# Triple-Wavelength Lasing with a Stabilized $\beta$ - $\mathrm{LaBSiO}_{5}: \mathrm{Nd}^{3+}$ Crystal 

Lingyun Li,*," Fazheng Huang, ${ }^{\text {, }}$ Yi Shi, ${ }^{\text {\# }}$ Zhong-Zhen Luo, Guo-Qiang Wang, Xin-Xiong Li, Bingxuan Li, Lizhen Zhang, Yi Yu, Ya-Nan Feng, Chengkai Yang, Yan Yu,* and Kenneth R. Poeppelmeier*



Cite This: J. Am. Chem. Soc. 2022, 144, 11822-11830


Read Online

| ACCESS \| 岒 Metrics \& More Article Recommendations | (s) Supporting Information |
| :--- | :--- | :--- | :--- |


#### Abstract

Multi-wavelength lasers, especially the triple-wavelength laser around 1060 nm , could be produced by the ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow$ ${ }^{4} \mathrm{I}_{11 / 2}$ transition of $\mathrm{Nd}^{3+}$ and present numerous challenges and opportunities in the field of optoelectronics. The $\mathrm{Nd}^{3+}$-doped hightemperature phase of $\mathrm{LaBSiO}_{5}(\beta-\mathrm{LBSO})$ is an ideal crystal to produce triple-wavelength lasers; however, the crystal growth is challenging because of the phase transition from $\beta$-LBSO to lowtemperature phase $\left(\alpha\right.$-LBSO) at $162{ }^{\circ} \mathrm{C}$. This phase transition is successfully suppressed when the doping content of $\mathrm{Nd}^{3+}$ is larger than 6.3 at. $\%$, and the $\mathrm{Nd}^{3+}$-doped $\beta$-LBSO is stable at room temperature. The local disorder of $\mathrm{BO}_{4}$ tetrahedra due to $\mathrm{Nd}^{3+}$ doping is essential to the stabilization of $\beta$-LBSO. For the first time,  the $\beta$-LBSO: $8 \% \mathrm{Nd}^{3+}$ crystal with a dimension of $1.8 \times 1.8 \times 1.8$ $\mathrm{cm}^{3}$ is obtained through the top-seeded solution method. The crystal shows strong optical absorption in the range of $785-815 \mathrm{~nm}$, matching well with the commercial laser diode pumping source. The optical emission of ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ splits into four peaks with the highest optical emission cross section of $2.14 \times 10^{-20} \mathrm{~cm}^{2}$ at 1068 nm . The continuous-wave triple-wavelength generation of coherent light at 1047, 1071, and 1092 nm is achieved with the highest output power of 235 mW and efficiency of $12.1 \%$.


## - INTRODUCTION

Multi-wavelength lasers with simultaneous emissions of two or more lasers in one beam have great applications in the field of tera hertz (THz), ${ }^{1}$ precision metrology, ${ }^{2}$ holography, ${ }^{3}$ medical treatment, ${ }^{4}$ and laser interferometry. ${ }^{5}$ Most of the multiwavelength lasers are produced by $\mathrm{Nd}^{3+}$-doped crystals, such as $\mathrm{Nd}^{3+}$-doped yttrium aluminum garnet (YAG: $\mathrm{Nd}^{3+}$ ), ${ }^{6}$ yttrium vanadate $\left(\mathrm{YVO}_{4}: \mathrm{Nd}^{3+}\right),{ }^{7}$ gadolinium vanadate $\left(\mathrm{GdVO}_{4}: \mathrm{Nd}^{3+}\right),{ }^{8}$ and yttrium-aluminate (YAP:Nd ${ }^{3+}$ ) crystals ${ }^{9}$ since the optical emission of $\mathrm{Nd}^{3+}$ corresponding to the ${ }^{4} \mathrm{~F}_{3 / 2}$ $\rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ transition can split into several peaks around 1064 nm according to the Stark sublevels of ${ }^{4} \mathrm{I}_{11 / 2}$. For example, Cho et al. reported the simultaneous laser emissions at 1047 and 1053 nm using a $\mathrm{Nd}^{3+}$-doped lithium yttrium fluoride (YLF:Nd ${ }^{3+}$ ) crystal as gain media at the cryogenic temperature. ${ }^{10}$ An orthogonally polarized dual-wavelength laser working at 1052 and 1081 nm was also obtained based on the $\mathrm{LaMgB}_{5} \mathrm{O}_{10}: \mathrm{Nd}^{3+}$ crystal, which was diode-pumped with a continuous-wave (CW) way mode. ${ }^{11}$ A dual-wavelength laser at 1068 and 1074 nm was realized on the $\mathrm{LaBO}_{2} \mathrm{MoO}_{4}: \mathrm{Nd}^{3+}$ crystal. ${ }^{12}$ However, most multi-wavelength lasers around 1064 nm work in a dualwavelength mode, ${ }^{6,10-13}$ as listed in Table S1. It would have significant practical potential if an $\mathrm{Nd}^{3+}$-doped crystal could produce triple-wavelength lasers based on the ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ transition. For example, a dual-wavelength laser can produce only one THz wave based on the differential frequency technology, but a triple-wavelength laser can produce three,
which greatly expands the THz light source. However, the main obstacle to developing a triple-wavelength laser is the lack of suitable laser crystals.

The high-temperature phase of $\mathrm{LaBSiO}_{5}$ ( $\beta$-LBSO) with the advantage of functional borate and silicate groups would be an ideal host crystal for $\mathrm{Nd}^{3+}$ ions to obtain a triple-wavelength laser. $\beta$-LBSO was first discovered as a mineral in northwestern Queensland in 1955. ${ }^{14}$ It crystallizes in the $P 3_{1} 21$ space group with cell parameters $a=b=6.827(2)(\AA), c=6.779(2)(\AA), V$ $=273.63\left(\AA^{3}\right)$, and $Z=3 .{ }^{15} \beta$-LBSO is stable above $162{ }^{\circ} \mathrm{C}$ and transforms to the low-temperature phase of $\alpha$-LBSO below $162{ }^{\circ} \mathrm{C} . \alpha$-LBSO crystallizes in the trigonal system with space group of $P 3_{1}$ and cell parameters $a=b=6.874(1)(\AA), c=$ 6.717(3) ( $\AA$ ), $V=274.87\left(\AA^{3}\right)$, and $Z=3$ (Figure S1). ${ }^{16}$ The growth of $\beta$-LBSO single crystals has drawn attention since its discovery. Leonyuk et al. attempted to grow the crystal through a flux method by using $\mathrm{K}_{2} \mathrm{Mo}_{3} \mathrm{O}_{10}$ and KF as the solvent. Crystals of up to 3 mm were obtained when the flux cooled down from $1140{ }^{\circ} \mathrm{C} .{ }^{17}$ Sha et al. also reported crystals from a

[^0]
flux containing $\mathrm{Li}_{2} \mathrm{MoO}_{4}$ during the temperature range of $950-750{ }^{\circ} \mathrm{C} .{ }^{18}$ The authors obtained a transparent crystal plate with the dimension of $4 \times 4 \mathrm{~mm}^{2}$ by a spontaneous nucleation method. However, the above crystals were $\alpha$-LBSO. Our previous study indicated that a large crystal with the dimension of $1.2 \times 1.0 \times 0.8 \mathrm{~cm}^{3}$ can be obtained through a top-seeded solution method (TSSG) during the temperature range of $1039-750{ }^{\circ} \mathrm{C}$ by using a flux composed by $\mathrm{LaBO}_{3}$, $\mathrm{SiO}_{2}$, and $\mathrm{Li}_{2} \mathrm{MoO}_{4}{ }^{19}$ Unfortunately, the obtained crystal also transformed to be $\alpha$-LBSO and fractured at room temperature because of the stress release during the phase transition (Figure $\mathrm{S} 2)$. To date, the successful growth of $\beta$-LBSO single crystals has yet to be achieved.

