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Abstract—Blockchain-based federated learning (BCFL) has recently gained tremendous attention because of its advantages, such as
decentralization and privacy protection of raw data. However, there has been few studies focusing on the allocation of resources for the
participated devices (i.e., clients) in the BCFL system. Especially, in the BCFL framework where the FL clients are also the blockchain
miners, clients have to train the local models, broadcast the trained model updates to the blockchain network, and then perform mining
to generate new blocks. Since each client has a limited amount of computing resources, the problem of allocating computing resources
to training and mining needs to be carefully addressed. In this paper, we design an incentive mechanism to help the model owner (MO)
(i.e., the BCFL task publisher) assign each client appropriate rewards for training and mining, and then the client will determine the
amount of computing power to allocate for each subtask based on these rewards using the two-stage Stackelberg game. After
analyzing the utilities of the MO and clients, we transform the game model into two optimization problems, which are sequentially
solved to derive the optimal strategies for both the MO and clients. Further, considering the fact that local training related information of
each client may not be known by others, we extend the game model with analytical solutions to the incomplete information scenario.
Extensive experimental results demonstrate the validity of our proposed schemes.
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1 INTRODUCTION

S INCE its emergence in 2016, federated learning (FL) has
been greatly developed and widely applied in many

fields, such as Internet of Things [1]–[3], smart transporta-
tion [4], [5] and healthcare [6]–[8]. One of the most impor-
tant advantages of FL is that there is no transmission of
raw data from local devices (i.e., clients) to the centralized
server for model training; instead, by training models on
clients and aggregating all local models, FL significantly
reduces the possibility of leaking data privacy to a large
extent [9]. However, some challenges still may restrain the
implementation of FL, e.g., the risk of the single point of
failure, malicious attacks from participated clients, and the
lack of participation incentives [10]–[13].
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In recent years, researchers resort to blockchain technol-
ogy to tackle the challenges of FL, where the blockchain
system usually works as a decentralized system to provide
incentives and data verification [14]–[18]. The combination
of blockchain and FL is termed blockchain-based FL (BCFL).
In the BCFL framework, model updates submitted by clients
will be verified by miners before the global aggregation
algorithm is conducted. Once the global model is obtained,
it will be updated into the main chain that all qualified
participants can access. Though BCFL can partially address
the aforementioned challenges of traditional FL, some re-
maining issues still need to be addressed.

One of the most critical problems in BCFL is the resource
allocation of clients. Firstly, clients in the BCFL system are
heterogeneous with different computational resources, and
they usually have other tasks to complete while handling
the BCFL task, so a universal resource allocation scheme
for all clients is not practical. In addition, the whole system
may not work effectively and sustainably if no reasonable
rewards are allocated to clients. Furthermore, both training
and mining in the framework of BCFL consume a significant
amount of resources and time, and thus it is difficult for
clients to appropriately allocate their limited resources to
ensure the performance of the global model during the
required time period. Lastly, since the system may not know
the amount of training data each client owns, it can be
challenging for the model owner (MO), i.e., the BCFL task
publisher, to make proper decisions regarding the reward
distribution.

There exist very few studies that tackle the above chal-
lenges [19], [20]. They are mainly based on two assump-
tions that are not practical: 1) all clients have identical
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computational power and data volume; and 2) the system
knows all the information about the computation resources
of clients. Besides, there are several studies focusing on
resource allocation [21], [22] and incentive mechanism de-
sign [23], [24] in BCFL. But these schemes cannot address
above mentioned challenges. To fill the gap, we propose an
incentive mechanism for joint resource allocation on clients
in BCFL that can be applied to the incomplete information
scenario without two impractical assumptions.

For the first challenge regarding the unbalanced distri-
bution of resources on clients, we let clients decide how
much computational power they are willing to devote to
the training and mining tasks. By this means, clients can
flexibly allocate computation resources for their own tasks.
In addition, training and mining are performed sequentially
in our model, and the amount of computational power
devoted to these two tasks can be different.

