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SORTA SOLVING THE OPF BY Not SOLVING THE OPF:

DAE CONTROL THEORY AND THE PRICE OF REALTIME REGULATION

Muhammad Nadeem — Ahmad F. Taha

Abstract—This paper presents a new approach to solve or
approximate the AC optimal power flow (ACOPF). By eliminating
the need to solve the ACOPF every few minutes, the paper
showcases how a realtime feedback controller can be utilized
in lieu of ACOPF and its variants. By (i) forming the grid
dynamics as a system of differential algebraic equations (DAE)
that naturally encode the non-convex power flow constraints,
(ii) utilizing advanced DAE-Lyapunov theory, and (iii) designing
a feedback controller that captures realtime uncertainty while
being uncertainty-unaware, the presented approach demonstrates
promises of obtaining solutions that are close to the OPF ones
without needing to solve the OPF. The proposed controller
responds in realtime to deviations in renewables generation
and loads, guaranteeing transient stability, while always yielding
feasible solutions of the ACOPF with no constraint violations. As
the studied approach herein indeed yields slightly more expensive
realtime generator setpoints, the corresponding price of realtime
control and regulation is examined. Cost-comparisons with the
traditional ACOPF are also showcased—all via case studies on
standard power networks.

Keywords—Optimal power flow, load frequency control, power
system differential algebraic equations, robust control, Lyapunov
stability.

I. INTRODUCTION

IT is not an overstatement that the OPF problem—and its

many variants—is arguably the most researched and solved

optimization problem in the world. OPF [1] refers to computing

setpoints of generators in a power network every few minutes,

allowing generation to meet the varying demand. In short, the

problem minimizes the cost of generation from mostly fossil

fuel-based power plants subject to power balance in transmis-

sion power lines (acting as equality constraints or h(x) = 0)

and thermal line, voltages and generation limits (acting as

inequality constraints or g(x) ≤ 0). This optimization problem

can be written as

OPF: minimize f(x) s.t. g(x) ≤ 0 h(x) = 0. (1)

Due to the nonconvexity in the power balance equality con-

straints h(x) = 0, the OPF is infamously non-convex. The

infamy is not because the nonconvexity is too insufferable

however insufferability is defined; it is because OPF has be-

come a textbook example of practical optimization problems in

operations research and systems engineering.

In pursuit of overcoming this nonconvexity, hundreds of

papers yearly investigate methods to solve variants of OPF.
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The OPF can also make you a millionaire: The US depart-

ment of energy and ARPA-E have a competition, called grid

optimization (GO) Competition [2], [3], where academics and

practitioners compete in solving variants of the OPF with up

to $3 million in prizes. To solve the OPF, academics often

resort to one of these four approaches. (i) Assume DC power

flow and eliminate some variables, resulting in convex quadratic

programs that can be solved efficiently for large power systems

[4]–[7]. (ii) Derive semidefinite programming (SDP) relaxations

of OPF appended with methods to recover an optimal solution

[8]–[13]. (iii) Design global optimization methods with some

performance guarantees under various relaxations of nonconvex

OPF [14], [15]. (iv) Obtain machine learning-based algorithms

that learn solutions to OPF [16]–[20]. A thorough description of

the inveterate OPF literature is outside the scope of this work.

In reality, all of the aforementioned approaches still try to ac-

tually solve (1) or its derivatives, approximations, relaxations, or

restrictions. Relevant to these approaches that only focus on OPF

are methods and algorithms that study stability-constrained OPF

where dynamic stability or optimal control metrics are appended

to the OPF [21]–[24], thereby resulting in the integration of the

two time-scales of operation (i.e., OPF) and realtime stability

and control (or secondary control algorithms). Merging the two

time-scales results in OPF generator setpoints that are control-

aware, meaning the five-minute-setpoints allow the system to

be more controllable or more stable. This, however, does not

circumvent the issues with the nonconvex equality constraints

in the OPF. Although seemingly orthogonal to this discussion,

this pursuit of stability or control-constrained-OPF is somewhat

relevant to what we propose herein.

Furthermore, due to the increasing penetration of renewable

energy resources, complex load demands, and other power

electronics based devices in the future power grid, the 5–

10 minutes setpoints provided by the traditional OPF may

not be valid/optimal because of the time-separation and slow

update process [25]. With that in mind, this exploratory paper

investigates a new approach of solving the OPF problem in

realtime. This is done in a way by virtually ignoring (1) and

dumping the OPF problem into a feedback control problem

that inherently satisfies the constraint set in (1), while simul-

taneously performing other tasks such as frequency regulation.

Next, we explain how this approach works.

First, formulate a dynamic, differential algebraic equation

(DAE) model of power systems. This model incorporates

algebraic equations that model power flows (the nonconvex

constraints in (1)) as well as generator dynamics. Then, solve a

control problem that computes (a) OPF setpoints (i.e., generator

output power) and (b) their deviations in a feedback fashion

by utilizing PMU data in realtime, while forgoing the need to
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solve for the power flow variables—yet still somehow insuring

that physical constraints are not violated. By formulating a

realtime, feedback-driven control problem that solves for a time-

invariant feedback gain matrix, and feeding that gain into a

highly scalable differential algebraic equation (DAE) solver,

we avoid actually having to solve a nonconvex optimization

problem for the OPF variables.

