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Abstract

The pioneering work of William F. Vinen (also known as Joe Vinen)
on thermal counterflow turbulence in superfluid helium-4 largely inau-
gurated the research on quantum turbulence. But despite decades of
research on this topic, there are still open questions remaining to be
solved. One such question is related to the anomalous increase of the
vortex-line density L(t) during the decay of counterflow turbulence,
which is often termed as the “bump” on the L(t) curve. In 2016,
Vinen and colleagues developed a theoretical model to explain this puz-
zling phenomenon (JETP Letters, 103, 648-652 (2016)). However, he
realized in the last a few years of his life that this theory must be
at least inadequate. In remembrance of Joe, we discuss in this paper
his latest thoughts on counterflow turbulence and its decay. We also
briefly outline our recent experimental and numerical work on this topic.
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1 Introduction

When liquid 4He is cooled to below about 2.17 K, it enters the superfluid
phase (known as He II) [1]. Phenomenologically, He II can be considered as
a mixture of two miscible fluid components: an inviscid superfluid and a vis-
cous normal fluid that consists of thermal quasiparticles (i.e., phonons and
rotons) [2]. The flow of the superfluid is irrotational, and any rotational motion
in a simply-connected volume can emerge only with the formation of topo-
logical defects in the form of quantized vortex lines. These vortex lines are
density-depleted thin tubes, each carrying a quantized circulation of k = h/m,
where h is Planck’s constant and m is the mass of a helium atom [3]. As a two-
fluid system, He II has many unique thermal and mechanical properties. For
instance, bulk He II can support two sound-wave modes: an ordinary pressure-
density wave (i.e., the first sound) where the two fluids oscillate in phase, and
a temperature-entropy wave (i.e., the second sound) where the two fluids oscil-
late oppositely [2]. Furthermore, heat transfer in He II is via a counterflow
mode [2]: the normal fluid moves in the direction of the heat flux ¢ with a
mean velocity U,, = q/psT, where p = ps + p,, is the total density of He II, s
is its specific entropy, and T is the temperature; The superfluid moves in the
opposite direction with a mean velocity Us = (pn/ps)Un to ensure no net mass
flow.

In the pioneering work of Joe Vinen, he discovered that turbulence can
spontaneously emerge in counterflow in a uniform channel when the relative
velocity Uns = |U, — Us| exceeds a small critical value U, [4-7]. A phe-
nomenological theory was proposed by him at the same time [6], and a more
detailed understanding was achieved later by Schwarz who developed a vortex
filament model to simulate the counterflow turbulence [8, 9]. More sophis-
ticated simulations were reported subsequently by other researchers [10-12].
According to these theoretical works, the turbulence exists only in the super-
fluid and is induced by a more or less random tangle of quantized vortices.
A mutual friction force between the two fluids then emerges due to the scat-
tering of the thermal quasiparticles off the quantized vortices [6, 9]. This
model also nicely explains the observed U,,s dependance of the vortex-line den-
sity L in steady-state counterflow, i.e., L2 = 4(U,s — U.) with ~ being a
temperature-dependant coefficient.

However, extensive experimental studies by Tough and colleagues indicated
that counterflow turbulence may be more complex [13]. They demonstrated
that there can be two turbulent regimes in a uniform channel with relatively
small cross-sectional area: a T-I state with smaller values of v and a T-II state
with larger values of 7. They proposed that transitions to turbulence in the
normal fluid may be responsible. In larger channels, they found a transition
from laminar flow directly to a turbulent state denoted as T-III, and they
suggested that both fluids might be turbulent in T-III. Later, Melotte and
Barenghi developed a theory showing that the T-I to T-II transition may be
associated with an instability in the laminar flow of the normal fluid [14]. Pos-
sible existence of normal-fluid turbulence in counterflow was indeed indicated
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in some early experimental studies [15, 16]. More specific evidence showing the
laminar-to-turbulent transition of the normal fluid in counterflow was provided
later by Guo et al., who used metastable Hej molecular tracers to visualize
the normal fluid flow [17]. Since then, there have been various measurements
of the normal fluid velocity field in steady counterflow, revealing the presence
of large-scale turbulence in the normal fluid with non-classical second-order
statistics [18-25].

