This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

Online Learning for Failure-Aware Edge Backup
of Service Function Chains With
the Minimum Latency

Chen Wang™, Qin Hu"', Member, IEEE, Dongxiao Yu", Senior Member, IEEE,
and Xiuzhen Cheng™, Fellow, IEEE

Abstract— Virtual network functions (VNFs) have been widely
deployed in mobile edge computing (MEC) to flexibly and effi-
ciently serve end users running resource-intensive applications,
which can be further serialized to form service function chains
(SFCs), providing customized networking services. To ensure
the availability of SFCs, it turns out to be effective to place
redundant SFC backups at the edge for quickly recovering
from any failures. The existing research largely overlooks the
influences of SFC popularity, backup completeness, and failure
rate on the optimal deployment of SFC backups on edge servers.
In this paper, we comprehensively consider from the perspectives
of both the end users and edge system to backup SFCs for
providing popular services with the lowest latency. To overcome
the challenges resulted from unknown SFC popularity and
failure rate, as well as the known system parameter constraints,
we take advantage of the online bandit learning technique to cope
with the uncertainty issue. Combining the Prim-inspired method
with the greedy strategy, we propose a Real-Time Selection and
Deployment (RTSD) algorithm. Extensive simulation experiments
are conducted to demonstrate the superiority of our proposed
algorithms.

Index Terms— Edge computing, service function chain, virtual
network function, multi-armed bandit learning.

I. INTRODUCTION

N EXPLOSIVE amount of service requests are generated

at the network edge due to the increasing number of
smart devices connecting to the Internet to run various real-
time applications, demanding higher bandwidth and lower
latency. To serve end users more efficiently, the emerging
mobile edge computing (MEC) paradigm aims to provide a
variety of computing and networking services to users in a
physically-close manner [1], [2], which can greatly reduce

Manuscript received 9 January 2022; revised 27 August 2022 and 2 March
2023; accepted 19 March 2023; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor M. Zhang. This work was supported in part by
the National Key Research and Development Program of China under Grant
2019YFB2102600; in part by the National Natural Science Foundation of
China (NSFC) under Grant 61971269, Grant 61832012, and Grant 61771289;
and in part by the U.S. NSF under Grant CNS-2105004. (Corresponding
author: Qin Hu.)

Chen Wang, Dongxiao Yu, and Xiuzhen Cheng are with the School of
Computer Science and Technology, Shandong University, Qingdao, Shandong
250100, China.

Qin Hu is with the Department of Computer and Information Science,
Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis,
IN 46202 USA (e-mail: qinhu@iu.edu).

Digital Object Identifier 10.1109/TNET.2023.3265127

the response delay for users’ requests and the possibility
of network congestion, comprehensively improving the user
experience.

In recent, network virtualization has been proposed to
efficiently manage networking resources, which has also been
widely implemented at MEC through network function virtu-
alization (NFV). In particular, to disengage network functions
from specific hardware, virtual network functions (VNFs) are
utilized in NFV to facilitate scalable and flexible operations
for service providers [3], [4], [5], [6]. Further, multiple VNFs
can be connected sequentially to compose a service function
chain (SFC), which aims at providing specialized networking
services more efficiently [7], [8]. However, due to the vulner-
ability of VNFs in deployment [9], it is challenging to ensure
the availability of SFCs because any failed VNF component
can invalidate the entire service chain [10], [11], [12], [13].

To deal with this challenge, some existing studies focus
on the optimal deployment of VNFs at the beginning of the
configuration process [14], [15], [16], [17], [18], [19], while
others rely on the idea of preparing backups of SFCs so
that they can quickly recover from any unexpected failures
of VNFs [20], [21], [22], [23]. In practice, SFC backups can
be placed on both the central cloud server and distributed edge
servers. Considering that routing to the central cloud is gen-
erally costly in operation and time consumption, researchers
suggest backing up SFCs at the network edge [11], [22], where
the limitation of edge resource has to be rigorously studied.
However, as a critical reflection of the users’ preferences,
popularity of SFCs has long been overlooked in the design
of SFC backup scheme at the edge, which can act as an
index in selecting the appropriate set of SFC backups given
the limited resource available at the edge. Though a recent
work [23] takes into account the user demands in deploying
VNF backups at the edge, the completeness of SFCs is not
carefully treated with scattered VNF backups on edge servers.
More importantly, the failure rate of each SFC has rarely
been considered in the backup deployment schemes, which
also refers to a significant property of SFCs in availability
guarantee.

In this paper, we comprehensively consider from the per-
spectives of both the end users and edge system, incorporating
the impacts of SFC popularity, completeness, and failure rate
on the deployment of SFC backups at the edge. Nevertheless,

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2481-2719
https://orcid.org/0000-0002-8847-8345
https://orcid.org/0000-0001-6835-5981
https://orcid.org/0000-0001-5912-4647

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

there exist two aspects of challenges from both the unknown
and known factors. To be specific, the unknown challenge is
due to the fact that either the popularity or failure rates of
SFCs cannot be known as a priori to better select the set
of SFCs being backed up on edge servers. No matter for
the service requests from end users or the happening of SFC
failure, it can be highly dynamic and uncertain for the system
design. While the other challenge from the known factors
concerns the systematic parameters, including the resource
constraint of edge servers to reasonably place SFC backups,
the latency minimization of all SFC backups for providing
efficient responses to users, and the binary deployment variable
to place any SFC backup either at the edge or the cloud.
The combination of uncertainty in the unknown challenge
and confirmed constraints in the known challenge results in
the difficulty to appropriately deploy SFC backups at the
edge for fundamentally and efficiently enhancing the service
availability.

To resolve the above challenges, we utilize the online bandit
learning to have an estimation of unknown information and
gradually approach the real values according to the instantly
realistic feedback through both exploration and exploitation.
With the learning results of unknown parameters, we calculate
the minimum latency for all SFCs that can be completely
backed up at the edge and optimize the link latency of all SFCs
based on a variant of Prim algorithm solving the Traveling
Salesman Problem (TSP) problem, based on which a greedy
strategy based VNF backup deployment algorithm is designed
to finally place relevant VNFs composing selected SFCs on
edge servers.

In summary, our major contributions in this work can be
listed as follows:

o Concerning the request preferences of end users and
the changing environment, we model the SFC backup
placement at the edge as an optimization problem, aiming
to provide popular services with the lowest latency,
where the resource constraint of edge servers and backup
completeness of SFCs are strictly prescribed.

o To solve the proposed optimization problem with the
unknown information, we resort to the combinatorial
multi-armed bandit (CMAB) problem to learn the popu-
larity and failure rate of SFCs in an online manner. Com-
bined with the Prim-inspired solution and greedy strat-
egy, we propose a Real-Time Selection and Deployment
(RTSD) algorithm to achieve near-optimal placement of
SFC backups at the edge.

e We compare our work with three benchmark solutions
and two existing works to verify the superiority of
the proposed algorithm. Moreover, the performance of
our scheme is testified for varying end users and edge
parameters.

The remaining of this paper is organized as follows.
Section II investigates the most related work about SFC
backup. Section III presents the system model and problem
formulation of deploying SFC backups at the edge, which is
addressed by our proposed R7SD algorithm in Section IV.
Section V displays experimental results and Section VI con-
cludes our paper.

IEEE/ACM TRANSACTIONS ON NETWORKING

II. RELATED WORK

The advancement of NFV technology has effectively solved
the problems of traditional networking system, where the
successful deployment of VNF is the key to realize the
virtualization [3], [4], [5], [6]. To provide more sophisticated
services to end users, connecting multiple VNFs to form
the SFC becomes prevailing [7], [8], [18], [20]. At present,
research about SFCs can be classified into two categories: SFC
deployment and backup.

A. Deployment of SFC

Given a large number of SFCs, how to deploy them in the
network system becomes a critical problem as simply placing
all component VNFs on the central cloud server can bring
huge routing cost and service delay. The emergence of edge
computing provides us with new solutions, where most of the
existing studies focus on the deployment and routing issues
at edge servers, aiming to achieve less resource consump-
tion [17], [18], [19], [24]. Cziva et al. [17] present a method to
dynamically re-schedule the optimal placement of VNFs in the
case of changing network, users and demands, which realizes
the minimized end-to-end delay from VNFs to edge devices.
A supervisory mechanism is proposed for a hierarchical SFC
architecture in [24] to determine the selection and deployment
for a group of SFCs according to a combination of topological
analysis and prediction of the demands. From another angle,
Jin et al. [18] try to deploy SFCs at the edge with the
goal of consuming the lowest edge resource and bandwidth,
which has to satisfy the constraint of total latency of each
SFEC. Zhu et al. [19] focus on adaptive placement strategies
for different SFCs via designing the EdgePlace algorithm
which helps find the first node meeting both the resource and
availability constraints.

