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STATE-ROBUST OBSERVABILITY MEASURES FOR SENSOR

SELECTION IN NONLINEAR DYNAMIC SYSTEMS

Mohamad H. Kazma1, Sebastian A. Nugroho2, Aleksandar Haber3, and Ahmad F. Taha1

Abstract—This paper explores the problem of selecting sensor
nodes for a general class of nonlinear dynamical networks. In
particular, we study the problem by utilizing altered definitions
of observability and open-loop lifted observers. The approach is
performed by discretizing the system’s dynamics using the im-
plicit Runge-Kutta method and by introducing a state-averaged
observability measure. The observability measure is computed
for a number of perturbed initial states in the vicinity of the
system’s true initial state. The sensor node selection problem is
revealed to retain the submodular and modular properties of the
original problem. This allows the problem to be solved efficiently
using a greedy algorithm with a guaranteed performance bound
while showing an augmented robustness to unknown or uncertain
initial conditions. The validity of this approach is numerically
demonstrated on a H2/O2 combustion reaction network.

Index Terms—Nonlinear Systems, sensor selection, nonlinear
observability, discrete systems, greedy algorithm

I. INTRODUCTION AND PAPER CONTRIBUTIONS

T
HE sensor selection problem is one of the fundamental

control engineering problems. The problem is crucial

for the control, monitoring, and safe operation of a large

number of engineered systems, such as electric power grids

[1], municipal water networks [2], and transportation systems

[3]. From a control- and observability-based formulation, this

problem aims to find the optimal combination of sensor nodes

(graph nodes whose local states should be observed) that

optimize appropriate observability measures. The goal is to

make the system as observable as possible using a limited

number of sensors to be placed on select nodes in the network.

Sensor selection problems have gained considerable re-

search interest in recent years as a plethora of methods have

been proposed in the literature, especially for linear systems.

These methods can be categorized based on underlying math-

ematical approaches, such as network and graph theory [4],

[5], sparsity promoting algorithms [6], [7], semidefinite ap-

proximations and relaxations [8], heuristic optimization under

convex relaxations [9], greedy approach under submodular set

maximization [10], and mixed-integer optimization [1], [11].

Regardless, methods for solving sensor selection problems for

nonlinear dynamic networks are significantly less developed.

Only a handful of methods have been proposed so far to

address this problem for nonlinear dynamic systems.
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A sensor selection algorithm for target tracking in nonlinear

dynamic networks based on a generalized information gain is

proposed in [12]. Next, an empirical observability Gramian

approach is utilized in [13] for placing phasor measurement

units in transmission power networks. Another approach based

on an open-loop moving horizon estimation for sensor selec-

tion and state observation is proposed in [14]. The approach

presented in [14] is more numerically tractable than the

approaches based on empirical observability Gramians. A new

randomized algorithm is presented in [15] in which theoretical

bounds for eigenvalues and condition numbers of observability

Gramians are developed. A novel framework is proposed in

[16] for sensor selection and observer design. This approach is

developed by using the Lyapunov stability theory and mixed-

integer semidefinite optimization. Lastly, methods to place

actuators in nonlinear networks that are based on heuristically

solving mixed-integer nonlinear optimization problems have

been recently developed in [17].

Here it should be emphasized that most of the developed ap-

proaches for solving the sensor selection problems, especially

the ones involving mixed-integer programs, are not necessarily

efficient and scalable for large nonlinear dynamic networks.

The computational burden of the developed approaches be-

comes significant even for small or medium-sized nonlinear

networks. Another issue with sensor selection problems for

nonlinear networks is that, in practice, the initial states of

the system are usually not known a priori. This creates

model uncertainties and difficulties in formulating and solving

the sensor selection problem since the numerically tractable

observability-based approach [14] for nonlinear systems in-

volves a dependency on initial states. This implies that under

such state-dependency any perturbation to the initial state tends

to yield in most cases different sensor node selections for

the same nonlinear network modeled under similar system

parameters.

To partly address the aforementioned limitations, we extend

observability-based sensor selection method introduced in [14]

by introducing state-averaged observability measures for non-

linear networks. That is, instead of utilizing the observability

measures associated with a single guess on the initial state,

we consider a state-averaged observability metric that relies

on several points located around the actual initial state. This

allows the constructed observability-based measures to take

into account the variabilities resulting from initial conditions

perturbations on the sensor selection measures.