In short, by dumping the OPF problem on a realtime, feedback

controller, we kinda solve the OPF by not solving the OPF.

This approach, in reality, does not actually solve the OPF with

the generator’s cost curves—but as observed later in the paper,

we showcase how the proposed approach is not terribly far from

optimality. In a real-world setting, the DAE solver is replaced

with the actual system meaning that even the DAEs do not

have to be simulated. The DAEs, already encode the nonconvex

constraints in OPF—a key factor in the proposed approach.

The presented approach in this paper is endowed with

the following key properties and contributions. The OPF-

controller: (i) Circumvents the need to solve or deal with

the nonconvex equality constraints modeling power flow. That

is, we find generators’ setpoints in realtime while knowing

that these setpoints do satisfy and abide by the power flow

constraints. (ii) Deals with the uncertainty in renewables, loads,

and parameters in a control-theoretic way. In contrast with

vintage robust optimization or the more intricate distributionally

robust optimization algorithms, the developed approach here

is distribution-free and is not inherently conservative. (iii)

Utilizes realtime information from grid sensors such as phasor

measurement units (PMU) via state estimators allowing for

realtime micro-adjustments of dispatchable generation. This

is in contrast with OPF formulations that do not utilize grid

measurements for better dispatch of generators. (iv) Eliminates

the need to separate the OPF and the secondary control time-

scales: this approach serves the purposes of both OPF and

control, so the need to separate the two becomes obsolete at

worst, and questionable at best. (v) Seamlessly models advanced

models of renewables, resulting in setpoints for fuel-based

generators that are aware of the dynamics of solar and wind

farms, for example.

We note that this paper is purely academic. It might have

no valuable addition whatsoever to the practical field of power

engineering. To that end, it should be treated as such. We do not

claim that the proposed approach should replace OPF, and we

make no rigorous claims regarding optimality. It just so happens

that the approach performs well—and this paper is attempting

to deliver this message. The remainder of the paper is organized

as follows: Section II summarizes the ACOPF problem formu-

lation. Section III present the multi-machine NDAE model of

power networks. Section IV explain the proposed methodology.

Numerical case studies are performed in Section V while the

paper is concluded in Section VI.

II. ACOPF FORMULATION

In this section, we briefly present the ACOPF formulation.*

We consider a power network consisting N number of buses,

modeled by a graph (N , E) where N is the set of nodes and E is

*We use ACOPF and OPF interchangeably in this paper.

the set of edges. Note that N consists of traditional synchronous

generator, renewable energy resources, and load buses, i.e.,

N = G∪R∪L where G collects G generator buses, R collects

the buses containing R renewables, while L collects L load

buses. The generator’s supplied (real and reactive) power is

denoted by (PGi, QGi) for bus i ∈ G, and the bus voltages

are depicted as vi. The bus angle is represented as θi and the

angle difference in a line is θij := θi − θj . The parameters

(Gij , Bij) respectively denote the conductance and susceptance

between bus i and j which can be directly obtained from the

network’s bus admittance matrix [26]. Furthermore, quantities

(PRi, QRi) denote the active and reactive power generated by

renewables for bus i ∈ R, while (PLi, QLi) denote the active

and reactive power consumed by the loads for bus i ∈ L.

Essentially, renewables are modeled as negative loads. If a bus

does not have generation, load, or a renewable source attached

to it, the corresponding active/reactive powers are equal to zero.

Given the above notation, the ACOPF can be written as [4]

min
PG,QG,θ,v

JOPF(PG) =
∑

i∈G

aiP
2
Gi + biPGi + ci (2a)

subject to ∀i ∈ N : PGi + PRi + PLi =

vi

N
∑

j=1

vj(Gij cos θij +Bij sin θij) (2b)

∀i ∈ N : QGi +QRi +QLi =

vi

N
∑

j=1

vj (Gij sin θij −Bij cos θij) (2c)

∀i ∈ G : Pmin
Gi ≤ PGi ≤ Pmax

Gi (2d)

∀i ∈ G : Qmin
Gi ≤ QGi ≤ Qmax

Gi (2e)

∀i ∈ N : vmin
i ≤ vi ≤ vmax

i (2f)

∀i ∈ N : Sfi ≤ Fmax (2g)

∀i ∈ N : Sti ≤ Fmax. (2h)

The variables in the ACOPF are the active/reactive powers

for generator buses and angles and voltages for all buses

(PG,QG,θ,v). In (2), the objective function JOPF(PG) min-

imizes the generator’s convex quadratic cost function with

parameters ai, bi, and ci. The first two constraints model power

flow balance in the network—a nonlinear, non-convex relation

between the variables. The last five constraints represent upper

and lower bounds on the generators’ power as well as bus

voltages and line flow constraints, with Sfi , Sti representing

from and to line flows and Fmax denoting maximum rating of

the transmission lines.

The ACOPF is usually solved every 5–10 minutes, although

the frequency at which its solved depends on the computational

power and updated predictions of renewables and loads. Ideally,

a system operator would have all of the constraints satisfied at

each time step t, and one would solve a realtime ACOPF that

satisfies all constraints while optimizing the cost function.

