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Abstract. Monophyly is a feature of a set of genetic lineages in which every lineage in the set is more closely8

related to all other members of the set than it is to any lineage outside the set. Multiple sets of lineages that9

are separately monophyletic are said to be reciprocally monophyletic, or jointly monophyletic. The prevalence of10

reciprocal monophyly, or joint monophyly, has been used to evaluate phylogenetic and phylogeographic hypotheses,11

as well as to delimit species. These applications often make use of a probability of joint monophyly under models12

of gene lineage evolution. Studies in coalescent theory have computed this joint monophyly probability for small13

numbers of separate groups in arbitrary species trees and for arbitrary numbers of separate groups in trivial species14

trees. Here, generalizing existing results on monophyly probabilities under the multispecies coalescent, we derive the15

probability of joint monophyly for arbitrary numbers of separate groups in arbitrary species trees. We illustrate how16

our result collapses to previously examined cases. We also study the effect of tree height, sample size, and number17

of species on the probability of joint monophyly. The result also enables computation of relatively simple lower and18

upper bounds on the joint monophyly probability. Our results expand the scope of joint monophyly calculations19

beyond small numbers of species, subsuming past formulas that have been used in simpler cases.20

1 Introduction21

Evaluations of the prevalence of reciprocal, or joint, monophyly in sampled gene genealogies have been useful22

in a variety of studies in phylogenetics, phylogeography, and molecular ecology. They have been used for23

identifying units for conservation (Moritz, 1994), analyzing differing phylogeographic patterns across species24

(Carstens and Richards, 2007), evaluating the distinctiveness of taxa (Kubatko, Gibbs, and Bloomquist,25

2011), and providing context for estimation of species divergence times (Arbogast, Edwards, Wakeley et al.,26

2002). Joint monophyly is fundamental to genealogical perspectives on species delimitation (Hudson and27

Coyne, 2002; De Queiroz, 2007).28

Central to the application of joint monophyly is a theoretical prediction of the probability that genealo-29

gies show joint monophyly as a function of evolutionary parameters. Many studies have used monophyly30

computations in examinations of the evolutionary relationships among recently-diverged species (Birky, Wolf,31

Maughan et al., 2005; Carstens and Knowles, 2007; Carstens and Richards, 2007; Syring, Farrell, Businský32

et al., 2007; Jansen, Savolainen, and Vepsäläinen, 2010; Kubatko, Gibbs, and Bloomquist, 2011; Bergsten,33

Bilton, Fujisawa et al., 2012; Rabeling, Schultz, Pierce et al., 2014). These computations have often made34

use of theoretical results of Rosenberg (2003, 2007), which consider the probability that gene lineages in two35

populations are jointly monophyletic as a function of population divergence times. For example, Kubatko,36

Gibbs, and Bloomquist (2011) used such computations to assess the taxonomic distinctiveness of two species37

of Sistrurus rattlesnake, each of which was divided into three subspecies. They considered two types of38

comparisons for each set of three subspecies: first, that one subspecies was distinct from a hypothetical clade39

containing the other two, and next, that the two remaining subspecies were distinct from each other. The40
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result of these comparisons was the establishment of the distinctiveness of a seriously threatened subspecies41

(S. catenatus catenatus), as well as of varying levels of distinctiveness among the remaining subspecies.42

Because the probability formulas available were limited to two groups, Kubatko, Gibbs, and Bloomquist43

(2011) were restricted to performing a hierarchical set of analyses in which distinctiveness of one subspecies44

from a taxon that combined the other two subspecies was assessed, followed by distinctiveness of one of45

the two previously-combined taxa from the other. Joint monophyly computations were likewise restricted46

to these two hierarchical pairs of subspecies. Although the hierarchical analysis did produce the desired47

determinations, the analysis of Kubatko, Gibbs, and Bloomquist (2011) would have been enriched by the48

ability to simultaneously consider the distinctiveness of one S. catenatus subspecies from the two other49

S. catenatus subspecies, rather than being restricted to a hierarchical pairwise comparison that might produce50

inaccurate probabilities as a result of merging present-day samples from populations that have diverged in51

the past (Mehta, Bryant, and Rosenberg, 2016). Simultaneously studying the relationship between the52

S. catenatus subspecies in relation to the other Sistrurus species would have required mathematical results53

that could accommodate up to six simultaneous monophyly events. Other similar studies involving more54

than two species or groups have also been restricted to pairwise computations (Carstens and Richards, 2007;55

Baker, Tavares, and Elbourne, 2009; Neilson and Stepien, 2009; Bergsten, Bilton, Fujisawa et al., 2012).56

Three theoretical developments now place the possibility of a joint monophyly probability computation57

within reach for taxa related according to an arbitrary species tree. First, Zhu, Degnan, and Steel (2011)58

computed the probability of joint monophyly for an arbitrary number of groups for lineages originating59

within a single population rather than evolving on a species tree. Next, Mehta, Bryant, and Rosenberg60

(2016) found the probability of joint monophyly in a species tree of arbitrary size, considering two classes of61

lineages. Finally, Mehta and Rosenberg (2019) found the full probability of joint monophyly for the lineages62

of species evolving on species trees with three or four species. The first extension generalized to an arbitrary63

number of groups whose lineages must be jointly monophyletic. The second produced an algorithm that64

allows for an arbitrary species tree. The third provided the simplest cases for a synthesis of the other two65

extensions.66

Figure 1: Schematic of the general joint monophyly calculation. (A) Zhu, Degnan, and Steel (2011) computed
the probability of joint monophyly of arbitrarily many groups in a single population. (B) Mehta, Bryant,
and Rosenberg (2016) computed the probability of joint monophyly of two groups in an arbitrary species
tree. (C) Here, we compute the probability of joint monophyly of arbitrarily many groups in an arbitrary
species tree. In each panel, the numbers and colors indicate groups, and the black lines represent a species
tree.

In this study, we obtain the complete generalization: the probability of joint monophyly for an arbitrary67

number of groups in an arbitrary species tree. Figure 1 illustrates the results of Zhu, Degnan, and Steel (2011)68

and Mehta, Bryant, and Rosenberg (2016) and how they relate to our recursive computation. We study the69

effect of species tree parameters, such as tree height and sample size, on this probability. Because the result70

is computationally intensive, we provide lower and upper bounds on the probability of joint monophyly, as71

well as an alternative, potentially faster, method for numerical computation. Finally, we provide software72

that encodes the new formulas.73
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2 Preliminaries for the recursive approach74

2.1 Model and notation75

We consider a binary species tree T on the species label set S, consisting of a topology and a set of branch76

lengths. For each leaf Si of T , we specify a sample size si ≥ 1. We use the multispecies coalescent to track77

the sampled lineages as they travel back in time “up” the species tree. Section 2 describes the terminology78

and construction of our coalescent model, closely following Mehta, Bryant, and Rosenberg (2016) and Mehta79

and Rosenberg (2019). Figure 2 illustrates some of the notation.80

Figure 2: Notation for input and output lineages. (A) An example of a species tree T , with five species
and species label set S = {1, 2, 3, 4, 5}. An example branch x is highlighted with its branch length Tx. (B)
Coalescences happening within a single branch (branch x in (A)) of a species tree. In this diagram, three
lineages from species 1, three lineages from species 2, and a single mixed lineage enter the branch, and
two lineages from species 1 and one mixed lineage exit the branch. Supposing this branch comes from a
five-species tree, the input state is nI

x = (3, 3, 0, 0, 0, 1), and the output state is nO
x = (2, 0, 0, 0, 0, 1). The

label 1 is a surviving label, and the label 2 is a lost label.

2.2 Lineage labels81

Genetic lineages are labeled according to the species from which they are sampled. All lineages for a particular82

species have the same label, and each species has a unique label. We label the species 1, 2, . . . , k, where the83

number of species is |S| = k. Lineages that result from a coalescence between lineages of differing labels are84

called “mixed” lineages and are assigned label k + 1.85

2.3 Species tree branches86

In our coalescent framework, the bottom of the tree is the present, at time 0, and time increases up the tree,87

further into the past. Viewed backward in time, an internal node of the species tree represents an event at88

which two species merge into an ancestral species. Gene lineages enter species tree nodes from the bottom and89

exit them at the top as time progresses into the past. Because a one-to-one correspondence exists between90

species tree branches and nodes, we refer to a node and its immediate ancestral branch interchangeably. A91

particular node x has lineages enter from both branches directly below it. The length of branch x is Tx, the92

length of time associated with node x. Tx is measured in units of N generations, where N is the haploid93

population size on branch x; this size is assumed to be constant over all species tree branches. Larger sizes94

correspond to smaller values of Tx in coalescent units. The root branch of T is assumed to contain any95

coalescence events that have not occurred below the root. Biologically, this assumption is that of a universal96

common ancestor for all gene lineages, and it is implemented by setting the root branch length to infinity.97
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Figure 3: Interweaving of coalescence sequences. (A) Three coalescence sequences. The sequences are
represented in three colors. Within a sequence, coalescences occur in a specified order, indicated by numbers
within colors. Each of the six coalescences must occur in the interwoven sequence, represented by the gray
blocks. Hence, each coalescence must be mapped to one of the gray blocks, with order increasing from
bottom to top for each sequence. (B,C) Two different ways to interweave the sequences from (A).