Note that due to the structure preserving operations that

yield the state-averaged observability Gramian, we show that

the observability metrics for sensor selection retain modularity

and submodularity properties. This consequently allows the
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sensor selection problem to be solved through greedy heuristic,

and thus make it suitable to solve sensor selection for large-

scale nonlinear dynamic networks.

Accordingly, the main contributions of this paper are:

• We introduce a state-averaged observability measure for

sensor selection in nonlinear networks. We use a number of

points located around the nonlinear system’s initial state. By

relying on such local state-averaged observability measure,

we attain an optimal sensor selection that is robust against

unknown or uncertain initial conditions.

• We provide theoretical and numerical validation that under

such state-averaged observability measures the submodular-

ity and modularity of the sensor selection objective function

is retained. In particular, we leverage the modularity and

submodularity of the trace and log-det measures of the

constructed observability Gramian to perform the sensor

selection. Under such formulation, greedy algorithms are

employed to solve the combinatorial set optimization prob-

lem and as a consequence the selection problem is rendered

scalable to large-scale nonlinear dynamic networks.

• We evaluate the validity and robustness of the proposed

approach by providing descriptive numerical experiments

that showcase the proposed sensor selection strategy. The

method is tested on a nonlinear H2/O2 combustion reaction

network.

This rest of the paper is organized as follows. Section II

introduces the problem formulation. Section III presents some

theoretical results pertaining to the state-averaged observabil-

ity measures. Numerical results are presented in Section IV,

and Section V concludes the paper.

Paper’s Notation: Let R, Rn, and R
p×q denote the set of real

numbers, and real-valued row vectors with size of n, and p-

by-q real matrices. The cardinality of the a set N is denoted

by |N |. The symbol ¹ denotes the Kronecker product. The

identity matrix of size n is denoted by In. The operators

log-det(A) returns the logarithmic-determinant of matrix A,

trace(A) returns the trace of matrix of matrix A. The operator

diag{ai}ni=1 ∈ R
n×n constructs a block diagonal matrix with

scalar ai as the diagonal entries for all i ∈ {1, . . . ,N}. The

operator col{xi}Ni=0 ∈ R
N.n constructs a column vector that

concatenates vectors xi ∈ R
n for all i ∈ {0, . . . ,N}. For

any vector x ∈ R
n, ∥x∥2 denotes the Euclidean norm of x,

defined as ∥x∥2 :=
√
x¦x , where x¦ is the transpose of x.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce mathematical preliminaries and

define the problem of selecting sensor nodes. We consider

a general nonlinear dynamic network defined in (1) under a

continuous-time representation.

ẋ(t) = f(x(t)), (1a)

y(t) = ΓCx(t), (1b)

where x ∈ R
nx is the global state and y ∈ R

ny is the global

output vector. The nonlinear mapping function f : Rnx →
R

nx is assumed to be smooth and at least twice continuously

differentiable. The measurement matrix C ∈ R
ny×nx is as-

sumed to be known. The matrix Γ := diag{γj}ny

j=1∈ R
ny×ny

determines the configuration of the sensors—that is, a node j
is equipped with a sensor if γj = 1. Otherwise, we simply set

γj = 0. We define the parameterize vector γ that represents

the sensor selection, i.e, γ = col{γj}ny

j=1. Without the loss of

generality, we have assumed that the inputs are not affecting

the system dynamics.

The objective of the sensor selection problem for the non-

linear dynamics (1) is to determine the combination of sensors

(the 1 and 0 patterns in γ) such that an observability-based

metric is maximized under a sensor ratio constraint. As such,

in order to formulate the binary selection problem, we refer to

utilizing a discrete-time representation of the nonlinear state

model (1a).

There exists several methods that can be utilized to obtain

a discrete-time model. The choice of discretization method

must rely upon the system’s stiffness, desired accuracy, and

the performance of computation resources. In this paper, we

consider the discretization of (1) using the implicit Runge-

Kutta (IRK) method [18]. The main advantage of IRK method

is that it can be applied to a wider class of nonlinear dynamic

networks with various degree of stiffness. Readers can refer

to [19] for the discrete-time modeling techniques of nonlinear

systems. The methodology herein results in the following

implicit discrete-time state-space model

ζ1,k+1 = xk + T
4 (f(ζ1,k+1)− f(ζ2,k+1)) ,

ζ2,k+1 = xk + T
12 (3f(ζ1,k+1) + 5f(ζ2,k+1)) ,

xk+1 = xk + T
4 (f(ζ1,k+1) + 3f(ζ2,k+1)) ,

(2)

