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SORTA SOLVING THE OPF BY Not SOLVING THE OPF:
DAE CONTROL THEORY AND THE PRICE OF REALTIME REGULATION

Muhammad Nadeem

Abstract—This paper presents a new approach to solve or
approximate the AC optimal power flow (ACOPF). By eliminating
the need to solve the ACOPF every few minutes, the paper
showcases how a realtime feedback controller can be utilized
in lieu of ACOPF and its variants. By (i) forming the grid
dynamics as a system of differential algebraic equations (DAE)
that naturally encode the non-convex power flow constraints,
(ii) utilizing advanced DAE-Lyapunov theory, and (iii) designing
a feedback controller that captures realtime uncertainty while
being uncertainty-unaware, the presented approach demonstrates
promises of obtaining solutions that are close to the OPF ones
without needing to solve the OPF. The proposed controller
responds in realtime to deviations in renewables generation
and loads, guaranteeing transient stability, while always yielding
feasible solutions of the ACOPF with no constraint violations. As
the studied approach herein indeed yields slightly more expensive
realtime generator setpoints, the corresponding price of realtime
control and regulation is examined. Cost-comparisons with the
traditional ACOPF are also showcased—all via case studies on
standard power networks.

Keywords—Optimal power flow, load frequency control, power
system differential algebraic equations, robust control, Lyapunov
stability.

I. INTRODUCTION

T is not an overstatement that the OPF problem—and its
many variants—is arguably the most researched and solved
optimization problem in the world. OPF [1] refers to computing
setpoints of generators in a power network every few minutes,
allowing generation to meet the varying demand. In short, the
problem minimizes the cost of generation from mostly fossil
fuel-based power plants subject to power balance in transmis-
sion power lines (acting as equality constraints or h(x) = 0)
and thermal line, voltages and generation limits (acting as
inequality constraints or g(x) < 0). This optimization problem
can be written as
OPF: minimize f(x) s.t. g(x) <0 h(x)=0. (1)
Due to the nonconvexity in the power balance equality con-
straints h(z) = 0, the OPF is infamously non-convex. The
infamy is not because the nonconvexity is too insufferable
however insufferability is defined; it is because OPF has be-
come a textbook example of practical optimization problems in
operations research and systems engineering.
In pursuit of overcoming this nonconvexity, hundreds of
papers yearly investigate methods to solve variants of OPF.
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The OPF can also make you a millionaire: The US depart-
ment of energy and ARPA-E have a competition, called grid
optimization (GO) Competition [2], [3], where academics and
practitioners compete in solving variants of the OPF with up
to $3 million in prizes. To solve the OPF, academics often
resort to one of these four approaches. (i) Assume DC power
flow and eliminate some variables, resulting in convex quadratic
programs that can be solved efficiently for large power systems
[4]-[7]. (ii) Derive semidefinite programming (SDP) relaxations
of OPF appended with methods to recover an optimal solution
[8]-[13]. (iii) Design global optimization methods with some
performance guarantees under various relaxations of nonconvex
OPF [14], [15]. (iv) Obtain machine learning-based algorithms
that learn solutions to OPF [16]-[20]. A thorough description of
the inveterate OPF literature is outside the scope of this work.

In reality, all of the aforementioned approaches still try to ac-
tually solve (1) or its derivatives, approximations, relaxations, or
restrictions. Relevant to these approaches that only focus on OPF
are methods and algorithms that study stability-constrained OPF
where dynamic stability or optimal control metrics are appended
to the OPF [21]-[24], thereby resulting in the integration of the
two time-scales of operation (i.e., OPF) and realtime stability
and control (or secondary control algorithms). Merging the two
time-scales results in OPF generator setpoints that are control-
aware, meaning the five-minute-setpoints allow the system to
be more controllable or more stable. This, however, does not
circumvent the issues with the nonconvex equality constraints
in the OPF. Although seemingly orthogonal to this discussion,
this pursuit of stability or control-constrained-OPF is somewhat
relevant to what we propose herein.

Furthermore, due to the increasing penetration of renewable
energy resources, complex load demands, and other power
electronics based devices in the future power grid, the 5-
10 minutes setpoints provided by the traditional OPF may
not be valid/optimal because of the time-separation and slow
update process [25]. With that in mind, this exploratory paper
investigates a new approach of solving the OPF problem in
realtime. This is done in a way by virtually ignoring (1) and
dumping the OPF problem into a feedback control problem
that inherently satisfies the constraint set in (1), while simul-
taneously performing other tasks such as frequency regulation.
Next, we explain how this approach works.