Besides the studies on steady-state counterflow, many experiments have
also been reported on the decay of counterflow turbulence when the heat flux is
turned off [5, 26-30]. According to Vinen’s model, the decay of the vortex-line
density is given by:

o Xt 1)

m

where Yo is a dimensionless parameter of order unity. Therefore, one would
expect to see a monotonic decay of the line density as L(t) oc (t +to)~'. How-
ever, in the earliest work by Vinen [5], it was noted that L did not always
decay monotonically, i.e., a “bump” can appear at about one second after the
heater was turned off. Skrbek et al. first realized that the line density in the
final stage of the decay actually scaled as L(t) oc t=3/2 [26], which is consis-
tent with the decay of a quasiclassical turbulence having a Kolmogorov energy
spectrum [31]. Such a quasiclassical turbulence can emerge in He II when the
two fluids are strongly coupled by mutual friction at length scales greater than
the mean vortex-line spacing ¢ = L~'/2. However, the mechanism underly-
ing the observed bump remained a mystery for many years. Several theories
have been proposed to explain the origin of the bump [32-34], but a complete
understanding of the phenomenon requires experimental information on the
velocity field in counterflow besides just the time variation of L. This infor-
mation was provided by Gao et al. in a more recent experiment where both
quantitative flow visualization and second-sound attenuation measurements
were incorporated [28]. These authors reported that the anomalous decay of
L(t) was always correlated with large-scale normal-fluid turbulence in steady
counterflow before the heater was switched off. This observation inspired Vinen
to develop a theoretical model of the bump. At the same time, a similar the-
ory was developed independently by L’vov and Pomyalov. Together with the
experimental teams, they published a few joint papers in 2016 to report this
progress [29, 30]. The essence of the bump theory was later adapted by Walm-
sley and Golov to explain similar bumps observed in the decay of superfluid
turbulence in the T' = 0 limit [35].

During a visit to our group in 2019, Vinen realized that a key assumption
in his model was likely incorrect. Since then, he focused on this problem until
he passed away in 2022. In remembrance of Joe Vinen, we discuss his latest
thoughts in this paper. In Sec. 2, we review the bump theory and some key
observations in our experiments. In Sec. 3, we discuss Vinen’s thoughts on
why the model needs to be revised. Sec. 4 summarizes the content of this
paper and also briefly outlines our ongoing experimental and numerical work
on counterflow turbulence in He II.
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2 Variation of L(t) in decaying counterflow

In the experiment reported by Gao et al. [28], a vertical flow channel with a
square cross-section (side width: 9.5 mm; length 300 mm) was connected to
a temperature-controlled He IT bath (see the setup schematic in Fig. 1 (a)).
A planar heater was installed at the bottom of the flow channel to generate
thermal counterflow. To probe the normal-fluid motion, a femtosecond laser
pulse (wavelength: 800 nm; pulse length: about 30 fs) [36] was focused to pass
through the channel to created a thin horizontal line of He4 excimer molecules
with a thickness of about 100 ym and a length of about 1 cm. These molecular
tracers, which are entrained by the viscous normal fluid, can be imaged via
laser-induced fluorescence driven by an imaging laser pulse at 905 nm [17].
By examining the displacement of tracer-line segments, one can determine the
local normal-fluid velocity in the heat flux direction Uﬁz)(r) at any location
r along the tracer line. At the meanwhile, standard second-sound attenuation
measurements were conducted to determine the spatially averaged vortex-line
density L(t) in the channel using a pair of porus membrane-based second-sound
transducers [37].

The key observations are summarized in Fig. 1 (b)-(d). At relatively large
heat fluxes in steady counterflow, we found that as the heater was turned off,
L(t) first dropped drastically and then a bump emerged. At large decay times,
L(t) appeared to decay as L(t) oc t~3/2. These results are in good agreement
with the earlier observations of Skrbek et al. [26]. However, at sufficiently
low heat fluxes, we discovered that L(t) indeed decayed as L(t) o (t +t)~1,
which is what one would expect for the decay of a random tangle of vortices
according to Eq. 1. More importantly, our flow visualization measurements
revealed that the appearance of the bump was correlated with the large-scale
turbulence in the steady state. At large heat fluxes where the bump was seen,
the normal-fluid flow in the steady counterflow was always turbulent since we
observed random deformations on the tracer lines (see inset in Fig. 1 (b)). On
the other hand, at small heat fluxes where the bump was absent, the tracer
lines deformed in a reproducible manner in the steady counterflow, suggesting
laminar normal-fluid flow.