where T > 0 denotes the discretization period, k ∈ N

is the discrete-time index such that xk = x(kT ), and

ζ1,k+1, ζ2,k+1 ∈ R
nx are auxiliary vectors for computing

xk+1 provided that xk is given. Notice that in order to

compute xk+1, we first need to solve a system of nonlinear

equations that consists of the first two equations in (2). The

unknowns in this system are ζ1,k+1, ζ2,k+1. This layer of com-

plexity is necessary since the introduced discrete-time model

can accurately and in a numerically stable manner represent

a broad class of nonlinear networks, including networks with

stiff dynamics.

A. Initial State Estimation

Taking into account the model (2), the discrete-time equiv-

alent of nonlinear dynamic network (1) can be compactly

written in the following form

xk+1 = xk + f̃(xk+1,xk), (3a)

yk = ΓCxk, (3b)

where the function f̃(·) in (3a) represents the implicit dy-

namics in (2). The proposed approach for sensor selection is

developed using the concept of an open-loop lifted observer

framework. To that end, we introduce the lifted vector ỹ ∈
R

N.ny that is constructed as ỹ = col{ỹi}N−1
i=1 . The positive

integer N is the observation window. For the sake of simplicity,

it is assumed temporarily that Γ is fixed such that the output

measurement equation (3b) is reduced to ỹk = C̃xk, where

C̃ is obtained by compressing the zero rows of ΓC. Now,

define the vector function h : Rnx → R
N.ny as
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






h0(x0)
h1(x0)

...

hN−1(x0)








︸ ︷︷ ︸

h(x0)

:=








ỹ0
ỹ1
...
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ỹ

−
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g0(x0)
g1(x0)

...

gN−1(x0)








︸ ︷︷ ︸

g(x0)

, (4)

where h(x0) = col{hi(x0)}N−1
i=0 . The function g : Rnx →

R
N.ny is constructed as g(x0) = col{gi(x0)}N−1

i=0 , where gi :
R

nx → R
ny and gi := C̃xi for all i ∈ {0, 1, 2, · · · ,N − 1}.

It is understood from (3a) that gi is a function of only of the

initial state x0 due to the fact that xi is a recursive function

of x0 for each i. Consequently, we can write

h(x0) = 0ô ỹ = g(x0). (5)

Since in practice the actual initial state is unknown a priori,

then for a fixed selection of sensors, x0 can be estimated by

solving the following nonlinear state estimation optimization

problem with a predefined weighting matrix Q { 0 such that

(P1) minimize
x̂0∈X

h(x̂0)
¦
Qh(x̂0) (6a)

subject to x̂l
0 f x̂0 f x̂u

0 , (6b)

where x̂l
0 and x̂u

0 are respectively the lower and upper bounds

of x̂0 and Q ∈ R
N.ny×N.ny is the weighting matrix. The

weight matrix Q assigns weights to the measured states such

that P1, the initial state estimation problem, efficiently reaches

a solution.

B. Observability-based Sensor Node Selection

Observability of nonlinear discrete-time systems can be

quantified using the concept of uniform observability [20].

That is, the system (3a) with the measurement model (3b)

is said to be uniformly observable in X (X is the subset

representing a local operating region of (3a)) if there exists

a finite N ∈ N such that the relation ỹ = g (x0) is injective

(one-to-one) with respect to x0 ∈ X for any given set of

measured outputs ỹ.

Accordingly, if g (·) is injective with respect to x0, then x0

can be uniquely determined from the set of measurements ỹ.

As such, let Jg(·) be a Jacobian matrix of the function g(·)
around x0. A sufficient condition for the mapping g(·) to be

injective is that the Jacobian matrix of g(·) is of full rank [20].

The Jacobian matrix Jg(·) ∈ R
N.ny×nx is given as

Jg(γ,x0) :=
dg(x0)

dx0
=col

{
∂gi(x0)

∂x0

}N−1

i=0

. (7)

For each i ∈ {0, 1, 2, · · · ,N − 1}, the term
∂gi(x0)
∂x0

in (7)

is equivalent to

∂gi(x0)

∂x0
=

∂

∂x0
C̃xi = C̃

∂xi

∂x0
= C̃

i−1∏

j=0

∂xj+1

∂xj

. (8)

It is important to mention that the computation of ∂xi

∂x0

in

(8) requires the knowledge of xj for all j. The value of xj can

be obtained by simulating (3a) with the initial condition x0.