B. Backup of SFC

To ensure the availability of SFCs, using redundant tech-
nology to create backups of SFCs turns out to be an effective
approach [8], [10], [11], [12], [20], [22], [23]. Based on
resource awareness, Zhang et al. [8] study the optimization
of backup allocation considering that VNFs may require
heterogeneous resources, with the aim of minimizing the
resource consumption of backup nodes under the constraint
of SFC availability guarantee. Fan et al. [12] try to estimate
the number of necessary SFC backups while reducing the
total resource consumption. Wang et al. [23] select qualified
VNFs to be backed up at the edge taking into account end
users’ demands, but the atomicity and completeness of SFCs,
as well as the VNF failure, are not considered, which cannot
comprehensively solve the availability issue of SFCs. Other
works consider the impact of the chain structure in SFC
backup. Shang et al. [10] propose an optimization model called
partial service function chain mapping, which uses partial
SEC rerouting strategy to improve the availability of SFCs
and reduce the maximum load of servers. And they further
propose an adaptive online solution to dynamically create and
adjust backups in the cloud and edge [11]. Fan et al. [20]

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: ONLINE LEARNING FOR FAILURE-AWARE EDGE BACKUP OF SFCs WITH THE MINIMUM LATENCY 3

TABLE I
COMPARISON WITH RELATED WORKS

Categories Works Availability

Dynamism | Completeness | E

[17]
[18]
[19]
[24]

Deployment

ENENRN =S

[8, 10, 20]
[11]
[12]
[22]
[23]

Ours

Backup

SENENE NN

ENEENENENENENENEN

AN
N NN

adopt an availability-aware SFC mapping method with off-site
redundancy with the aim of reducing resource consumption.
Dinh et al. [22] propose a cost-efficient deployment scheme
via measuring the improvement potential of VNFs and a
collaborative redundancy placement scheme via exploiting the
collaboration between a fog node with other nodes and the
cloud.

In order to provide users with the most effective and reliable
service, we need to solve the problem of deploying complete
SFC backups at the edge to meet its availability in the case of
dynamic user demand and failure occurrence. Based on this,
we compare our paper with related works in Table I from
four aspects, namely availability, dynamism, completeness and
whether SFCs are deployed at the edge. It can be seen that
the existing work cannot realize all requirements.

III. SYSTEM MODEL

In the context of mobile edge computing, the entire edge
environment can be regarded as a network model, which can be
modeled as an undirected connected graph G(N, £), with the
set of nodes A representing all servers at the edge of network
and the set of edges £ denoting the network links among
servers. Fig. 1 shows a brief demonstration of entire system,
which contains a central cloud server and an edge network
consisting of multiple servers. In this figure, three SFCs, i.e.,
SFCO (blue), SFC2 (red), and SFC5 (green), are backed up
at the edge; while the backups of the remaining three SFCs
are deployed at the cloud. For reference, we summarize main
notations used in this paper in Table II.

A. Basic Parameters

Assuming that the collection of edge servers is represented
by N = {1,2,--- ,n,--- ,N} with N denoting the total
number of edge servers, where the available storage resource
of any edge server n to backup VNFs is defined as M,.
We denote the set of users by K = {1,2,--- ,k,--- , K} with
K being the number of all users. User k& will issue multiple
service requests during time slot ¢, and each service request
has to be responded by the corresponding SFC. All SFCs are
included in the set F = {1,2,---, f,---,F} and all VNFs
are represented by the set Z = {1,2,--- ,4,--- , I}, in which
F and T are respectively the numbers of SFCs and VNFs; and
the resource requirement of backing up each VNF ¢ on the
edge server is defined as D,;. Besides, the VNFs composing

Users Requests

8&%—»SFC1,SFC3,SFC4—> Cloud

SFC0,SFC2,SFC5

SFC5 SFC5

Fig. 1. An example of SFC backup deployment at the edge.
TABLE I
NOTATIONS
Symbol Explanation
N The set of edge servers N = {1,2,--- ,n,--- ,N}
M, The available resource of edge server n
K The set of users K = {1,2,--- ,k,--- ,K}
F The set of SFCs F = {1,2,--- , f,--- , F'}
z The set of VNFs Z = {1,2,--- ,4,--- ,I}
D; Resource requirements for backing up VNF i at the
edge
Ir The set of VNFs composing an SFC f
Yi ¢ Binary variable showing whether VNF ¢ is involved in
SEC f
Qpr,f(t) | Binary variable showing whether user k has a service
request for SFC f during time slot ¢
Qs (t) Total requests for SFC f during time slot ¢
qr(t) The expected popularity of SFC f during time slot ¢
Xy (1) Binary variable showing whether SFC f is placed at
the edge during time slot ¢
PZ{ o(t) | Binary variable showing whether VNF i is placed on
edge server n during time slot ¢
(u,v) The latency of link between edge server v and v
L The set of link latency
d)ic (u,v) Count variable showing whether the jth link of chain
' f deployed at the edge passes through link (u, v)
Ls(t) The total delay of SFC f during time slot ¢
Us(t) The failure rate of SFC f during time slot ¢
Vi(t) The failure rate of VNF ¢ during time slot ¢
v;(¢) The expected failure rate of VNF ¢ during time slot ¢
R (t) Service hit reward brought by deploying the backup
of SFC f at the edge during time slot ¢

an SFC f is denoted by the set Iy C Z and there are |I|
VNFs in SFC f, which includes || —1 links. Define a binary
variable Y; y € {0,1} to indicate whether VNF i is involved

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

in SFC f or not, i.e., ¢ € Iy or not. If VNF ¢ is a member of
SFC f, we have Y; y = 1; otherwise, Y; = 0.

B. Popularity of SFCs

Since our scheme selects SFCs to backup at the edge from
the perspective of users’ requests, it is necessary to obtain the
service requests from users in each time slot for calculating
the popularity of each SFC.

We define a binary variable Qp f(t) € {0,1} to denote
whether user k£ has a service request for SFC f in time slot
t, where Qy r(t) = 1 if the service request sent by user k in
time slot ¢ is realized through SFC f and Q. ¢(¢f) = 0 when
SFC f is not requested by user k. Then the total requests of
all users for SFC f in time slot ¢, denoted by Qf(t), can be
calculated as

Qs(t) = Qus(t). (D

kex

It is clear that Qy(t) is a discrete random variable in
the set of {0,1,2,---,k,---, K}, which has an average
mathematical expectation, denoted by ¢ f(t), as follows,

qr(t) = E[Qy(t)]. 2

In this article, we use this expected value gs(t) to express
the popularity of SFC f during each time slot ¢, that is, the
total expected expectation of service requests for SFC f sent
by users in each time slot. We assume that the popularity of
each SFC remains stable within the time slot range.

C. Backup Deployment Variables

In order to reflect whether a certain SFC is selected to be
backed up at the edge, a binary variable X¢(t) € {0,1} is
used to represent the backup placement decision for SFC f
during each time slot ¢. If it is decided to deploy the backup
of SFC f at the edge in time slot ¢, X;(t) = 1; otherwise,
Xy (t) =0.

Since SFCs are formed by linking required VNFs in
sequence, the SFC backup deployment will eventually be
implemented as the deployment of multiple VNFs. To indicate
the backup placement decision of a certain VNF at the edge,
we introduce a binary variable P; ,(t) € {0,1} to represent
whether the backup of VNF i is placed on edge server n in
time slot ¢. And we have P, ,,(t) = 1 if VNF ¢ is stored on
server n and P; ,,(t) = 0 if not.

To ensure that a certain SFC can provide complete functions
at the edge, it is required that only when all VNFs in this chain
are deployed on edge servers, can this SFC be considered to be
backed up at the edge network successfully; otherwise, it will
be placed in the cloud. According to this requirement, we can
get the relationship between X (¢) and P, ,,(t) as follows:

X¢(t)=1-min{l, > (1-

icly

P (1))} 3)

IEEE/ACM TRANSACTIONS ON NETWORKING

D. Resource Constraint

To back up SFCs at the edge successfully, the resource
constraint of edge servers cannot be ignored. In detail, the
total resource requirement of all backups of VNFs placed on
server n should not exceed the available resource of this server,
i.e., M, which can be expressed as follows:

Z D; % Pi(t) < M,. 4)
€L

E. Link Latency of SFCs

We assume that the latency of link (u,v) between the
edge server u and edge server v is relatively stable and
denote it as [(u,v), all of which constitute a collection £ =
{l(u,v), (u,v) € £}. For each SFC f, we use a count variable
qS'}(u’U) to indicate whether the jth link of this service chain
f deployed at the edge passes through the link (u,v). The
value of ¢’ w.oy 18 set to 1 when the jth link of f passes
through (u, v): and 0 otherwise. Then the total delay of SFC
f deployed at the edge network in time slot ¢, defined as L (¢),
can be calculated by:

[rl—1

Lit) = Y &} * 1w, 0). (5)
j=1

F. Failure Rate Calculation

We all know that the operation of an SFC is based on the
successful functioning of all VNFs composing this SFC. The
failure of any one will lead to the failure of the entire SFC.
Therefore, we are supposed to further consider improving the
availability of SFC backups with the awareness that every SFC
has a certain possibility to come into a failure. When this
happens unfortunately, no matter how popular the SFC is and
how low the latency it achieves, this SFC cannot successfully
provide services to users and they won’t get any benefits.
We introduce Uy (t) to represent the failure rate of SFC f in
time slot £, and we have the success rate as 1 — Uy (t), which
is jointly affected by the failure rates of the contained VNFs.
Therefore, the problem is further transformed into obtaining
the failure rate of each VNF.