The challenge is two-fold, first is controlling or eliminating the phase transition of $\beta$-LBSO on cooling to room temperature and the second is growing large $\beta$-LBSO single crystals. The strategies such as strain adjustment, ${ }^{20}$ grain size control, ${ }^{21}$ annealing process, ${ }^{22}$ and doping ${ }^{23}$ are commonly used to manipulate the phase composition or phase transition of functional materials such as $\mathrm{VO}_{2}, \mathrm{TiO}_{2}$, and $\mathrm{ZrO}_{2}{ }^{24}$ The metal-insulator transition (MIT) temperature of the $\mathrm{VO}_{2}$ film could be lowered from 68 to $31^{\circ} \mathrm{C}$ by adjusting the strain/ stress between the film and the substrate. ${ }^{25}$ Doping of $\mathrm{La}^{3+}$, $\mathrm{Co}^{2+}$, and $\mathrm{Fe}^{3+}$ ions can promote $\mathrm{TiO}_{2}$ transformation from the anatase phase to the rutile phase, ${ }^{26}$ while $\mathrm{Al}^{3+}$ and $\mathrm{Tb}^{3+}$ doping restrain the phase transition between them..$^{27}$ Meanwhile, one can make the high-temperature cubic phase $\mathrm{ZrO}_{2}$ stable even at room temperature by doping $\mathrm{Sc}^{3+}$ ions or controlling the grain size at the nanometer level. The tuning of phase transitions in the above materials is related to modification of the lattice energy and the appearance of the intermediate phase. ${ }^{24}$ However, for the $\beta$-LBSO single crystal, strain adjustment and grain size regulation are not applicable to eliminate the phase transition. On the contrary, $\beta$-LBSO exhibits excellent doping capability with rare-earth ions such as $\mathrm{Ce}^{3+}, \mathrm{Tb}^{3+}, \mathrm{Eu}^{3+}, \mathrm{Pr}^{3+}$, and $\mathrm{Sm}^{3+},{ }^{28}$ which display excellent photoluminescence properties. ${ }^{29}$ As a widely used method to tune the phase transition of functional materials, doping is a promising route to eliminate the phase transition of $\beta$-LBSO crystal and to stabilize it to room temperature.

In this work, the phase tuning of $\beta$-LBSO via $\mathrm{Nd}^{3+}$ doping was studied. The phase transition of $\beta$-LBSO crystal can be suppressed with the doping ratio of $\mathrm{Nd}^{3+}$ above $6.3 \%$ (mol). The introduction of $\mathrm{Nd}^{3+}$ into $\beta$-LBSO renders the O 3 atom statistically distributing and the $\mathrm{BO}_{4}$ polyhedra disordered, which is crucial for the stabilization of $\beta$-LBSO at room temperature. We obtained a large $\beta$-LBSO: $8 \% \mathrm{Nd}^{3+}$ crystal for the first time through the TSSG method. The $\mathrm{Nd}^{3+}$ ions in this crystal are both optically active centers and a structure stabilization agent. The $\beta$-LBSO: $8 \% \mathrm{Nd}^{3+}$ crystal shows strong optical absorption in the range of $785-815 \mathrm{~nm}$, matching well with the commercial laser diode (LD) pumping source. The optical emission of ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ splits into four peaks with the highest optical emission cross section of $2.14 \times 10^{-20} \mathrm{~cm}^{2}$ at 1068 nm . Most importantly, a triple-wavelength CW laser with 1047, 1071, and 1092 nm in one coherent laser beam was achieved. This laser beam displays the largest wavelength difference of the triple-wavelength lasers and the highest output laser power of 235 mW with 808 nm LD as the pumping source.

## RESULTS AND DISCUSSION

Influence of $\mathrm{Nd}^{3+}$ Doping on the Phase Transition of $\beta$-LBSO and Crystal Growth of $\mathrm{Nd}^{3+}$-Doped $\beta$-LBSO. The $\mathrm{Nd}^{3+}$ doping can suppress the phase transition of $\beta$-LBSO. The evolution of the enthalpy of the phase transition and the transition temperature of the $\mathrm{Nd}^{3+}$-doped samples grown by the spontaneous nucleation method (Figures S3 and S4) versus doping rate are shown in Figure 1a. As displayed, the


Figure 1. Phase-transition temperature, enthalpy changes of LBSO: $x$ $\% \mathrm{Nd}^{3+}$ (a); PXRD patterns of $\beta$-LBSO:11.9\% $\mathrm{Nd}^{3+}$ and $\beta$ LBSO: $15.8 \% \mathrm{Nd}^{3+}$ crystals that measured at $22{ }^{\circ} \mathrm{C}$ (b); Rietveld refinement results of $\alpha$-LBSO:3.0\% $\mathrm{Nd}^{3+}$ with $R_{\text {wp }}=9.86 \%, R_{\mathrm{p}}=$ $7.38 \%$, and $\chi^{2}=0.87$ (c); and $\beta$-LBSO: $11.9 \% \mathrm{Nd}^{3+}$ with $R_{\mathrm{wp}}=12.81 \%$, $R_{\mathrm{p}}=9.16 \%$, and $\chi^{2}=1.60(\mathrm{~d})$.
phase-transition temperature rises when the doping content increases, indicating that the transition from $\beta$-LBSO to $\alpha$ LBSO becomes more difficult when $\mathrm{Nd}^{3+}$ replaces $\mathrm{La}^{3+}$. On the other hand, the transition enthalpy decreases with the increase in $\mathrm{Nd}^{3+}$ content. As shown in Figure S5, all $\beta$-LBSO samples doped by $\mathrm{Nd}^{3+}$ with content no more than $6.3 \%$ (mol) have an endothermic peak on the heating curve and an exothermic peak on the cooling curve, indicating a reversible first-order phase transition between $\alpha$ - and $\beta$-LBSO. Furthermore, the endothermic and exothermic peaks have disappeared with $\mathrm{Nd}^{3+}$ above $6.3 \%$, indicating the elimination of phase transition. To demonstrate the elimination of phase transition, the crystal structure of $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ at $-98{ }^{\circ} \mathrm{C}$ was solved. The crystallographic parameters are shown in Tables S2-S4. It crystallizes in the trigonal system and has the same space group $P 3_{1} 21$ as $\beta$-LBSO. Meanwhile, the unit cells of $\beta$ LBSO: $8.0 \% \mathrm{Nd}^{3+}$ expand slightly along both the $a$ and $b$ axes compared with that of the undoped $\beta$-LBSO. The thermal analysis and single-crystal structural data reveal that the $\beta$ LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal is stable down to a temperature of $-98^{\circ} \mathrm{C}$. As shown in Figure 1 b , the powder X-ray diffraction (PXRD) patterns of $\beta$-LBSO:11.9\% $\mathrm{Nd}^{3+}$ and $\beta$-LBSO:15.8\% $\mathrm{Nd}^{3+}$ match well with the simulated pattern of $\beta$-LBSO:8.0\% $\mathrm{Nd}^{3+}$. Furthermore, the stabilization effect of $\mathrm{Nd}^{3+}$ doping was confirmed by the Rietveld fitting of the PXRD data of $\alpha$ LBSO:3.0 $\% \mathrm{Nd}^{3+}$ and $\beta$-LBSO:11.9\% $\mathrm{Nd}^{3+}$ crystals, as shown in Figure $1 \mathrm{c}, \mathrm{d}$. The data of $\beta$-LBSO: $11.9 \% \mathrm{Nd}^{3+}$ was refined well with the crystal structure of $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ as the starting


Figure 2. Sketch of TSSG equipment (a) and crystal growth procedure (b). Photos of $\beta$-LBSO:8.0\%Nd ${ }^{3+}$ crystals (c,d) and $\beta$-LBSO:15.8\%Nd ${ }^{3+}$ crystals (e,f) that were taken under annealing (c,e) and taken after annealing ( $\mathrm{d}, \mathrm{f}$ ). The crystals were grown along the $c$ axis from the $\mathrm{LaBO}_{3}-$ $\mathrm{Li}_{2} \mathrm{MoO}_{4}-\mathrm{SiO}_{2}-\mathrm{B}_{2} \mathrm{O}_{3}$ molten system and the photos of $(\mathrm{d}, \mathrm{f})$ were taken at $22{ }^{\circ} \mathrm{C}$.