In the next section, we present the dynamics of the same

power system with a focus on the realtime control problem. We

then showcase that the proposed realtime controller inherently

satisfies some of the key ACOPF constraints.
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III. DYNAMICS OF MULTI-MACHINE POWER SYSTEMS

Here, we describe the transient dynamics of a power sys-

tem which by definition encode the algebraic constraints (2b)

and (2c). For the same power network, we can write the 4th-order

dynamics of synchronous generators as [26]:

δ̇i = ωi − ω0 (3a)

Miω̇i = TMi − PGi −Di(ωi − ω0) (3b)

T ′
d0iĖ

′
i = −xdi

x′

di

E′
i +

xdi−x′

di

x′

di

vi cos(δi − θi) + Efdi (3c)

TCHiṪMi = −TMi −
1

RDi
(ωi − ω0) + Tri. (3d)

where δi, ωi, E
′
i, TMi are generator’s internal states and Efdi,

Tri are generator’s controllable inputs (exciter field voltage and

torque setpoint). The constant terms in (3) are as follows: Mi

is the rotor’s inertia constant (pu × s2), Di is the damping

coefficient (pu×s), xdi is the direct-axis synchronous reactance

(pu), x′
di is the direct-axis transient reactance (pu), T ′

d0i is the

direct-axis open-circuit time constant (s), TCHi is the chest valve

time constant, RDi is the regulation constant for the speed-

governing mechanism, and ω0 denotes the rotor’s synchronous

speed (rad/s). The mathematical model relating generator’s

internal states (δi, ωi, E
′
i, TMi), generator’s supplied power

(PGi, QGi), and terminal voltage vi is given by the generator’s

internal algebraic constraint [27]

PGi =
1

x′

di

E′
ivi sin(δi − θi)−

xqi−x′

di

2x′

di
xqi

v2i sin(2(δi − θi)) (4a)

QGi =
1

x′

di

E′
ivi cos(δi − θi)−

x′

di+xqi

2x′

di
xqi

v2i

− xqi−x′

di

2x′

di
xqi

v2i cos(2(δi − θi)).
(4b)

The power flow equations, for all buses i ∈ N , representing the

distribution of real and reactive power are given by (2b) and (2c),

which are present in the ACOPF formulation. Hence, the

power flow constraints and the generator’s algebraic constraints

essentially couple the rapidly varying dynamic states and control

variables with the ACOPF ones.

In order to construct the nonlinear state-space representation

of the multi-machine power networks (2b), (2c), (3), and (4), de-

finexd as the vector populating all dynamic states of the network

such that xd :=
[

δ> ω> E′> T>
M

]>
in which δ := {δi}i∈G,

ω := {ωi}i∈G, E′ := {E′
i}i∈G, TM := {TMi}i∈G. Furthermore,

we can define the vector of algebraic states (that overlap

with some ACOPF variables) as xa :=
[

P>
G Q>

G v> θ>
]>

.

The controllable input of the power network is defined as

u :=
[

E>
fd T>

r

]>
where Efd :={Efdi}i∈G and Tr :={Tri}i∈G.

In addition, define the vector q as q :=
[

P>
R Q>

R P>
L Q>

L

]>

where PR := {PRi}i∈R, QR := {QRi}i∈R, PL := {PLi}i∈L,

QL := {QLi}i∈L. Essentially, vector q lumps all uncertain

quantities from renewables and loads. The above notations allow

us to have a compact, nonlinear differential algebraic equation

(NDAE) state space model:

Dynamics: ẋd =Adxd+Gdfd (xd,xa)+Bdu+hω0 (5a)

Constraints: 0 = Aaxa +Gafa (xd,xa) +Baq (5b)

where xd ∈ R
nd , xa ∈ R

na , u ∈ R
nu , and q ∈ R

nq . The

functions fd : Rnd×R
na×R

nu → R
nfd and fa : Rnd×R

na×
R

nu → R
nfa defined the vector-valued mapping containing

the nonlinearity of generator dynamics as well as the power

flow nonlinearity/nonconvexity. Matrices Ad ∈ R
nd×nd , Aa ∈

R
na×na , Gd ∈ R

nfd×nd , Ga ∈ R
nfa×na , and vector h ∈

R
nd defined the linear portion of the dynamics and algebraic

constraints.

Having defined the NDAE power network dynamics, we note

the following. (i) Herein, we showcase a fourth order generator

model (i.e., each generator is modeled via four states) but

this can be extended to higher order generator dynamics as

well as dynamic models of solar and wind. (ii) In addition to

modeling the algebraic constraints encoding lossy power flows,

the presented NDAE formulation also accounts for the stator’s

algebraic equation which is usually missing from ACOPF for-

mulation. (iii) The controllable variable in the ACOPF formu-

lation, namely PG, is present in the dynamical system model as

an algebraic variable that is controlled explicitly via u(t). This

entails the following. Solving a feedback control problem that

generates realtime sequence u(t) and subsequently extracting

the ACOPF’s algebraic variables xa(t), while satisfying the

ACOPF constraints and being close to its optimal solution

JOPF(PG), could be specifically useful.