We assume that the real-time failure rate of VNF ¢ during
time slot ¢ is V;(t), which is a random variable within the range
[0,1]. After choosing one VNF to work each time, observe
whether it fails (or whether it provides services successfully).
By pulling this arm many times, it can be found that the
distribution tends to stabilize. In other words, for VNF 1,
the probability of failing to realize the function has a fixed
expected value, denoted by v;(t), from which we can get:

vi(t) = E[Vi(t)]. (6)

Then the failure rate of VNF i is v;(¢) and the success rate is
1-— Ui(t).

The failure of any VNF contained in an SFC will lead to the
unavailability of the entire chain; in other words, only when
all VNFs in the SFC run properly, can the function of this
chain be successfully implemented. Therefore, we can get the
probability of successful operation of SFC f as the product of

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: ONLINE LEARNING FOR FAILURE-AWARE EDGE BACKUP OF SFCs WITH THE MINIMUM LATENCY 5

the success rates of all VNFs involved. Then, the failure rate
of SFC f can be calculated as:

Up(t) =1— [T (1 = vi(t)). (7

=

In the above formula, we take into account the failure of any
VNEF, which helps ensure the availability of services, making
our scheme more reliable.

G. Backup Reward

If an SFC corresponding to a user’s request is backed up at
the edge, there is no need to forward this request to the cloud.
This clearly avoids additional traffic, reducing the propagation
delay and users’ access cost, which can be regarded as the
improvement of users’ service hit reward. To compare the
hit reward brought by different backup schemes at the edge,
we use Ry(t) to represent the service hit reward brought by
SFC f that satisfies the users’ service request during time slot
t, where the value of Ry(¢) is influenced by three factors, i.e.,
the popularity, the link delay and the failure rate of SFC f.
In detail, deploying SFCs with high popularity @Q;(¢) at the
edge can greatly reduce the cost of being routed to the cloud,
especially for the frequently requested SFCs, which brings a
higher service hit reward. Besides, when a certain SFC f is
deployed at the edge, the lower the link delay L¢(t), the faster
the users’ service requests can be satisfied, and the greater
service hit reward would be obtained. Finally, the failure of
one SFC can invalid the service provision to users, which will
make the hit reward become zero.

Therefore, we define the service hit reward brought by
deploying the backup of SFC f at the edge as:

Ry(t) = (wQy(t) — pLy(t)) = Xy (t) + (1 = Up(t), (8)

where w, ;1 > 0 are constant scalars. Note that in the practical
implementation, the relationship between these parameters can
be determined by the service provider according to the specific
environment and preferences.

H. Problem Formulation

According to the above description, our problem is to select
the appropriate set of SFCs and deploy them at the edge to
maximize time-average service hit reward with the comprehen-
sive consideration of users’ needs, SFC composition, and link
latency, on the premise of satisfying edge resource constraint.
Therefore, we can get the SFC backup problem formulated as:

max - 3 IR (1)

(9a)
t=0 feF
st (3)(4),
Pn(t)€{0,1}, VneN, VieI,t, (9b)
X;(t) €{0,1}, VfeF.t (9¢)

In the above equations, the optimization goal in (9a) is to
maximize the time-average service hit reward; constraint (3)
describes the relationship between the VNF backup variable

P; ,(t) and the SFC backup variable X ;(¢); (4) is the resource
constraint; constraints (9b) and (9¢) show that SFCs and VNFs
are either deployed at the edge or deployed in the cloud.

From (9a), we can know that the ultimate goal of our SFC
backup problem is to maximize the time-average service hit
reward. Substituting the definition of reward in (8) into the
above problem, we can further specify the optimization goal
as

T-1
max 3 37 E{@Q (1) L (1)) * Xp(1) « (1-Us ()]
t=0 feF
(10)

It is clear that the deployment strategy X ;(t) of SFC f is
independent of the request @ ¢(¢), the link delay L¢(t) and the
failure rate Uf(t). In addition, since the popularity @ ¢(¢) has
an expectation g7 (t) from (2) and the failure rate of VNF V;(¢)
has an expectation v;(t) from (6), we can further transform the
above equation into:

mae 3" 37 B[, (1)

t=0 feF

#(way(t) = HE[Ls (0)]) * [T (1= wi®).

icly

(11

Theorem 1: SFC backup problem defined in (9) is an
NP-hard problem.

Proof: The SFC backup problem can be transformed
from the Traveling Salesman Problem (TSP), which is one
of the best-known NP-Complete problems [25]. The general
description of 7SP is to find the best way of traversing all
the destinations once and returning to the original city for
achieving the lowest cost (or distance). We further describe it
in mathematical language. Given a complete graph G = (H; S)
where H is a set of vertices and S is the edge set.

Let M = (m;;) be the distance from city i € H to city
j € H. Define decision variables z;;, where z;; = 1 means city
J is visited immediately after city ¢ while z;; = 0 denotes that
edge (4,7) is not selected. The goal of TSP can be expressed
as: Minimize Z(i,j)eS zijmsj. If there are n cities to be
visited, the total number of possible ways can be inferred
as @, showing the time complexity of this problem is
O(n!). In this paper, for a specific SFC, we have to arrange
all member VNFs on appropriate edge servers to realize the
most efficient service provision while considering the limited
resources of edge servers. That is to say, our task is to
minimize the total delay of this SFC f, which is formulated
as Z(W})eg B f(uv)l(u,v). We can convert the classic TSP
into our SFC backup problem. In our context, each VNF can
be placed on any server that can accommodate. When we
add resource constraints to destinations in 7SP and relax the
starting and ending positions to any two nodes that represent
edge servers, we can reduce the TSP to our proposed SFC
backup problem. Therefore, the time complexity of solving
SFC backup problem is also O(n!), indicating that it is an
NP-hard problem. []

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IV. SOLUTION OF SFC BACKUP PROBLEM: RTSD

In this section, to solve the SFC backup problem in the
edge environment, we first conduct a further analysis in
Section IV-A. Subsequently, the RTSD solution is proposed
in Section IV-B to deal with the existing difficulties, and the
specific implementation and detailed algorithm designs of each
component in our scheme are introduced in Sections IV-C
to IV-F.

A. Problem Analysis

According to the final problem in (11), we can see that
the value of the reward is affected by three aspects, which
is positively proportional to the popularity g;(¢) of the chain
f while inversely proportional to the total delay L; of SFC
f deployed at the edge and the failure rate of VNFs in each
SFC. Thus, we need to find the optimal strategy to select the
popular set of SFCs to deploy on the appropriate edge servers
so as to obtain the biggest service hit reward. The SFC backup
selection and deployment problem can be decomposed into
four steps:

1) For a specific SFC, we back up all involved VNFs on
edge servers with limited resources, making the link
delay of this chain as low as possible;

2) Obtaining the popularity ¢¢(¢) of each SFC;

3) Obtaining the failure rate v;(t) of each VNF in each
SFC;

4) According to the above results, we can get the maximum
service hit reward corresponding to each SFC, and
we give priority to the chain with the largest reward
so that it will be backed up at the edge based on
the minimum delay deployment plan until no backup
resources available.

In this process, we need to address four challenges: the
dynamic and unknown popularity of SFC, the dynamic and
unknown failure rate of SFC, the indeterminate latency of SFC,
and the limited resources of edge server.

The first two are the exploration of unknown knowledge,
that is, when the current information cannot be obtained in
time and the historical information is insufficient, how to
obtain its estimated value more accurately so as to make a
choice to maximize the reward; the last two challenges are
constraints in a known environment, that is, how to perform
allocation and connection actions, and place multiple VNFs
forming a chain on multiple server nodes with the minimal
link latency. In order to address the above challenges, we will
introduce the overall idea and general process of our online
learning scheme to deploy the appropriate set of SFC backups
at the edge in Section IV-B. The corresponding algorithm
will be designed to calculate the latency of whole chain in
Section IV-C, which further solves the link completeness. For
the problem of dynamic and uncertain users’ preferences and
VNF failure, we will propose corresponding algorithms to
learn and predict the uncertain popularity and failure rate in
Section IV-D and Section IV-E, respectively. Subsequently,
selection and deployment are performed in Section IV-F based
on the obtained results.