To overcome the second challenge of motivating clients
to join BCFL, we design an incentive mechanism to reward
clients. Training and mining are two different tasks that
require a different amount of computational power; thus,
the rewards should also be different. To ensure a fair distri-
bution of rewards to all clients, we employ the approach of
Shapley Value (SV) [25] to determine clients’ contributions
in the training process, which will affect the constraints in
their respective optimization problems.

To address the last two challenges, we build the Stack-
elberg game model under the complete and incomplete
information situations, which are solved separately but with
different insights. Our system can make optimal decisions
based on the derived optimal solutions in different informa-
tion conditions.

In summary, our contributions can be summarized as
below:

• In the BCFL system with heterogenous clients, we
model the resource allocation problem as a two-stage
Stackelberg game to help the MO make decisions on
assigning how many rewards to each client for train-
ing and mining and to assist clients in determining
the corresponding amount of computational power
to be devoted in each subtask, via maximizing their
respective utilities.

• In order to maintain the stability and sustainability
of the whole BCFL system, we design a fair reward
allocation scheme inspired by SV to calculate the
rewards for clients based on their contributions to
the training process.

• Considering that the training related information of
devices may not be known to others in the practical
application scenario, we further study the resource
allocation mechanism under the incomplete infor-
mation situation and derive the optimal solutions
accordingly.

• We test our proposed resource allocation mecha-
nisms through extensive experiments. The experi-
mental results show that these mechanisms are ef-
fective.

The rest of this paper is organized as follows. We intro-
duce the system model and problem formulation based on
the two-stage Stackelberg game in Section 2. The detailed

models and solutions under complete and incomplete in-
formation scenarios are reported in Section 3 and Section
4, respectively. Experimental evaluations are presented in
Section 5. We present the related work in Section 6. Finally,
we conclude this paper in Section 7.

2 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will illustrate the system model of our
considered blockchain-based federated learning (BCFL) and
then formulate the problem from the perspective of resource
allocation and incentive mechanism design based on the
Stackelberg game. For convenience, we list the key notations
in Table 1.

TABLE 1: Key Notations.

Notation Meaning
N The set of clients
N The total number of clients

qi
The maximum number of client i ’s CPU cycle per
second

qti The number of CPU cycles per second used to train
qmi The number of CPU cycles per second used to mine
pti The unit price for training to client i
pmi The unit price for mining to client i

π
The number of training iterations for clients during
one round of BCFL to submit model update

Di The data size of client i

di
The number of CPU cycles used for training each
data sample

µi
The total CPU cycles required to finish the local
training for generating model updates

Ti The time spent on training for client i
ψ The total CPU cycles used to mine for each client
Tmi The time spent on mining for client i
Ui The utility of client i in one round of BCFL
Umo The utility of the MO in one round of BCFL
q∗ti The optimal CPU cycles per second for training
q∗mi The optimal CPU cycles per second for mining
p∗ti The optimal unit price for training to client i
p∗mi The optimal unit price for mining to client i

2.1 System Overview
Inspired by [26], we consider one of the most widely used
BCFL frameworks, i.e., the fully coupled BCFL system,
where each client of FL also works as the blockchain node
and thus has to handle both FL-related and blockchain-
related computing activities. Without loss of generality, we
term the local devices as clients and call the FL-related
computing activities training and blockchain-related com-
puting activities mining. The topology of the BCFL system
is shown in Fig. 1, which is consisted of multiple clients and
one blockchain system. The set of clients can be denoted
as N = {1, · · · , i, · · · , N} with N representing the total
number of clients in the BCFL system. The task requester,
i.e., the model owner (MO), can access the BCFL system
and publish tasks, aiming to receive a well-trained final
global model from the BCFL system. After the FL task is
published on the blockchain, clients train their local models
and broadcast the obtained model updates to the blockchain
network once the local training process is finished.

It is worth noting that the BCFL system considered in
this paper can adopt any blockchain consensus depending
on the application scenario. Specifically, Proof of Work
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Fig. 1: An illustration of the BCFL system, which is the fully
coupled BCFL with the FL clients also being the blockchain
nodes. First, clients train local models and submit their
model updates to the blockchain network; then, clients start
mining to determine a block generator, which will also be
responsible for global model aggregation.