First, formulate a dynamic, differential algebraic equation
(DAE) model of power systems. This model incorporates
algebraic equations that model power flows (the nonconvex
constraints in (1)) as well as generator dynamics. Then, solve a
control problem that computes (a) OPF setpoints (i.e., generator
output power) and (b) their deviations in a feedback fashion
by utilizing PMU data in realtime, while forgoing the need to



solve for the power flow variables—yet still somehow insuring
that physical constraints are not violated. By formulating a
realtime, feedback-driven control problem that solves for a time-
invariant feedback gain matrix, and feeding that gain into a
highly scalable differential algebraic equation (DAE) solver,
we avoid actually having to solve a nonconvex optimization
problem for the OPF variables.

In short, by dumping the OPF problem on a realtime, feedback
controller, we kinda solve the OPF by not solving the OPF.
This approach, in reality, does not actually solve the OPF with
the generator’s cost curves—but as observed later in the paper,
we showcase how the proposed approach is not terribly far from
optimality. In a real-world setting, the DAE solver is replaced
with the actual system meaning that even the DAEs do not
have to be simulated. The DAE:s, already encode the nonconvex
constraints in OPF—a key factor in the proposed approach.

The presented approach in this paper is endowed with
the following key properties and contributions. The OPF-
controller: (i) Circumvents the need to solve or deal with
the nonconvex equality constraints modeling power flow. That
is, we find generators’ setpoints in realtime while knowing
that these setpoints do satisfy and abide by the power flow
constraints. (ii) Deals with the uncertainty in renewables, loads,
and parameters in a control-theoretic way. In contrast with
vintage robust optimization or the more intricate distributionally
robust optimization algorithms, the developed approach here
is distribution-free and is not inherently conservative. (iii)
Utilizes realtime information from grid sensors such as phasor
measurement units (PMU) via state estimators allowing for
realtime micro-adjustments of dispatchable generation. This
is in contrast with OPF formulations that do not utilize grid
measurements for better dispatch of generators. (iv) Eliminates
the need to separate the OPF and the secondary control time-
scales: this approach serves the purposes of both OPF and
control, so the need to separate the two becomes obsolete at
worst, and questionable at best. (v) Seamlessly models advanced
models of renewables, resulting in setpoints for fuel-based
generators that are aware of the dynamics of solar and wind
farms, for example.

We note that this paper is purely academic. It might have
no valuable addition whatsoever to the practical field of power
engineering. To that end, it should be treated as such. We do not
claim that the proposed approach should replace OPF, and we
make no rigorous claims regarding optimality. It just so happens
that the approach performs well—and this paper is attempting
to deliver this message. The remainder of the paper is organized
as follows: Section II summarizes the ACOPF problem formu-
lation. Section III present the multi-machine NDAE model of
power networks. Section IV explain the proposed methodology.
Numerical case studies are performed in Section V while the
paper is concluded in Section VI.

II. ACOPF FORMULATION

In this section, we briefly present the ACOPF formulation.*
We consider a power network consisting /N number of buses,
modeled by a graph (N, £) where A is the set of nodes and € is

*We use ACOPF and OPF interchangeably in this paper.

the set of edges. Note that A consists of traditional synchronous
generator, renewable energy resources, and load buses, i.e.,
N = GURUL where G collects G generator buses, R collects
the buses containing R renewables, while £ collects L load
buses. The generator’s supplied (real and reactive) power is
denoted by (Pgi,@Qq;) for bus ¢ € G, and the bus voltages
are depicted as v;. The bus angle is represented as #; and the
angle difference in a line is 6;; := 6; — 0;. The parameters
(Gij, Bij;) respectively denote the conductance and susceptance
between bus ¢ and 5 which can be directly obtained from the
network’s bus admittance matrix [26]. Furthermore, quantities
(Pri, Qr;) denote the active and reactive power generated by
renewables for bus i € R, while (Pr;, Qr;) denote the active
and reactive power consumed by the loads for bus ¢ € L.
Essentially, renewables are modeled as negative loads. If a bus
does not have generation, load, or a renewable source attached
to it, the corresponding active/reactive powers are equal to zero.