IEEE/ACM TRANSACTIONS ON NETWORKING

Real-time
users' needs fault information

Get popularity Get failure
of SFC rate of SFC

Result Perform selection and Result
feedback actual deployment feedback
actions

Fig. 2. An illustration of RTSD.

Current

Calculate the Historical
fault

data

Historical
popularity
data

minimum delay
of each SFC

B. Real-Time Selection and Deployment

To address the issue mentioned above, inspired by the
Upper Confidence Bound (UCB) algorithm, that is, deigned
for solving the multi-armed bandit learning problem [26],
we can analyze the historical information captured before
and estimate the popularity and failure rate under the current
time slot combined with real-time users’ service requests and
surroundings. In this process, we are faced with a challenge
that cannot be ignored, that is, how to deal with the trade-off
between exploration and exploitation. Among them, the former
is to explore potential new arms that may generate higher
returns without considering previous experience, which is a
radical plan. The advantage is that we can find options with
higher reward, but we cannot use the existing high-return arms.
The latter develops and uses known arms that can produce
high returns based on the content that has been explored to
get the best strategy so far. The advantage of this scheme is
that it can make full use of existing knowledge, but because
of this, it is only limited to the current local optimal scheme
and may ignore the better content that has not been explored,
thus missing the opportunity to generate higher reward, which
is a conservative choice. Therefore, we need to find a balance
between two contradictions, so as to maximize the service hit
reward at each time slot.

Based on the above ideas, we model our SFC backup
problem with unknown popularity and failure information
as a multi-armed bandit learning problem, where SFCs can
be considered as multiple arms, and the service hit reward
obtained by deploying a certain SFC at the edge is the reward
brought by pulling an arm. During each time slot, combining
historical data, we learn the current popularity of all SFCs
according to users’ requests and the real-time failure rate of
VNFs according to current environment, calculate the reward
of deploying each SFC, and then make a selection based on the
calculation result to determine which SFC should be placed
at the edge in the current time slot to get the highest return.
The deployment result will be used as feedback information
to participate in the selection and deployment of SFCs in the
next time slot.

We propose an algorithm named Real-Time Selection and
Deployment (RTSD) based on the above ideas, whose main
idea is illustrated by Fig. 2 for a more logical presentation.

In Algorithm 1, we describe the proposed RTSD solution
in a formal way, which is implemented with five main parts,
namely [Initialization at the beginning and MinimizeDelay,

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: ONLINE LEARNING FOR FAILURE-AWARE EDGE BACKUP OF SFCs WITH THE MINIMUM LATENCY 7

Algorithm 1 RTSD
Input: edge server set NV, user set K, SFC set F, and

VNF set 7

1 Initialization

2 foreach SFC f € F do

3 cf(0) =0,q¢(0) = 0,G7(0) = Q¢(0);
4 h;(0) = 0,7;(0) = 0,9;(0) = V;(0);
5 end

¢ end

7 foreach fime slot t € {0,1,---} do

8 while edge resources are sufficient do
9 MinimizeDelay

10 | GETCONSUMPTION(t);

11 end

12 SFCPlacement

13 | VNFDEPLOYMENT(t);

14 end

15 end

16 Popilarity

17 | GETPOPULARITY(2);

18 end

19 FailureRate

20 | GETFAILURERATE(?);

21 end
22 end

SFCPlacement, Popularity, FailureRate in every subsequent
time slot. When the whole process begins, we have no his-
torical information about SFCs and VNFs, so the value of
each SFC’s popularity and VNF’s failure rate can only be
estimated based on service requests collected from end users.
For this reason, we have to set the number of times when
each SFC is learned at the edge and the average value of
popularity, denoted as cf(0) and Gs(0), respectively, as zero,
which will participate in learning the estimate of popularity.
And the popularity can be considered as the sum of service
requests issued by all users for each SFC during time slot 0,
that is, G¢(0) = Q£(0). Similarly, we set both k;(0) and 7;(0)
respectively to zero and ¥;(0) to the real-time information in
time slot 0, i.e., V;(0) (Lines 1-6).

In the second step, our goal is to obtain the minimum
link latency of each SFC (Lines 9-11). And subsequently,
we choose the best set of SFCs and deploy the corresponding
VNFs on determined edge servers based on the popularity,
the failure rate and the minimum delay obtained to get the
biggest service hit reward (Lines 12-14). The selection and
deployment actions will stop when the edge network can no
longer accommodate any SFC (Line 8). After the above actions
are completed, the SFC backup deployment task of the current
time slot has been implemented. Then we will update the
historical information according to the deployment result in
this time slot. Combined with the users’ requests, we get new
popularity of each SFC (Lines 16-18). Next, we will also
reckon the latest failure rate based on historical data (Lines
19-21) and then calculate the minimum delay again, so as to
prepare for the SFC selection and deployment task in the next

time slot. The above steps will be repeated for each subsequent
time slot to select a set of qualified SFCs and properly deploy
them on the edge.

The specific implementation of the related sub-algorithms
will be elaborated in the following subsections.

C. Link Delay of SFC Backups

1) Realization Idea: In this part, our task is to arrange
multiple VNFs contained in one chain on appropriate edge
servers with limited resources. The goal is to find the optimal
deployment scheme with the lowest total delay consumed by
this SFC.

In edge network, there is a certain delay between any two
edge servers, the value of which is specified in advance. Our
task is to find the connection sequence of a group of available
edge servers to make the link delay consumed by connecting
them the lowest so that the SFC backed up in this path will be
the most efficient. In order to analyze this abstract problem
more clearly, we can regard edge servers as nodes in a graph.
The delay between servers is materialized into the link with
certain weight between two nodes, so that the edge network
constitutes a weighted undirected complete graph, where each
node has its own capacity (that is, the available resource of
each server). Under this specific model, our problem can be
seen as finding a path with the smallest sum of weights that
meets the capacity requirement from a complete graph.

Inspired by the problem of Traveling Salesman Problem
(TSP), we use the idea of Prim algorithm to solve this problem.
However, it is worth noting that our problem is different from
TSP in the following two aspects:

o We all know that the 7'SP is to find a minimum distance
circuit that each vertex once and only once. But in our
scenario, we do not need to include all nodes, i.e., edge
servers, in the graph, and don’t need to go back to the
beginning. This is because it is not necessary for any
certain SFC to travel through all edge servers to realize
the specified services;

e Our problem has a resource constraint for each edge
server, which is not involved in the traditional TSP
problem. Specifically, each node has a certain amount
of resources for backing up SFCs.

In spite of these differences, the same thing is that we all
need to achieve the smallest sum of weights for the selected
edges. To this end, we learn from the Prim algorithm dealing
with the Minimum Spanning Tree (MST) problem, based on
which we make appropriate expansions and improvements to
form an effective solution for our SFC backup problem.

2) Algorithm Implementation: In Algorithm 2, we present
the step of GETCONSUMPTION in detail, where the minimum
delay of each SFC and its optimal deployment at the edge
are calculated. For SFC f, put the contained VNFs on the
determined edge servers in order. Since we need to minimize
the total link delay, we give priority to the two servers with
the least latency. In addition, a server with larger capacity
is easier to accommodate more VNFs, which is more likely
to bring zero time consumption for the corresponding links.
These two strategies allow us to get the minimum delay

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Algorithm 2 GETCONSUMPTION(?)

Input: the current time slot £, VNF set Z, the resource
request of each VNF D, edge link set &, link
latency set £, the available resources of edge
server M

Output: the lowest link latency consumed by each

SFC {Ly(t)}
1 Find link [with the lowest latency;
2 Find server n’ with larger resource capacity at both

ends of I’;

3P ¢

4 foreach SFC f € F\ P do

5 CurrentNode «— n’';

6 foreach i € Iy do

7 while CurrentNode can hold current VNF
do

8 Place VNF i on CurrentNode;

9 end

10 Traverse the link emanating from
CurrentNode in the order of increasing
delay;

11 CurrentNode < the edge server that can
accommodate VNF i at the other end of the
link;

12 end

13 if all VNF € Iy are palced on determined servers

then

14 ‘ Calculate the total delay consumed by SFC f;

15 end

16 P=PU{f};

17 end

of each SFC in the edge environment. Therefore, we first
consider placing VNFs on the larger end of the link with
the smallest weight (Lines 1-2). Continue to put the VNFs in
SFC f on the server until it cannot accommodate the current
VNF (Lines 7-9). Learning from the idea of Prim algorithm,
we diffuse outward from the current server node. Taking the
consumption into account, we traverse the diverging edges
of the current node in the order of increasing latency until
we find a server with available resources that can be fully
used to deploy the current VNF (Line 10). Update the current
node (Line 11) and repeat the above process until all VNFs
in this SFC have been traversed. For this chain, there are two
results. First, each VNF in SFC f can be deployed on a certain
server (Lines 13-15). At this time, the data chain formed by
transmitting data packets in the order of VNFs consumes the
minimum latency. Add delay of each link to get the total
latency consumed by this SFC (Line 14). Otherwise, one or
several VNFs in this SFC cannot be deployed at the edge.
Specifically, no server can meet their resource requirements.
In this case, (3) shows that when there are VNFs in one SFC
deployed at the cloud, we believe that the backups of the entire
chain need to be deployed in the cloud network. At this point,
the process of solving the minimum delay of the current SFC is
over, and we need to continue processing other chains. In order

IEEE/ACM TRANSACTIONS ON NETWORKING

to prevent double calculation, we introduce a set P to store the
traversed SFCs (Line 3), SFCs that have been judged will be
put into P (Line 16), then we can select from the remaining
SFCs for calculation (Line 4). The work of Algorithm 2 is to
find a suitable edge server for each VNF in each SFC, and
the time it takes is determined by the number of chains |F|,
the number of VNFs |I;| contained in each chain and the
number of edge servers |[A|. Therefore, the time complexity
of Algorithm 2 is O(FI;N?).