2.4 Input and output states98

An output state of a branch x is a list of nonnegative integers that records the numbers of lineages of each99

label exiting the branch from the top. In our model, the output state is a random variable. This random100

variable is a vector Zx of length k + 1 whose ith element is the number of output lineages that possess label101

i. A particular instance of this random variable is denoted nO
x .102

Similarly, an input state for a branch is a list of nonnegative integers that records the numbers of lineages103

of each label entering the node from the two branches immediately below it. The input state for an internal104

branch x is the sum of the two output states for its descendant branches xL and xR. A particular instance105

of an input state is nI
x = nO

xL
+ nO

xR
. Figure 2B displays an example species tree node with its inputs and106

outputs.107

2.5 Coalescence sequences108

A coalescence sequence is an ordered sequence of coalescence events. For example, consider five lineages A,109

B, C, D, and E. One possible coalescence sequence involving these lineages is {(A, B), (AB, C), (ABC, D),110

(ABCD, E)}, where A and B coalesce first, then C coalesces with the resulting AB lineage, then D coalesces111

with the resulting ABC lineage, and finally E coalesces with the resulting ABCD lineage.112

Coalescence sequences involving disjoint sets of lineages can be combined into a single coalescence se-113

quence that contains all the coalescences from both sequences, a procedure termed “interweaving” (e.g.114

Rosenberg, 2003). The same set of coalescence sequences can be interwoven in different ways to form differ-115

ent interwoven coalescence sequences (Figure 3).116

2.6 Joint monophyly117

Consider a subtree Tx of T , defined as the node x, all of its descendant nodes, and all branches associated118

with those nodes (including the branch immediately ancestral to x). For joint monophyly to be achieved,119
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each coalescence in Tx must be in one of four mutually exclusive classes:120

1. The coalescence is between two lineages that have the same label (an intralabel coalescence), and121

neither label is mixed.122

2. The coalescence is between two lineages with different labels (an interlabel coalescence), neither label123

is mixed, and both labels have only one existing lineage at the time of the coalescence.124

3. The coalescence is between two lineages with different labels, exactly one of which is mixed, and the125

other label has only one existing lineage at the time of the coalescence.126

4. The coalescence is between two mixed lineages.127

We define the joint monophyly event Ex for gene lineages in the subtree Tx; Ex is the event that all128

coalescences in Tx are in one of the four classes above. If at least one coalescence is not in one of these129

classes, then joint monophyly is violated.130

2.7 Combinatorial functions131

We use several combinatorial functions in our calculation. First, gi,j(T ) is the probability that i lineages132

coalesce such that at time T , the number of ancestral lineages is precisely j. From Eqn. 6.1 of Tavaré (1984):133

gi,j(T ) =

i∑
k=j

e−k(k−1)T/2 (2k − 1)(−1)k−jj(k−1)i[k]

j! (k − j)! i(k)
, (1)

where a(k) = a(a + 1) · · · (a + k − 1) and a[k] = a(a − 1) · · · (a − k + 1) for k ≥ 1, and a(0) = a[0] = 1.134

This function is nonzero when i ≥ j ≥ 1 and T ≥ 0. We define g0,0(T ) = 1, and we write gi,1(∞) for135

limT→∞ gi,1(T ), noting that gi,1(∞) = 1 for i ≥ 1.136

Second, the number of coalescence sequences that reduce n lineages to k lineages is137

In,k =
n! (n− 1)!

2n−k k! (k − 1)!
. (2)

This function, from Eqn. 4 of Rosenberg (2003), is nonzero for n ≥ k ≥ 1, and we define I0,0 = 1.138

Third, the multinomial coefficient139

Wk(r1, r2, . . . , rk) =

(
r1 + · · ·+ rk
r1, r2, . . . , rk

)
, (3)

from Mehta and Rosenberg (2019), is the number of ways that k coalescence sequences of lengths r1, r2, . . . , rk140

coalescent events can be ordered, or interwoven, to create an encompassing coalescence sequence that contains141

them all as subsequences. This function is defined for ri ≥ 0, i = 1, 2, . . . , k.142

Finally, Z(s1, s2, . . . , sk) is the probability that in a single population in which k groups are present, k143

groups of s1, s2, . . . , sk gene lineages coalesce to a single lineage while preserving joint monophyly of each of144

the k groups. This function is taken from Theorem 5.1 of Zhu, Degnan, and Steel (2011), as follows.145

Suppose that A1, A2, . . . , Ak represent sets of lineages for groups 1, 2, . . . , k, respectively. Under joint146

monophyly of groups 1, 2, . . . , k, each group i possesses a single lineage ai ancestral to all lineages in Ai. The147

lineages ai possess some labeled topology Tk from the set of all possible labeled topologies rb(k) (“rb” for148

rooted binary trees). We compute the probability that the k groups are jointly monophyletic and that their149

associated single-lineage ancestors possess labeled topology Tk, and then sum over all possible Tk to obtain150

the total probability of joint monophyly of the k groups.151

Let n =
∑k

i=1 si be the total number of lineages across all groups. Let I (Tk) be the set of internal152

nodes of Tk. For an internal node v ∈ I (Tk), let Iv(Ai) denote the indicator function that lineage ai is a153

descendant of v in Tk. The joint probability of joint monophyly of the k groups and labeled topology Tk is154

Z(s1, s2, . . . , sk;Tk) =
2k−1

∏k
i=1 si!

n!

∏
v∈I (Tk)

1[∑k
i=1 siIv(Ai)

]
− 1

. (4)
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Summing over all (2n− 2)!/[2n−1(n− 1)!] possible Tk in rb(k), the total probability of joint monophyly is155

Z(s1, s2, . . . , sk) =
∑

Tk∈rb(k)

Z(s1, s2, . . . , sk;Tk). (5)

Our notation sometimes leads to values of 0 for some of the arguments si of the function in Eqn. 5; such156

cases have the interpretation that there is no corresponding label i among the leaves of Tk. In those cases,157

the quantity is properly computed by dropping those arguments.158

3 Mathematical results159

For species tree internal node x, we can compute the probability of the joint monophyly event Ex and a
particular output state nO

x by recursive decomposition as follows:

P(Ex,n
O
x ) =

∑
nI

x

P(Ex,n
O
x |ExL

, ExR
,nI

x) · P(ExL
, ExR

,nI
x)

=
∑
nO

xL

∑
nO

xR

P(Ex,n
O
x |ExL

, ExR
,nO

xL
+ nO

xR
) · P(ExL

,nO
xL

) · P(ExR
,nO

xR
), (6)

where xL and xR are the daughter nodes of x, and the second step is due to independence of these nodes160

and the fact that nI
x = nO

xL
+ nO

xR
. Taking x to be the species tree root, P(Eroot,n

O
root = (0, . . . , 0, 1)) is the161

joint monophyly probability for the entire gene genealogy.162

To compute P(Eroot), we use a pruning algorithm—a familiar approach in phylogenetics in general (Felsen-163

stein, 2004, p. 253). First calculating the probability P(Ex,n
O
x |ExL

, ExR
,nO

xL
,nO

xR
)—the probability of ob-164

taining the joint monophyly event Ex and an output state nO
x given the events ExL

and ExR
and their165

corresponding output states nO
xL

and nO
xR

—we can apply this probability to the root of the tree and then166

proceed recursively to the leaves, whose inputs are known, ending the recursion. Given ExL
, ExR

, and their167

output states, the probability of event Ex and its output state is the probability that all coalescences that168

occur in the branch x satisfy joint monophyly and result in the specified output state. We can compute this169

probability by specifying an input state, computing the probability that joint monophyly is preserved on170

branch x given the input state and output state, and summing over all possible input states for branch x.171

The probability that joint monophyly is preserved in a branch with a specified input state and output172

state requires computation of two quantities: (i) the probability that the correct number of coalescences173

occurs to convert the input state into the output state, and (ii) among coalescence sequences with the174

correct number of coalescences, the fraction that satisfy joint monophyly.175

For (i), the probability that the correct number of coalescences occurs is g|nI
x|,|nO

x |(Tx) (see Section 2.7).176

For (ii), to count the coalescence sequences, the calculation is more involved. It is useful to first classify the177

k input labels into two categories: surviving and lost.178

3.1 Surviving labels and lost labels179

Consider a branch x with input state nI
x and output state nO

x . Consider a label i ∈ {1, 2, . . . , k}. The180

number of lineages of label i in the input state is denoted nI
x,i and its number of lineages in the output state181

is denoted nO
x,i. The total number of lineages in an input or output state is denoted |nI

x| or |nO
x |, respectively.182

Suppose nI
x,i > 0. Two possibilities then exist for label i: nO

x,i > 0 or nO
x,i = 0. If nO

x,i > 0, then label i183

is said to be a surviving label on branch x. To preserve joint monophyly on branch x, lineages of surviving184

label i are permitted to undergo intralabel coalescences on the branch, but not interlabel coalescences.185

If nO
x,i = 0, then label i is said to be a lost label on branch x. To preserve joint monophyly on branch x,186

lineages of lost label i undergo intralabel coalescences until only one lineage of label i remains. This final187

lineage undergoes an interlabel coalescence.188

In the branch represented in Figure 2B, label 1 survives, whereas label 2 is lost.189
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3.2 Number of coalescence sequences for each surviving label190

Our general approach for counting permissible coalescence sequences within a branch is to split the coales-191

cences within the branch into multiple subsequences that we know how to count, and to then interweave192

those subsequences together. First, we consider sequences involving surviving labels. Under joint mono-193

phyly, each lineage in a surviving label must coalesce only with other lineages that possess that same label.194