Given the above notation, the ACOPF can be written as [4]

min J Pg) = aiPQi—l-biP i +ci(QQa
Pg,Q¢,0,v OPF( G) ; ¢ ¢ G0
subject to Vi€ N : Pg;+ Pri + PLi =
N
(Y Z Uj (G” COS gij + Bij sin 9”) (2b)
j=1

Vie N :Qai+ Qri + Qui =

N
(% Z vj (GU sin 91‘]‘ — B,’j COS QU) (2C)
j=1

Vi€ G: PE™ < P < PE™ (2d)
Vi€ G:QE" < Qai < Q& (2¢)
Vi€ N ot < gy < ofax (2)
Vie N : St, < Frax (2g)
Vi e N : Sy, < Fnax- (2h)

The variables in the ACOPF are the active/reactive powers
for generator buses and angles and voltages for all buses
(Pg,Qg,0,v). In (2), the objective function Jopr(Pg) min-
imizes the generator’s convex quadratic cost function with
parameters a;, b;, and c;. The first two constraints model power
flow balance in the network—a nonlinear, non-convex relation
between the variables. The last five constraints represent upper
and lower bounds on the generators’ power as well as bus
voltages and line flow constraints, with Sy,, S, representing
from and to line flows and F},,x denoting maximum rating of
the transmission lines.

The ACOPF is usually solved every 5-10 minutes, although
the frequency at which its solved depends on the computational
power and updated predictions of renewables and loads. Ideally,
a system operator would have all of the constraints satisfied at
each time step ¢, and one would solve a realtime ACOPF that
satisfies all constraints while optimizing the cost function.

In the next section, we present the dynamics of the same
power system with a focus on the realtime control problem. We
then showcase that the proposed realtime controller inherently
satisfies some of the key ACOPF constraints.



III. DYNAMICS OF MULTI-MACHINE POWER SYSTEMS

Here, we describe the transient dynamics of a power sys-
tem which by definition encode the algebraic constraints (2b)
and (2¢). For the same power network, we can write the 4" _order
dynamics of synchronous generators as [26]:

0j = w; — wo (3a)

M;w; =T — Pai — Di(w; — wo) (3b)
foi B = =SB T cos(8; — 6;) + By (30)
ToniTivi = —Twi — g (Wi — wo) + Tri- (3d)

where d;, w;, E!, T\; are generator’s internal states and Eiq;,
T); are generator’s controllable inputs (exciter field voltage and
torque setpoint). The constant terms in (3) are as follows: M;
is the rotor’s inertia constant (pu x s?), D; is the damping
coefficient (pu x s), z4; is the direct-axis synchronous reactance
(pw), x}; is the direct-axis transient reactance (pu), T}, is the
direct-axis open-circuit time constant (s), Tcyy; is the chest valve
time constant, Rp; is the regulation constant for the speed-
governing mechanism, and wy denotes the rotor’s synchronous
speed (rad/s). The mathematical model relating generator’s
internal states (d;,w;, Ef,T\;), generator’s supplied power
(Pgi, Qai), and terminal voltage v; is given by the generator’s
internal algebraic constraint [27]

PGi = 93%1 E;Ul sin(éi — 91) — %’U? Sil’l(2(6i — 91)) (48.)
1o ) _ Taittai 2
Qoi = g Bivi cos(ds = 0:) = 55t (4b)

P /’_
— S cos(2(0; — 67)).

The power flow equations, for all buses 7 € N, representing the
distribution of real and reactive power are given by (2b) and (2¢),
which are present in the ACOPF formulation. Hence, the
power flow constraints and the generator’s algebraic constraints
essentially couple the rapidly varying dynamic states and control
variables with the ACOPF ones.

In order to construct the nonlinear state-space representation
of the multi-machine power networks (2b), (2¢), (3), and (4), de-
fine x4 as the vector populating all dynamic states of the network
such that 2, :== [67 w E'T Ty]" in which 8 := {5, }icq,
W= {wi}ieg, E = {Ez{}ieg, Ty = {TMi}ieg- Furthermore,
we can define the vector of algebraic states (that overla
with some ACOPF variables) as z, := [P QL v' 0'] .
The controllable input of the power network is defined as
u = [Ef—g TrT] T where Exq:={Ft;}icgand T, :={T}; }icq
In addition, define the vector q as q := [Pl;f QE P Q) ] T
where P := {Pri}icr. Qr := {@ritier. PL = {Pri}ice
Q1 = {Qu;}icc Essentially, vector g lumps all uncertain
quantities from renewables and loads. The above notations allow
us to have a compact, nonlinear differential algebraic equation
(NDAE) state space model:

Dynamics: &4 =Aqxq+Gafq(xq, x,)+Bau+hwg(5a)
=A,x, + Ga.fa (wda wa) + B.q (5b)
where x4 € R, x, € R", u € R™, and ¢ € R™. The
functions fj : R xR"* xR™ — R™4 and f, : R™4 xR"™= x
R™ — R™f+ defined the vector-valued mapping containing
the nonlinearity of generator dynamics as well as the power

Constraints: 0

flow nonlinearity/nonconvexity. Matrices A4 € R™4*™4 A, €
RnraxXna G, € RaX"d G, € R"«*"a and vector h €
R™4 defined the linear portion of the dynamics and algebraic
constraints.

Having defined the NDAE power network dynamics, we note
the following. (i) Herein, we showcase a fourth order generator
model (i.e., each generator is modeled via four states) but
this can be extended to higher order generator dynamics as
well as dynamic models of solar and wind. (ii) In addition to
modeling the algebraic constraints encoding lossy power flows,
the presented NDAE formulation also accounts for the stator’s
algebraic equation which is usually missing from ACOPF for-
mulation. (iii) The controllable variable in the ACOPF formu-
lation, namely Pg, is present in the dynamical system model as
an algebraic variable that is controlled explicitly via w(t). This
entails the following. Solving a feedback control problem that
generates realtime sequence u(t) and subsequently extracting
the ACOPF’s algebraic variables x,(t), while satisfying the
ACOPF constraints and being close to its optimal solution
Jopr(Pg), could be specifically useful.

IV. SOLVING OPF viA DAE CONTROL THEORY

We focus now on the control problem for the NDAE model
(5), which when solved will essentially solve a version of
the ACOPF (2). This control problem can simply be defined
as computing a constant gain matrix that can be used with
the control input w(t) in a closed-loop fashion (via realtime
state/output information) such that it can drive the system back
to a stable equilibrium after a large disturbance. With that in
mind, let us define the closed-loop NDAE dynamics for (5) as
follows:

g = Agxq + Gafa(Tq,xa) + Baue + hwy (6a)
0=A,x,+G.fo(xq,z,) + Bag (6b)

where u,; is the closed-loop control input and is defined as:
Uep = U (t) = ufef + K, (:Ed(t) — :clj) @)

in which . is the reference or baseline setting for the control
input u, wfl is the dynamic states information at previous time
step k, and K is the constant controller gain matrix. The key
idea is to design K such that using realtime state feedback
information x4(t), the closed-loop control input w.; can make
the system robust and transiently stable against disturbances.

Notice that, if we can compute K, in a way such that it
encodes (6b) also along with (6a), then the determined feed-
back controller K; will inherently satisfy the key constraints
appearing in the OPF formulation (2). This is because Eq. (6b)
includes power balance equations (2b), (2c) of ACOPF and
generators stator algebraic constraints (4a),(4b) which indirectly
encode the constraints (2d),(2e) of the ACOPE. As for the
other constraints such as limits on generators’ capacities, these
can be encoded via saturation dynamics in the differential
equations. Admittedly, other constraints such as thermal limits
of lines cannot be modeled in this approach, and to that end
we thoroughly investigate any constrained violations incurred
in Section V.

With that in mind, we name the computation of such feedback
controller gain K ; which includes (6b) in its control architecture




as control-OPF feedback controller design. This is because such
K ; ensures system transient stability after a large disturbance
and also fully abides by the key OPF constraints as discussed
above. To that end, we present the following results to compute
such K ; which is based on Lyapunov stability theory as follows:

(CONTROL-OPF) minimﬂi}ze A

IRk

subject to LMI(A, X, W) < 0.

For brevity, the proof and structure of the above LMI in the
control-OPF formulation are not included in this paper and are
given in [28], where the authors did not study the application
of that control to ACOPF. Note that the objective function is
different in this paper from [28]. Here, we are minimizing
the eigenvalues of the considered Lyapunov function through
variable )\, which ensures quick convergence of the system to
the equilibrium state after a large disturbance.