Figure 3. Ball-stick and polyhedral representation of the $\mathrm{BO}_{4}$ tetrahedra in $\beta$-LBSO that crystallized in the $P 3_{1} 21$ space group (a,b), $\alpha$-LBSO that crystallized in the $P 3_{1}$ space group ( $\mathrm{d}, \mathrm{e}$ ), and $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ that crystallized in the $P 3_{1} 21$ space group ( g ,h). Unit cells of $\alpha$-LBSO (c), $\beta$-LBSO (f), and $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}(\mathrm{i}) . \mathrm{BO}_{4}$ polyhedra in (e,h) are shown in different colors for clarity. Atomic color code: oxygen, red; silicon, cyan; lanthanide, yellow; and boron, green.


Figure 4. Polarized optical absorption and emission spectra (a,b) and luminescence decay curve of the $\beta$-LBSO:8.0\% $\mathrm{Nd}^{3+}$ crystal (c).
model, indicating that $\beta$-LBSO: $11.9 \% \mathrm{Nd}^{3+}$ belongs to the hightemperature phase with space group $P 3_{1} 21$. Meanwhile, the PXRD pattern of $\alpha$-LBSO:3.0\% $\mathrm{Nd}^{3+}$ was fitted well according to the structure of $\alpha$-LBSO. The stabilization of $\beta$-LBSO at room temperature is fundamental to large size crystal growth. The $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal with a dimension of $1.8 \times 1.8 \times$ $1.8 \mathrm{~cm}^{3}$ and the $\beta$-LBSO: $15.8 \% \mathrm{Nd}^{3+}$ crystal with the dimension of $2.3 \times 2.3 \times 2 \mathrm{~cm}^{3}$ were successfully grown by the TSSG method from the $\mathrm{LaBO}_{3}-\mathrm{Li}_{2} \mathrm{MoO}_{4}-\mathrm{SiO}_{2}-\mathrm{B}_{2} \mathrm{O}_{3}$ molten system (Figure 2a,b). A c axis seed crystal was used during the growth procedure (Figure S6). Figure 2c-f displays the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ and $\beta$-LBSO: $15.8 \% \mathrm{Nd}^{3+}$ crystals under and after annealing. The exposed natural planes such as (011), $(1 \overline{1} 1)$, and ( $\overline{1} 01$ ) form the morphology of these crystals. The phase consistency between the obtained crystals and the resolved structure of $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ was confirmed by the PXRD patterns presented in Figure S7.

Phase Stabilization Mechanism of $\mathrm{Nd}^{3+}$ Doping on $\beta$ LBSO. Benefitting from the single-crystal structure data of $\beta$ LBSO: $8.0 \% \mathrm{Nd}^{3+}$, the influence of $\mathrm{Nd}^{3+}$ doping on the crystal structure of $\beta$-LBSO and the stabilization mechanism was investigated from a crystallographic viewpoint. As reported by Leonyuk and Huang, $\beta$-LBSO and $\alpha$-LBSO crystallize in the $P 3_{1} 21$ and $P 3_{1}$ space groups, respectively. ${ }^{16}$ A detailed structural comparison between them indicates that the most obvious structural variation during the phase transformation is the distortion of the $\mathrm{BO}_{4}$ tetrahedron. The basic structural units of both structures are identical except that the two oxygen atoms of the $\mathrm{BO}_{4}$ tetrahedron in $\alpha$-LBSO split into four oxygen atoms (Figure S8). In $\beta$-LBSO that crystallized in the $P 3_{1} 21$ space group, the atomic displacement parameters of the two oxygen atoms ( O 3 ) of the $\mathrm{BO}_{4}$ tetrahedron are much larger than the other two oxygen atoms (O1) (Tables S5-S7), indicating that the two O 3 atoms have a potential position statistical distribution (Figure 3a,b). While in the $\alpha$-LBSO that crystallized in the $P 3_{1}$ space group, the two O3 atoms split into four positions (O5 and O6) with site occupancy factors of 0.42
and 0.58 (Figure 3d,e). Furthermore, the $\mathrm{B}-\mathrm{O}$ bond distances vary from $1.443 \AA$ in $\beta$-LBSO to $1.374,1.367,1.568$, and 1.579 $\AA$ in $\alpha$-LBSO during the phase transformation. Such a phase-transformation-induced structural variation can be understood as the regular $\mathrm{BO}_{4}$ tetrahedron in $\beta$-LBSO transforms to two slightly distorted $\mathrm{BO}_{4}$ tetrahedra with unequal site occupancy as the temperature decreases (Figure 3a,b,d,e). It is noteworthy that such an asymmetric split of the O 3 atom results in the loss of the 2 -fold rotation axis of the $P 3_{1} 21$ space group (Figure $3 \mathrm{c}, \mathrm{f})$. Consequently, $\alpha$-LBSO has to crystallize in the $P 3_{1}$ space group. Generally, the skeleton tension of a structure increases as the temperature drops because the thermal vibration of atoms is reduced accordingly. The phase transformation from $P 3_{1} 21$ to $P 3_{1}$ reveals that the distortion and statistical distribution of the $\mathrm{BO}_{4}$ tetrahedra may be suppressed at high temperatures due to the weak skeleton tension, and those of the $\mathrm{BO}_{4}$ tetrahedra become greater to reduce the strong skeleton tension at low temperature. Thus, it can be concluded that a local disorder of a structure is beneficial for phase stabilization at low temperatures.
In this study, we measured the crystal structure of $\beta$ LBSO: $8.0 \% \mathrm{Nd}^{3+}$ at room temperature and $-98{ }^{\circ} \mathrm{C}$ several times. All experimental results proved that $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystallizes in the $P 3_{1} 21$ space group, indicating that the doping of $8 \%$ of the Lal site with $\mathrm{Nd}^{3+}$ ions stabilizes the hightemperature phase. In other words, the 2 -fold rotation axis of the high-temperature phase is maintained as the temperature decreases. Single-crystal structural analysis of $\beta$-LBSO:8.0\% $\mathrm{Nd}^{3+}$ indicates that the two oxygen atoms (O3) of the $\mathrm{BO}_{4}$ tetrahedron are also disordered into four positions, and the regular $\mathrm{BO}_{4}$ tetrahedron splits into two slightly distorted $\mathrm{BO}_{4}$ tetrahedra (Figure 3g,h). However, the site occupancy factors of the two oxygen atoms ( O 3 ), 0.5 and 0.5 , and the $\mathrm{B}-\mathrm{O}$ bond distances, which fall into two groups of 1.396 and $1.593 \AA$, are different from those in the $\alpha$-LBSO sample at low temperature (Figure 3d,e). Such a regular statistical distribution of the $\mathrm{BO}_{4}$ tetrahedra has a 2 -fold symmetry which is consistent with the
symmetry of the $\beta$-LBSO, as evidenced by the unit cells (Figure $3 \mathrm{f}, \mathrm{i}$ ). As a result, the 2 -fold rotation axis in $\beta$ LBSO: $8.0 \% \mathrm{Nd}^{3+}$ is maintained as the temperature decreases as low as $-98^{\circ} \mathrm{C}$. Compared with $\alpha$-LBSO reported by Huang which is stabilized by an irregular local statistical distribution of the $\mathrm{BO}_{4}$ tetrahedron, the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ phase is stabilized by a regular statistical distribution of the $\mathrm{BO}_{4}$ tetrahedron triggered by introducing $8 \%$ of $\mathrm{Nd}^{3+}$ ions. From the structural perspective, the introduction of $\mathrm{Nd}^{3+}$ ions to replace the $\mathrm{La}^{3+}$ sites may make the $\mathrm{BO}_{4}$ tetrahedron more flexible to realize a regular statistical distribution to release the structural tension at a much wider temperature range, considering that the $\mathrm{Nd}^{3+}$ ion is slightly different from the $\mathrm{La}^{3+}$ ion in mass numbers, electronic-shell structures, atomic radii, and the crystal filed stabilization energy. As far as we know, this is the first time that the high-temperature $P 3_{1} 21$ phase of $\beta$-LBSO has been found to be stabilized at low temperatures by a doping strategy.