IV. SOLVING OPF VIA DAE CONTROL THEORY

We focus now on the control problem for the NDAE model

(5), which when solved will essentially solve a version of

the ACOPF (2). This control problem can simply be defined

as computing a constant gain matrix that can be used with

the control input u(t) in a closed-loop fashion (via realtime

state/output information) such that it can drive the system back

to a stable equilibrium after a large disturbance. With that in

mind, let us define the closed-loop NDAE dynamics for (5) as

follows:

ẋd = Adxd +Gdfd (xd,xa) +Bducl + hω0 (6a)

0 = Aaxa +Gafa (xd,xa) +Baq (6b)

where ucl is the closed-loop control input and is defined as:

ucl := ucl(t) = uk
ref +Kd

(

xd(t)− xk
d

)

(7)

in which uref is the reference or baseline setting for the control

input u, xk
d is the dynamic states information at previous time

step k, and Kd is the constant controller gain matrix. The key

idea is to design Kd such that using realtime state feedback

information xd(t), the closed-loop control input ucl can make

the system robust and transiently stable against disturbances.

Notice that, if we can compute Kd in a way such that it

encodes (6b) also along with (6a), then the determined feed-

back controller Kd will inherently satisfy the key constraints

appearing in the OPF formulation (2). This is because Eq. (6b)

includes power balance equations (2b), (2c) of ACOPF and

generators stator algebraic constraints (4a),(4b) which indirectly

encode the constraints (2d),(2e) of the ACOPF. As for the

other constraints such as limits on generators’ capacities, these

can be encoded via saturation dynamics in the differential

equations. Admittedly, other constraints such as thermal limits

of lines cannot be modeled in this approach, and to that end

we thoroughly investigate any constrained violations incurred

in Section V.

With that in mind, we name the computation of such feedback

controller gainKd which includes (6b) in its control architecture
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as control-OPF feedback controller design. This is because such

Kd ensures system transient stability after a large disturbance

and also fully abides by the key OPF constraints as discussed

above. To that end, we present the following results to compute

suchKd which is based on Lyapunov stability theory as follows:

(CONTROL-OPF) minimize
λ,X,W

λ

subject to LMI(λ,X,W ) ≺ 0.

For brevity, the proof and structure of the above LMI in the

control-OPF formulation are not included in this paper and are

given in [28], where the authors did not study the application

of that control to ACOPF. Note that the objective function is

different in this paper from [28]. Here, we are minimizing

the eigenvalues of the considered Lyapunov function through

variable λ, which ensures quick convergence of the system to

the equilibrium state after a large disturbance.

By solving control-OPF we can determine an appropriate

time-invariant gain matrixKd = WX−1 which can be plugged

into (7) to design a feedback control law that guarantees the

stability of the system after a large disturbance. Notice that

the computation of Kd is carried out offline.† Furthermore, the

design control law ucl acts in realtime based on the system

state/output information provided by PMUs in power systems.

We want to emphasize here that the control-OPF gain matrix

Kd has been derived in a way such that it satisfies the algebraic

constraints (6b) of the NDAE power system model. This can also

be verified by looking at the structure of the proposed LMI in

[28], we can observe that it is dependent on the system matrices

(Aa, Ga, and Ba) of Eq. (6b). This means that Kd inherently

satisfies some of the key constraints appearing in ACOPF

formulation (2). However, the specific LMI implemented in

this paper differs from the one in [28] in its inclusion of faster

convergence of the system states and the corresponding OPF

variables. Accordingly, we have updated to reflect that—and

choose not to include that change herein for the lack of space.

Although the rest of the ACOPF constraints such as line

thermal limits and voltage limits are not explicitly modeled

in the presented control-OPF architecture, through extensive

numerical case studies under various conditions we show that

these constraints are also indeed satisfied. This is because the

control-OPF also makes sure that the system is transiently stable

after a large disturbance.

To that end, since the control-OPF act in realtime and provides

stability guarantees while also satisfying ACOPF conditions

then the need for running ACOPF after 5-10 minutes in the

tertiary layer of the power system can be eliminated. Thus we

essentially dumped the ACOPF problem in a feedback control

architecture. It is worthwhile to mention that in the presented

control-OPF we do not need even need to solve the power system

NDAE model. In a real world application, the NDAE (5) is

replaced by the actual power system model. Thus the control-

†This matrix gain is computed offline as it does not depend on the state of
the system and only relies on the system’s parameters and topology. Hence,
its computation is performed offline. In case topological changes happen in
the system, this gain matrix Kd should ideally be recomputed, but feedback
control gains are known to be robust to minor changes in system parameters
and topology.

OPF is essentially carried out offline and thenKd is used online,

knowing that Kd satisfies system algebraic constraints.

V. NUMERICAL CASE STUDIES

To evaluate the performance of the proposed methodology,

we test various magnitudes of disturbances in load and renew-

able energy resources. We also compare the overall cost of

the system with the control-OPF and by just running ACOPF.

Notice that the control-OPF provides us time-varying vectors

of PG and QG as shown in Fig. 1 while ACOPF gives static

set-points for the generator power outputs. This is because when

a disturbance is applied to the system the control-OPF also

commands all the generators to increase or decrease power in

order to mitigate the effect of the disturbance on the system

dynamics. To compute the cost of the system with control-OPF,

we evaluate the quadratic cost equation of the generator for

the vector PG (generated from running the control law u(t)),
and then computing the mean of the total cost vector, given as

follows:

JOPF(P
control-OPF
G ) =

1

T

T
∑

t=1

∑

i∈G

aiP
2
Gi(t) + biPGi(t) + ci

With that in mind, two case studies are carried out as

discussed in the below sections. In the first case study, we apply

random step uncertainty in load demand with high Gaussian

noise and evaluate the system total cost and compare it with

ACOPF cost. A similar comparison has been carried out in

the second case study. However, here we also assume high

uncertainty in the power generated by renewables as shown in

Fig. 7. In both case studies, we also check if with the control-

OPF the system violates any ACOPF constraints or not.