Taking into account the parameterized measurement equation

(3b), the Jacobian matrix Jg(·) in (7) around a specific initial

state x̂0 is given as

Jg(γ, x̂0) := Jg(x̂0) =
[
I ¹ ΓC

]
× ξ(x̂0), (9)

where ξ : Rnx → R
N.nx , ξ(x̂0) = col{ξi(x̂0)}N−1

i=0 , and

ξi :=
∂x̂i

∂x̂0

. Next, we define the matrix function W (·) : Rnx →
R

nx×nx as the following

W (γ,x0) := J
¦
g (x0)Jg(x0). (10)

The matrix W (·) is fundamental for the analysis and

solving the system of nonlinear equations as well as for the

development of methods presented in this paper. Namely, the

spectral properties of the matrix W (·) determine the conver-

gence properties of the Newton’s method used for solving the

system of nonlinear equations (5) [21]. Note that, in a general

case, this matrix is not equal to the observability Gramian for

linear systems, since constructing it involves the computation

of partial derivatives of the IRK equations (2). We note here

that we have referred to the use of implicit IRK method since it

accounts for a wide class of nonlinear networks, however other

implicit discretization methods can be utilized to formulate the

observability-based sensor selection problem. In our previous

work [22], we perform optimal sensor selection for a class of

differential algebraic equations under the trapezoidal implicit

method [19] discretization.

Motivated by the fact that this matrix is closely related to

the empirical observability Gramian [13], [14], we will refer

to this matrix as the observability Gramian of the discrete-time

system (3a)-(3b). Notice that the Gramian matrix (10) contains

the matrix C̃, which is a function of the vector γ.

To that end, the sensor selection problem can be mathemat-

ically formulated as follows. Let X = {x̂(1)
0 , x̂

(2)
0 , . . . , x̂

(q)
0 }

be a set of initial conditions of the dynamics (3a)-(3b). This

set of initial conditions is chosen by the user. Furthermore, let

r be the final number of sensor nodes that is also specified by

the user. Then, the sensor nodes are selected as the solution

of the following integer optimization problem

(P2) maximize
γ

O (γ, X) (11a)

subject to

ny∑

i=1

γi = r, γ ∈ {0, 1}ny , (11b)

where O (γ, X) is a user-selected function that quantifies the

observability of the system.

The main idea of our approach is to incorporate a number

of initial conditions into the function O(·) that quantifies

the system observability. This is because the “exact” initial

condition of the system is usually uncertain. By relying on a

state-averaged observability matrix that is constructed under

several predictions/perturbations of the initial state, the sensor

selection procedure becomes less sensitive to uncertainties on

initial states that are necessary to solve the system of nonlinear

equations.

One approach for tackling sensor selection problems within

networks, is posing such combinatorial problem as a constraint

set maximization problem [10], [23]. The rationality behind

such approach is later evident when solving to the sensor

selection problem, where underlying set function properties

allow for a scalable solution to the optimization problem. As

such, the sensor node selection problem P2 can be rewritten

as a set maximization problem P3 by defining the set function

O(S) : 2V → R with V := {i ∈ N | 0 < i f ny}. Herein, the
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set V denotes the set of all possible combinations of sensor

locations.

(P3) O∗
S := maximize

S¦V
f(S), subject to |S| = r. (12)

In the context of sensor selection, P3 translates to the

problem of finding the best sensor configuration S containing

r number of sensors such that a particular observability metric

is maximized. The variable Γ is encoded in the set S , such

that for each sensor node a value of γj is attributed to the set

S at location j.

III. OBSERVABILITY-BASED SENSOR SELECTION

In this section, we introduce several observability measures,

quantify their properties, and present our approach for solving

the problem (11). Our approach is based on defining a state-

averaged observability measure and using a greedy algorithm

to efficiently solve the sensor selection problem. The jus-

tification of using the greedy algorithm will be established

by showing that the introduced set function measures retain

set function properties—modularity or submodularity. For the

development of our approach we need to obtain a closed-form

expression for (10). The following proposition establishes this

expression.