As mentioned above, we design Algorithm 2 inspired by
the Prim algorithm to find the minimum latency of each SFC.
According to Theorem 1, the delay calculation is NP-hard,
which is difficult to be resolved for acquiring an optimal
solution in polynomial time. Therefore, Algorithm 2 is devised
to obtain its near-optimal result. Then, we can calculate the
worst-case approximate ratio of Algorithm 2 to verify its
correctness. For the latency of a certain SFC, we assume that
the result obtained by the optimal scheme is L* and that by
Algorithm 2 is L. For our problem, we consider the worst
case where an SFC goes through all servers. Besides, when
deploying each VNF of this SFC, the server directed by the
link with the lowest latency cannot afford the current VNE,
so we have to choose another link with larger latency. In this
case, we know that the latency of the optimal solutions will
not be lower than the result of the MST according to the
definition. Inspired by the approximate ratio calculation of
TSP [27], in the process of placing VNFs on specific servers
and connecting them to form a link using Algorithm 2, we can
deduce that the sum of the link latency would be less than
twice the result of MST according to the Triangle Inequality.
Therefore, the worst-case approximate ratio of Algorithm 2,
denoted as (, satisfies:

L

(= 7 < 2. (12)

Only when all VNFs in an SFC are deployed on the edge
servers can we regard that the chain would be successfully
backed up at the edge. At the same time, according to the
pre-deployment scheme and the calculated possible latency of
each SFC, we can deploy the SFC backup with the lowest
latency to provide users with timely services. This process
can only be implemented when an SFC is fully deployed at
the edge. Therefore, Algorithm 2 is a good solution to the
challenge of ensuring minimum latency and SFC completeness
in backup issues.

D. Learning Popularity of SFCs

1) Realization Idea: As analyzed at the beginning of
Section IV-B, we need to make full use of historical infor-
mation and combine the current data to estimate uncertain
attributes. In order to make full use of the historical service
request information that has been obtained, we define a
variable cf(t) to represent the number of time slots when SFC
f is learned in the edge network, that is, the time slots when
SFC f is selected to be backed up at the edge, which can be

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: ONLINE LEARNING FOR FAILURE-AWARE EDGE BACKUP OF SFCs WITH THE MINIMUM LATENCY 9

calculated as:

ety = 3 X4(r). (13
=0

In addition, we define a variable gy (t) to record the average
value of the learned popularity of SFC f up to time slot ¢, and
its formula is described as follows:

Yo @)

14
cr(t) (19

qr(t) =

During each time slot ¢, the current demand Q¢ (¢) of each
SFC is obtained based on users’ service requests, according to
which we calculate the average value of learned popularity up
to time slot ¢. With reference to the UCB algorithm, we then
combine the historical information and current requests to
estimate the popularity of SFC, expressed as (), which is
changing continuously. The calculation of ¢;(t) is as follows:

3logt
2¢y(t)

qr(t) = gs(t) + K

. (15)

According to (13)-(15), we can learn the popularity of SFC
f in time slot ¢, and further obtain the service hit reward R(¢)
of the chain, which will directly determine the deployment
decision X#(t) in edge environment, i.e., determining which
SFC backup to be placed at the edge. After the above actions
are completed, we need to update the involved parameter
values, i.e., cy(t) and Gy(t), based on the decision result so
as to continue contributing to the selection and deployment
process in next time slot. The corresponding update formulas
are defined as follows:

_ Cf(t)V Xf(t) :07
cr(t+1) = {CM L Xt (16)
O b A
qr(t+ = cr(t)qr(t) + Qp(t + _
(E+ L) X =1

2) Algorithm Implementation: We design a GETPOPULAR-
ITY algorithm to deal with the popularity which is changing
dynamically, as shown in Algorithm 3. According to the
description in Section IV-D.1, to estimate the popularity of
each SFC in the next time slot, we first need to calculate
its corresponding parameter information, that is, cy(t) and
ds(t), according to the SFC backup placement strategy of the
current time slot, X ;(¢) (Lines 1-6). The specific parameter
update process is defined in (16) and (17). After mastering
the two major parameters involved in estimating popularity,
we will implement the online learning step according to (15)
(Lines 7-13). The estimate value of each SFC’s popularity is
obtained in Line 10 of Algorithm 3. The time complexity of
Algorithm 3 is O(F).

By solving the CMAB problem, we estimate the unknown
popularity of SFC and continuously adjust it through feedback
information so as to solve the challenge of dynamic demand.

Algorithm 3 GETPOPULARITY(¢)

Input: the current time slot ¢, the number of learning
slots {cf(t)}, the average value of historical
popularity {g¢(¢)}

Output: the popularity of each SFC for next time slot

{qgr(t+1)}
1 GetParameters

2 foreach SFC f € F do
t X¢(t)=0
Cf(t) + 1, Xf(t) =1
4 gr(t+1) =
OB Qe) o
(g) +Qp(t+1
e, L o Xp(t) =1
Cf(t +1)
5 end
6 end
7 OnlineLearning
8 foreach SFC f € F do
9 if c¢(t+1) > 0 then
w | || gy =g - Ky
11 end
12 end
13 end

E. Learning Failure Rate of SFCs

1) Realization Idea: Similar to the SFC popularity, the
failure rate of any VNF is also unknown a priori, which
changes every time slot and cannot be known in advance.
Therefore, we also adopt the UCB-based idea to learn its
value. We first introduce a variable h;(t) to record the total
number of time slots when VNF i is learned until time
slot t. In Section III-C, we use P; ,,(¢) to reflect the placement
decision of VNF 7, based on which, we can calculate the value
of h;(t):

hi(t) = i > Pin(r).

T=0neN

(18)

Then, the history information denoted by ;(t), that is, the
average value of all failure rate of this VNF also needs to be
obtained according to the following formula:

t—1
Vi
ai(t) = 2 0,
hi(t)
Using the above two variable values, we can estimate the
value of the current failure rate in time slot ¢ with the help of
UCB algorithm. The formula is described as follows:

N o 3logt
0;(t) = v (t) + K/ at)’

With the consideration of SFC failure, we will get a com-
prehensive reward by integrating the popularity, link latency
and the failure rate obtained above based on (8). According to
this value, the deployment decision of each SFC, i.e., Xs(t),
can be determined, which will affect the popularity in the next

(19)

(20)

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

time slot as seen in (16) and (17). In addition, the deployment
decision of VNF, i.e., P; ,(t), can also be found out, which
serves as the feedback of the failure rate of next slot. The
corresponding updates are as follows:

hz(t)a Z Pi,n(t) = 07
hi(t+1) = neN
S)+ Y Pialt), DY Pia(t) >0,
neN neN
21
7 (1), > Piat) =0,
_ neN
Uit +1) = 9 h(O)0:(t) + Vit + 1) Y P
hi (t + 1 neN o
(22)

2) Algorithm Implementation: ~ Using Algorithm 4,
we present the calculation process of SFC failure rate. After
the initialization is completed in time slot 0, we make a
random selection without learning. In the subsequent time
slots, the values of related parameters, i.e., the number of
time slots when VNF is learned h;(t) and the average value
of history data ;(t), are updated based on the selection result
of the previous time slot (Lines 2-5), which will participate in
the estimation of the failure rate according to UCB Algorithm
(Lines 8-12). Because the smooth function of SFC depends
on the successful realization of each VNF it contains, it is
necessary to integrate the data of all VNFs to obtain the
failure rate of the entire SFC (Lines 14-16). Only when this
SFC does not fail can it bring an ideal return, based on which
we will also make the backup selection and deployment of
next round. The time complexity of Algorithm 4 is O([).

The uncertain and dynamic failure rate can thus be predicted
through repeated learning and exploration.

E. Selection and Deployment

1) Realization Idea: As shown in problem (9a), our goal is
to maximize the time-average hit reward. Therefore, we need
to choose and deploy backups of the most suitable SFCs at
the edge with limited resources. In this case, our selection
criterion is naturally the reward of each SFC.