Optical Spectroscopic Properties of the $\beta$-LBSO:8.0\% $\mathrm{Nd}^{3+}$ Crystal. The polarized absorption spectrum of the $\beta$ LBSO:8.0\% $\mathrm{Nd}^{3+}$ crystal is shown in Figure 4a, which displays an obvious anisotropy between $\pi$ and $\sigma$ polarization. The typical absorption peaks corresponding to the electronic transition from the ground state ${ }^{4} \mathrm{I}_{9 / 2}$ to the upper states such as ${ }^{4} \mathrm{~F}_{3 / 2},{ }^{4} \mathrm{~F}_{9 / 2},{ }^{2} \mathrm{H}_{11 / 2},{ }^{2} \mathrm{~K}_{13 / 2},{ }^{4} \mathrm{G}_{7 / 2},{ }^{4} \mathrm{G}_{9 / 2},{ }^{4} \mathrm{G}_{5 / 2},{ }^{2} \mathrm{G}_{7 / 2}$, ${ }^{4} \mathrm{~F}_{7 / 2},{ }^{4} \mathrm{~S}_{3 / 2},{ }^{4} \mathrm{~F}_{5 / 2}$, and ${ }^{2} \mathrm{H}_{9 / 2}$ are present. There are three strong absorption bands with the peak wavelength of 579,743 , and 799 nm , which could be assigned to the electronic transition of ${ }^{4} \mathrm{I}_{9 / 2} \rightarrow{ }^{4} \mathrm{G}_{5 / 2}+{ }^{2} \mathrm{G}_{7 / 2},{ }^{4} \mathrm{I}_{9 / 2} \rightarrow{ }^{4} \mathrm{~F}_{7 / 2}+{ }^{4} \mathrm{~S}_{3 / 2}$, and ${ }^{4} \mathrm{I}_{9 / 2} \rightarrow{ }^{4} \mathrm{~F}_{5 / 2}+$ ${ }^{2} \mathrm{H}_{9 / 2}$, respectively. Benefitting from the large energy gap and excellent optical transparency of the crystal in the ultraviolet range, the optical absorption of transitions from ${ }^{4} \mathrm{I}_{9 / 2}$ to ${ }^{2} \mathrm{I}_{13 / 2}+$ ${ }^{4} \mathrm{D}_{7 / 2}+{ }^{2} \mathrm{~L}_{17 / 2}$ with a peak wavelength of 326 nm emerges as shown in this figure. The absorption cross section $\sigma_{\text {abs }}$, which represents the absorption ability of the pumping light, was calculated by the formula

$$
\begin{equation*}
\sigma_{\mathrm{abs}}=\frac{\alpha}{N_{\mathrm{c}}} \tag{1}
\end{equation*}
$$

where $\alpha$ is the absorption coefficient that equals the optical density divided by the thickness of the tested crystal plate shown in Figure S6c, and $N_{c}$ is the actual concentration (8.61 $\times 10^{20} \mathrm{~cm}^{-3}$ ) of $\mathrm{Nd}^{3+}$ in the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal. Therefore, the absorption cross-sectional values of the crystal at 579,743 , and 799 nm for $\sigma$ polarization are $6.90 \times 10^{-21}$, $6.20 \times 10^{-21}$, and $6.87 \times 10^{-21} \mathrm{~cm}^{2}$, respectively. These results reveal that the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal has excellent optical absorption ability in the UV-vis-NIR range. Meanwhile, the strong absorption of $785-815 \mathrm{~nm}$ light promotes 808 nm LD as the pumping source for this crystal, which is the base of a compact laser system.
The electronic transition dynamics of $\mathrm{Nd}^{3+}$ was investigated based on the optical absorption spectra of the $\beta$-LBSO:8.0\% $\mathrm{Nd}^{3+}$ crystal according to the Judd-Ofelt theory. ${ }^{30}$ The experimental oscillator strength $S_{\text {mea }}$ of the transitions identified from the optical absorption spectra between the excited manifold and the ground state ${ }^{4} \mathrm{I}_{9 / 2}$ was calculated by the following formula ${ }^{31}$

$$
\begin{equation*}
S_{\text {exp }}=\frac{3 \operatorname{ch}(2 J+1)}{8 \pi^{3} e^{2} \bar{\lambda}}\left[\frac{9 n}{\left(n^{2}+2\right)}\right] \int \sigma(\lambda) \mathrm{d} \lambda \tag{2}
\end{equation*}
$$

where $\sigma(\lambda)$ is the absorption cross section, $\bar{\lambda}$ is the mean wavelength of the absorption band, $J$ is the total angular
momentum of the initial level $\left(J=9 / 2\right.$ for $\left.\mathrm{Nd}^{3+}\right), n$ is the refractive index, $e$ is the electric charge, and $c$ is the velocity of light. According to the Judd-Ofelt theory, the experimental oscillator strength of an electric-diode transition between the initial $J$ manifold $\mathrm{I}(S, L), J\rangle$ and the terminal $J^{\prime}$ manifold $\mathrm{I}\left(S^{\prime}, L^{\prime}\right)$ $\left.J^{\prime}\right\rangle$ can be expressed with the three-parameter formula

$$
\begin{equation*}
S_{\mathrm{cal}}=\sum_{\lambda=2,4,6} \Omega_{\lambda} \mid\left\langle\left.\left\langle(S, L) J\left\|U^{(\lambda)}\right\|\left(S^{\prime}, L^{\prime}\right) J^{\prime}\right\rangle\right|^{2}\right. \tag{3}
\end{equation*}
$$

where $\left\langle\left\|U^{(\lambda)}\right\|\right\rangle$ are the doubly reduced unit tensor operators. Since the reduced matrix elements hardly vary in different hosts, the values provided by Carnall for $\mathrm{Nd}^{3+}$ was used to calculate the intensity parameters $\Omega_{\lambda}(\lambda=2,4$, and 6$)$ of the $\beta$ LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal through a least-squares-fit between $S_{\text {cal }}$ and $S_{\text {exp }}$. To justify the calculation results, we calculated the root-mean-squared deviation ( $\mathrm{RMS} \Delta S$ ) between the experimental and calculation line strengths, which is defined by

$$
\begin{equation*}
\operatorname{RMS} \Delta S=\sqrt{\frac{\sum_{i=1}^{11}\left(S_{\mathrm{mea}}-S_{\mathrm{cal}}\right)^{2}}{N_{\mathrm{tr}}-N_{\mathrm{par}}}} \tag{4}
\end{equation*}
$$

where $N_{\mathrm{tr}}$ is the number of transitions and $N_{\mathrm{par}}$ is the number of the parameter. Tables 1 and S 8 display the values of the

Table 1. Judd-Ofelt Intensity Parameters of the $\boldsymbol{\beta}$ LBSO:8.0\%Nd ${ }^{3+}$ Crystal

| $\Omega_{\lambda}\left(10^{-20} \mathrm{~cm}^{2}\right)$ | $\pi$ | $\sigma$ | effective |
| :---: | :---: | :---: | :---: |
| $\Omega_{2}$ | 0.2619 | 1.1607 | 0.8611 |
| $\Omega_{4}$ | 0.3592 | 2.4792 | 1.7725 |
| $\Omega_{6}$ | 0.3986 | 3.3904 | 2.3931 |

Judd-Ofelt intensity parameters and oscillator strengths. The relatively low values of RMS $\Delta S, 5.38 \%$ for $\pi$ polarization, and $4.83 \%$ for $\sigma$ polarization indicate a reliable calculation result. According to the Judd-Ofelt theory, the radiative transition probability of the $\mathrm{Nd}^{3+}$ electronic transitions can be estimated by eq S 1 . Meanwhile, the luminescence branching ratio $\beta$ of the radiative transitions ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{9 / 2},{ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2},{ }^{4} \mathrm{~F}_{3 / 2} \rightarrow$ ${ }^{4} \mathrm{I}_{13 / 2}$, and ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{15 / 2}$ was predicted by eq S2. As shown in Table 2, the predicted radiative transition of $\mathrm{Nd}^{3+}$ is dominated