Proposition 1. The parametrized observability Gramian (10)

for the nonlinear discrete-time dynamic networks (3a) with

parametrized measurement model (3b) around a particular

initial state x̂0 can be expressed as follows

W (γ, x̂0) =

ny∑

j=1

γj

(
N−1∑

i=0

(
∂x̂i

∂x̂0

)¦

c¦j cj
∂x̂i

∂x̂0

)

, (13)

where cj ∈ R
1×nx is the j-th row of C.

Proof. From (9) and (10), it follows that

W (γ, x̂0) = ξ
¦(x̂0)

[
I ¹ ΓC

]¦ [
I ¹ ΓC

]
ξ(x̂0)

=

M−1∑

i=0

ξ¦i (x̂0)C
¦
Γ
2Cξi(x̂0)

=
M−1∑

i=0

ξ¦i (x̂0)





ny∑

j=1

γjc
¦
j cj



 ξi(x̂0)

=

M−1∑

i=0

ny∑

j=1

γjξ
¦
i (x̂0)c

¦
j cjξi(x̂0), (14)

which holds since Γ
2 = Γ. Since (14) is equivalent to (13),

then the proof is complete. ■

A. Modular & Submodular Set Functions

There exist several observability measures and metrics.

Usually, these measures are expressed on the basis of the rank,

smallest eigenvalue, condition number, trace, and determinant

of an appropriate matrix—see [13] and the references therein.

Such measures have set function properties, modularity and

submodularity, that allow greedy algorithm to solve the opti-

mal sensor selection problem. The following definition char-

acterizes modular and submodular set functions [10], [24].

Definition 1. A set function O : 2V → R is said to be modular

if and only if for any S ¦ V and weight function w : V → R

it holds that

O(S) = w(∅) +
∑

s∈S

w(s), (15a)

andO(·) is said to be submodular if and only if for anyA,B ¦
V given that A ¦ B, it holds that for all s /∈ B

O(A ∪ {s})−O(A) g O(B ∪ {s})−O(B). (15b)

As seen from (15b), for any submodular function, the

addition of an element s to a smaller subset A yields a greater

reward compared to adding the same element to a bigger

subset B. This notion is normally termed as diminishing return

property [10]. Aside from modularity and submodularity, the

notion of monotone increasing and decreasing functions are

also important to achieve scalable sensor selection.

Definition 2. A set function O : 2V → R is called monotone

increasing if, forA,B ¦ V ,A ¦ B impliesO(B) g O(A) and

called monotone decreasing if A ¦ B implies O(A) g O(B).
In retrospect with the sensor selection problem posed in

P3, the parametrized observability Gramian associated with

S ¦ V around a presumed initial state x̂0 is defined as

W̃ (S, x̂0) :=
∑

j∈S

(
N−1∑

i=0

(ξi)
¦
c¦j cjξi

)

. (16)

It is worthwhile to note that the notation j ∈ S corresponds

to every activated sensor such that γj = 1. If the chosen

form of the observability measure function renders P3 to

be submodular and monotone increasing, then the greedy

algorithm can be used to efficiently determine sensor locations.

The greedy algorithm is summarized in Algorithm 1. If the

function O(·) is submodular and monotone increasing, and

if the set of sensor locations computed using the greedy

algorithm is S , then we have the following performance

guarantee [25]

O∗ −O(S)
O∗ −O(∅) f

(
r − 1

r

)r

f 1

e
,

where O∗ is the optimal value of P3 and e ≈ 2.71828.

Note that the above worst-case bound is merely theoretical.

For submodular set maximization it has been shown that an

accuracy of 99% is achieved [10].

Algorithm 1: Greedy Algorithm [10]

1 input: r, V
2 initialize: S ← ∅, k ← 1
3 while k f r do

4 compute: Gk = O(S ∪ {a})−O(S), ∀a ∈ V \ S
5 assign: S ← S ∪

{

argmaxa∈V\S Gk
}

6 update: k ← k + 1

7 output: S

B. State-Averaged Observability Sensor Selection

Ideally, the parametrized Gramian (13) should be con-

structed using the system’s actual initial state x0. Nonetheless,
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this state is usually unknown or only some vector entries

are known a priori. In practice, we only have a guess of

the initial state, that is denoted by x̂0. To minimize the

variability from quantifying the observability around x̂0, we

opt to use a state-averaged observability metric which, instead

of computing the observability Gramian around a single guess

of initial state x̂0, alternatively it is computed by taking

into account several points of presumed initial states x̂
(κ)
0

for κ ∈ {1, 2, · · · , q}. Using this concept of state-averaged

observability, we introduce the following metric

O (S, X) =
1

q

q
∑

κ=1

L
(

W̃ (κ)(S, x̂(κ)
0 )
)