Thus, the set of all input lineages of a particular surviving label i, the coalescences of those lineages, and195

the output lineages of label i can be used to define a coalescence subsequence for label i. The number of196

distinct coalescence subsequences for surviving label i is the number of ways that the nI
x,i input lineages of197

label i can coalesce to the correct number of output lineages of label i, or nO
x,i. This number of subsequences198

is InI
x,i,n

O
x,i

(Eqn. 2). We compute this quantity for each surviving label.199

3.3 Enumerating partitions containing lost labels and mixed lineages200

We next count coalescence subsequences that involve lost labels and mixed lineages. Unlike for surviving201

lineages, because a lost label must undergo an interlabel coalescence, coalescence subsequences involving lost202

labels only produce output mixed lineages. Hence, each output mixed lineage must result from a coalescence203

subsequence involving (i) at least two mixed lineages and no lost labels, (ii) at least two lost labels and no204

mixed lineages, or (iii) at least one lost label and at least one mixed lineage.205

To account for every possible coalescence subsequence in one of these three categories, we must assign206

each output mixed lineage to an element of a partition of the set of lost labels and input mixed lineages.207

Thus, we partition the input lineages, assigning to each element of the partition a single output mixed lineage.208

A coalescence subsequence exists for each element of the partition.209

We count the number of distinct types of lineages, among the input lineages with lost labels and the input210

mixed lineages. This quantity equals ` + mI : ` input lost labels and mI individual input mixed lineages.211

The number of elements of the partition of output lineages is mO: one element for each of the mO individual212

output mixed lineages. Thus, we are partitioning ` + mI labeled elements into mO nonzero categories. In213

particular, these partitions are the ways to place ` + mI labeled balls into mO unlabeled boxes, such that214

each box contains at least one ball (Loehr, 2017). The number of these partitions are Stirling numbers of215

the second kind, S2(`+mI ,mO). An algorithm for producing these partitions is presented in Knuth (2011).216

However, two additional conditions must be met.217

1. mO ≤ mI + b`c/2.218

2. No element of the partition can consist solely of a single one of the ` lost labels.219

In the first condition, the number of output mixed lineages is bounded above by the number of input220

mixed lineages plus the maximal number of additional mixed lineages that can be produced by coalescences221

involving the lost labels. Lost labels whose coalescences involve the mI input mixed lineages do not generate222

additional output mixed lineages; however, lost labels whose coalescences involve other lost labels do generate223

additional output mixed lineages. The maximal number of output mixed lineages that can be generated in224

this way is b`c/2, if the maximal number of pairs of lost labels coalesce.225

The second condition codifies the requirement that no output mixed lineage is generated purely by226

coalescences within a single lost label. Each lost label must coalesce with others or with mixed lineages.227

Once all possible partitions of the ` + mI labeled elements into mO unlabeled nonempty sets are enu-228

merated, we filter these partitions by the conditions 1 and 2, retaining only those partitions that satisfy229

both criteria. We define these partitions to be “permissible partitions.” For each partition retained, we next230

describe the enumeration of the coalescence subsequences associated with an element of the partition.231

3.4 The number of coalescence subsequences for each element of a partition of232

the set of lost labels and mixed lineages233

Denote by P the set of permissible partitions of the set L ∪MI , where L is the set of ` lost labels and MI234

is the set of mI input mixed lineages. Let P be a partition in P.235

Consider an element p of P . This element is associated with a set Lp ⊂ L of ` lost labels and a set236

Mp ⊂MI of mp input mixed lineages. Lp or Mp is possibly empty, but they cannot both be empty. Element237
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p corresponds to a coalescence subsequence that starts with (
∑

j∈Lp
rj) +mp lineages and ends with a single238

mixed lineage, where rj is the number of input lineages of (lost) label j.239

Following Section 2.7, the number of subsequences that coalesce (
∑

j∈Lp
rj) + mp lineages to a single240

lineage is I(
∑

j∈Lp
rj)+mp,1 (Eqn. 2). The fraction of these subsequences that satisfy joint monophyly is Z(vp),241

where Z is the probability of joint monophyly of an arbitrary number of groups in a single population (Eqn. 5).242

The argument vp is constructed as a vector of length k + mp. For elements i from 1 to k, vi = ri if i ∈ Lp243

and vi = 0 if i /∈ Lp. The last mp elements all equal 1. For example, consider a 7-species tree. If partition244

element p contains lost labels 1 and 6 and three input mixed lineages, then vp = (r1, 0, 0, 0, 0, r6, 0, 1, 1, 1).245

Combining the number of subsequences that start from the input lineages in p and coalesce to a single246

lineage with the fraction of those subsequences that satisfy joint monophyly gives the total number of247

subsequences that both have the correct number of coalescences and that satisfy joint monophyly:248

Jp = I(
∑

j∈Lp
rj)+mp,1 Z(vp). (7)

3.5 The number of coalescence sequences associated with a set of surviving249

labels and a partition of the set of lost labels and mixed lineages250

We now count, within a single branch of species tree T , coalescence sequences that contain specified subse-251

quences associated with surviving labels and specified subsequences associated with partitions of lost labels252

and mixed lineages. Let U be the set of surviving labels in a branch, and let P be a partition of the set of lost253

labels and mixed lineages for the branch. Each of the |U | surviving labels and each element p of partition254

P creates a coalescence subsequence that must be interwoven with the other such subsequences. There are255

|U |+ |P | such subsequences. For 1 ≤ i ≤ |U |, the number of coalescences is si − ri, noting that Ui is the ith256

surviving label (enumerated in arbitrary order) and abbreviating si = nI
x,Ui

and ri = nO
x,Ui

for convenience.257

For each i with |U |+ 1 ≤ i ≤ |U |+ |P |, the number of coalescences is |Pi−|U || − 1 coalescences, where Pj258

is the jth element of P (again enumerated in arbitrary order). Hence, the number of ways to interweave the259

|U |+ |P | coalescence subsequences is (from Eqn. 3)260

W|U |+|P |
(
s1 − r1, s2 − r2, . . . , s|U | − r|U |, |P1| − 1, |P2| − 1, . . . , |P|P || − 1

)
. (8)

Multiplying the number of ways of interweaving the coalescence subsequences by the product of the261

numbers of ways of constructing the various subsequences, the total number of sequences that satisfy joint262

monophyly for a given input state and output state is263

CnI
x,n

O
x

=
∑
P∈P

(∏
i∈U

Isi,ri

)( ∏
p∈P

Jp

)
W|U |+|P |

(
s1 − r1, s2 − r2, . . . , s|U | − r|U |, |P1| − 1, |P2| − 1, . . . , |P|P || − 1

)
.

(9)
The product over elements of U is the number of coalescence sequences involving surviving labels. The264

product over elements of P is the number of coalescence sequences for a particular partition of lost labels265

and mixed lineages, and the sum over all P accounts for all possible partitions in P.266

If there are no surviving labels, then the product over elements of U is trivial, equal to 1. If all labels267

are surviving labels, then trivially, only a single partition in P ∈P is possible. We omit the sum over this268

partition P , and note that Jp = 1 trivially for the single element p of this trivial partition P . Eqn. 9 becomes269

CnI
x,n

O
x

=

(∏
i∈U

Isi,ri

)
W|U |

(
s1 − r1, s2 − r2, . . . , s|U | − r|U |

)
. (10)

3.6 Completing the computation270

The total number of coalescence sequences in a branch given an input state and an output state is I|nI
x|,|nO

x |271

(Eqn. 2). The number that satisfy joint monophyly is CnI
x,n

O
x

, following Eqn. 9. From Eqn. 1, the probability272

of obtaining a particular number of coalescences in a branch of length Tx is g|nI
x|,|nO

x |(Tx).273

We conclude that in Eqn. 6 for the probability of joint monophyly in branch x together with an output274

state, the recursive step that computes the conditional probability of joint monophyly and the output state275

8



given that joint monophyly is maintained in the daughter branches xL and xR and given the input state is276

P(Ex,n
O
x |ExL

, ExR
,nI

x) = g|nI
x|,|nO

x |(Tx)
CnI

x,n
O
x

I|nI
x|,|nO

x |
, (11)

where CnI
x,n

O
x

is from Eqn. 9 and I|nI
x|,|nO

x | is from Eqn. 2. This result, applied recursively starting from277

x = root with nO
x = (0, . . . , 0, 1), yields the probability of joint monophyly over all species 1, 2, . . . , k.278

3.7 Deriving previous results279

We can use Eqn. 11 to derive previously-known results on the probability of joint monophyly under the280

multispecies coalescent. In this section, we proceed through several special cases.281

3.7.1 k groups in one population282

This case has only one branch x, corresponding to the single population; x has no daughter nodes. There
is only one possible input state into x: nI

x = (s1, s2, . . . , sk, 0), where si is the sample size of group i. The
output state is nO

x = (0, . . . , 0, 1), with size |nO
x | = 1. Branch Tx has infinite length. The summation in

Eqn. 6 is trivial, and applying Eqn. 11, we obtain

P(Ex,n
O
x ) = P(Ex,n

O
x |ExL

, ExR
,nI

x)

= g|nI
x|,1(∞)

CnI
x,n

O
x

I|nI
x|,1

.