2) Algorithm Implementation: In Algorithm 5, when the
popularity, failure rate and minimum link delay of a certain
SFC have been obtained by the previous algorithms, we can
calculate the pre-reward of this SFC, expressed by R}, accord-
ing to (8) (Lines 1-3). Then we will choose the SFC that can
bring the greatest reward, and deploy the VNFs it contains
on determined edge servers according to the pre-deployment
scheme with the least delay in Algorithm 2 (Lines 4-5), which
will reduce the available resources of the corresponding edge
servers (Lines 6-8). The complexity of Algorithm 5 is O(F).

The placement decisions of SFC backups can realize the
deployment of a set of appropriate SFC backups in the edge
of the network. They will be enabled when the original SFCs
fail, ensuring service availability.

IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 4 GETFAILURERATE(?)

Input: the current time slot ¢, the number of learning
slots of failure {h;(t)}, the average value of
historical failure rate {v;(t)}

Output: the failure rate of each VNF for next time

slot {#;(t+ 1)}
1 GetParameters

2 foreach VNF i € 7 do
3 hi(t+1) =
hi(t)7 Z Pl,n(t) = Oa
neN
hi(t)+ Y Pin(t), Y Pin(t) >0,
neN neN
4 ’l_)i (t +].) =
vi(t), > Piat) =0,
B neN
hi(t)vi(t) + Vi(t Z p
hl(t + 1 neN i n
5 end
¢ end
7 OnlineLearning
8 foreach VNF i € 7 do
9 if h;(t+ 1) > 0 then
10 | B =) + KR
1 end
12 end
13 end
14 foreach SFC f € F do
15| Up(t) =1Ly, (1 wilt)):
16 end

G. Approximate Ratio

As mentioned in Section III-H, the selection and deploy-
ment of SFC backups in edge environment is an NP-hard
problem that is difficult to be resolved in polynomial time for
obtaining an optimal solution. Therefore, we design the above
near-optimal scheme, namely RTSD, to solve this problem
efficiently. In this section, we will analyze the RTSD scheme
and calculate the approximate ratio.

The general flow of the RTSD scheme is presented in
Section IV-A, while the implementation idea and specific
algorithm of each step are presented in the subsequent
Sections IV-B to IV-F. In short, we first calculate the mini-
mum latency of each SFC through a deployment algorithm,
then learn and predict the unknown popularity and failure rate
using the bandit learning method. The above results will jointly
affect the value of the service hit reward, which is supposed
to be maximized for deriving the optimal backup scheme.
We can see that, in this process, both the bandit learning
process and the final process of selecting the maximum reward
will output the accurate value. Therefore, the key step affecting
the proposed RTSD scheme in achieving the optimal results is
the latency calculation process.

Assume that the lowest delay of chain f and its corre-
sponding service hit reward obtained by the RTSD scheme

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: ONLINE LEARNING FOR FAILURE-AWARE EDGE BACKUP OF SFCs WITH THE MINIMUM LATENCY 11

Algorithm 5 VNFDEPLOYMENT(t)

Input: the current time slot ¢, the learned popularity
of SFCs {qr(t)}, the lowest link latency
consumed by each SFC {L¢(t)}

Output: the placement decision of SFC backups

{Xr ()}
1 foreach SFC f € F do
2 | Ry(t) = (wQy(t) — uLy(t) * (1= Us(#));
3 end
4 Select SFC with the largest reward to place on the
determined edge servers;
5 Xf(t) — 13
6 Pz;n(t) — 1;
7 foreach Edge Server n € N do
8 ‘ Update the resource of each server M,,;
9 end

are Ly and Ry, respectively; while their values calculated by
the optimal solution are L} and R}, respectively. Then we
have (

Ly > L}, (23)

and we need to derive the numerical relationship between R}
and Ry.

As mentioned above, given that the values of popularity and
failure rate obtained by the RTSD scheme are the same as that
obtained by the optimal-latency scheme, which are denoted by
Q¢ and Uy, respectively. According to (8), when f is backed
up on the edge, that is, when X = 1, we can get that:

Ry = (wQf — uLy) x (1 —=Uy),
Ry = (wQf — puLy) * (1= Uy).

Then, the approximate ratio, denoted by 7, can be calculated
by:

(24)
(25)

)= Ry (w@y—plL})+(1-Uy)
Ry (wQy — pLy)* (1 —Uy)
_wQp—ply Ly — L) 26)
wQy — nLy wQs —pLy’

We can see that the value of 7 depends on the last item.
For the numerator, its value is affected by the lowest delay of
chain f obtained by the RTSD scheme and that derived by the
optimal solution. According to the calculation in Section IV-C,
the worst-case approximate ratio of latency ¢ = éf < 2. And

for the denominator, it is related to the estimated popularity,
the total latency of the chain at the current moment, and the
two scalar parameters. Thus, the specific value of 1 has to be
calculated based on the parameters obtained at a specific time
in the actual configuration.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed solutions for
SFC backup placement at the edge based on extensive sim-
ulations, which are conducted on a desktop with Intel(R)
Core(TM) i7-9700 CPU @3.00GHz and 16GB RAM running
Windows 10 OS.

A. Experiment Settings

We simulate an edge network with 50 edge servers. Each
edge server has a limited resource capacity, which is an inher-
ent property and is determined in advance by its own. In the
experiments, we randomly assign a specific value between [10]
and [20] to each edge server in advance to reflect the resource
as shown in Table III. In addition, any two servers have a
predetermined and fixed link latency which is determined by
the current edge environment. Fluctuations of transmission
medium and network configuration will cause changes in the
current latency between different servers. Therefore, in our
experiments, we use a random function, RANDINT, to generate
a fixed latency of [1] and [10] for the link between any two
servers.

In this paper, we also need to collect users’ service requests.
Assume that their requests correspond to 20 SFCs in total,
consisting of 15 different VNFs. Table IV shows the affiliation
between SFCs and VNFs. Similar to the edge server settings,
each VNF also has its inherent properties, that is, the required
resource for backing it up successfully, which is also allocated
in advance as shown in Table V.

B. Superiority Evaluation of RTSD

We evaluate the superiority of RTSD algorithm through
five sets of comparison experiments. As discussed earlier,
we mainly resolve three challenges of SFC backup prob-
lem at the edge, namely the availability of SFCs, dynamic
and unknown parameters, and the latency of placing SFC
backups. Therefore, here we first design three benchmark
solutions, namely Failure-free scheme, Non-learning scheme
and Latency-unconstrained scheme. Besides, to further illus-
trate the performance, we compare our scheme with two
existing ones, namely BSPS [23] and Topology [24] schemes.
Specifically, five schemes for comparison can be introduced
as below.

1) Failure-free scheme. SFC availability is not considered
in this scheme, where all SFCs are assumed to be
successfully implemented. While Algorithms 2 and 3 are
still run to obtain the estimated popularity and minimum
link latency. And we choose the SFC with the largest
reward to be deployed at the edge.

2) Non-learning scheme. We remove the online learning
method to further confirm the validity of bandit learning
in Algorithms 3 and 4. Instead of adjusting the selection
action based on the estimation and feedback, we select
an SFC randomly to be deployed at the edge during
each time slot. For the selected SFC, we also randomly
select a server to determine whether it can accommodate
any specific VNF. When all member VNFs satisfy the
edge resource constraint, the deployment of this SFC is
completed.

3) Latency-unconstrained scheme. When we are exam-
ining a specific server, once the resource demand of
the VNF exceeds the remaining available resources of
the current server, we continue to traverse and look
for other qualified server. This scheme focuses on the
deployment of every VNF instead of the whole SFC,

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE III
RESOURCE LIMITATION OF EDGE SERVERS
Server No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Available resource | 13 16 12 14 17 18 15 11 15 18 12 15 16 18 11 16 18 19 15 12
Server No. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3 36 37 38 39
Available resource | 11 16 18 16 14 12 17 16 17 19 13 15 11 15 16 16 13 11 16 18
Server No. 40 41 42 43 44 45 46 47 48 49
Available resource | 17 11 16 15 18 14 19 12 11 15
TABLE IV