, (17)

where L(·) is an appropriate function mapping matrix into a

scalar

W̃ (κ)(S, x̂(κ)
0 ) :=

∑

j∈S

(
M−1∑

i=0

(

ξ
(κ)
i

)¦

c¦j cjξ
(κ)
i

)

. (18)

This form of the Gramian matrix is established on the basis

of Proposition 1. Using this new measure, P3 is developed

further into the following set optimization problem

(P4) maximize
S

O(S) := 1

q

q
∑

κ=1

L
(

W̃ (κ)(S)
)

, (19a)

subject to |S| = r, S ¦ V. (19b)

C. Modularity & Submodularity of the Proposed Measures

In the sequel we will analyze the modularity and submod-

ularity properties of the average observability metrics (17).

We will analyze the cases when the function L(·) is trace,

and log-det. The following Lemma provides support to the

analysis on the modularity, submodularity, and monotonicity

properties of the average observability metric O(·), when the

function L(·) in P4 takes the form of the trace and log-det.

Lemma 1. For set functions L1,L2, . . . ,Lk : 2V → R that

are submodular. Any conic combination, that is, any weighted

non-negative sum defined as

O(S) :=
q
∑

κ=1

wkLk, (20)

is submodular, such that wk g 0 ∀ k.

Proof. We prove the submodularity of a non-negative

weighted sum from the definition of submodularity. As such,

from Def. 1, we have A,B ¦ V given that A ¦ B, and that

for all s /∈ B
Lk(A ∪ {s})− Lk(A) g Lk(B ∪ {s})− Lk(B),

then under a conic combination and based on Def. 1 the

following holds true
q
∑

κ=1

wk

(

Lk(A ∪ {s})− Lk(A)
)

g
q
∑

κ=1

wk

(

Lk(B ∪ {s})− Lk(B)
)

,

for any A,B ¦ V given that A ¦ B, and for all s /∈ B. ■

Conic combinations along with set restrictions and contrac-

tions are submodularity preserving operations [26]. Lemma 1
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Figure 1. State trajectories of the simulated H2/O2 combustion network
under perturbed initial conditions. The states are concentrations of H2 and
O2 chemical species.

shows that submodularity of the original submodular functions

is retained under a non-negative weighted sum and thus

formulates the rationale behind developing a state-averaged

observability metric. As such, the following proposition shows

that the state-averaged trace(.) metric is modular.

Proposition 2. A set function O : 2V→R defined by

O(S) := 1

q

q
∑

κ=1

trace
(

W̃ (κ)(S)
)

, (21)

for S ¦ V is modular.

Proof. For any S ¦ V , observe that

1

q

q
∑

κ=1

trace
(

W̃ (κ)(S)
)

=
1

q

q
∑

κ=1

trace




∑

j∈S

(
M−1∑

i=0

(

ξ
(κ)
i

)¦

c¦j cjξ
(κ)
i

)



=
∑

j∈S

(

1

q

q
∑

κ=1

trace

(
M−1∑

i=0

(

ξ
(κ)
i

)¦

c¦j cjξ
(κ)
i

))

,

thus showing that trace(·) is a linear matrix function and

therefore is modular. ■

The state-averaged log-det(·) observability metric is sub-

modular and monotone increasing.

Proposition 3. A set function O : 2V→R characterized by

O(S) := 1

q

q
∑

κ=1

log det
(

W̃ (κ)(S)
)

, (22)

for S ¦ V is submodular and monotone increasing.

Proof. For brevity we do not provide the full proof regarding

the submodularity and the increasing monotonicity of the log-

det(·). Such metric is well studied in the field of submod-

ular optimization and is proved therein—readers are referred

to [10], [27]–[29]. For the state-averaged observability metric
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Figure 2. Selected sensor nodes resulting from state-averaged observability
measures and observability measures that are based on a single randomly
selected initial condition. Arrows represent the changes relative to state-
averaged metrics.

O(S) in (22) and based on Lemma 1, the submodularity of

the set function log-det(·) under a non-negative weighted sum

is preserved and thus it is submodular. ■

The following section showcases the robustness of the

sensor selection problem that is based on the proposed state-

averaged observability metrics and that it is solved via scalable

greedy heuristics.