The labels 1, 2, . . . , k are all lost, and there is only one output mixed lineage m1. Hence, the set of
partitions P of lost labels and input mixed lineages into output mixed lineages consists of a single partition
P = {p}, with single element p = {1, 2, . . . , k} → m1. Thus, when we use Eqn. 9, we obtain CnI

x,n
O
x

=

Jp W1(|nI
x| − 1). Noting that gi,1(∞) = 1, and from Eqn. 3, W1(|nI

x| − 1) = 1, we find

P(Ex,n
O
x ) =

Jp W1(|nI
x| − 1)

I|nI
x|,1

=
Jp

I|nI
x|,1

.

Using our notation from Section 3.4, the partition vector is vp = (s1, s2, . . . , sk). We use Eqn. 7 to obtain

P(Ex,n
O
x ) =

I|nI
x|,1 Z(vp)

I|nI
x|,1

= Z(vp)

= Z(s1, s2, . . . , sk). (12)

Note that Z(s1, s2, . . . , sk) is exactly the quantity in Eqn. 5, and we recover the result from Zhu, Degnan,283

and Steel (2011).284

Study Number of Populations Number of Monophyletic Groups Section

Zhu, Degnan, and Steel (2011) 1 Arbitrary 3.7.1
Rosenberg (2003) 2 2 3.7.3
Mehta and Rosenberg (2019) 3 3 3.7.4
Mehta, Bryant, and Rosenberg (2016) Arbitrary 2 3.7.5
This paper Arbitrary Arbitrary 3.6

Table 1: Analytical results for the probability of joint monophyly for arbitrary sample sizes. Eqn. 11 in
Section 3.6 provides a general calculation from which we recover the other results listed. Other cases with
small numbers of populations and monophyletic groups appear in Table 1 in Mehta and Rosenberg (2019).
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3.7.2 General term for a leaf node285

Next, we consider a series of cases in which monophyletic groups correspond to the lineages of specific species286

(Table 1). A leaf node has exactly one input label i and exactly one surviving label i, and it has no other287

types of label. The input state is nI
x = (0, . . . , si, . . . , 0), and the output state is nO

x = (0, . . . , ri, . . . , 0).288

Thus, for a leaf node, using Eqn. 8, the partition set P is trivial, producing Eqn. 10. The set of surviving
lineages is U = {i}. Using Eqn. 10 along with Eqn. 3, we obtain

CnI
x,n

O
x

= Isi,riW1(si − ri) = Isi,ri .

A leaf node has no daughter nodes, and the input state is therefore known; trivially, Eqn. 6 has a single
term. Using Eqn. 11, we have

P(Ex,n
O
x ) = g|nI

x|,|nO
x |(Tx)

CnI
x,n

O
x

I|nI
x|,|nO

x |

= gsi,ri(Tx)
Isi,ri
Isi,ri

= gsi,ri(Tx). (13)

Thus, the general computation in Eqn. 11 reduces to Eqn. 1, the expression describing the probability that289

si lineages coalesce to ri lineages in time Tx.290

3.7.3 Two species in a two-species tree291

In a two-species tree, let s1 and s2 be the initial sample sizes of species 1 and 2, respectively, and let r1 ≤ s1292

and r2 ≤ s2 be the numbers of lineages of species 1 and 2 that enter the root node. There are three species293

tree nodes: the root x, leaf x1 for species 1, and leaf x2 for species 2. The input and output states are294

nI
x1

= (s1, 0, 0), nI
x2

= (0, s2, 0), nO
x1

= (r1, 0, 0), nO
x2

= (0, r2, 0), nI
x = (r1, r2, 0), and nO

x = (0, 0, 1).295

For leaf x1, label 1 survives and there are no other label types. For leaf x2, label 2 survives and there are296

no other label types. For the root, both species labels are lost, and there is only one output mixed lineage297

m1. Hence, there is only one partition P = {{1, 2} → m1}.298

Because x1 and x2 are leaves, from Eqn. 13, P(Ex1
,nO

x1
) = gs1,r1(T1) and P(Ex2

,nO
x2

) = gs2,r2(T2). From
Eqn. 12, for a particular r1 and r2, we have P(Ex,n

O
x |Ex1

, Ex2
,nI

x) = Z(r1, r2). Substituting into Eqn. 6,

P(Ex,n
O
x ) =

∑
nO

x1

∑
nO

x2

P(Ex,n
O
x |Ex1 , Ex2 ,n

I
x) · P(Ex1 ,n

O
x1

) · P(Ex2
,nO

x2
)

=

s1∑
r1=1

s2∑
r2=1

Z(r1, r2) gs1,r1(T1) gs2,r2(T2). (14)

It remains to obtain Z(r1, r2). First, note that there is only one possible labeled topology T2 for the two
ancestral lineages of the two groups A1 and A2, and this topology has a single internal node v of which both
A1 and A2 are descendants. So, for k = 2, we have by Eqns. 4 and 5,

Z(r1, r2) = Z(r1, r2;T2) =
2r1! r2!

(r1 + r2)!

1

r1 + r2 − 1

=
2

r1 + r2 − 1

(
r1 + r2

r1

)−1
, (15)

which matches Lemma 4.3 in Zhu, Degnan, and Steel (2011), Eqn. 6 in Brown (1994), and Eqn. 9 in299

Rosenberg (2003).300

Substituting Eqn. 15 into Eqn. 14, we have301

P(Ex,n
O
x ) =

s1∑
r1=1

s2∑
r2=1

gs1,r1(T1) gs2,r2(T2)
2

r1 + r2 − 1

(
r1 + r2

r1

)−1
. (16)

We therefore obtain Eqn. 14 from Rosenberg (2003): the probability of reciprocal monophyly of two species302

in a two-species tree.303
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3.7.4 3 species in a 3-species tree304

In this section, we recapitulate the probability of joint monophyly for 3 species in a 3-species tree, as provided305

in Eqn. 5 in Mehta and Rosenberg (2019). It suffices to describe the reduction of our Eqn. 11 to Eqns. 6 and306

9 in Mehta and Rosenberg (2019), giving the conditional probability of joint monophyly within the internal307

node I of T given a particular input state nI
I and output state nO

I , and the conditional probability of joint308

monophyly in the species tree root R given a particular input state nI
R.309

We label the three leaves A, B, and C, and we call the single internal node I (ancestral to species A and
B). The root node is R. Thus, we can specify branch input and output states:

nI
A = (p, 0, 0, 0), nO

A = (s, 0, 0, 0)

nI
B = (0, q, 0, 0), nO

B = (0, t, 0, 0)

nI
C = (0, 0, r, 0), nO

C = (0, 0, y, 0)

nI
I = (s, t, 0, 0), nO

I = (w, x, 0,m)

nI
R = (w, x, y,m), nO

R = (0, 0, 0, 1).

Eqns. 6 and 9 in Mehta and Rosenberg (2019) are special cases of a term in Eqn. 3 from Mehta and
Rosenberg (2019), which corresponds to our Eqn. 11. Comparing Eqn. 11 to Eqn. 3 from Mehta and
Rosenberg (2019) indicates that to obtain Eqn. 6 of Mehta and Rosenberg (2019), we must show that the
quantity KI from Mehta and Rosenberg (2019) satisfies

KI =
CnI

I ,n
O
I

I|nI
I |,|nO

I |
.

To obtain Eqn. 9 from Mehta and Rosenberg (2019), we must show that with vp = (w, x, y,m), the quantity310

Kroot from Mehta and Rosenberg (2019) satisfies311

Kroot =
CnI

R,nO
R

I|nI
R|,1

= Z(vp). (17)

First, we consider internal node I. The nontrivial cases of Eqn. 6 from Mehta and Rosenberg (2019) are:312

KI =

{
Is,w It,x W2(s−w,t−x)

Is+t,w+x
Case 1: s, t, w, x ≥ 1;m = 0

Is,1 It,1 W2(s−1,t−1)
Is+t,1

Case 2: s, t ≥ 1;w = x = 0;m = 1.
(18)

Eqn. 18 concerns the internal node I of a three-species tree, a node that has input lineages from the two313

species it subtends. Case 1 in Eqn. 18 occurs when both species labels are surviving labels, as the two314

quantities that represent the numbers of output lineages from the two input species, w and x, are both315

greater than or equal to 1. In the language of our analysis, the set of surviving labels is U = {1, 2}. There316

are no output mixed lineages (m = 0) and there is no need to consider a set of partitions P of the set of317

lost labels and mixed lineages.318

We use Eqn. 10 to obtain

CnI
I ,n

O
I

=

( 2∏
i=1

Isi,ri

)
W2 (s1 − r1, s2 − r2)

= Is,w It,x W2 (s− w, t− x) ,

and so we have:

CnI
I ,n

O
I

I|nI
I |,|nO

I |
=

Is,w It,x W2 (s− w, t− x)

Is+t,w+x

= KI . (19)
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Case 2 in Eqn. 18 occurs when both species labels are lost labels, as the two quantities that represent
the number of output lineages from the two input species, w and x, are both 0. There is one output lineage,
a mixed lineage (m = 1). There is only one possible partition of input labels {1, 2} over the single mixed
lineage mI : P = {p}, with p = {1, 2} → mI . We use Eqns. 9 and 7 to obtain:

CnI
I ,n

O
I

= Jp W1 (s + t− 1) = Jp

= I(
∑

j∈L1
rj)+m1,1

Z(vp)

= Is+t,1 Z(vp).