To that end, in this section the following high-level research

questions are investigated.

• Q1. Given that the control-OPF strategy does not take

into account generators’ cost curves and the ACOPF

cost function JOPF(P
ACOPF
G ), how far are the generators’

varying setpoints and their corresponding aggregate costs

JOPF(P
control-OPF
G ) from the ACOPF solutions?

• Q2. The control-OPF approach does not take into account

inequality constraints modeling generators’ capacity or

thermal line limits. Does this approach result in any

constraint violations of the ACOPF?

• Q3. Can we quantify the price of realtime control and

regulation of the grid’s dynamic states?

• Q4. Is the comparison between ACOPF and control-OPF

fair? While the former knows exact values for all uncer-

tain loads and renewables (needed to compute ACOPF

setpoints), the latter is truly uncertainty-unaware.

All the simulation studies are carried out in MATLAB 2022b
and using MATPOWER software. Optimal power flow for all

the case studies is carried out by running runopf command

in MATPOWER [29]. The control-OPF gain is computed via

YALMIP [30] and using MOSEK [31] solver, while the power

system NDAEs (5) are simulated using MATLAB DAEs solver

ODE15i.
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Table I
SUMMARY OF ACOPF CONSTRAINTS FOR DIFFERENT TEST SYSTEM WITH CONTROL-OPF FOR SCENARIO A. THE RESULTS INDICATE NO CONSTRAINT

VIOLATIONS FOR FLOWS, MAXIMUM ACTIVE/REACTIVE POWERS.

Test System
maxt(Sf (t)− Smax)

(pu)
maxt(St(t)− Smax)

(pu)
maxt(Pg(t)− Pmax)

(pu)
maxt(Qg(t)−Qmin)

(pu)
maxt(Qg(t)−Qmax)

(pu)
Case 9 -0.5610 -0.5570 -1.0626 3.3456 -2.6414

Case 14 -0.3297 -0.3910 -0.6606 0.5736 -0.0046
Case 39 -0.6662 -0.6675 -0.0778 3.1338 -0.0464
Case 57 -0.2391 -0.8312 -0.0014 2.0121 -0.0396

0 10 20 30 40 50

0.75

0.8

0.85

0.9

0.95
control-OPF OPF

0 10 20 30 40 50

-0.25

-0.2

-0.15

-0.1

-0.05

0
control-OPF OPF

0 10 20 30 40 50

1.56

1.58

1.6

1.62

0 10 20 30 40 50

0.05

0.1

0.15

0.2

Figure 1. Time-varying active/reactive power set-points provided by control-
OPF and static set-points from ACOPF for three random step disturbances in
load demand; above figures are for case 39 and below figures are for case 9
test system.

Table II
COST COMPARISON FOR THE CONTROL-OPF AND ACOPF FOR SCENARIO

A.

Test System Method
Total system
cost ×103 $

Percentage difference
from ACOPF

Case 9
ACOPF 5.4188 —

control-OPF 5.5815 3.002

Case 14
ACOPF 8.4591 —

control-OPF 9.6632 14.24

Case 39
ACOPF 41.819 —

control-OPF 46.095 10.23

Case 57
ACOPF 42.791 —

control-OPF 46.501 8.67

A. Scenario A: Uncertainty in Load Demand

In this section, we analyze the overall system cost with the

control-OPF and compare it with the cost obtained by running

ACOPF under random disturbances in load demand. To that

end, the simulations are carried out as follows: Initially, the

system operates under steady-state conditions, meaning the

overall demand is exactly equal to the power generated by

load and renewables. Thus there are no transients in the system

and the system rests in an equilibrium state. Then right after

t > 0 ten random (with varying uncertainty) step disturbances

in load demand has been added as follows: P ′
d + Q′

d =
(1 + δd)(P

0
d + Q0

d) + wd(t), where δd represent the amount

0 50 100 150

0

1

2

3

0 50 100 150

-2

0

2

0 50 100 150

0

1

2

0 50 100 150

0.95

1

1.05

Figure 2. Active and reactive power generated by the all the generators and
their respective limits, line flows and their maximum rating, and the overall
modulus of all bus voltages for case 9 bus test system for Scenario A.

Table III
COST COMPARISON FOR THE CONTROL-OPF AND ACOPF FOR SCENARIO

B.