IV. NUMERICAL STUDIES

In this section, we numerically validate and investigate

the effectiveness of the averaged-observability based sensor

selection framework. To numerically test our methods, we

choose a general nonlinear model of a combustion reaction

network. Consider the following list of Nr chemical reactions
nx∑

i=1

qjiRi ⇄

nx∑

i=1

wjiRi, j = 1, 2, . . . , Nr, (23)

where qji and wji are stoichiometric coefficients and Ri,

i ∈ {1, 2, · · · , nx}, are chemical species (notice that the

number of chemical species is equal to the global state

dimension). With the chemical reactions described in (23),

we associate a state-space model. In this representation, the

states are concentrations of chemical species. The resulting

state equation has the following form [30], [31]

ẋ(t) = Θψ (x(t)) , (24)

where ψ (x) = [ψ1 (x) , ψ2 (x) , . . . , ψnr
(x)]T , and Θ =

[wji − qji] ∈ R
nx×Nr , and x = [x1, x2, . . . , xnx

], where xi,
i ∈ {1, 2, · · · , nx} are concentrations of chemical species, and

finally ψj , j = 1, 2, . . . , Nr are the polynomial functions of

concentrations defined as follows

ψj (x) = vj

nx∏

i=1

x
qji
i − bj

nx∏

i=1

x
wkj

i , r = 1, 2, . . . , Nr, (25)

where vj , bj ∈ R+ are the forward and backward reaction

rates that are computed on the basis of the Arrhenius law.

In this paper, we consider an H2/O2 combustion network.

This network has 27 reactions and 9 chemical species. The
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Figure 3. Gain on observability measures with additional sensor node
selections. The average (red) represents that of state-averaged observability
and that of perturbed single guesses is represented by an average gain (yellow)
and the max and min variations on that gain (green).

reaction rates are computed using the Cantera software [32].

We use a chemical reaction network model described in the

Cantera database file “h2o2.cti". In our computations, we

assume a temperature of 2500 [K] and an initial pressure equal

to the atmospheric pressure. We have chosen a smaller com-

bustion network in order to be able to compare our methods

with randomized sensor node placements. To discretize the

dynamics we use a discretization constant of T = 1 · 10−12

and we assume the observation window of N = 1000. We have

chosen such value of the discretization constant by analyzing

an initial condition response of the system.

We assume κ = 10 and states are selected as random pertur-

bations of the “true" state x = [2, 0, 0, 1, 0, 0, 0, 0.2, 0]T .

The random perturbations are drawn from a uniform perturba-

tion on the interval [0, p]. Fig. 1 depicts the state trajectories

of H2 and O2 from the simulated H2/O2 combustion network

under uniform perturbation interval with p = 2. We note that

for each state, different state trajectories are obtained when

starting with different initial condition. That is, for each initial

condition, the trajectory of the system tends to a different

attractor. In dynamical systems, a basin of attractor is a state

condition that the systems tends towards as it evolves over a

time period [33]. This suggests that the nonlinear system (24)

has several basins of attraction and as such, we investigate

how such perturbed state trajectories affect the sensor node

selection model and asses the robustness of the proposed state-

averaged observability measures.

A. Robust Observability-based Sensor Node Selection

Our first goal is to determine optimal sensor locations using

the greedy algorithm and the proposed state-averaged observ-

ability measures. These observability measures are computed

on the basis of the perturbed states (the “true" state is not

used to compute the observability measure). Fig. 2 represents

the sensed node locations determined by solving P4 based on

the state-averaged observability metrics (log-det, trace) and
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Figure 4. Relative error on initial state estimation. Histograms represent the error from randomly selected nodes with specified sensor fractions. The y-axis
represents the percentage of sensor configurations that resulted in a certain relative error in the initial state estimation (histograms). The lines, having a
percentage of 100%, represent the error under the optimal solutions to problem P4.

on the observability metrics associated with a single guess of

the perturbed initial state. It can be pointed out that starting

with different initial guesses, the optimal set of selected nodes

is also different. The different selection as compared to that

of the averaged metric are pointed by arrows. We note here

that to evaluate the robustness of the state-averaged metric,

we perform P4 based on a random generation of κ = 10
initial guesses, such that the same solution is obtained for

each generated initial guesses. Thus, showing that the proposed

metrics are robust to choice and perturbations of the initial

conditions.