Table 2. Spectral Parameters of the ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{J^{\prime \prime}}$ Transition of the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ Crystal

| ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}^{\prime \prime}$ | $\bar{\lambda}(\mathrm{nm})$ | $\pi$ |  | $\sigma$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A ( $\mathrm{s}^{-1}$ ) | $\beta$ (\%) | A ( $\mathrm{s}^{-1}$ ) | $\beta$ (\%) |
| ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{9 / 2}$ | 881.1 | 124.47 | 41.80 | 900.96 | 38.68 |
| ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ | 1052.6 | 143.16 | 48.08 | 1171.86 | 50.32 |
| ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{13 / 2}$ | 1333.3 | 28.64 | 9.61 | 243.63 | 10.46 |
| ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{15 / 2}$ | 1851.9 | 1.48 | 0.50 | 12.56 | 0.54 |

by ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{9 / 2}$ and ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$, with the average optical emission wavelengths of 881.1 and 1052.6 nm , respectively. Figures 4 b and S9 display the optical polarized luminescence spectra of the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal. As predicted by the Judd-Ofelt theory, the profile of the luminescence spectra of the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal is dominated by the emission band corresponding to the electronic transitions from ${ }^{4} \mathrm{~F}_{3 / 2}$ level to ${ }^{4} \mathrm{I}_{9 / 2}$ and ${ }^{4} \mathrm{I}_{11 / 2}$ levels. Besides, the emission of ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow$ ${ }^{4} \mathrm{I}_{15 / 2}$ transition is too weak to be detected. The optical emission cross section of this crystal was determined through
the Füchtbauer-Ladenburg ( $\mathrm{F}-\mathrm{L}$ ) method and calculated by the following equation ${ }^{32}$

$$
\begin{equation*}
\sigma_{\mathrm{em}}^{i}(\lambda)=\frac{\beta\left(J^{\prime} \rightarrow J^{\prime \prime}\right) 3 \lambda^{5} I_{i}(\lambda)}{8 \pi n^{2} c \tau_{\mathrm{r}} \sum_{i=\pi, \sigma} \int \lambda I_{i}(\lambda) \mathrm{d} \lambda} \tag{5}
\end{equation*}
$$

where $I(\lambda)$ is the relative luminescence intensity and $\tau_{\mathrm{r}}$ is the radiative lifetime determined to be $1405.72 \mu$ s by eq S3. The calculated result of the emission cross-sectional pattern shows an obvious polarization with $\sigma$ emission stronger than that of $\pi$ emission (Figure 4b). The most intense optical emission for ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{9 / 2}$ transition occurs at a wavelength of 913 nm with a cross section of $1.12 \times 10^{-20} \mathrm{~cm}^{2}$. While for the ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow$ ${ }^{4} \mathrm{I}_{11 / 2}$ and ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{13 / 2}$ transitions ( $\sigma$ polarization), the strongest optical emitting occurs at 1068 and 1389 nm with cross sections of $2.14 \times 10^{-20}$ and $1.12 \times 10^{-20} \mathrm{~cm}^{2}$, respectively. The most distinctive characteristic of the photoluminescence of the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal is that the optical emission of ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ splits into four separate peaks at 1023, 1047, 1070, and 1086 nm , with the emission intensity of the latter three being comparable. As illustrated in Figure S10, the splitting of ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ emission mainly arises from the electronic transitions between the Starks sublevels of ${ }^{4} \mathrm{~F}_{3 / 2}$ and ${ }^{4} \mathrm{I}_{11 / 2}$ manifolds. The comparable luminescence intensity and the suitable wavelength difference between these three optical emissions at 1047, 1070, and 1086 nm are the basis for the triple-wavelength spontaneous laser output. The luminescence decay curve of the $\beta$-LBSO:8.0\% $\mathrm{Nd}^{3+}$ crystal is shown in Figure 4 c , which could be fit well by a first-order exponential decay function of $I=A_{0} \exp (-t / \tau)+A_{1}$ with $A_{0}=6259, A_{1}=63, \tau=90.18 \mu \mathrm{~s}$, and an adjustable $R$ square value of 0.999 . The fitting result demonstrates that there is one active lattice site for $\mathrm{Nd}^{3+}$ ions with a luminescence lifetime of $90.18 \mu$ s for the ${ }^{4} \mathrm{~F}_{3 / 2}$ level.

Laser Performance of the $\beta$-LBSO:8.0\%Nd ${ }^{3+}$ Crystal. Using a $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal plate with a dimension of 2 $\times 2 \times 3 \mathrm{~mm}^{3}$ as gain media and 808 nm LD as the pumping source, a compact laser with the simplest structure is realized and exhibited in Figure S11. In this laser, the pumping 808 nm LD worked in a chopping manner with a frequency of 10 Hz and a duty ratio of $50 \%$. The maximum pumping power was limited to 5 W . A maximum average output power of 235 mW was achieved when the average power of the absorbed pumping laser was 2130 mW . As displayed in Figure 5, laser output occurs when the pumping power exceeds 200 mW . The average power of the output laser linearly increases with the enhancing of pumping power, exhibiting a slope efficiency of $12.1 \%$. Figure S12 displays the laser spectra evolution with the increase of pumping power. A laser beam with a wavelength of 1047 nm comes out in the first stage. As the pumping power increases, the 1070 nm laser appears with the 1047 nm laser at the second stage. Finally, the 1092 nm laser comes out, and the system works stably in a triple-wavelength laser operating mode, as presented in Figure 5a. The laser parameters of the $\beta$ LBSO:8.0\% $\mathrm{Nd}^{3+}$ crystal are listed in Table 3, which summarizes the current research status of triple-wavelength lasers based on the ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ transition of $\mathrm{Nd}^{3+}$ ions. The wavelength difference between laser beams is a key criterion to judge whether a triple-wavelength laser has the potential for practical application. As displayed in this table, the $\beta$ LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal of our work has the biggest wavelength differences of 21,24 , and 45 nm , showing the most promising practical value. ${ }^{13 b, 33,34}$ The maximum wavelength


Figure 5. Laser emission spectra (a) and output power of laser emissions vs absorbed pump power (b) of the LD pumped $\beta$ LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal laser operating at 1047, 1071, and 1092 nm .
difference of 45 nm is even larger than the largest value of full width at half-height of ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ transition reported in ref 35. Furthermore, our CW triple-wavelength laser exhibits the highest slope efficiency of $12.1 \%$ and the highest output power of 235 mW under the simplest laser experimental system. These results demonstrate that the triple-wavelength laser based on the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal has the best comprehensive laser performance and practical application potential.

## ■ CONCLUSIONS

To realize the high-performance CW triple-wavelength laser operation reported in this work, large single crystals of $\mathrm{Nd}^{3+}$ doped $\beta$-LBSO were grown for the first time. The hightemperature $\mathrm{Nd}^{3+}$-doped $\beta$-LBSO crystal was stabilized at room temperature by the local disorder-induced phase stabilization mechanism. When doping with more $6.3 \% \mathrm{Nd}^{3+}$, the $\mathrm{BO}_{4}$ tetrahedra become statistically distributed, and the phase transition of $\beta$-LBSO is suppressed. The doping of $\mathrm{Nd}^{3+}$ not only eliminates the phase transition of $\beta$-LBSO but also renders the crystal optically active. The $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal shows strong optical absorption in the range of 785815 nm , which matches well with the commercial LD pumping source. The photoluminescence of the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal is dominated by the optical emission belonging to the transition of ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{9 / 2}$ and ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$. In particular, the optical emission of ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ splits into four separate peaks at 1023, 1047, 1070, and 1086 nm . The CW triple-wavelength laser operation based on the $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystal was successfully achieved, with 1047, 1071, and 1092 nm lasers