Test System Method
Total system
cost ×103 $

Percentage difference
from ACOPF

Case 9
ACOPF 6.3191 —

control-OPF 6.4712 2.406

Case 14
ACOPF 10.431 —

control-OPF 12.002 15.06

Case 39
ACOPF 52.929 —

control-OPF 59.083 12.53

Case 57
ACOPF 50.321 —

control-OPF 54.087 7.483

of the disturbance, wd(t) is a Gaussian noise with zero mean

and variance of 0.01(P 0
d +Q0

d), P
0
d , Q0

d are the initial active and

reactive load demand, and P ′
d, Q′

d is the new load demand after

the disturbances has been applied. For every ten simulations the

value for δd is selected randomly in [0.01, 0.08] for case 9 and

case 14, for case 39 the range is chosen in [0.001, 0.02], while

for case 57 δd is randomly picked in [0.001, 0.01].
After the disturbance, the power system is stabilized via

control-OPF and the gainKd which is computed offline. Notice

that for every load disturbance, we get time-varying generator

power output vectorPG andQG. The vectorPG is then plugged

into the quadratic cost equation of the generators (given in

MATPOWER) and finally average is taken to compute the final
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Figure 3. Active and reactive power of couple of generators and their
respective limits, line flows and their maximum rating, and the overall modulus
of all buses voltages for case 39 bus test system for Scenario B.
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Figure 4. Generator frequencies under ten random disturbances in load and
renewables for case 9, case 14, case 39, and case 57 test systems respectively.

cost. In this way, we get the overall cost of the system with

the control-OPF acting in realtime to redistribute the power

from the generator in response to the disturbances. For similar

uncertainties in load demand, OPF is also carried out ten times

and an average of the overall cost is computed to determine the

system cost for random loads with OPF.

Notice that OPF provides static set points for the vectors

PG and QG corresponding to each load demands. Thus the

set points provided by OPF for a certain loads may not be

feasible and might make the whole system unstable. On the other

hand control-OPF ensures guaranteed stability and provide us

time-varying set points for PG and QG which make sure that

system remain transiently stable and synchronized after large

disturbances in loads demand [28].
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Figure 5. Comparison of the operating cost of the system with control-OPF
and OPF under Scenario A, case 9, case 14, case 39, and case 57, respectively.
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Figure 6. Comparison of the operating cost of the system with control-OPF
and OPF under Scenario B, case 9, case 14, case 39, and case 57, respectively.

To that end, a comparison of the overall system cost with

control-OPF and OPF for this case study is presented in Tab.

II. We can note that for different test networks, the average cost

of system operation under various load disturbances is close

to the average cost computed via just running OPF. This can

also be corroborated from Fig. 5 from which we can see that

the cost of control-OPF is close to the cost obtained from OPF

for case 9 and case 14 test systems. Fig. 1 also illustrate the

time-varying power generation set-points (for the first three

simulations) generated by control-OPF and static set-points

received via solving OPF and we can observe that both of them

are not far away from each other. Moreover, in Fig. 2 we present

active and reactive power from all the generators, line flows, and

modulus of bus voltages for the case 9 test system. Notice that,
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Figure 7. Random uncertainty in renewable power generations

0 50 100 150

0

1

2

3

0 50 100 150

-2

0

2

0 50 100 150

0

1

2

0 50 100 150

0.95

1

1.05

Figure 8. Active and reactive power generated by the all the generators and
their respective limits, line flows and their maximum rating, and the overall
modulus of all bus voltages for case 9 bus test system for Scenario B.

line flows are computed from the state vectors as follows:

Sf = [CfV ]Y ∗
f V ∗, St = [CtV ]Y ∗

t V ∗

where Sf , St are apparent power flows from both ends (from

bus and to bus) of the transmission line respectively, V are the

bus voltages, Y ∗
f , Y ∗

t represent the conjugate of from and to

bus admittance matrices, while Cf , Ct are binary matrices and

it generates all from and to end buses of the transmission lines.

With that in mind, we can clearly see from Fig. 2 that all the

line flows, bus voltages and generator’s power outputs are within

their prescribed limits and thus the control-OPF successfully

satisfies all the system constraints that are usually modeled

in OPF. Similarly for all the other test systems, we can see

from Tab. I that the maximum instantaneous value for the line

flows, and active and reactive power generations are less than

their respective maximum limits. Thus the proposed control-

OPF satisfies the constraints of the system—and no ACOPF

constraint violations are incurred.

B. Scenario B: Uncertainty in Renewable Power Generation

In this section, we analyze the cost of operating the system

with control-OPF and compare it with OPF under random

uncertainty in renewable power generations. To that end, the

simulations in this section are performed as follows: Initially,

the power generation from renewables is P 0
R, Q0

R, then right

after t > 0, a random disturbance has been added and the

power output from renewables are given as: P ′
R + Q′

R =
(1+δR)(P

0
R+Q0

R)+wR(t), where δR represent the severity of

the disturbance, wR(t) is the random noise as shown in Fig. 7,

and P ′
R, Q′

R are the updated power output from renewables after

the disturbance. With that in mind, we carry out ten simulations

and for each simulation, the value for δR is selected randomly

in [−0.01, 0.03] for case 9 and case 14, for case 39 it is in

[−0.001, 0.01], while for case 57 it is chosen randomly in

[−0.01, 0.02].
To that end, from Tab. III we can see that the difference

between system operating cost with control-OPF and by just

running OPF are close to each other. This means that control-

OPF not only ensures transient stability of the system via

realtime feedback—which can be verified from Fig. 4, we can

see that all the generator frequencies goes back to its equilibrium

after large disturbance in load demand, but also makes sure

that the power redistribution from the generators after a large

disturbance is such that it is close to OPF cost. In Fig. 3 we

also illustrate for the 39-bus test system the active power output

of generator 2, reactive power output of generators 1 to 4, line

flows of a couple of transmission lines, and modulus of bus

voltages for all ten simulations. We can clearly see that for every

random renewable uncertainty, the generator power output, line

flows, and bus voltages are within their prescribed limits. Thus

ensuring that the system constraints are satisfied.