The deformation of the tracer lines also allowed us to evaluate the second-
order transverse velocity structure function defined as So(r) = ((UT(LZ) (r4rg)—
U (r0)?), where the angled brackets denote an ensemble average over various
reference location rg and different experimental runs [28]. The obtained Sz ()
at different decay times with a steady-state heat flux of ¢ = 426 W/cm? is
shown in Fig. 1 (c). In the shaded region, the S3(r) data can be fitted with a
power-law function Sa(r) oc 7. The extracted power index n as a function of
the decay time ¢ is shown in Fig. 1 (d). It is clear that n deceases with ¢ from
about 1 in steady state to about 2/3 at t ~ 1 s, i.e., the time around which
the bump of L(t) appears. Beyond this time, n settles at 2/3. Note that the
second-order velocity structure function and the turbulence energy spectrum
are connected through a bridge relation as detailed in Ref. [38]. Within the
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Fig. 1 (a) A schematic of the He II counterflow experimental setup. (b) Decay of the
vortex-line density L(¢). The measurements were conducted at 1.65 K, and t = 0 denotes the
moment when the heater was turned off. The dashed blue curves are model simulations as
reported in Ref. [29]. The inset images show the deformation of representative He} molecular
tracer lines created in steady counterflow before the heater was turned off. (¢) Measured
second-order transverse velocity structure function of the normal fluid Sa(r) at different
decay times. The solid lines represent power-law fits to the data in the shaded region. (d)
The power-law index extracted from (c) as a function of the decay time ¢t.

scaling length-scale range, the power-law form of S(r) o r™ corresponds to
a scaling of the energy spectrum E(k) ~ k~(+1D_ Our data suggests that in
decaying counterflow with a high steady-state heat flux, the energy spectrum
evolves from an approximate form of E(k) ~ k=2 to the classical Kolmogorov
form of E(k) ~ k=5/3 as the turbulence decays, and the bump of L(t) appears
upon the completion of the spectrum evolution. We would also like to point out
that we calculated the energy spectrum in steady counterflow directly using
our flow visualization data, as documented in Ref. [24]. Our analysis confirmed
that the energy spectrum in steady counterflow exhibits a power-law scaling
with a power index of about 2, consistent with the scaling of the structure
function.

Inspired by these observations, Joe proposed an appealing explanation of
the bump. Note that as the heat current was switched off, the two fluids can
become strongly coupled by the mutual friction in a few milliseconds [39].
Assuming homogeneous and isotropic flows, the total energy & per unit He
II mass is approximately given by & = & + &, where & = B(ps/p)k>L
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accounts for the flows associated with individual vortices at scales comparable
or smaller than ¢ (here B is a dimensionless factor of order unity) [3], and &
represents the kinetic energy density associated with the large-scale coupled
flows. The decay rate of the turbulence energy is related to the vortex-line
density L as [31]:

d& sdL  dé&:

== BFP%E + 2 = v/ (kL)% (2)
where 1/ is an effective viscosity of He II [28, 40, 41]. If there are no large-
scale flows, i.e., & = 0, Eq. (2) reduces to exactly Eq. (1), which essentially
describes the decay of a random tangle of vortices. But when &5 is nonzero, i.e.,
there are large-scale flows induced by polarized vortex bundles, the variation
of L(t) can deviate from the (t + to) ! scaling.

For instance, if the large-scale flows exhibit a Kolmogorov spectrum so
that the energy cascade rate e(k) remains constant in the inertial k range, &
can be estimated based on the energy cascade rate at the integral scale, i.e.,
&y = —e(kp) ~ —AU% /27p, where AUp denotes the velocity variance at the
integral scale (which is comparable to the channel width D) and 7p ~ D/AUp
is the turnover time of the large-scale eddies. Then, considering the fact that
AUp decreases with time as the turbulence decays [31], one can derive & (t) ~
—AUp(0)3/2D[1 + t/7p(0)]? [29]. Adding this & to Eq. (2) can lead to a
smooth transition from the scaling of L(t) oc (t+1t) ! at small ¢ to the scaling
of L(t) o< t=3/2 at large t.

However, the situation changes when the large-scale flows have an initial
spectrum steeper than the Kolmogorov form, i.e., E(k) ~ k2. In this case,
it is straightforward to derive that the energy cascade rate depends on k as
e(k) ~ k~1/2. Therefore, initially & ~ —e(k¢), which is smaller than —e(kp) by
a factor (ke/k D)_l/ 2 and hence should be negligible under typical experimental
conditions. Only after the spectrum evolves into the Kolmogorov form, & can
rise to —e(kp) and contribute to the buildup of the vortices. This delayed
cascade of the large-scale turbulence energy can give rise to a bump of L(¢).
Based on this idea, Joe proposed that & in decaying counterflow could be
modeled as: AT(0)3
C2D[1 + t(/ ) 3 F (), 3)

7p(0)]
with F(t) being a dimensionless function that evolves smoothly from 0 to 1
over a time comparable to 75 (0) ~ D/AUp(0) [29]. It turns out that numerical
simulations based on Egs. (2) and (3) can reasonably reproduce the location
and the height of the bump, as shown in Fig. 1 (b).