By solving control-OPF we can determine an appropriate
time-invariant gain matrix K; = W X ~! which can be plugged
into (7) to design a feedback control law that guarantees the
stability of the system after a large disturbance. Notice that
the computation of K is carried out offline.” Furthermore, the
design control law u.; acts in realtime based on the system
state/output information provided by PMUs in power systems.

We want to emphasize here that the control-OPF gain matrix
K 4 has been derived in a way such that it satisfies the algebraic
constraints (6b) of the NDAE power system model. This can also
be verified by looking at the structure of the proposed LMI in
[28], we can observe that it is dependent on the system matrices
(A, Gy, and B,) of Eq. (6b). This means that K; inherently
satisfies some of the key constraints appearing in ACOPF
formulation (2). However, the specific LMI implemented in
this paper differs from the one in [28] in its inclusion of faster
convergence of the system states and the corresponding OPF
variables. Accordingly, we have updated to reflect that—and
choose not to include that change herein for the lack of space.

Although the rest of the ACOPF constraints such as line
thermal limits and voltage limits are not explicitly modeled
in the presented control-OPF architecture, through extensive
numerical case studies under various conditions we show that
these constraints are also indeed satisfied. This is because the
control-OPF also makes sure that the system is transiently stable
after a large disturbance.

To that end, since the control-OPF act in realtime and provides
stability guarantees while also satisfying ACOPF conditions
then the need for running ACOPF after 5-10 minutes in the
tertiary layer of the power system can be eliminated. Thus we
essentially dumped the ACOPF problem in a feedback control
architecture. It is worthwhile to mention that in the presented
control-OPF we do not need even need to solve the power system
NDAE model. In a real world application, the NDAE (5) is
replaced by the actual power system model. Thus the control-

This matrix gain is computed offline as it does not depend on the state of
the system and only relies on the system’s parameters and topology. Hence,
its computation is performed offline. In case topological changes happen in
the system, this gain matrix K4 should ideally be recomputed, but feedback
control gains are known to be robust to minor changes in system parameters
and topology.

OPF is essentially carried out offline and then K4 is used online,
knowing that K ; satisfies system algebraic constraints.

V. NUMERICAL CASE STUDIES

To evaluate the performance of the proposed methodology,
we test various magnitudes of disturbances in load and renew-
able energy resources. We also compare the overall cost of
the system with the control-OPF and by just running ACOPE.
Notice that the control-OPF provides us time-varying vectors
of Pg and Qg as shown in Fig. 1 while ACOPF gives static
set-points for the generator power outputs. This is because when
a disturbance is applied to the system the control-OPF also
commands all the generators to increase or decrease power in
order to mitigate the effect of the disturbance on the system
dynamics. To compute the cost of the system with control-OPF,
we evaluate the quadratic cost equation of the generator for
the vector Py (generated from running the control law w(t)),
and then computing the mean of the total cost vector, given as
follows:

T

JOPF (PéontrolfOPF) — % Z Z alPél(t) + bZPGl(t) + ¢

t=14€G

With that in mind, two case studies are carried out as
discussed in the below sections. In the first case study, we apply
random step uncertainty in load demand with high Gaussian
noise and evaluate the system total cost and compare it with
ACOPF cost. A similar comparison has been carried out in
the second case study. However, here we also assume high
uncertainty in the power generated by renewables as shown in
Fig. 7. In both case studies, we also check if with the control-
OPF the system violates any ACOPF constraints or not.

To that end, in this section the following high-level research
questions are investigated.

e QI. Given that the control-OPF strategy does not take
into account generators’ cost curves and the ACOPF
cost function Jopr (PEOFF), how far are the generators’
varying setpoints and their corresponding aggregate costs
Jopr (PEMOPF) from the ACOPF solutions?

o Q2. The control-OPF approach does not take into account
inequality constraints modeling generators’ capacity or
thermal line limits. Does this approach result in any
constraint violations of the ACOPF?

e (03. Can we quantify the price of realtime control and
regulation of the grid’s dynamic states?

o (4. Is the comparison between ACOPF and control-OPF
fair? While the former knows exact values for all uncer-
tain loads and renewables (needed to compute ACOPF
setpoints), the latter is truly uncertainty-unaware.

All the simulation studies are carried out in MATLAB 20225
and using MATPOWER software. Optimal power flow for all
the case studies is carried out by running runopf command
in MATPOWER [29]. The control-OPF gain is computed via
YALMIP [30] and using MOSEK [31] solver, while the power
system NDAEs (5) are simulated using MATLAB DAE:s solver
ODE151.