Table 3. Triple-Wavelength Lasers around 1060 nm Based on the ${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$ Transition of $\mathrm{Nd}^{3+}$

| laser wavelengths (nm) | laser crystal | operating regime | wavelength difference (nm) | maximum output power/absorbed power, slope efficiency | refs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1076 \& 1077 \& 1078 | SYSO:Nd3+ | mode-locked pulses | 1, 1, 2 |  | 33a |
| 1059 \& 1060 \& 1062 | YGG: $\mathrm{Nd}^{3+}$ | passive Q-switching | 1, 2, 3 |  | 33b |
| 1058 \& 1060 \& 1064 | CNGG: $\mathrm{Nd}^{3+}$ | CW | 2, 4, 6 | $30 \mathrm{~mW} / 640 \mathrm{~mW}, 5.1 \%$ | 13d |
| 1051 \& 1058 \& 1061 | GSGG: $\mathrm{Cr}^{3+}, \mathrm{Nd}^{3+}$ | CW | 3, 7, 10 | $42 \mathrm{~mW} / 4630 \mathrm{~mW}$, - | 34 |
| 1061 \& 1065 \& 1068 |  |  | 3, 4, 7 | $5 \mathrm{~mW} / 4630 \mathrm{~mW}$, - |  |
| 1061 \& 1068 \& 1072 |  |  | 4, 7, 11 | $2 \mathrm{~mW} / 4630 \mathrm{~mW}$, - |  |
| 1047 \& 1071 \& 1092 | $\beta$-LBSO:8.0\%Nd3+ | CW | 21, 24, 45 | $235 \mathrm{~mW} / 2130 \mathrm{~mW}, 12.1 \%$ | this work |

coexisting in the laser beam. The highest output power of 235 mW was obtained with a slope efficiency of $12.1 \%$. The newly found local disorder-induced phase stabilization mechanism in our work provides a new strategy to tune the phase transition of materials. The $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ crystals obtained excel in their comprehensive triple-wavelength laser performance compared to previous reports.

## - ASSOCIATED CONTENT

## (s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c04331.

Materials, crystal growth, characterization and JuddOfelt calculation, supplementary information on the crystal structure, and laser experiment; crystal structure file of $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$; and check report on the crystal structure of $\beta$-LBSO: $8.0 \% \mathrm{Nd}^{3+}$ (PDF)

## Accession Codes

CCDC 2119997 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

## - AUTHOR INFORMATION

## Corresponding Authors

Lingyun Li - Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China; © orcid.org/0000-0003-0450-097X; Email: lilingyun@ fzu.edu.cn
Yan Yu - Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China; Email: yuyan@ fzu.edu.cn
Kenneth R. Poeppelmeier - Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States; © orcid.org/0000-0003-1655-9127; Email: krp@northwestern.edu

## Authors

Fazheng Huang - Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
Yi Shi - Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
Zhong-Zhen Luo - Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering,

Fuzhou University, Fuzhou 350108, P. R. China; © orcid.org/0000-0003-4331-6286
Guo-Qiang Wang - Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
Xin-Xiong Li - College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China; © orcid.org/0000-0002-9903-2699
Bingxuan Li - Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
Lizhen Zhang - Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

Yi Yu - Research Center for Rare Earth Materials and Applications, School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, P. R. China
Ya-Nan Feng - Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
Chengkai Yang - Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China;
© orcid.org/0000-0001-9868-4831
Complete contact information is available at:
https://pubs.acs.org/10.1021/jacs.2c04331

## Author Contributions

\#L.L., F.H., and Y.S. contributed equally to this work.

## Notes

The authors declare no competing financial interest.

## - ACKNOWLEDGMENTS

L.L., F.H., and Y.S. contributed equally to this work. The authors greatly acknowledge the support from the National Natural Science Foundation of China (nos. 51972061, U1905215, and 22109025), the National Key Research and Development Program of China (2020YFA0710303), the Natural Science Foundation of Jiangxi Province (20202ACBL214020), and the US National Science Foundation (DMR-1904701).

## ABBREVIATIONS

LBSO $\mathrm{LaBSiO}_{5}$
THz Tera Hertz
YAG yttrium aluminum garnet
YAP yttrium-aluminate
YLF lithium yttrium fluoride
CW continuous-wave
MIT metal insulator transition