SFC SETTING

SFCO VNF3—-—VNF6—-VNF9—VNF7—VNF14—-VNF11 —-VNFI10
SFC1 VNF9—-VNF8—VNFO0—-—VNF3—-VNF4—-VNF2
SFC?2 VNF3—-VNF1—-VNF6—-VNF10—-VNF0—-VNF9—-VNF4
SFC3 VNF10—VNF14 —VNF1—-VNF4—-VNF11 —VNF8
SFC4 VNFO—-VNF11 - VNF13—-—VNF1—-VNF4
SEFC5 VNF8—VNF1—-VNF12—-VNF10
SFC6 VNF13—VNF9—-VNF5—-VNF10—VNF1—-VNF6 —-VNF9
SFCT7 VNF4—-VNF2—-VNF14—-—VNF11 —-VNF7T—-—VNF6 —VNF12
SFC8 VNF10—VNF2—-VNF5—-VNF0—-VNF8
SEFC9 VNF8 —VNF13
SFC10 VNF10—VNF7T—VNF8—VNFO
SFC11 | VNFO—VNF9—-VNF12—-—VNF5—-VNF6—-VNF7T—-VNF11—-VNF1—-VNF3—-VNF13—-VNFS
SFC12 | VNF10—VNF5—-VNF9—-VNF0O—-VNF2—-VNF7—-VNFI11
SFC13 | VNF2—-VNF8—-VNF1—-VNFO0O—-VNF5—-VNF13—-VNF10—-VNF7
SFC14 | VNF13—VNF5—-VNFO—-VNF3—-VNF4—VNFG6
SFC15 VNF3—-VNF14 - VNF8—-VNF4
SFC16 VNF6 —VNF7T—VNFI0—VNF1—-VNF2—-VNF5—VNF8—VNF3
SFC17 | VNF12—-VNF5—-VNF0—-VNF4—-VNF9
SFC18 | VNF13—VNF7T—-VNF14—-VNF0—-VNF2—-VNF9
SFC19 | VNF14—-VNF9—-VNF3—-VNFI10
TABLE V
VNF SETTING
VNF No. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Resource requirement | 8 15 12 8 9 13 10 8 7 15 11 9 13 10 6

which thus cannot ensure the minimum link latency.
We still estimate its popularity and failure rate using
the bandit learning method presented in Algorithms 3
and 4.

BSPS scheme [23]. This method deploys individual
VNF backups at the edge through learning the demand
level of each VNF according to the users’ requests
and SFC composition. Hit reward is obtained after the
operation is completed, which continues to affect the
learning of demand level in the next time slot.
Topology scheme [24]. A topological analysis method
is used to determine a set of suitable SFCs, indicating
which path tends to be condensed or not. The traffic
congestion is predicted by calculating the frequency of
each node in each SFC path, and the low frequency link
is selected to avoid congestion. This scheme realizes
the deployment of SFC from the perspective of server,
ensuring the link completeness.

The experimental results are presented from three aspects.
First of all, since our SFC backup problem considers from the
users’ point of view, we observe the benefits that the solution
can bring to users, which is affected by three factors, i.e., pop-
ularity, failure rate, and latency. In this work, the total service
hit reward is defined to integrate these three factors, making
it a direct performance indicator to be examined. Besides,

4)

5)

from edge servers’ perspective, the less wasted resources at
the edge, the better resource utilization, the more services can
be provided efficiently, and the better the performance of our
solution. Therefore, the remaining resource of the edge server
is another performance metric evaluated in the experiments.
In addition, the total number of SFCs deployed at the edge
can reflect the services that can be implemented efficiently at
the edge. So, it is also an important performance indicator to
be observed.

Fig. 3 shows the comparison results, from which we can
observe that the experimental results of RTSD scheme are
basically consistent with the Failure-free scheme, which shows
that our solution can achieve the effect that each selected
SFC backup is available at the edge considering the actual
failure, and thus effectively solving the availability problem.
And the service hit reward of the RTSD scheme is significantly
higher than that of the Non-learning scheme as shown in
Fig. 3(a), which means that our online bandit learning strategy
can select a better batch of SFCs for edge backup and
improve users’ experience. Fig. 3(b) shows that compared
with the Non-learning scheme, the RTSD scheme can use
fewer resources. This is because when SFCs with higher
resource requirements or lower popularity fail, the reward will
be correspondingly lower, which makes them less likely to
be deployed at the edge according to online bandit learning

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: ONLINE LEARNING FOR FAILURE-AWARE EDGE BACKUP OF SFCs WITH THE MINIMUM LATENCY

2000 RSTD Fail 250 RSTD Fail .
—— ailure —— ailure — —e— RSTD Failure
—s=— latency —— BSPS[23] ()] %(2)8 —=— Latency —— BSPS[23] 19 18 —=— Latency —— BSPS[23]
'8 15001 —— Bandit ~ —— Topology[24] o 175 —— Bandit ~ —— Topology[24] 'g 161 . Bandit —— Topology[24]
© S 14
= 1000 " 0150:.,-%4 D
& 500 o Q 128 s e S 10| T
Y 100 L g
0 75 n g
0 2 4 6 8 V% 32 4 6 s 0 2 4 6 8

Time slot

(a) Hit reward

Time slot

(b) Remaining resource

Time slot

(¢) The number of SFC backups

Fig. 3. Comparison results between RTSD and comparison experiments.
2500 200 15
—— K=10 —=— K=30 190] —— k=10 —— K=30 o —— K=10 —=— K=30
5 20001 —— k=20 8 1807 —— K=20 0 14] —— k=20

1500 5 149 £ 13
% 1000 3 1501 / - €12

o o 140 7\ @) X /\ /\
500 //’/‘__,/‘__._4—.-—4 o %:2'38 % 11

0 0O 2 4 6 8 110 0 2 4 6 8 10 0 2 4 6 8

Time slot Time slot Time slot

(a) Hit reward

Fig. 4. The effect of changing the number of users on RTSD.

strategy. For Fig. 3(c), the Non-learning scheme still uses the
pre-deployment idea to make full use of edge resources, so the
total number of backups is not significantly different from the
RTSD scheme. Further, we can see that the minimum latency
deployment strategy helps deploy links on edge servers more
reasonably, thus obtaining higher rewards and saving more
edge resources from Figs. 3(a) and 3(b). However, Since the
Latency-unconstrained scheme does not implement the overall
deployment from the perspective of a complete chain, the SFC
with low latency and high demand will occupy a large number
of edge resources, thus reducing the total number of backups
as shown in Fig. 3(c).

In addition, compared with our work, BSPS scheme does
not consider the uncertainty of the actual failure rate, which
makes it insufficient to cope with the changing environment.
Besides, it focuses on the placement of individual VNFs rather
than the deployment of complete SFCs, leading to high latency
and reduced reward as implied in Fig. 3(a). Similarly, the lack
of completeness guarantee will also cause the consumption
of a large number of edge resources and the reduction of
the number of backups in Figs. 3(b) and 3(c). Therefore,
the results of BSPS scheme are unsatisfactory. The Topology
scheme ignores users’ requirements, so its service hit reward
is bound to be low. Due to the concerns around server load,
it cannot fully utilize edge resources to deploy SFCs as many
as possible, so this scheme cannot achieve a comparable result
as RTSD. Through comparison, it is clear that our proposed
scheme has more advantages.

The above results show that RTSD solves the selection and
deployment problem of SFC backup in the edge environment
more effectively. In this paper, we use the online bandit
learning method to learn the unknown popularity and failure

(b) Remaining resource

(c¢) The number of SFC backups

rates of SFCs. By obtaining feedback continuously to adjust
the selection action, we seek an optimal balance between
exploration and exploitation and then address the challenge
caused by the dynamic and uncertain users’ preferences and
VNF failure. Specifically, in the current time slot, we do not
know the users’ demand and whether the SFC will fail. Using
the historical information obtained in the previous time slot
and the hit feedback, we make predictions on these uncertain
parameters and obtain the expected rewards of making dif-
ferent choices. Through comparison, we choose the scheme
with the largest reward to complete the corresponding action.
After the deployment action is completed, we get the actual
users’ demand and failure rate of the SFC at the current
moment, which will act as feedback to update our estimated
expectations for the next round of selection. Through this
iteration of the continuous learning, prediction, feedback and
update process, we can make the best choice at the current
moment and get the biggest benefit.

C. Performance Evaluation of RTSD

In this section, we focus on investigating the impacts of
different parameters on the performance of the proposed RTSD
algorithm. This paper explores from both the perspectives of
users and edge environment. On the user side, we observe the
impact of end users’ demands by changing the number of users
in the simulation experiment; on the edge side, we observe
how the edge environment affects the performance of RTSD
algorithms by changing the resource capacity of edge servers.

First, we observe the impact of end users’ needs on our
solution by changing the number of users in the simulation
experiment. We set the number of users sending service

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING
2000 . 30
1750{ —— Reduction ggg —— Reduction o —— Reduction
- 1500{ —— Unchanged 8 200 - ILEJnchan'ged 8 25| —— unchanged
e ; —=— Expansion e)
E 1250 Expansion 5 180 E 20 Expansion
= 1000 o IH\V\H g
Q 750 & 160 15 e e e
X 500 oc 140 <10
250 120 A s S
0 0 2 4 6 8 100 0 2 4 6 8 > 0 2 4 6 8
Time slot Time slot Time slot
(a) Hit reward (b) Remaining resource (c) The number of SFC backups
Fig. 5. The effect of changing edge resources on RTSD.

requests as 10, 20, and 30, and then we get the corresponding
changes in the service hit reward, remaining resources, and the
number of deployed SFCs, which are shown in Fig. 4. It can
be seen that as the number of users increases, the request
information we can refer to becomes more sufficient, which
allows us to make full use of the limited resources at the edge
and further obtain higher service hit reward by deploying more
suitable SFCs at the edge. But the number of SFCs that can
be deployed on edge servers will not change significantly due
to the limitation of the available resources as we can see in
Fig. 4(c).