Table 1
SUMMARY OF ACOPF CONSTRAINTS FOR DIFFERENT TEST SYSTEM WITH CONTROL-OPF FOR SCENARIO A. THE RESULTS INDICATE NO CONSTRAINT
VIOLATIONS FOR FLOWS, MAXIMUM ACTIVE/REACTIVE POWERS.

Test System maxt(sf (t) - Smax) maXt(St (t) - Smax) maxt(Pg (t) - Rnax) maXt(Qg (t) - Qmin) IIlaXt(Qg (t) - Qmax)
(pu) (pw) (pw) (pu) (pw)
Case 9 -0.5610 -0.5570 -1.0626 3.3456 -2.6414
Case 14 -0.3297 -0.3910 -0.6606 0.5736 -0.0046
Case 39 -0.6662 -0.6675 -0.0778 3.1338 -0.0464
Case 57 -0.2391 -0.8312 -0.0014 2.0121 -0.0396
trol-OPF - ---- OPF trol-OPF ----- OPF — Pg, —Pg, — Pg,
0.95 contro o contro s @ ¢ G P e Qua
""""""""""""""""""""""" Qac,
2 Qc,
2 — Qc,
& & e
1=r— —/
SR 1 O
Sy — —1_ <
------ o o o T 21—
0 Rnin Qmin
| | | I [ B | I | I |
50 0 50 100 150 0 50 100 150
= = Max. Volt. == Avg. Volt. = = Min. Volt.
------------ /:‘\ 2 —
£ ~
...... - R
=L O - '
CH=eeas |
0 | | |
” 0 50 100 150 %% 50 100 150
t (sec) t (sec)

Figure 1. Time-varying active/reactive power set-points provided by control-
OPF and static set-points from ACOPF for three random step disturbances in
load demand; above figures are for case 39 and below figures are for case 9
test system.

Figure 2. Active and reactive power generated by the all the generators and
their respective limits, line flows and their maximum rating, and the overall
modulus of all bus voltages for case 9 bus test system for Scenario A.

Table T1 Table III
able COST COMPARISON FOR THE CONTROL-OPF AND ACOPF FOR SCENARIO
COST COMPARISON FOR THE CONTROL-OPF AND ACOPF FOR SCENARIO B
A. ’
. Total system | Percentage difference
Test System Method Total systgm Percentage difference Test System Method cost X103 $ from ACOPE
cost x10° $ from ACOPF
ACOPF 6.3191 —
ACOPF 5.4188 — Case 9
Case 9 control-OPF 6.4712 2.406
control-OPF 5.5815 3.002
ACOPF 10.431 —
ACOPF 8.4591 — Case 14
Case 14 control-OPF 12.002 15.06
control-OPF 9.6632 14.24
ACOPF 52.929 —
ACOPF 41.819 — Case 39
Case 39 control-OPF 59.083 12.53
control-OPF 46.095 10.23
ACOPF 50.321 —
Case 57 ACOPE 42791 — Case ST | ontrol-OPF | 54.087 7.483
control-OPF 46.501 8.67

A. Scenario A: Uncertainty in Load Demand

In this section, we analyze the overall system cost with the
control-OPF and compare it with the cost obtained by running
ACOPF under random disturbances in load demand. To that
end, the simulations are carried out as follows: Initially, the
system operates under steady-state conditions, meaning the
overall demand is exactly equal to the power generated by
load and renewables. Thus there are no transients in the system
and the system rests in an equilibrium state. Then right after
t > 0 ten random (with varying uncertainty) step disturbances
in load demand has been added as follows: P; + Q) =
(1 + 64)(PY + Q%) + wa(t), where &, represent the amount

of the disturbance, wq(t) is a Gaussian noise with zero mean
and variance of 0.01(P9+Q9), PY, QY are the initial active and
reactive load demand, and P/, Q:i is the new load demand after
the disturbances has been applied. For every ten simulations the
value for d is selected randomly in [0.01, 0.08] for case 9 and
case 14, for case 39 the range is chosen in [0.001, 0.02], while
for case 57 04 is randomly picked in [0.001, 0.01].