319

The vector vp is (s, t, 0, 0). Note that Z(s, t, 0, 0) = Z(s, t), so we can use Eqns. 15, 2, and 3 to obtain

CnI
I ,n

O
I

Is+t,1
=

2

s + t− 1

(
s + t

s

)−1
=

Is,1 It,1 W2(s− 1, t− 1)

Is+t,1

= KI , (20)

where the last step comes from Eqn. 18. Hence, we have KI = CnI
I ,n

O
I
/Is+1,1, as desired.320

It remains to show that our result accords with the two nontrivial cases of Eqn. 9 from Mehta and321

Rosenberg (2019). These cases are:322

Kroot =

{
f(w, x, y) + f(w, y, x) + f(x, y, w) Case 1: w, x, y ≥ 1;m = 0,
Iy,1

Iy+1,1
Case 2: y ≥ 1;w = x = 0;m = 1,

(21)

where323

f(w, x, y) =

∑y
c=1 Iw,1 Ix,1 Iy,c W3(w − 1, x− 1, y − c) Ic,1

Iw+x+y,1
. (22)

Starting from our Eqn. 17, we must calculate Z(vp) for each of these two cases and show that it equals324

Kroot from Eqn. 21. Case 1 of Eqn. 21 occurs when there are input lineages from three species (w, x, y ≥ 1)325

and no input mixed lineages (m = 0). Thus, vp = (w, x, y, 0). We note that Z(w, x, y, 0) = Z(w, x, y). From326

an unlabeled example in Zhu, Degnan, and Steel (2011) immediately following the proof of their Theorem327

5.1, we have328

Z(w, x, y) =
4w!x! y!

(w + x + y)! (w + x + y − 1)

(
1

x + y − 1
+

1

w + y − 1
+

1

w + x− 1

)
. (23)

Substituting Eqns. 2 and 3 into Eqn. 22 and simplifying, we have

f(w, x, y) =
4w!x! y!

(w + x + y)! (w + x + y − 1)

1

w + x− 1

y∑
c=1

(
w+x−2+y−c

w+x−2
)

(
w+x+y−2
w+x−1

) (24)

=
4w!x! y!

(w + x + y)! (w + x + y − 1)

1

w + x− 1
, (25)

where the step from Eqn. 24 to Eqn. 25 uses the binomial identity (Eqn. 1 in Section 0.151 from Gradshteyn
and Ryzhik (2014))

m∑
k=0

(
n + k

n

)
=

(
n + m + 1

n + 1

)
,

with y − c in place of k, y − 1 in place of m, and w + x− 2 in place of n.329

Now, from Eqns. 23 and 25, we have

Z(w, x, y) = f(w, x, y) + f(w, y, x) + f(x, y, w) = Kroot,
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as required.330

Case 2 of Eqn. 21 occurs when there are input lineages from one species (y ≥ 1, w = x = 0) and one input
mixed lineage (m = 1), vp = (0, 0, y, 1). We note that Z(0, 0, y, 1) = Z(y, 1), and use Eqn. 15 to obtain:

Z(y, 1) =
2

y

(
y + 1

y

)−1
=

2

y(y + 1)
. (26)

Using Eqns. 2 and 26, we have Z(y, 1) = Iy,1/Iy+1,1 = Kroot, as required.331

Having demonstrated that our joint monophyly calculation recovers the combinatorial terms KI and332

Kroot, we have therefore recovered the joint monophyly probability for three species, as obtained by Mehta333

and Rosenberg (2019).334

3.7.5 2 groups in a k-species tree335

Here we recapitulate the probability of joint monophyly for 2 groups in a k-species tree, as shown in Eqn. 5336

from Mehta, Bryant, and Rosenberg (2016). It suffices to describe the reduction of our Eqn. 11 to Eqn. 4337

from Mehta, Bryant, and Rosenberg (2016), describing the conditional probability of monophyly within a338

node x of T given a particular input state nI
x and output state nO

x . More precisely, we must equate our339

Eqn. 11 to the scenario of joint monophyly in Eqn. 4 of Mehta, Bryant, and Rosenberg (2016), obtained by340

substituting their Eqn. 5 for Case 2 in their Eqn. 4.341

Let the input state for node x be nI
x = (s1, s2,mI), and let the output state be nI

O = (r1, r2,mO). We342

assume (as is necessary to achieve joint monophyly) that the input lineages from groups 1 and 2 include all343

lineages from those groups; that is, species tree node x is ancestral to all lineages that belong to groups 1344

and 2. Following the labeling of cases in Mehta, Bryant, and Rosenberg (2016), the nontrivial cases of Eqn. 4345

from Mehta, Bryant, and Rosenberg (2016) in the setting of joint monophyly are:346

KSC =


1 Case 1e: s1, r1 ≥ 1; s2 = r2 = mI = mO = 0

1 Case 1b: s2, r2 ≥ 1; s1 = r1 = mI = mO = 0
Is1,1Is2,1W2(s1−1,s2−1)

Is1+s2,1
Case 2: s1, s2 ≥ 1, r1 = r2 = mI = 0,mO = 1

Is1,r1Is2,r2W2(s1−r1,s2−r2)
Is1+s2,r1+r2

Case 3: s1, s2, r1, r2 ≥ 1;mI = mO = 0,

(27)

where Cases 1b and 1e in Eqn. 27 are labeled after their corresponding labels in Mehta, Bryant, and Rosenberg347

(2016).348

Eqn. 4 in Mehta, Bryant, and Rosenberg (2016) is a special case of a term in Eqn. 3 from Mehta, Bryant,349

and Rosenberg (2016). Comparing our Eqn. 11 to Eqn. 3 from Mehta, Bryant, and Rosenberg (2016), we350

find that to obtain Eqn. 4 of Mehta, Bryant, and Rosenberg (2016) as a special case of our Eqn. 11, we must351

show that the quantity KSC from Mehta, Bryant, and Rosenberg (2016) satisfies352

KSC =
CnI

x,n
O
x

I|nI
x|,|nO

x |
. (28)

Cases 1e and 1b from Eqn. 27 occur when there is one surviving label and no other input lineages. We
have U = {i} for i = 1, 2 and P empty. We use Eqns. 10, 2, and 3 to obtain:

CnI
x,n

O
x

I|nI
x|,|nO

x |
=

Isi,ri W1(si − ri)

Isi,ri
= 1

= KSC ,

as required for demonstrating Eqn. 28.353

Case 2 from Eqn. 27 occurs when there are two lost labels, no surviving labels, and one output mixed354

lineage mI . Thus, U is empty, and there is one partition P = {{1, 2} → mI}. We have already shown that355

Eqn. 11 produces Eqn. 20; directly applying the result from Eqn. 20 yields the result that Eqn. 28 requires.356
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Case 3 from Eqn. 27 occurs when there are two surviving labels, no lost labels, and no input or output357

mixed lineages. Thus, U = {1, 2} and P is empty. We have already shown that Eqn. 11 produces Eqn. 19;358

directly applying the result from Eqn. 19 yields the result required for Eqn. 28 to be satisfied.359

We have therefore shown that our Eqn. 11 reduces to Eqn. 28, recapitulating the joint monophyly360

probability of two groups in an arbitrary species tree from Mehta, Bryant, and Rosenberg (2016).361

3.8 Lower and upper bounds based on “strong” joint monophyly362

The probability in Eqn. 11 involves many steps and is potentially time-consuming to calculate. We can363

therefore provide a simpler lower bound by introducing the idea of “strong” joint monophyly. We say that364

a set of lineages sampled from a species satisfies strong joint monophyly if the lineages coalesce to a single365

lineage in the branch associated with that species. In other words, strong joint monophyly is the situation366

in which lineage sorting is “complete” in the external branches of the species tree and no incomplete lineage367

sorting occurs in those branches. The probability of strong joint monophyly can then be computed from the368

lengths of the external branches of the species tree.369

The probability of strong joint monophyly is370

P(SJM) =
k∏

i=1

gsi,1(Ti), (29)

where T1, T2, . . . , Tk are the species tree branch lengths associated with species 1, 2, . . . , k.371

This probability provides a lower bound on Eqn. 11 because it is only one of many ways that joint372

monophyly can be achieved; if JM denotes the event of joint monophyly, then P(JM) ≥ P(SJM). This373

lower bound avoids the pruning step and does not need to track lineage counts at species tree internal nodes,374

so that its calculation is faster than that of Eqn. 11. The lower bound is similar in spirit to an upper bound375

on the probability of gene-tree-species-tree concordance found by Pamilo and Nei (1988).376

We can also observe that P(SJM) enables an upper bound on P(JM), a bound that holds for any species377

tree and any distribution of gene lineages across species. This bound is:378

P(JM) ≤ 1

3
+

2

3
P(SJM). (30)

To prove Eqn. 30, first observe that if each species has exactly one lineage, then Eqn. 30 is an equality
(i.e. 1 = 1

3 + 2
3 · 1). Thus, we can suppose that at least one species has at least two lineages, so that

P(¬SJM) > 0 and P(JM |¬SJM) is well-defined. In this case, by the law of total probability,

P(JM) = P(JM |SJM)P(SJM) + P(JM |¬SJM)P(¬SJM),

and because P(JM |SJM) = 1, we obtain:379

P(JM) = x + P(JM |¬SJM) (1− x), (31)

for x = P(SJM). Next, we claim that:380

P(JM |¬SJM) ≤ 1

3
. (32)

The justification of Eqn. 32 is as follows. The coalescent scenarios that comprise the event ¬SJM are381

precisely those for which, for some tip species s, the (two or more) lineages associated with s do not coalesce382

to a single lineage within the external branch incident with s. However, joint monophyly (JM) requires383

that the ancestral lineages of s coalesce only among themselves (and not with other lineages) until they384

reach a single lineage along the path in T back to its root. At some point on this path there will be just385

two ancestral lineages of s, along with r ≥ 1 other ancestral lineages from other species. The probability386

that in coalescing to a single lineage, the two ancestral lineages of s coalesce with each other (rather than387

one coalescing with one of the other r lineages present), is given by Eqn. 11 of Rosenberg (2003), which388

gives the probability that qA = 2 lineages are monophyletic when qB = r additional lineages are present:389

[2/
(
r+2
2

)
][(r + 2)/(2 · 3)] = 2/[3(r + 1)] ≤ 1

3 for all r ≥ 1. Thus, P(JM |¬SJM) ≤ 1
3 as claimed.390

Combining Eqns. 31 and 32 gives Eqn. 30.391
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Figure 4: Trees used to explore the effects of tree height and sample size on the probability of joint monophyly.

