diffusion time
t for the same vortex-tangle case as presented in Fig. S3.
At the smallest diffusion time t = 10−3 s, P (∆x, t) ex-
hibits clear |∆x|−3 power-law tails, which reflects the
|vx|−3 tails of the vortex velocity distribution. But as
t increases to over 0.5 s, these power-law tails are sup-
pressed to nearly a Gaussian form. This P (∆x, t) behav-
ior was also observed experimentally [S13]. Therefore,
despite the existence of some long-distance hops of the
vortex-filament points at small time steps, their statisti-
cal weight is not sufficient to render the observed vortex
superdiffusion. The true mechanism is the vortex veloc-

ity temporal correlation as discussed in the main text.

V. SUPPLEMENTAL MOVIES

Movie S1: Evolution of the vortex filaments in a
random tangle produced by vortex-ring injections at 0
K with a steady-state mean vortex-line spacing ℓ =
0.188 mm. The red dots represent the tracked vortex-
filament points for diffusion analysis.

Movie S2: Evolution of the vortex filaments in a tan-
gle produced by counterflow at 1.6 K with a steady-state
mean vortex-line spacing ℓ = 0.205 mm. The red dots
represent the tracked vortex-filament points for diffusion
analysis.
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Rev. Mod. Phys. 87, 483 (2015).

[S7] J.-P. Bouchaud and A. Georges, Anomalous diffusion in
disordered media: Statistical mechanisms, models and
physical applications, Phys. Rep. 195, 127 (1990).

[S8] R. J. Donnelly, Quantized vortices in helium II, Vol. 2
(Cambridge University Press, 1991).

[S9] M. S. Paoletti, M. E. Fisher, K. R. Sreenivasan, and
D. P. Lathrop, Velocity statistics distinguish quantum
turbulence from classical turbulence, Phys. Rev. Lett.
101, 154501 (2008).

[S10] B. Mastracci and W. Guo, Characterizing vortex tangle
properties in steady-state He II counterflow using par-
ticle tracking velocimetry, Phys. Rev. Fluids 4, 023301
(2019).

[S11] A. C. White, C. F. Barenghi, N. P. Proukakis, A. J.
Youd, and D. H. Wacks, Nonclassical velocity statistics
in a turbulent atomic bose-einstein condensate, Phys.
Rev. Lett. 104, 075301 (2010).

[S12] H. Adachi and M. Tsubota, Numerical study of veloc-
ity statistics in steady counterflow quantum turbulence,
Phys. Rev. B 83, 132503 (2011).

[S13] Y. Tang, S. Bao, and W. Guo, Superdiffusion of quan-
tized vortices uncovering scaling laws in quantum tur-
bulence, Proc. Natl. Acad. Sci. U.S.A 118, e2021957118
(2021).