After the disturbance, the power system is stabilized via
control-OPF and the gain K ; which is computed offline. Notice
that for every load disturbance, we get time-varying generator
power output vector Pg and Q. The vector Pg is then plugged
into the quadratic cost equation of the generators (given in
MATPOWER) and finally average is taken to compute the final
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Figure 3. Active and reactive power of couple of generators and their

respective limits, line flows and their maximum rating, and the overall modulus
of all buses voltages for case 39 bus test system for Scenario B.
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Figure 4. Generator frequencies under ten random disturbances in load and
renewables for case 9, case 14, case 39, and case 57 test systems respectively.

cost. In this way, we get the overall cost of the system with
the control-OPF acting in realtime to redistribute the power
from the generator in response to the disturbances. For similar
uncertainties in load demand, OPF is also carried out ten times
and an average of the overall cost is computed to determine the
system cost for random loads with OPF.

Notice that OPF provides static set points for the vectors
P and Q¢ corresponding to each load demands. Thus the
set points provided by OPF for a certain loads may not be
feasible and might make the whole system unstable. On the other
hand control-OPF ensures guaranteed stability and provide us
time-varying set points for Pg and Q¢ which make sure that
system remain transiently stable and synchronized after large
disturbances in loads demand [28].
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Figure 5. Comparison of the operating cost of the system with control-OPF
and OPF under Scenario A, case 9, case 14, case 39, and case 57, respectively.
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Figure 6. Comparison of the operating cost of the system with control-OPF
and OPF under Scenario B, case 9, case 14, case 39, and case 57, respectively.

To that end, a comparison of the overall system cost with
control-OPF and OPF for this case study is presented in Tab.
II. We can note that for different test networks, the average cost
of system operation under various load disturbances is close
to the average cost computed via just running OPF. This can
also be corroborated from Fig. 5 from which we can see that
the cost of control-OPF is close to the cost obtained from OPF
for case 9 and case 14 test systems. Fig. 1 also illustrate the
time-varying power generation set-points (for the first three
simulations) generated by control-OPF and static set-points
received via solving OPF and we can observe that both of them
are not far away from each other. Moreover, in Fig. 2 we present
active and reactive power from all the generators, line flows, and
modulus of bus voltages for the case 9 test system. Notice that,
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Figure 8. Active and reactive power generated by the all the generators and
their respective limits, line flows and their maximum rating, and the overall
modulus of all bus voltages for case 9 bus test system for Scenario B.

line flows are computed from the state vectors as follows:
Sy =[CyVIY; V™, S =[CV]Y V™

where S, S, are apparent power flows from both ends (from
bus and to bus) of the transmission line respectively, V are the
bus voltages, Y, ¥, represent the conjugate of from and o
bus admittance matrices, while C, C; are binary matrices and
it generates all from and fo end buses of the transmission lines.

With that in mind, we can clearly see from Fig. 2 that all the
line flows, bus voltages and generator’s power outputs are within
their prescribed limits and thus the control-OPF successfully
satisfies all the system constraints that are usually modeled
in OPF. Similarly for all the other test systems, we can see
from Tab. I that the maximum instantaneous value for the line
flows, and active and reactive power generations are less than
their respective maximum limits. Thus the proposed control-
OPF satisfies the constraints of the system—and no ACOPF
constraint violations are incurred.

B. Scenario B: Uncertainty in Renewable Power Generation

In this section, we analyze the cost of operating the system
with control-OPF and compare it with OPF under random

uncertainty in renewable power generations. To that end, the
simulations in this section are performed as follows: Initially,
the power generation from renewables is Pg, Q%, then right
after ¢ > 0, a random disturbance has been added and the
power output from renewables are given as: Pj, + Q =
(1+0R) (PR +Q%) +wr(t), where 5 represent the severity of
the disturbance, wg(¢) is the random noise as shown in Fig. 7,
and Py, Q' are the updated power output from renewables after
the disturbance. With that in mind, we carry out ten simulations
and for each simulation, the value for dp is selected randomly
in [—0.01,0.03] for case 9 and case 14, for case 39 it is in
[—0.001,0.01], while for case 57 it is chosen randomly in
[—0.01,0.02].

To that end, from Tab. III we can see that the difference
between system operating cost with control-OPF and by just
running OPF are close to each other. This means that control-
OPF not only ensures transient stability of the system via
realtime feedback—which can be verified from Fig. 4, we can
see that all the generator frequencies goes back to its equilibrium
after large disturbance in load demand, but also makes sure
that the power redistribution from the generators after a large
disturbance is such that it is close to OPF cost. In Fig. 3 we
also illustrate for the 39-bus test system the active power output
of generator 2, reactive power output of generators 1 to 4, line
flows of a couple of transmission lines, and modulus of bus
voltages for all ten simulations. We can clearly see that for every
random renewable uncertainty, the generator power output, line
flows, and bus voltages are within their prescribed limits. Thus
ensuring that the system constraints are satisfied.