## LD laser diode <br> PXRD powder X-ray diffraction

## - REFERENCES

(1) (a) Jang, D.; Kim, K.-Y. Multicycle terahertz pulse generation by optical rectification in $\mathrm{LiNbO}_{3}, \mathrm{LiTaO}_{3}$, and BBO crystals. Opt. Express 2020, 28, 21220-21235. (b) Siegel, P. H. Terahertz technology. IEEE Trans. Terahertz Sci. Technol. 2002, 50, 910-928. (c) Zhong, K.; Yao, J.; Xu, D.; Wang, Z.; Li, Z.; Zhang, H.; Wang, P. Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO. Opt. Commun. 2010, 283, 3520-3524.
(2) (a) Yang, Y.; Yamagami, Y.; Yu, X.; Pitchappa, P.; Webber, J.; Zhang, B.; Fujita, M.; Nagatsuma, T.; Singh, R. Terahertz topological photonics for on-chip communication. Nat. Photonics 2020, 14, 446451. (b) Manjappa, M.; Singh, R. Materials for terahertz optical science and technology. Adv. Opt. Mater. 2020, 8, 1901984.
(3) Petersen, E. B.; Shi, W.; Chavez-Pirson, A.; Peyghambarian, N.; Cooney, A. T. Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation. Appl. Phys. Lett. 2011, 98, 121119.
(4) Ferguson, B.; Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26-33.
(5) Taniuchi, T.; Okada, S.; Nakanishi, H. Widely tunable terahertzwave generation in an organic crystal and its spectroscopic application. J. Appl. Phys. 2004, 95, 5984-5988.
(6) Danailov, M. B.; Milev, I. Y. Simultaneous multiwavelength operation of Nd:YAG laser. Appl. Phys. Lett. 1992, 61, 746-748.
(7) Chen, Y.-F. Cw dual-wavelength operation of a diode-endpumped $\mathrm{NdYVO}_{4}$ laser. Appl. Phys. B: Lasers Opt. 2000, 70, 475-478.
(8) Wu, B.; Jiang, P.; Yang, D.; Chen, T.; Kong, J.; Shen, Y. Compact dual-wavelength Nd:GdVO 4 laser working at 1063 and 1065 nm . Opt. Express 2009, 17, 6004-6009.
(9) (a) Huang, Y. J.; Chen, Y. F.; Chen, W. D.; Zhang, G. Dualwavelength eye-safe Nd:YAP Raman laser. Opt. Lett. 2015, 40, 35603563. (b) Nie, W.; Cheng, C.; Jia, Y.; Romero, C.; Vázquez de Aldana, J. R.; Chen, F. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing. Opt. Lett. 2015, 40, 2437-2440.
(10) Cho, C. Y.; Huang, T. L.; Wen, S. M.; Huang, Y. J.; Huang, K. F.; Chen, Y. F. Nd:YLF laser at cryogenic temperature with orthogonally polarized simultaneous emission at 1047 nm and 1053 nm. Opt. Express 2014, 22, 25318-25323.
(11) Chen, H.; Huang, Y.; Li, B.; Liao, W.; Zhang, G.; Lin, Z. Efficient orthogonally polarized dual-wavelength $\mathrm{Nd}: \mathrm{LaMgB}_{5} \mathrm{O}_{10}$ laser. Opt. Lett. 2015, 40, 4659-4662.
(12) Chen, Y. J.; Gong, X. H.; Lin, Y. F.; Huang, J. H.; Luo, Z. D.; Huang, Y. D. Diode-pumped orthogonally polarized dual-wavelength $\mathrm{Nd}^{3+}: \mathrm{LaBO}_{2} \mathrm{MoO}_{4}$ laser. Appl. Phys. B: Lasers Opt. 2013, 112, 55-60. (13) (a) Shayeganrad, G.; Mashhadi, L. Dual-wavelength CW diode-end-pumped a-cut Nd: $\mathrm{YVO}_{4}$ laser at 1064.5 and 1085.5 nm . Appl. Phys. B 2013, 111, 189-194. (b) Öztürk, O. M.; Bayer, M. M.; Anwar, M. S.; Zakwan, M.; Serpengüzel, A. Spectroscopy of a $\mathrm{Nd}: \mathrm{YVO}_{4}$ diode pumped solid state laser. Microw. Opt. Technol. Lett. 2017, 59, 1636-1639. (c) Brenier, A.; Wu, Y.; Fu, P.; Zhang, J.; Zu, Y. Diode-pumped laser properties of $\mathrm{Nd}^{3+}$-doped $\mathrm{La}_{2} \mathrm{CaB}_{10} \mathrm{O}_{19}$ crystal including two-frequency generation with 4.6 THz separation. Opt. Express 2009, 17, 18730-18737. (d) Tan, Y.; Chen, F.; Vázquez de Aldana, J. R.; Yu, H.; Zhang, H. Tri-wavelength laser generation based on neodymium doped disordered crystal waveguide. Opt. Express 2013, 21, 22263-22268. (e) Yu, H.; Zhang, H.; Wang, Z.; Wang, J.; Yu, Y.; Shi, Z.; Zhang, X.; Jiang, M. High-power dual-wavelength laser with disordered Nd:CNGG crystal. Opt. Lett. 2009, 34, 151-153. (f) Wu, B.; Jiang, P.; Yang, D.; Chen, T.; Kong, J.; Shen, Y. Compact dual-wavelength $\mathrm{Nd}: \mathrm{GdVO}_{4}$ laser working at 1063 and 1065 nm . Opt. Express 2009, 17, 6004-6009. (g) Sun, S.; Wei, Q.; Li, B.; Shi, X.; Yuan, F.; Lou, F.; Zhang, L.; Lin, Z.; Zhong, D.; Huang, Y.; Teng, B. The $\mathrm{YMgB}_{5} \mathrm{O}_{10}$ crystal preparation and attractive multi-wavelength
emission characteristics of doping $\mathrm{Nd}^{3+}$ ions. J. Mater. Chem. C 2021, 9, 1945-1957.
(14) Mcandrew, J.; Scott, T. R. Stillwellite, a new rare-earth mineral from queensland. Nature 1955, 176, 509-510.
(15) Belokoneva, E.; Shuvaeva, V.; Antipin, M.; Leonjuk, N. Crystal structure of a high-temperature modification of $\mathrm{LaBSiO}_{5}$, a synthetic analog of stillwellite. Zh. Neorg. Khim. 1996, 41, 1097-1101.
(16) (a) Chi, L.; Chen, H.; Zhuang, H.; Huang, J. Crystal structure of $\mathrm{LaBSiO}_{5}$. J. Alloys Compd. 1997, 252, L12-L15. (b) Burns, P. C.; Hawthorne, F. C.; Macdonald, D. J.; Ventura, G. D.; Parodi, G. C. The crystal structure of Stillwellite. Can. Mineral. 1993, 31, 147-152. (c) Horiuchi, N.; Uesu, Y.; Osakabe, E.; Omori, S.; Strukov, B. A. On the phase transition of new ferroelectric $\mathrm{LaBGeO}_{5}$. J. Phys. Soc. Jpn. 1993, 62, 2522-2523.
(17) Leonyuk, N. I.; Belokoneva, E. L.; Bocelli, G.; Righi, L.; Shvanskii, E. V.; Henrykhson, R. V.; Kulman, N. V.; Kozhbakhteeva, D. E. High-temperature crystallization and X-ray characterization of $\mathrm{Y}_{2} \mathrm{SiO}_{5}, \mathrm{Y}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$ and $\mathrm{LaBSiO}_{5}$. J. Cryst. Growth 1999, 205, 361-367. (18) Sha, H.; Su, R.; Xiong, Z.; Wang, Z.; Shan, P.; He, C.; Yang, X.; Long, X. Borosilicate crystal $\mathrm{LaBSiO}_{5}$ : a new promising ultraviolet quasiphase matching material. Adv. Opt. Mater. 2021, 9, 2100080.
(19) Li, L.; Lin, Y.; Zhang, L.; Cai, Q.; Yu, Y. Flux exploration, growth, and optical spectroscopic properties of large size $\mathrm{LaBSiO}_{5}$ and $\mathrm{Eu}^{3+}$-substituted $\mathrm{LaBSiO}_{5}$ crystals. Cryst. Growth Des. 2017, 17, 6541-6549.
(20) (a) Atkin, J. M.; Berweger, S.; Chavez, E. K.; Raschke, M. B.; Cao, J.; Fan, W.; Wu, J. Strain and temperature dependence of the insulating phases of $\mathrm{VO}_{2}$ near the metal-insulator transition. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 020101. (b) Kalcheim, Y.; Adda, C.; Salev, P.; Lee, M. H.; Ghazikhanian, N.; Vargas, N. M.; del Valle, J.; Schuller, I. K. Structural manipulation of phase transitions by self-induced strain in geometrically confined thin films. Adv. Funct. Mater. 2020, 30, 2005939. (c) You, L.; Chen, Z.; Zou, X.; Ding, H.; Chen, W.; Chen, L.; Yuan, G.; Wang, J. Characterization and manipulation of mixed phase nanodomains in highly strained $\mathrm{BiFeO}_{3}$ thin films. ACS Nano 2012, 6, 5388-5394.
(21) (a) Brassard, D.; Fourmaux, S.; Jean-Jacques, M.; Kieffer, J. C.; El Khakani, M. A. Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered $\mathrm{VO}_{2}$ thin films. Appl. Phys. Lett. 2005, 87, 051910. (b) Choudhury, S.; Li, Y. L.; Krill, C., III; Chen, L. Q. Effect of grain orientation and grain size on ferroelectric domain switching and evolution: Phase field simulations. Acta Mater. 2007, 55, 1415-1426. (c) Suresh, A.; Mayo, M. J.; Porter, W. D.; Rawn, C. J. Crystallite and grain-size-dependent phase transformations in yttria-doped zirconia. J. Am. Ceram. Soc. 2003, 86, 360-362. (d) Frey, M. H.; Payne, D. A. Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 3158-3168. (e) McKnight, R. E. A.; Moxon, T.; Buckley, A.; Taylor, P. A.; Darling, T. W.; Carpenter, M. A. Grain size dependence of elastic anomalies accompanying the alpha-beta phase transition in polycrystalline quartz. J. Phys.: Condens. Matter 2008, 20, 075229.
(22) (a) Feng, C.; Li, N.; Li, S.; Huo, Q.; Li, M.; Zhan, Q.; Li, B. H.; Yin, J.; Jiang, Y.; Yu, G. Manipulation of the magnetic exchange interaction in SmCo films with high thermal stability by controlling phase transformation. Appl. Phys. A: Mater. Sci. Process. 2011, 106, 125-129. (b) Nannuri, S. H.; Kulkarni, S. D.; K, S. C.; Chidangil, S. Post annealing induced manipulation of phase and upconversion luminescence of $\mathrm{Cr}^{3+}$ doped $\mathrm{NaYF}_{4}: \mathrm{Yb}, \mathrm{Er}$ crystals. RSC Adv. 2019, 9, 9364-9372.
(23) (a) Liu, W.; Lu, D.; Guo, R.; Wu, K.; Pan, S.; Hang, Y.; Sun, D.; Yu, H.; Zhang, H.; Wang, J. Broadening of the Fluorescence Spectra of Sesquioxide Crystals for Ultrafast Lasers. Cryst. Growth Des. 2020, 20, 4678-4685. (b) Zhang, L.; Wu, H.; Lin, Y.; Yuan, F.; Huang, Y.; Sun, S.; Teng, B.; Li, L.; Lin, Z. From $\mathrm{Sr}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ to $\mathrm{Ca}_{x} \mathrm{Sr}_{2-\mathrm{x}} \mathrm{Nb}_{2} \mathrm{O}_{7}$ : an effective enhancement of nonlinear optical activity by a simple way of cation substituting. Cryst. Growth Des. 2018, 18, 4140-4149. (c) Jones, R. L.; Mess, D. Improved tetragonal phase stability at
$1400{ }^{\circ} \mathrm{C}$ with scandia, yttria-stabilized zirconia. Surf. Coat. Technol. 1996, 86-87, 94-101.
(24) (a) Saba, B.; Sarita; Varshney, P. Effect of CuO doping on the electrical behavior of $\mathrm{ZrO}_{2}$. Chin. J. Chem. 2007, 25, 1112-1115. (b) Sobolev, A.; Musin, A.; Whyman, G.; Borodianskiy, K.; Krichevski, O.; Kalashnikov, A.; Zinigrad, M. Stabilization of cubic phase in scandium-doped zirconia nanocrystals synthesized with solgel method. J. Am. Ceram. Soc. 2018, 102, 3236-3243.
(25) Fan, L. L.; Chen, S.; Luo, Z. L.; Liu, Q. H.; Wu, Y. F.; Song, L.; Ji, D. X.; Wang, P.; Chu, W. S.; Gao, C.; Zou, C. W.; Wu, Z. Y. Strain dynamics of ultrathin $\mathrm{VO}_{2}$ film grown on $\mathrm{TiO}_{2}$ (001) and the associated phase transition modulation. Nano Lett. 2014, 14, 40364043.
(26) (a) Giraldi, T. R.; Dias, J. A.; Baggio, C. M.; Maestrelli, S. C.; Oliveira, J. A. Anatase-to-rutile transition in co-doped $\mathrm{TiO}_{2}$ pigments. J. Sol-Gel Sci. Technol. 2017, 83, 115-123. (b) Nayak, S.; Sahoo, B.; Khastgir, D. Flexible nanocomposites comprised of poly(dimethylsiloxane) and high-permittivity $\mathrm{TiO}_{2}$ nanoparticles doped with $\mathrm{La}^{3+} / \mathrm{Cu}^{+}$for dielectric applications. ACS Appl. Nano Mater. 2019, 2, 4211-4221. (c) Priyanka, K. P.; Revathy, V. R.; Rosmin, P.; Thrivedu, B.; Elsa, K. M.; Nimmymol, J.; Balakrishna, K. M.; Varghese, T. Influence of La doping on structural and optical properties of $\mathrm{TiO}_{2}$ nanocrystals. Mater. Charact. 2016, 113, 144-151.
(27) Luo, T.; Wan, X. J.; Jiang, Sh. X.; Zhang, L. Y.; Hong, Zh. Q.; Liu, J. Preparation and photocatalytic performance of fibrous $\mathrm{Tb}^{3+}$ doped $\mathrm{TiO}_{2}$ using collagen fiber as template. Appl. Phys. A: Mater. Sci. Process. 2018, 124, 304.
(28) (a) Nehru, L. C.; Marimuthu, K.; Jayachandran, M.; Lu, C. H.; Jagannathan, R. $\mathrm{Ce}^{3+}$-doped stillwellites a new luminescent system with strong ion lattice coupling. J. Phys. D: Appl. Phys. 2001, 34, 2599-2605. (b) Wang, Z.; Cheng, P.; He, P.; Liu, Y.; Zhou, Y.; Zhou, Q. Luminescent properties and energy transfer in the green phosphors $\mathrm{LaBSiO}_{5}: \mathrm{Tb}^{3+}, \mathrm{Ce}^{3+}$. J. Biolumin. Chemilumin. 2015, 30, 719-722. (c) Wang, Z.; Cheng, P.; Liu, Y.; Zhou, Y.; Zhou, Q.; Guo, J. Novel red phosphors $\mathrm{LaBSiO}_{5}$ co-doped with $\mathrm{Eu}^{3+}, \mathrm{Al}^{3+}$ for near-UV lightemitting diodes. Opt. Mater.: X 2014, 37, 277-280.
(29) (a) Juwhari, H. K.; White, W. B. Luminescence of rare earth borosilicates with the stillwellite and related structures. Mater. Lett. 2010, 64, 1751-1754. (b) Zhou, L.; Zhou, W.; Shi, R.; Liu, C.; Huang, Y.; Tao, Y.; Liang, H. Luminescence and energy transfer of $\mathrm{Ce}^{3+}$ and $\mathrm{Pr}^{3+}$ in $\mathrm{LaBSiO}_{5}$. J. Lumin. 2016, 177, 178-183.
(30) (a) Judd, B. R. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962, 127, 750-761. (b) Ofelt, G. S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 1962, 37, 511-520.
(31) (a) Chen, W.; Li, L.; Li, X.-X.; Lin, L.-D.; Wang, G.; Zhang, Z.; Li, L.; Yu, Y. Layered rare earth-organic framework as highly efficient luminescent matrix: the crystal structure, optical spectroscopy, electronic transition, and luminescent sensing properties. Cryst. Growth Des. 2019, 19, 4754-4764. (b) Li, L.; Wang, G.; Huang, Y.; Zhang, L.; Lin, Z.; Wang, G. Crystal growth and spectral properties of $\mathrm{Nd}^{3+}: \mathrm{Ca}_{9} \mathrm{Gd}^{( }\left(\mathrm{VO}_{4}\right)_{7}$ crystal. J. Cryst. Growth 2011, 314, 331-335.
(32) (a) Aull, B.; Jenssen, H. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electron. 1982, 18, 925-930. (b) Yasyukevich, A. S.; Shcherbitskii, V. G.; Kisel', V. É.; Mandrik, A. V.; Kuleshov, N. V. Integral method o Reciprocity in the spectroscopy of laser crystals with impurity centers. J. Appl. Spectrosc. 2004, 71, 202-208.
(33) (a) Hou, J.; Zheng, L. H.; He, J. L.; Xu, J.; Zhang, B. T.; Wang, Z. W.; Lou, F.; Wang, R. H.; Liu, X. M. A tri-wavelength synchronous mode-locked Nd:SYSO laser with a semiconductor saturable absorber mirror. Laser Phys. Lett. 2014, 11, 035803. (b) Yu, H.; Wu, K.; Yao, B.; Zhang, H.; Wang, Z.; Wang, J.; Zhang, X.; Jiang, M. Efficient triwavelength laser with a Nd:YGG garnet crsytal. Opt. Lett. 2010, 35, 1801-1803.
(34) Demirbas, U.; Uecker, R.; Fujimoto, J. G.; Leitenstorfer, A. Multicolor lasers using birefringent filters: experimental demonstration with Cr:Nd:GSGG and Cr. Opt. Express 2017, 25, 2594-2607.
(35) Zhang, Y.; Wang, G. Spectroscopic properties of $\mathrm{Nd}: \mathrm{Sr}_{3} \mathrm{Gd}_{2}\left(\mathrm{BO}_{3}\right)_{4}$. Phys. Status Solidi A 2012, 209, 1128-1133.