Understanding the underlying theory that allows us to

optimally choose of κ for a specified perturbation p and ensure

robustness on S∗ from initial state perturbations is outside the

scope of this paper and will be investigated in future work.

For now we note that for the presented general nonlinear

network a choice of κ = 10, that is greater than the number

of sensed node np = 9, results in robust optimal sensor node

selections for a range of p f 20, which is a relatively high

perturbation given the true state. As such, one can infer that the

perturbation magnitude is not the critical factor for the choice

of κ. The authors suggest that this is related to the number

of states/sensor nodes and the stability of the state trajectories

resulting from the perturbed states.

To further understand the performance of the state-averaged

observability measure as compared with that based on a single

initial guess, we investigate the variations on observability

gain; Fig. 3 depicts the gain on the observability metrics

resulting from an additional sensor selection relative to the

prior number of sensed nodes. This variability in gain value

for each of the log-det and trace metrics based on single

initial conditions represents where the change in sensed nodes

occurs. For instance, under states with different gain value a

sensed node might be forfeited for another. It can be depicted

that when the average of the gain resulting from a single

perturbed initial conditions is different than that of the state-

average metric, a different sensed node is chosen. For example

considering the log-det metric and when the number of nodes

the be chosen is increasing from 4 to 5, we notice that this

average differs. Referring back to Fig. 2 we realize that this

is where the sensed nodes chosen is different than the state-

averaged metric. Such change in observability degree or gain

could be a result of local stability of the system dynamics

associated with the perturbed initial conditions. We note,

that the reason for this variability, that is postulated to be

consequence of the perturbed state trajectories, is not fully

investigated for that is out of the scope of this work. We

here investigate the effects of the perturbations on the sensor

selections and the robustness of the proposed state-averaged

observability measures.

B. Sensor Selections on Initial State Estimation

The second goal is to estimate the "true" state, using the

optimally selected sensors and to show that an optimal solution

is obtained using a greedy heuristic approach. By showing

optimality of the greedy approach, we numerically validate

the modularity and submodularity of the state-averaged ob-

servability measures.

We determine the optimal location of sensor nodes, then

we compute the state estimate for this selection by solving

P1 with Q = I . State estimation results are also computed

for randomly generated sensor locations under a fixed sensor

fraction. The least-squares problem P1 is solved using the

MATLAB function lsqnonlin which implements the trust-

region-reflective algorithm. We show the results for the two

metrics, log-det and trace. We quantify the final estimation

performance by computing the relative estimation error using

the following formula e = ∥xtrue − x̂∥2 / ∥xtrue∥2, where

xtrue is the true state that we want to estimate and x̂ is

its estimate computed by solving the nonlinear least squares

problem for the fixed sensor location. The relative estimation
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error is directly related to the degree of observability resulting

from the placements. Meaning that for a given sensed node

configuration that achieves a high observability degree, the

relative error in state estimation would be minimal.

Fig. 4 shows computed relative errors for different fraction

of sensor nodes. The errors represented by the histograms

are computed for a random selection of sensor location for

specified sensor fractions. At the same time we compute

the relative error produced by the state-averaged approach

for the two measures (red and yellow vertical lines). The

log-det and trace measures produce optimal results for each

of the specified sensor fraction. This shows that the greedy

algorithm indeed results in optimal sensor placement under the

state-averaged approach. Thereby providing numerical proof

that submodularity and modularity is retained. And on this

note, we conclude this section.

V. PAPER SUMMARY AND FUTURE WORK

This paper investigates the robustness of an observability-

based sensor selection problem towards unknown initial con-

ditions. Specifically, our approach is built upon the open-

loop lifted observer framework in which the parameterized

observability Gramian is constructed. To accommodate the

inaccuracy when quantifying the observability due to uncer-

tain initial states, we introduce state-averaged observability

measures. The proposed sensor selection problem posed under

trace and log-det measures is shown to retain the modularity

or submodularity properties. Greedy heuristics are employed

to efficiently solve the optimization problem and render it

scalable to larger nonlinear systems. Numerical results show-

case the validity and effectiveness of proposed approach.

For our future work, we will further investigate the relation

between the proposed state-averaged observability metrics and

empirical observability Gramian for discrete-time systems, and

how to normalize nonlinear systems that have several basins

of attraction such that the sensor placement is robust.
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