(5'322

3 Vinen’s latest thoughts

A key assumption made in the theory presented in Sec. 2 is that the time it
takes for the initial energy spectrum (i.e., E(k) ~ k~2) to evolve to the final
Kolmogorov form is about the turnover time of the large-scale eddies, i.e.,
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7p(0) ~ D/AUp(0). But is this assumption valid? During a visit to our lab in
2019, Joe raised this question to us. Based on his suggestion, we adopted the
Leith diffusion model to examine the time evolution of E(k,t) [42]:

OE(k,t) 20 [apd

ot 1103/2 9k ok

(k3E3%(k))| — 2vk?E(k), (4)

where C' = 1.71 is the Kolmogorov constant and v is the kinematic viscosity of
He II. This equation applies to homogeneous and isotropic turbulence and has
been widely utilized to study energy-spectrum evolution in classical fluids [43—
45]. In decaying counterflow where the two fluids are strongly coupled, one
would expect that the spectrum evolution of the large-scale flows may also
obey this classical model.

In our study, we suppose that initially the energy spectrum E(k,0) is pro-
portional to k2 at small k, which reaches a maximum Fy at k = ko, and then
falls off as k=2 at large k as indicated by our flow visualization data. We take
the turnover time for the energy-containing eddies as 7y = 23/27T/k3/2E01/2.
This is equivalent to taking kg = 27/D and 79 = 2D/AU,. We can then
introduce the following dimensionless parameters E=E /Eo, t = t/70, and
k = k/ko to convert Eq. (4) into a dimensionless form:

OE 0 [:1300 i 5=
—_—= = —= k13/27~ k_3E3/2 . 5
ot ok 8k( ) (5)

Here we have dropped the viscous term in Eq. (4) and replaced it by imposing a

sharp cutoff at & = 1000. Our initial energy spectrum then takes the following
dimensionless form (i.e., see the black line in Fig. 2 (a)):

o 2k2

E(k,0) = T (6)

By integrating Eq. (5), the evolution of the spectrum can be obtained, which is
shown in Fig. 2 (a). We see that the spectrum evolves to the Kolmogorov form
after a dimensionless time £ less than 0.1, i.e., about an order of magnitude
smaller than the turnover time of the energy-containing eddies. Indeed, this
is not really a surprising result because only a small fraction of the energy in
the energy-containing eddies needs to be lost in order for the evolution to the
Kolmogorov spectrum to occur at large k.

We have also tested the evolution of an initial energy spectrum that has
practically no weight for k greater than about 2:

A i - 15))] . )

B(R,0) = 1 1~ tanh(5(F — 1.5)

The simulation result is shown in Fig. 2 (b). Although this spectrum evolves
into the Kolmogorov form more slowly than does that given by Eq. (6), the
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Fig. 2 Evolution of the dimensionless energy spectrum with an initial form given by (a)
Eq. (6) and (b) Eq. (7). These simulations were conducted using the Leith diffusion equation
as discussed in the text. The dashed line shows the scaling of a Kolmogorov spectrum.
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Fig. 3 (a) A schematic showing how the turbulent eddies in the two fluids of different orien-
tations become decoupled in He II counterflow. See more detailed discussions in Refs. [46, 47].
(b) A schematic illustrating Joe Vinen’s view on how the turbulence energy flows in coun-
terflow.

time required for this evolution is still significantly less than the turnover time
of the energy containing eddies. Therefore, the analysis based on the Leith
equation clearly suggests that the evolution of the initial energy spectrum to
the Kolmogorov form in decaying counterflow should be much quicker than
what we had believed, i.e., the F(¢) function in Eq. (3) should evolve from 0
to 1 in a much shorter time than 75(0). According to the theory presented in
Sec. 2, the bump should therefore emerge much earlier than the observed time.
On the other hand, experimental data shown in Fig. 1 (d) do suggest that
the spectrum evolves to the Kolmogorov form in a time comparable to 7p(0).
This discrepancy made Joe realize that some ingredients may be missing in
his original theoretical model.