## $\square$ Recommended by ACS

## Third-Order Nonlinear Characteristics and the Temperature-Dependent Refractive Index of $\mathrm{Sm} / \mathrm{Tm}$ : $\mathrm{YCa}_{4} \mathrm{O}\left(\mathrm{BO}_{3}\right)_{3}$ for Use in Quasi-Parametric Chirped Puls... <br> Jianfei Liu, Xiaoniu Tu, et al. <br> NOVEMBER 20, 2022 <br> CRYSTAL GROWTH \& DESIGN <br> READ 「

Design of Infrared Nonlinear Optical Compounds with Diamond-like Structures and Balanced Optical Performance
Dongdong Chu, Zhihua Yang, et al.
JULY 11, 2022
INORGANIC CHEMISTRY
READ ['
Predicting Diamond-like Nitrides as Infrared Nonlinear Optical Materials with High Thermal Conductivity

| Junben Huang, Shilie Pan, et al. |
| :--- |
| NOVEMBER 02, 2022 |
| CHEMISTRY OF MATERIALS |
| Shedding Light on the Structure and Characterization of |
| $\mathbf{K}_{\mathbf{2}} \mathbf{Z n G e} \mathbf{2}_{\mathbf{2}} \mathbf{O}_{\mathbf{6}}$ : A Phase-Matchable Nonlinear Optical Crystal |
| Jinmiao Jiao, Yicheng Wu, et al. |
| JULY 13, 2022 |
| INORGANIC CHEMISTRY |

Get More Suggestions >


[^0]:    Received: April 22, 2022
    Published: June 9, 2022