Subsequently, we observe the impact of changes in the edge
environment on our RTSD algorithm. By reducing the available
resources of the edge server by 50% and increasing it by 50%,
Fig. 5 illustrates that when the servers’ available resources
increase, we can deploy more backups at the edge, which will
bring less waste of resources and more service reward.

VI. CONCLUSION AND DISCUSSION

In this paper, we solve the problem of deploying SFC
backups at the edge. To cope with the shortcomings of current
research, we conduct edge backup of SFCs to provide popular
services with the lowest latency considering from the perspec-
tives of both the end users and edge system. To that aim,
we propose a Real-Time Selection and Deployment (RTSD)
algorithm. We first take advantage of the online bandit learning
method to deal with the uncertainty of SFC popularity and
failure rate dynamically changing with time. Next, inspired
by the Prim method and combined it with the greedy strategy,
we find the optimal deployment plan with the minimum
latency for a specific SFC. Backup hit rewards are calculated
by integrating the results of the two steps, based on which
we can select popular SFC backups and properly place the
corresponding VNFs contained in them on the edge network.
The deployment result of the current time slot will be used as
feedback information to optimize the subsequent SFC backup
operation. Results of comparative experiments demonstrate the
superiority of our proposed schemes.

Although we have studied and solved the optimization
problem of deploying SFC backups in edge environment with
the support of UCB algorithm, Prim heuristic algorithm,
and greedy algorithm, there still exist several open problems
that can be further addressed in implementing the proposed
solution in real-world systems:

b

2)

[1]

[2]

[3]
[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

Servers can also fail. Our study mainly considers the
SFC failure with the assumption that all edge servers
can successfully operate to backup appropriate VNFs.
However, servers can also fail in real situations, which
can make the SFC backup problem more challenging.
Service providers have special preferences or require-
ments. Our proposed RTSD scheme selects suitable
SFCs and back them up at the edge for a high hit reward,
which is based on the assumption that all SFCs would
follow the selection results and deployment suggestions.
However, there may also be cases where the network
service providers have special needs to place some
specific SFCs at the edge instead of the cloud, resulting
in invalidity of directly running the RTSD solution.

REFERENCES

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th Quart., 2017.
Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge computing
security: State of the art and challenges,” Proc. IEEE, vol. 107, no. 8,
pp- 1608-1631, Aug. 2019.

J. Erfanian and B. Smith, “Network functions virtualisation-white paper
on NFV priorities for 5G,” ETSI White Paper, pp. 1-15, 2017.

S. Van Rossem, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester,
“VNF performance modelling: From stand-alone to chained topologies,”
Comput. Netw., vol. 181, Nov. 2020, Art. no. 107428.

M. Peuster et al., “Introducing automated verification and validation
for virtualized network functions and services,” IEEE Commun. Mag.,
vol. 57, no. 5, pp. 96-102, May 2019.

M. Chiosi et al., “Network functions virtualisation-white paper#3,”
ETSI, Tech. Rep., 2014.

X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF scaling and flow
routing with proactive demand prediction,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., Apr. 2018, pp. 486-494.

J. Zhang, Z. Wang, C. Peng, L. Zhang, T. Huang, and Y. Liu, “RABA:
Resource-aware backup allocation for a chain of virtual network func-
tions,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Apr. 2019,
pp- 1918-1926.

T. Taleb, A. Ksentini, and B. Sericola, “On service resilience in cloud-
native 5G mobile systems,” IEEE J. Sel. Areas Commun., vol. 34, no. 3,
pp. 483-496, Mar. 2016.

X. Shang, Z. Li, and Y. Yang, “Partial rerouting for high-availability and
low-cost service function chain,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2018, pp. 1-6.

X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service
function chain backup cost over the edge and cloud by a self-adapting
scheme,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Jul. 2020,
pp. 2096-2105.

J. Fan et al., “A framework for provisioning availability of NFV in
data center networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 3,
pp- 2246-2259, Oct. 2018.

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: ONLINE LEARNING FOR FAILURE-AWARE EDGE BACKUP OF SFCs WITH THE MINIMUM LATENCY 15

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

X. Shang, Z. Li, and Y. Yang, “Placement of highly available virtual
network functions through local rerouting,” in Proc. IEEE 15th Int. Conf.
Mobile Ad Hoc Sensor Syst. (MASS), Oct. 2018, pp. 80-88.

Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algo-
rithms for joint placement and allocation of virtual network functions,”
in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2017, pp. 1-9.
T. W. Kuo, B. H. Liou, K. C. Lin, and M. J. Tsai, “Deploying
chains of virtual network functions: On the relation between link and
server usage,” IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1562-1576,
Aug. 2018.

R. Mijumbi, S. Hasija, S. Davy, A. Davy, B. Jennings, and R. Boutaba,
“A connectionist approach to dynamic resource management for virtu-
alised network functions,” in Proc. 12th Int. Conf. Netw. Service Manag.
(CNSM), Oct. 2016, pp. 1-9.

R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal VNF placement at the network edge,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., Apr. 2018, pp. 693-701.

P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware VNF chain
deployment with efficient resource reuse at network edge,” in Proc. [EEE
INFOCOM Conf. Comput. Commun., Jul. 2020, pp. 267-276.

H. Zhu and C. Huang, “EdgePlace: Availability-aware placement for
chained mobile edge applications,” Trans. Emerg. Telecommun. Technol.,
vol. 29, no. 11, p. 3504, Nov. 2018.

J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware mapping
of service function chains,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., May 2017, pp. 1-9.

Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Optimizing virtual
backup allocation for middleboxes,” IEEE/ACM Trans. Netw., vol. 25,
no. 5, pp. 2759-2772, Oct. 2017.

N. T. Dinh and Y. Kim, “An efficient availability guaranteed deployment
scheme for IoT service chains over fog-core cloud networks,” Sensors,
vol. 18, no. 11, p. 3970, 2018.

C. Wang, Q. Hu, D. Yu, and X. Cheng, “Proactive deployment of
chain-based VNF backup at the edge using online bandit learning,” in
Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2021,
pp. 740-750.

T. Hirayama and M. Jibiki, “SFC path selection based on combination of
topological analysis and demand prediction,” in Proc. 23rd Asia—Pacific
Netw. Oper. Manag. Symp. (APNOMS), Sep. 2022, pp. 1-4.

M. M. K. Jitu and M. H. Haque, “Determining best travelling salesman
route of 12 cities of Europe,” Tech. Rep., 2022.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235-256,
2002.

D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge, U.K.: Cambridge Univ. Press, 2011.

Chen Wang received the B.S. degree in computer
science from the China University of Mining and
Technology, Xuzhou, China, in 2010. She is cur-
rently pursuing the M.S. degree with the School
of Computer Science and Technology, Shandong
University. Her research interests include edge com-
puting and reinforcement learning.

Qin Hu (Member, IEEE) received the Ph.D. degree
in computer science from The George Washington
University in 2019. She is currently an Assistant
Professor with the Department of Computer and
Information Science, Indiana University-Purdue
University Indianapolis (IUPUI). Her research
interests include wireless and mobile security,
edge computing, blockchain, and crowdsourc-
ing/crowdsensing.

Dongxiao Yu (Senior Member, IEEE) received
the B.S. degree from the School of Mathematics,
Shandong University, in 2006, and the Ph.D. degree
from the Department of Computer Science, The
University of Hong Kong, in 2014. He became an
Associate Professor with the School of Computer
Science and Technology, Huazhong University of
Science and Technology, in 2016. He is currently
a Professor with the School of Computer Science
and Technology, Shandong University. His research
interests include wireless networks, distributed
computing, and data mining.

Xiuzhen Cheng (Fellow, IEEE) received the M.S.
and Ph.D. degrees in computer science from the
University of Minnesota Twin Cities in 2000 and
2002, respectively. She is currently a Professor with
the School of Computer Science and Technology,
Shandong University, China. Her current research
interests include privacy-aware computing, wire-
less and mobile security, dynamic spectrum access,
mobile handset networking systems (mobile health
and safety), cognitive radio networks, and algorithm
design and analysis. She has served on the editorial
boards of several technical publications and the technical program committees
of various professional conferences/workshops. She has also chaired several
international conferences. She was the Program Director for the U.S. National
Science Foundation (NSF) from April to October 2006 (full-time) and
from April 2008 to May 2010 (part-time). She has published more than
300 peer-reviewed papers.

Authorized licensed use limited to: IUPUI. Downloaded on May 08,2023 at 17:59:48 UTC from IEEE Xplore. Restrictions apply.