Note that the Leith equation (i.e., Eq. 4) applies to isotropic turbulence.
But as Biferale et al. pointed out recently, steady-state counterflow turbu-
lence can exhibit strong anomalous anisotropy at small scales [46, 47]. This
anisotropy can be conceptually understood by considering two turbulent eddies
(one in each fluid) as shown schematically in Fig. 3 (a). If these two eddies do
not correlate and overlap in space, they would be very effectively damped by
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the mutual friction [39]. On the other hand, if the two eddies are coupled, the
mutual friction dissipation may remain small such that these eddies could sur-
vive for a sufficient time to sustain a cascade. But due to the opposite mean
flows, any initially coupled eddies must be swept apart at later times. The
larger eddies can remain coupled for longer times, whereas the smaller eddies
become uncorrelated quickly and hence are promptly damped. Therefore, the
population of the coupled eddies must be suppressed as the length scale is
reduced. Furthermore, for coupled eddies that are elongated perpendicular to
the heat flux direction (i.e., Fourier modes with large k., which are denoted
by Joe as the “perpendicular modes”), they remain coupled for much shorter
times as compared to those eddies elongated parallel to the heat flux direction
(i.e., Fourier modes with small &, denoted as the “parallel modes”). Therefore,
the perpendicular modes should be strongly suppressed in steady counterflow.

Joe believed that this anisotropy in steady counterflow must affect how fast
the energy spectrum could evolve into the Kolmogorov form after the heat flux
was switched off. His idea is illustrated in Fig. 3 (b). In the steady state, the
large-scale eddies may feed energy to both the perpendicular modes and the
parallel modes. The perpendicular modes are strongly damped by the mutual
friction. Consequently, the parallel modes must lose energy by inertial transfer
to both smaller eddies and to those perpendicular modes. As the heater is
turned off, the energy contained in the parallel modes would continue to feed
to the perpendicular modes until finally all the modes are populated such that
a Kolmogorov spectrum can be achieved. The build up of the perpendicular
modes is likely to take longer time than is indicated by the solution of the
Leith equation. Based on this idea, Joe started to develop a revised model of
the bump, taking into account the spectrum anisotropy. But unfortunately, his
physical conditions deteriorated rapidly starting from 2021, and he was not
able to finish this work before he passed away in 2022.

4 Summary and ongoing work

We have performed a Leith-equation analysis on the time evolution of the
turbulence energy spectrum with an initial form that is consistent with what
we observed in our decaying He II counterflow experiment. Our results suggest
that a key assumption made in the theoretical model developed by Joe Vinen
and colleagues for explaining the bump puzzle is likely inadequate. According
to Joe, this issue may be resolvable by taking into account the anisotropy of
the initial energy spectrum.

To carry forward Joe’s idea and research efforts, we recently started a
numerical simulation using a revised Leith-diffusion model designed for homo-
geneous but anisotropic turbulence [48]. Besides the Leith-equation simulation,
we have also developed a stereoscopic molecular tagging technique to mea-
sure the normal-fluid velocities both parallel and perpendicular to the heat
flux direction [49]. Our preliminary data suggest that the energy spectrum of
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the parallel velocity component is much larger than that of the perpendicu-
lar velocity component, and this difference increases with decreasing k. Note
that in the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) model simulations
conducted by Biferale et al., an isotropic driving force acting at large length
scales was adopted to generate the turbulence [46, 47]. This forcing scheme
leads to comparable spectrum heights at small k for both velocity components,
which is unable to account for our observation. On the other hand, our earlier
experimental and numerical studies revealed that the vortex-line density fluc-
tuations in steady counterflow can lead to velocity fluctuations primarily in the
heat flux direction [50-52]. But these anitropic disturbances occur at relatively
small length scales and are not expected to cause large-scale anisotropic flows.
Nonetheless, Polanco and Krstulovic recently conducted HVBK-model simula-
tions assuming a random isotropic driving force that acts only at small length
scales [53]. They showed strikingly that the turbulence energy can inversely
cascade to large length scales. We tried to repeat this HVBK-model simulation
using a driving force at small length scales that fluctuates in both space and
time but could not reproduce the reported inverse energy cascade. Through
communications with these authors, we realized that the driving force adopted
in their simulations was random in space but constant in time, which is prob-
ably not realistic in real thermal counterflow. We are currently devising new
forms of anisotropic driving force in the HVBK model with the hope to better
reproduce our experimental observations. These experimental and numerical
results will be compiled and reported in a future publication.

Dedication to Joe Vinen

The author W.G. first met Joe Vinen in 2008 at a workshop in San Antonio on
low-temperature flow visualization, organized by Steven W. Van Sciver. They
started collaborating since then. After W.G. joined Florida State University,
Joe regularly visited W.G.’s lab every year to participate data analysis and
result interpretation. Practically, Joe served the mentor role and motivated
W.G. to investigate various aspects of quantum turbulence. Over the years,
they jointly published over a dozen papers. Joe’s passion for research and his
kind guidance to younger generations will be remembered for years to come.
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