These results can also be corroborated from Tab. IV, from

which we can observe that for all test systems, the instantaneous

active/reactive power outputs and transmission to and from line

flows are less/greater than their respective maximum/minimum

limits. Notice that the reason it satisfies all the system constraints

is because the proposed control-OPF make sure that the system

is transiently stable (in term of Lyapunov stability) and it

inherently encodes the algebraic constraints (power balance and

generator stator constraints) of power system in its feedback

control architecture. To that end, since the proposed control-

OPF satisfies all the system constraints and the overall system

cost after a large disturbance in load and renewable is close

to the cost obtained from OPF. Then the need to solve OPF

after 5-10 minutes in the tertiary layer (or economic dispatch

layer) of the power system can be eliminated. This is because

the control-OPF acts in realtime through feedback provided by

the PMUs and it also ensures system stability as discussed in

IV.

We note that other types of dispatch problems are still needed,

even if the control approach presented herein was able to yield

cost-optimal schedules.‡

VI. PAPER SUMMARY, LIMITATIONS, AND FUTURE WORK

In this work, we propose a new method to solve the opti-

mal power flow problem using feedback control theory. The

‡This in reality, cannot happen. The proposed controller yields robust
generator setpoints without knowing the deviations in loads and renewables,
and hence it is expected that it should cost more—there can never be a free
lunch.
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Table IV
SUMMARY OF ACOPF CONSTRAINTS FOR DIFFERENT TEST SYSTEM WITH THE CONTROL-OPF FOR SCENARIO B. THE RESULTS INDICATE NO

CONSTRAINT VIOLATIONS FOR FLOWS, MAXIMUM ACTIVE/REACTIVE POWERS.

Test System
maxt(Sf (t)− Smax)

(pu)
maxt(St(t)− Smax)

(pu)
maxt(Pg(t)− Pmax)

(pu)
maxt(Qg(t)−Qmin)

(pu)
maxt(Qg(t)−Qmax)

(pu)
Case 9 -0.3101 -0.4230 -0.0391 1.1430 -1.9010

Case 14 -0.2011 -0.1841 -0.1649 1.0726 -0.0015
Case 39 -0.2491 -0.6335 -0.0098 0.2210 -0.0301
Case 57 -0.8702 -0.1313 -0.0013 2.0111 -0.0387

proposed algorithm namely control-OPF is based on Lyapunov

stability and it explicitly models the algebraic constraints of

the power system in the controller architecture. These algebraic

constraints (especially the power balance equations) are part

of the OPF problem, since the control-OPF inherently satisfies

these constraints then the need for solving OPF after 5-10

minutes in the tertiary layer of the power system can be

rethought or potentially eliminated.

Given the case studies, we present preliminary answers to the

posed research questions Q1–Q4 posed in Section V.

• A1. Depends on how you define closeness. We observe

that control-OPF approach yields a cost function that is

on average higher than the OPF. Results varied between

2–15% depending on the studied system and the assumed

conditions.

• A2. The control-OPF approach results in no constraint

violations for all studied power systems under different

realizations of renewables, loads, and initial conditions.

• A3. The control-OPF produces more than just a time-

varying, realtime generator setpoints and deviations; it

produces realtime regulation of the grid’s voltages and

frequencies. As such, one could consider the 2–15% in-

crease in the operational system cost as a cost of realtime

regulation. Who pays for this additional cost is a different

story.

• A4. While the OPF knows exact values for all uncertain

loads and renewables (needed to compute OPF setpoints),

the control-OPF is truly uncertainty-unaware. The former

needs vectors of uncertainty from renewables and loads;

the latter hedges against it. Hence one could argue that the

cost comparison is objectively unfair to the control-OPF.

A fairer comparison would be with a stochastic OPF, that

is also uncertainty unaware.

Future work will focus on comparing this framework with a

robust version of ACOPF, extending the dynamic model to

incorporate dynamics of renewable energy resources such as

wind and solar farms, and investigating the performance of

robust H∞- or L∞-based controllers in terms of costs and

response to uncertainty.
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S. Tu, A. Wächter, E. Wei, E. Wong, A. Gholami et al., “Recent
developments in security-constrained ac optimal power flow: Overview
of challenge 1 in the arpa-e grid optimization competition,” arXiv

preprint arXiv:2206.07843, 2022.

[3] J. Holzer, C. Coffrin, C. DeMarco, R. Duthu, S. Elbert, S. Greene,
O. Kuchar, B. Lesieutre, H. Li, W. K. Mak et al., “Grid optimization
competition challenge 2 problem formulation,” Tech. rep. ARPA-E,
Tech. Rep., 2021.

[4] J. A. Taylor, Convex optimization of power systems. Cambridge
University Press, 2015.

[5] J. Momoh, M. El-Hawary, and R. Adapa, “A review of selected optimal
power flow literature to 1993. ii. newton, linear programming and
interior point methods,” IEEE Transactions on Power Systems, vol. 14,
no. 1, pp. 105–111, 1999.