4 Numerical results392

4.1 Continuous-time Markov Chain approach393

Although the exact computation in Section 3.6 is instructive and presents new mathematical insight, using394

this result for computational purposes is inconvenient. To facilitate computation of the probability of joint395

monophyly, we provide a continuous-time Markov chain (CTMC, Grimmett and Stirzaker (2020)) formu-396

lation of this probability, described in Appendix A. When constructing this CTMC under the multispecies397

coalescent, we follow the approach of Hobolth, Andersen, and Mailund (2011). Computing the probability398

of joint monophyly amounts to using the same recursive decomposition as in Eqn. 6, but the probabilities399

are computed by constructing transition matrices for each branch of the tree and using matrix exponentials400

to obtain the output probabilities given the input probabilities. We use the CTMC formulation in provid-401

ing numerical results in this section. The approach is implemented in Monophyler (Mehta, Bryant, and402

Rosenberg, 2016).403

4.2 Effects of number of species, tree height, and sample size404

We use example species trees to illustrate the effects of tree height and sample size on the probability of405

joint monophyly. We consider a class of species trees that appears in Figure 4. The trees range in size from406

two to six species, and they are constructed so that the tree height is evenly divided along the branches of407

the longest topological path length from root to leaf.408

Using each tree in Figure 4, we compute the probability of joint monophyly with Eqn. 11. We modulate409

the tree height h from 0 to 10 coalescent time units at intervals of 0.2. The number of samples in each leaf410

ranges from 2 to 10, incremented by 1, with each leaf having the same sample size.411

Figure 5 displays the effect of number of species, tree height, and sample size on the probability of412

joint monophyly for all trees in Figure 4. As the number of species increases from 2 to 6, the number of413

separate groups that must be monophyletic in order to produce joint monophyly increases. Hence, the joint414

monophyly probability decreases at fixed values for the tree height and sample size.415

With increasing tree height and fixed sample size, lineages have more time during which they can coalesce416

within the species from which they have been sampled, and the joint monophyly probability increases with417

increasing tree height. As the sample size increases at a fixed tree height, the number of lineages that must418

monophyletically coalesce increases, but no additional time is available for these coalescences; hence, the419

joint monophyly probability decreases with increasing sample size.420

An alternative perspective on the joint monophyly probabilities in Figure 5 examines, for a fixed cutoff421

value representing a level of statistical significance, a fixed number of species, and a fixed tree height, the422

minimum sample size required for achieving a joint monophyly probability that lies below the cutoff. In other423
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Figure 5: Joint monophyly probabilities for various numbers of species, tree heights, and sample sizes.
Probabilities are obtained using Eqn. 11, with the same sample size assigned to each species. Each panel is
labeled by the number of species.

words, we calculate the minimum sample size required for an observation of joint monophyly to be improbable424

at a specified significance level under a specified model. Such a computation can assist in understanding the425

extent to which an observation of monophyly can be regarded as surprising and in designing samples such426

that a desired level of “surprise” is achieved if joint monophyly is observed (Rosenberg, 2007).427

Figure 6 plots these minimum sample sizes. They decrease as the cutoff value is increased. In accord428

with the decrease in joint monophyly probabilities that occurs with an increasing number of species, for fixed429

tree height, the minimal sample size required for achieving a joint monophyly probability below a specified430

cutoff decreases with an increasing number of species. The minimal sample size increases with increasing tree431

height; as tree height grows, joint monophyly is probable even for large samples, so that very large samples432

might be required for a joint monophyly observation to be surprising. In most scenarios plotted, samples of433

6 to 8 per species suffice to produce probabilities below cutoff 0.001 over most of the domain for tree height.434

4.3 Strong joint monophyly435

Figure 7 displays the probability of joint monophyly against the corresponding probability of strong joint436

monophyly from Eqn. 29. For each combination of a number of species, tree height, and sample size considered437

in Figure 5, the probability of strong joint monophyly is calculated, and a point is plotted that pairs the438

probability of strong joint monophyly with the probability of joint monophyly from Figure 5.439

As strong joint monophyly is a stricter condition than joint monophyly, the probability of strong joint440

monophyly is necessarily less than or equal to the probability of joint monophyly (Section 3.8). Traversing441

the figure from left to right, or from bottom to top, the tree height increases. For large tree heights, joint442

monophyly is closely approximated by strong joint monophyly, as represented by the proximity of the curves443

plotted to the y = x line; the event of strong joint monophyly is the primary driver of joint monophyly.444

For smaller tree heights, the probability of strong joint monophyly is substantially lower than than the445

probability of joint monophyly, as configurations in which joint monophyly is achieved by coalescences that446

occur deeper in the species tree than the external branches are not improbable.447

The plots show relatively little effect of the number of species on the relationship between joint monophyly448
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Figure 6: Minimum sample sizes for the probability of joint monophyly to decrease below a particular cutoff
probability, for varying tree height and number of species. Panel title indicates number of species.

and strong joint monophyly, or of the sample size. Thus, by curve-fitting, it would be possible to empirically449

transform the easily-computable SJM probability to approximate the joint monophyly probability.450

For the case of 2 species and 2 lineages per species, using the 2-species tree in Figure 4, the probability
of joint monophyly (JM) from Eqn. 16 is

P(JM) =
2∑

r1=1

2∑
r2=1

g2,r1(h) g2,r2(h)
2

r1 + r2 − 1

(
r1 + r2

r1

)−1
= 1− 4

3
e−h +

4

9
e−2h. (33)

The probability of strong joint monophyly from Eqn. 29 is P(SJM) = g2,1(h)2 = (1 − e−h)2. Solving this451

equation for e−h and inserting the solution into Eqn. 33, the probability of joint monophyly (JM) in terms452

of the probability of strong joint monophyly (SJM) is453

P(JM) =
1

9

[
2
√
P(SJM) + 1

]2
. (34)

Eqn. 34 appears in Figure 7 as the curve corresponding to two species and sample size two, visible as the454

curve with the highest values of the JM probability for low values of the SJM probability.455

5 Discussion456

We have derived the general probability of joint monophyly in an arbitrary species tree—the probability that457

for each species in a k-species tree, the lineages of that species are monophyletic—under the multispecies458

coalescent. Using this result (Eqn. 11), we have obtained as special cases several previous results for the459

probability of joint monophyly: the cases of arbitrarily many groups of lineages in one species (Section 3.7.1),460

two lineage groups in two species (Section 3.7.3), three lineage groups in three species (Section 3.7.4), and461

two lineage groups in arbitrarily many species (Section 3.7.5). Previous results on the probability of joint462
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Figure 7: The probability of joint monophyly (Eqn. 11) in relation to the probability of strong joint mono-
phyly (Eqn. 29). Strong joint monophyly provides a lower bound for joint monophyly. For each combination
consisting of a number of species (2 to 6) and a sample size (2 to 10), a curve links points with increasing
tree height (0 to 10 at intervals of 0.2). Parameter sets (number of species, tree height, sample size) follow
Figure 4. The solid line indicates equality of the probabilities of joint monophyly and strong joint monophyly,
and the dashed line indicates the upper bound on the probability of joint monophyly provided by Eqn. 30.

monophyly were restricted to small numbers of groups (4 or fewer), small trees (4 species or fewer), or both.463

We were able to fully generalize these results by combining the recursive approach of Mehta, Bryant, and464

Rosenberg (2016) for general species trees and the combinatorial calculations of Zhu, Degnan, and Steel465

(2011) for arbitrary numbers of groups.466

Our calculation relies on a “pruning algorithm,” in which computations are performed recursively at467

each internal node of a species tree. Pruning algorithms have a long history in phylogenetics, tracing468

to early efforts to evaluate gene tree probabilities from molecular sequence data in maximum-likelihood469

phylogenetics (Felsenstein, 1981). Recent algorithms have generalized the pruning approach to gene tree470

computations conditional on species trees (Efromovich and Kubatko, 2008; RoyChoudhury, Felsenstein, and471