These results can also be corroborated from Tab. IV, from
which we can observe that for all test systems, the instantaneous
active/reactive power outputs and transmission fo and from line
flows are less/greater than their respective maximum/minimum
limits. Notice that the reason it satisfies all the system constraints
is because the proposed control-OPF make sure that the system
is transiently stable (in term of Lyapunov stability) and it
inherently encodes the algebraic constraints (power balance and
generator stator constraints) of power system in its feedback
control architecture. To that end, since the proposed control-
OPF satisfies all the system constraints and the overall system
cost after a large disturbance in load and renewable is close
to the cost obtained from OPF. Then the need to solve OPF
after 5-10 minutes in the tertiary layer (or economic dispatch
layer) of the power system can be eliminated. This is because
the control-OPF acts in realtime through feedback provided by
the PMUs and it also ensures system stability as discussed in
IVv.

We note that other types of dispatch problems are still needed,
even if the control approach presented herein was able to yield
cost-optimal schedules.*

VI. PAPER SUMMARY, LIMITATIONS, AND FUTURE WORK

In this work, we propose a new method to solve the opti-
mal power flow problem using feedback control theory. The

*This in reality, cannot happen. The proposed controller yields robust
generator setpoints without knowing the deviations in loads and renewables,
and hence it is expected that it should cost more—there can never be a free
lunch.



Table IV
SUMMARY OF ACOPF CONSTRAINTS FOR DIFFERENT TEST SYSTEM WITH THE CONTROL-OPF FOR SCENARIO B. THE RESULTS INDICATE NO
CONSTRAINT VIOLATIONS FOR FLOWS, MAXIMUM ACTIVE/REACTIVE POWERS.

Test System max¢(Sy(t) — Smax) | max(St(t) — Smax) | maxi(Py(t) — Pmax) | maxi(Qg(t) — Qmin) | maxi(Qg(t) — Qmax)
(pw) (pu) (puw) (pw) (puw)
Case 9 -0.3101 -0.4230 -0.0391 1.1430 -1.9010
Case 14 -0.2011 -0.1841 -0.1649 1.0726 -0.0015
Case 39 -0.2491 -0.6335 -0.0098 0.2210 -0.0301
Case 57 -0.8702 -0.1313 -0.0013 2.0111 -0.0387

proposed algorithm namely control-OPF is based on Lyapunov
stability and it explicitly models the algebraic constraints of
the power system in the controller architecture. These algebraic
constraints (especially the power balance equations) are part
of the OPF problem, since the control-OPF inherently satisfies
these constraints then the need for solving OPF after 5-10
minutes in the tertiary layer of the power system can be
rethought or potentially eliminated.

Given the case studies, we present preliminary answers to the
posed research questions Q71-Q4 posed in Section V.

o Al. Depends on how you define closeness. We observe
that control-OPF approach yields a cost function that is
on average higher than the OPF. Results varied between
2-15% depending on the studied system and the assumed
conditions.

o A2. The control-OPF approach results in no constraint
violations for all studied power systems under different
realizations of renewables, loads, and initial conditions.

e A3. The control-OPF produces more than just a time-
varying, realtime generator setpoints and deviations; it
produces realtime regulation of the grid’s voltages and
frequencies. As such, one could consider the 2-15% in-
crease in the operational system cost as a cost of realtime
regulation. Who pays for this additional cost is a different
story.

o A4. While the OPF knows exact values for all uncertain
loads and renewables (needed to compute OPF setpoints),
the control-OPF is truly uncertainty-unaware. The former
needs vectors of uncertainty from renewables and loads;
the latter hedges against it. Hence one could argue that the
cost comparison is objectively unfair to the control-OPF.
A fairer comparison would be with a stochastic OPF, that
is also uncertainty unaware.

Future work will focus on comparing this framework with a
robust version of ACOPF, extending the dynamic model to
incorporate dynamics of renewable energy resources such as
wind and solar farms, and investigating the performance of
robust H..- or L.-based controllers in terms of costs and
response to uncertainty.
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