[6] R. P. O. M. B. Cain and A. Castillo, “History of
optimal power flow and formulations,” pp. 1–36, Nov 2021.
[Online]. Available: https://www.ferc.gov/sites/default/files/2020-05/
acopf-1-history-formulation-testing.pdf

[7] A. J. Ardakani and F. Bouffard, “Identification of umbrella constraints in
dc-based security-constrained optimal power flow,” IEEE Transactions

on Power Systems, vol. 28, no. 4, pp. 3924–3934, 2013.

[8] M. S. Andersen, A. Hansson, and L. Vandenberghe, “Reduced-
complexity semidefinite relaxations of optimal power flow problems,”
IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1855–1863,
2014.

[9] R. Louca, P. Seiler, and E. Bitar, “A rank minimization algorithm
to enhance semidefinite relaxations of optimal power flow,” in 2013

51st Annual Allerton Conference on Communication, Control, and

Computing (Allerton), 2013, pp. 1010–1020.

[10] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow
problem,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp.
92–107, 2012.

[11] D. K. Molzahn, B. C. Lesieutre, and C. L. DeMarco, “A sufficient
condition for global optimality of solutions to the optimal power flow
problem,” IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 978–
979, 2014.

[12] D. K. Molzahn, J. T. Holzer, B. C. Lesieutre, and C. L. DeMarco,
“Implementation of a large-scale optimal power flow solver based
on semidefinite programming,” IEEE Transactions on Power Systems,
vol. 28, no. 4, pp. 3987–3998, 2013.

[13] S. H. Low, “Convex relaxation of optimal power flow—part i: For-
mulations and equivalence,” IEEE Transactions on Control of Network

Systems, vol. 1, no. 1, pp. 15–27, 2014.

[14] A. Gopalakrishnan, A. U. Raghunathan, D. Nikovski, and L. T. Biegler,
“Global optimization of optimal power flow using a branch & bound al-
gorithm,” in 2012 50th Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2012, pp. 609–616.

[15] M. Lu, H. Nagarajan, R. Bent, S. D. Eksioglu, and S. J. Mason, “Tight
piecewise convex relaxations for global optimization of optimal power
flow,” in 2018 Power Systems Computation Conference (PSCC). IEEE,
2018, pp. 1–7.

[16] K. Baker, “Learning warm-start points for ac optimal power flow,” in
2019 IEEE 29th International Workshop on Machine Learning for Signal

Processing (MLSP). IEEE, 2019, pp. 1–6.

[17] W. Huang, X. Pan, M. Chen, and S. H. Low, “Deepopf-v: Solving ac-
opf problems efficiently,” IEEE Transactions on Power Systems, vol. 37,
no. 1, pp. 800–803, 2022.

[18] X. Pan, T. Zhao, M. Chen, and S. Zhang, “Deepopf: A deep neural
network approach for security-constrained dc optimal power flow,” IEEE

Transactions on Power Systems, vol. 36, no. 3, pp. 1725–1735, 2021.

[19] A. S. Zamzam and K. Baker, “Learning optimal solutions for extremely
fast ac optimal power flow,” in 2020 IEEE International Conference on

Communications, Control, and Computing Technologies for Smart Grids

(SmartGridComm), 2020, pp. 1–6.

[20] K. Baker, “Emulating ac opf solvers with neural networks,” IEEE

Transactions on Power Systems, vol. 37, no. 6, pp. 4950–4953, 2022.



9

[21] M. Bazrafshan, N. Gatsis, A. F. Taha, and J. A. Taylor, “Coupling load-
following control with opf,” IEEE Transactions on Smart Grid, vol. 10,
no. 3, pp. 2495–2506, 2019.

[22] N. Li, C. Zhao, and L. Chen, “Connecting automatic generation control
and economic dispatch from an optimization view,” IEEE Transactions

on Control of Network Systems, vol. 3, no. 3, pp. 254–264, 2016.
[23] F. Dorfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierar-

chy: Distributed control and economic optimality in microgrids,” IEEE

Transactions on Control of Network Systems, vol. 3, no. 3, pp. 241–253,
2016.

[24] S. Trip, M. Bürger, and C. De Persis, “An internal model approach
to (optimal) frequency regulation in power grids with time-varying
voltages,” Automatica, vol. 64, pp. 240–253, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0005109815004859

[25] Y. Tang, K. Dvijotham, and S. Low, “Real-time optimal power flow,”
IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2963–2973, 2017.

[26] P. Sauer, M. Pai, and J. Chow, Power System Dynamics and Stability:

With Synchrophasor Measurement and Power System Toolbox, ser. Wiley
- IEEE. Wiley, 2017.

[27] A. F. Taha, M. Bazrafshan, S. A. Nugroho, N. Gatsis, and J. Qi,
“Robust control for renewable-integrated power networks considering
input bound constraints and worst case uncertainty measure,” IEEE

Transactions on Control of Network Systems, vol. 6, no. 3, pp. 1210–
1222, 2019.

[28] S. A. Nugroho and A. F. Taha, “Load-and renewable-following control of
linearization-free differential algebraic equation power system models,”
IEEE Transactions on Control Systems Technology, pp. 1–13, 2023.

[29] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on Power Systems,
vol. 26, no. 1, pp. 12–19, 2011.
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