Thompson, 2008; Bryant, Bouckaert, Felsenstein et al., 2012; RoyChoudhury and Thompson, 2012; Stadler472

and Degnan, 2012; Wu, 2012; Mehta, Bryant, and Rosenberg, 2016). The pruning algorithm we have provided473

accounts for the intricate merging pattern of gene lineages that occurs when two species merge backward in474

time to their ancestral species.475

Although pruning algorithms do lead to exact computations for various quantities of interest, they can476

suffer from the computational burden of tree traversal as the size of the species tree increases. In addi-477

tion, although the pruning algorithm renders the tree traversal polynomial-time in the number of species,478

the computation time is not polynomial-time in the number of species or sample size, due to the effect on479

the most computationally complex part of the calculation: enumerating partitions and performing a cal-480

culation for each partition (Section 3.7.4). Our analysis includes the instructive formal computations that481

appear in Section 3 as well as a continuous-time-Markov-chain approach that is convenient for computation482

(Appendix A). Using the CTMC approach, we have seen that the joint monophyly calculation reproduces483

sensible patterns in the effects of model parameters on monophyly probabilities.484

Increasingly many studies are now considering genealogical discordance, phylogeography, and species485

delimitation using samples with many individuals per species and many loci. Our computations are well-486

suited to such scenarios, as we evaluate monophyly probabilities on the basis of multiple individuals within487

species, and multilocus studies enable comparisons of model-based monophyly probabilities to empirical488

estimates from loci across the genome (Mehta, Bryant, and Rosenberg, 2016). The new algorithmic approach489

will be useful particularly where joint monophyly of multiple groups is of interest—such as in problems that490
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have been examined in taxon groups including rotifers (Birky, Wolf, Maughan et al., 2005), birds (Cloutier,491

Sackton, Grayson et al., 2019), and snakes (Kubatko, Gibbs, and Bloomquist, 2011), among others. We have492

implemented the new algorithms in the software Monophyler (Mehta, Bryant, and Rosenberg, 2016).493

A Calculating probabilities with a CTMC approach494

A.1 Mathematical approach495

We now produce an alternative approach to calculating the probability of joint monophyly: a continuous-time496

Markov chain (CTMC) (Grimmett and Stirzaker, 2020). We define a transition-rate matrix for each species497

tree branch and traverse the species tree from the leaves to the root. For each branch of the traversal, we498

use the probability of the input states and the transition-rate matrix to obtain the probability of the output499

states. The output states of two daughter branches combine to form input states of the parent branch.500

Each branch of the species tree has its own Markov chain. For a particular branch x, we first must define501

a state space. Let Tx be the subtree below and including branch x. For this appendix, we track lineage502

labels differently from Section 3. We no longer keep track of “lost,” “surviving,” or “mixed” labels. Instead,503

we classify the species labels {1, 2, . . . , k} by their numbers of extant lineages. A label i for one of the k504

species starts at a leaf with si lineages—the sample size of the species. If joint monophyly is preserved, then505

the si lineages eventually decrease to a single ancestral lineage. Once the single lineage is reached, the label506

and its single associated extant lineage become “free,” in that any coalescence involving this label no longer507

affects its contribution to joint monophyly. Coalescences of free lineages with other free lineages preserve508

joint monophyly, reducing the number of free lineages. In this formulation, “mixed” lineages are free.509

The state space for a branch x therefore consists of a “failure” state F, which represents the situation510

where joint monophyly has been violated, and a set of vectors vx that keep track of the list of lineage counts511

for the k labels. The ith element of vx, vx,i, is the number of labels with i extant lineages, with vx,1 counting512

the number of free lineages. For a branch x, the maximum number of lineages a label can have is the largest513

sample size of any species in Tx, as no label can gain lineages through coalescence. If Sx is the set of species514

in Tx, then the vectors in the state space for the chain for branch x have length sx,m = maxi∈Sx
si.515

State transitions in this process occur due to coalescence. Let us define516

Vx =

sx,m∑
i=1

ivx,i (35)

as the total number of lineages for state vx. For state vx, we have three possible transitions, corresponding517

to intralabel coalescences, interlabel coalescences that preserve joint monophyly, and interlabel coalescences518

that do not preserve joint monophyly.519

1. An intralabel coalescence within a label of size i > 1 reduces the number of lineages of that label by520

1. vx,i → vx,i − 1, and vx,i−1 → vx,i−1 + 1. There are
(
Vx

2

)
possible coalescences, and among those,521

vx,i
(
i
2

)
lead to this state transition. The conditional probability that a coalescence has this transition522

given that a coalescence occurs is vx,i
(
i
2

)
/
(
Vx

2

)
.523

2. An interlabel coalescence that preserves joint monophyly can only occur between free lineages. Thus, it524

reduces vx,1 → vx,1−1. The conditional probability that a coalescence has this transition is
(
vx,1

2

)
/
(
Vx

2

)
.525

3. Finally, any other coalescence is an interlabel coalescence that violates joint monophyly. Hence,526

vx → F . This transition has conditional probability 1 −
(
vx,1

2

)
/
(
Vx

2

)
−
∑sx,m

i=2 vx,i
(
i
2

)
/
(
Vx

2

)
.527

These probabilities yield a transition matrix for transitions conditional on occurrence of a coalescence.528

A.2 Example transitions and transition rate matrices529

Consider a branch with input lineages from four species—two with 1 lineage, one with 2 lineages, and one530

with 4 lineages—as well as a single input mixed lineage. There are three “free” lineages: those of species 1531
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Figure 8: State space for the continuous-time Markov chain for the example branch in Section A.2. States
are colored by the number of species for which joint monophyly is not yet determined (pink, two; yellow,
one; green, none). Intraspecies transitions use a solid line; interspecies transitions use a dashed line. The
Failure state is excluded; all states except those colored green can transition to the failure state.

and 2 and the mixed lineage. The input state is vx = (3, 1, 0, 1). The total number of lineages present is532

Vx = 9 (Eqn. 35), so there are
(
Vx

2

)
=
(
9
2

)
= 36 possible coalescences. The maximal sample size is sx,m = 4.533

Four types of coalescences are possible. An intralabel coalescence can occur in the species with 2 lineages,
i = 2. This coalescence has probability

vx,2
(
2
2

)
36

=
1× 1

36
=

1

36
,

This transition converts a species with 2 lineages to one with 1 lineage, or (3, 1, 0, 1)→ (4, 0, 0, 1).534

An intralabel coalescence can also occur in the species with 4 lineages. In this case, i = 4, so that the
transition probability is

vx,4
(
4
2

)
36

=
1× 6

36
=

1

6
.

The species with 4 lineages transitions to one with 3 lineages. The state transition is (3, 1, 0, 1)→ (3, 1, 1, 0).535

Interlabel coalescences can occur between free lineages (i = 1). This transition occurs with probability(
vx,1

2

)
36

=

(
3
2

)
36

=
3

36
=

1

12
.

It reduces 3 free lineages to 2 free lineages, and the state transition is (3, 1, 0, 1)→ (2, 1, 0, 1).536

Finally, any other coalescence leads to the failure state. Hence, (3, 1, 0, 1)→ F with probability

P((3, 1, 0, 1)→ F ) = 1−
(
vx,1

2

)
36

−
4∑

i=2

vx,i
(
i
2

)
36

= 1−
(
3
2

)
36
−

(1)
(
2
2

)
36

−
(0)
(
3
2

)
36

−
(1)
(
4
2

)
36

=
13

18
.
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The full transition matrix for this species tree branch includes every state attainable by any number of537

coalescences beginning with state (3, 1, 0, 1). Figure 8 displays the state space for the branch, along with538

all possible transitions. The complete transition matrix can be obtained by using similar reasoning for all539

possible states and appears in Table 2.540

To get the CTMC, the transition matrix for a branch must be converted into a transition rate matrix,541

or a Q matrix. We first scale the transition rates by noting that for a state vx, coalescences occur at rate542

Vx. Next, we subtract each row sum from the associated diagonal entry of the matrix. Thus, to obtain our543

transition rate matrix, we must first multiply each row by the total number of possible coalescences for the544

state corresponding to that row, and then subtract the row sum from the diagonal entry. Therefore, the Q545

matrix for the branch follows the matrix in Table 3.546

Given a vector of probabilities px that represents the input probability distribution over all possible states547

in a species branch x with length Tx, the distribution of output states is (Grimmett and Stirzaker, 2020)548

px · exp(QxTx). (36)

A.3 Algorithm549

The CTMC algorithm consists of two components. First, the species tree structure is created. Second, a550

recursive function is applied to the root node of the tree, and this function returns the probability result.551

The following pseudocode describes the creation of the tree structure:552

read tree from Newick string;
read sample size information;
assign sample sizes to leaves of tree;
do recursive function getnodeoutput on root node of tree;

553

The tree structure is created from a string in Newick format by using the function Tree in the package554

ete3 in Python. The user must specify both the Newick tree and the sample size information, which consists555

of two lists: one specifying the leaf names (the same names as in the Newick tree), and the other specifying556

the sample sizes of those leaves in the same order.557

The recursive function getnodeoutput is described in the following pseudocode:558

if node x is a leaf then
set input state to be the vector v such that vsx = 1 for sx the sample size of the node x, and
vi = 0 for all i 6= sx;

set input state probability to 1;
set current failure probability to 0;
extract branch length of node x from input tree;
(**) compute vector of output probabilities of node x given input state probabilities and branch
length according to Eqn. 36;

return vector of output probabilities;

else
apply getnodeoutput to left daughter node of node x;
apply getnodeoutput to right daughter node of node x;
(*) combine the output states and sum the output probabilities of the left and right daughter
nodes to get input states and input probabilities for node x;

extract branch length of node x from input tree;
(**) compute vector of output probabilities of node x given input state probabilities and branch
length according to Eqn. 36;

return vector of output probabilities;

end

559

Step (*): combining inputs. Step (*), “combining” the output states and summing the output proba-560

bilities of the left and right daughter nodes L and R, respectively, of a node x, proceeds as follows.561

We first note that there are no shared species labels between daughter nodes. Hence, all species labels562

with i extant lineages in the output of node L or node R also have i extant lineages in the input of node563

x. The number of species labels with i extant lineages as inputs of node x, vx,i, is vL,i + vR,i for each564
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i > 1. Similarly, free lineages in the output states of nodes L and R remain free as input lineages to x, so565

vx,1 = vL,1 + vR,1. Thus, summing vectors, an input state vx obtained from a pair of output states vL and566

vR is vx = vL + vR. The probability of the input state vx obtained by summing output states vL and vR567

is the product of the probabilities of the output states vL from node L and vR from node R.568

The set of possible input states to node x is obtained by considering all possible sums of an output state569

for daughter node L and daughter node R, using vector summation. The probability of a possible input570

state to x is the sum over all pairs of output states that result in that input state, where for each pair, the571

product of the probabilities of the two output states in that pair is summed.572

This vector addition procedure omits the failure state F , which occurs as an input state of node x when it573

is an output state of L, R, or both L and R. If P(F )L and P(F )R are the output failure probabilities for L and574

R, respectively, then the input probability of failure is P(F )L [1−P(F )R]+[1−P(F )L]P(F )R+P(F )L P(F )R.575

The result of Step (*) is a vector of input states Ix and a vector of their probabilities pIx.576

Step (**): computing outputs. Step (**), the computation of the output states and probabilities given577

the input states and probabilities, is described by the following pseudocode:

(I) generate possible output states from input states;
(II) generate Qx, the Q matrix for node x, considering all possible input states and output states;
(III) rearrange the order of input states to match the order of output states and construct a
rearranged probability vector px from pIx;

(IV) compute output state probabilities using px, Qx, and Eqn. 36;

578

To use Eqn. 36 to obtain output probabilities, the state space of px must include all possible output579

states. Thus, it is necessary to find all possible output states Ox for a set of input states Ix.580

(Step I) Possible output states consist of all states that are accessible from any number of transitions581

starting from the set of input states, and they include the input states themselves. The set of possible output582

states Ox is computed via a recursive algorithm that finds all states that are accessible through a one-step583

transition from the current set of states, and runs until all such transitions are already included in the set.584

(Step II) Once the state space Ox is enumerated, the Q matrix can be constructed using the procedure585

described in Section A.1.586

(Step III) As a minor technical point, to apply matrix operations, the input state vector Ix and the587

corresponding probabilities pIx must be rearranged to match the order of states enumerated in Step I, and588

an input probability of 0 must be assigned to the states in Ox that are not part of Ix. The rearranged input589

probability vector is px.590

(Step IV) Once px is obtained, Eqn. 36 is used to compute the output state probabilities. The matrix591

exponential in our algorithm is computed by the function linalg.expm in the package scipy in Python.592

ACKNOWLEDGMENT. We are pleased to contribute to the Mike Waterman special issue this application of a593

recursive algorithmic approach to a problem in coalescent theory and phylogenetics. The Monophyler software is594

available at http://rosenberglab.stanford.edu.595

AUTHOR DISCLOSURE STATEMENT. The authors declare that they have no competing financial interests.596

FUNDING INFORMATION. We acknowledge support from National Institutes of Health grant R01 GM131404597

and National Science Foundation grant BCS-2116322.598

22



Next State

C
u

rr
en

t
S

ta
te



3101 3110 4001 2101 3200 4010 2110 3001 1101 4100 2200 3010 1110 2001 5000 3100 1200 2010 1001 4000 2100 1010 3000 1100 2000 1000 F

(3,1,0,1) 0 1
6

1
36

1
12 0 · · · · · · 0 13

18

(3,1,1,0) 0 0 0 0 3
28

1
28

3
28 0 · · · · · · 0 3

4

(4,0,0,1) 0 · · · · · · 0 3
14 0 3

14 0 · · · · · · 0 4
7

(2,1,0,1) 0 · · · · · · 0 3
14

1
28

1
28 0 · · · · · · 0 5

7

(3,2,0,0) 0 · · · · · · 0 2
21

1
7 0 · · · · · · 0 16

21

(4,0,1,0) 0 · · · · · · 0 1
7 0 2

7 0 · · · · · · 0 4
7

(2,1,1,0) 0 · · · · · · 0 1
7

1
21

1
21 0 · · · · · · 0 16

21

(3,0,0,1) 0 · · · · · · 0 2
7 0 1

7 0 · · · · · · 0 4
7

(1,1,0,1) 0 · · · · · · 0 2
7

1
21 0 · · · · · · 0 2

3

(4,1,0,0) 0 · · · · · · 0 1
15

2
5 0 · · · · · · 0 8

15

(2,2,0,0) 0 · · · · · · 0 2
15

1
15 0 · · · · · · 0 4

5

(3,0,1,0) 0 · · · · · · 0 1
5 0 1

5 0 · · · · · · 0 3
5

(1,1,1,0) 0 · · · · · · 0 1
5

1
15 0 · · · · · · 0 11

15

(2,0,0,1) 0 · · · · · · 0 2
5

1
15 0 · · · · · · 0 8

15

(5,0,0,0) 0 · · · · · · 0 1 0 · · · · · · 0 0

(3,1,0,0) 0 · · · · · · 0 1
10

3
10 0 · · · · · · 0 3

5

(1,2,0,0) 0 · · · · · · 0 1
5 0 · · · · · · 0 4

5

(2,0,1,0) 0 · · · · · · 0 3
10

1
10 0 0 0 0 3

5

(1,0,0,1) 0 · · · · · · 0 3
5 0 0 0 0 2

5

(4,0,0,0) 0 · · · · · · 0 1 0 0 0 0

(2,1,0,0) 0 · · · · · · 0 1
6

1
6 0 0 2

3

(1,0,1,0) 0 · · · · · · 0 1
2 0 0 1

2

(3,0,0,0) 0 · · · · · · 0 1 0 0

(1,1,0,0) 0 · · · · · · 0 1
3 0 2

3

(2,0,0,0) 0 · · · · · · 0 1 0

(1,0,0,0) 0 · · · · · · 0 1 0

F 0 · · · · · · 0 1


Table 2: Transition matrix for the example continuous-time Markov chain in Section A.2.

23



Next State

C
u

rr
en

t
S

ta
te



3101 3110 4001 2101 3200 4010 2110 3001 1101 4100 2200 3010 1110 2001 5000 3100 1200 2010 1001 4000 2100 1010 3000 1100 2000 1000 F

(3,1,0,1) −36 6 1 3 0 · · · · · · 0 26

(3,1,1,0) 0 −28 0 0 3 1 3 0 · · · · · · 0 21

(4,0,0,1) 0 0 −28 0 0 6 0 6 0 · · · · · · 0 16

(2,1,0,1) 0 0 0 −28 0 0 6 1 1 0 · · · · · · 0 20

(3,2,0,0) 0 0 0 0 −21 0 0 0 0 2 3 0 · · · · · · 0 16

(4,0,1,0) 0 · · · · · · 0 −21 0 0 0 3 0 6 0 · · · · · · 0 12

(2,1,1,0) 0 · · · · · · 0 −21 0 0 0 3 1 1 0 · · · · · · 0 16

(3,0,0,1) 0 · · · · · · 0 −21 0 0 0 6 0 3 0 · · · · · · 0 12

(1,1,0,1) 0 · · · · · · 0 −21 0 0 0 6 1 0 · · · · · · 0 14

(4,1,0,0) 0 · · · · · · 0 −15 0 0 0 0 1 6 0 · · · · · · 0 8

(2,2,0,0) 0 · · · · · · 0 −15 0 0 0 0 2 1 0 · · · · · · 0 12

(3,0,1,0) 0 · · · · · · 0 −15 0 0 0 3 0 3 0 · · · · · · 0 9

(1,1,1,0) 0 · · · · · · 0 −15 0 0 0 3 1 0 · · · · · · 0 11

(2,0,0,1) 0 · · · · · · 0 −15 0 0 0 6 1 0 · · · · · · 0 8

(5,0,0,0) 0 · · · · · · 0 −10 0 0 0 0 10 0 · · · · · · 0 0

(3,1,0,0) 0 · · · · · · 0 −10 0 0 0 1 3 0 · · · · · · 0 6

(1,2,0,0) 0 · · · · · · 0 −10 0 0 0 2 0 · · · · · · 0 8

(2,0,1,0) 0 · · · · · · 0 −10 0 0 3 1 0 0 0 0 6

(1,0,0,1) 0 · · · · · · 0 −10 0 0 6 0 0 0 0 4

(4,0,0,0) 0 · · · · · · 0 −6 0 0 6 0 0 0 0

(2,1,0,0) 0 · · · · · · 0 −6 0 1 1 0 0 4

(1,0,1,0) 0 · · · · · · 0 −6 0 3 0 0 3

(3,0,0,0) 0 · · · · · · 0 −3 0 3 0 0

(1,1,0,0) 0 · · · · · · 0 −3 1 0 2

(2,0,0,0) 0 · · · · · · 0 −1 1 0

(1,0,0,0) 0 · · · · · · 0 0 0

F 0 · · · · · · 0 0


Table 3: Transition rate matrix (Qx) for the example continuous-time Markov chain in Section A.2.
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