(PoW) [27] can be employed as the consensus protocol to
provide the security guarantee, while other lightweight con-
sensus, such as Practical Byzantine Fault Tolerance (PBFT)
[28], Delegated Proof of Stake (DPoS) [29], and Raft [30],
can also be implemented to reduce the resource consump-
tion. There will be a generator of new block after running
blockchain consensus in the BCFL system, which will also
be responsible for aggregating the local models to derive the
global model. In addition, the considered BCFL system is
compatible with any type of blockchain; in other words, the
BCFL system can also apply public blockchain and private
blockchain in addition to the consortium blockchain.

We can describe the workflow of our BCFL system after
the MO publishes the task as below: 1) once receiving the FL
task, each client trains the local model and then broadcasts
the model updates to the blockchain network; 2) clients run
the consensus protocol and determine a new block generator
who will aggregate the received model updates to derive a
new global model; 3) then the block generator will create
a new block, containing all the submitted updates and the
new global model.

In our considered BCFL system, each client would be
responsible for training and mining, which is defined as
the BCFL task. These two procedures are not parallel; in
other words, mining can only starts after the training is
completed. In practice, clients may need to handle other
tasks besides the BCFL task. Given that their computational
resources are limited, they have to allocate available re-
sources to both training and mining carefully. Besides, to
motivate clients to complete the BCFL task, the MO usually
provides a certain amount of rewards; however, since the
MO’s budget is limited, the distribution of rewards to clients
becomes challenging to obtain a high-performance global
model in an efficient manner.

2.2 Utility Models
Based on the above analysis, we design an incentive mech-
anism to assist the resource allocation for our proposed
BCFL system, so that the MO can distribute rewards to
clients properly and get a well-trained global model, and
clients can allocate the computing resources (i.e., CPU cycles
per second) to training and mining reasonably and gain
satisfying rewards. In this part, we build the utility models
of both the MO and clients from resource allocation and
incentive mechanism perspectives.

2.2.1 Client’s Utility
We assume that the maximum number of client i’s CPU
cycles per second is qi, and the number of CPU cycles per
second used to train and mine are qti and qmi, respectively.
Then we have qti, qmi ≤ qi. Let π be the number of training
iterations for clients during one round of BCFL to submit
a model update, which is usually fixed for all clients. Let
Di be the number of the data size of client i, and di be the
number of CPU cycles used for training each data sample.
Therefore, we can define the total CPU cycles required to
finish the local training to generate model updates as:

µi = πdiDi.

Since any client i can decide its CPU cycles used to train
the local model, the time used to finish the local training
varies for each client. We can calculate the time spent on
training for client i via Tti = µi

qti
. Besides, we denote the

total CPU cycles used to mine for each client as ψ, which
is the same for all clients since mining a new block in the
blockchain system usually consumes fixed computational
resources. Thus, the time spent on mining can be calculated
as:

Tmi =
ψ

qmi
.

So we can have the total time cost of client i to finish a
round of BCFL task as Ti = Tti + Tmi. Since it is impossible
to let Tti and Tmi be limitless according to the convergence
time requirement, we denote the upper bound of time
consumption in one round of BCFL by T . Thus, we have
Ti ≤ T .

In order to encourage clients to join BCFL, the MO
provides some rewards to clients, where the prices per
second for training and mining are denoted as pti and pmi,
respectively. Clients can allocate unit CPU cycles for training
and mining based on the unit prices given by the MO. Then
the rewards of client i for training and mining to generate
one round of local model updates are calculated by

Rti = Ttipti,

Rmi = Tmipmi.

Thus, the total rewards for client i in one round of BCFL is
Ri = Rti +Rmi.

Based on a widely used model in [31] for calculating
the computational energy consumption, we can respectively
calculate the energy costs for training and mining as

Cti = ρiµiq
2
ti,

Cmi = ρiψq
2
mi,
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where ρi is the parameter correlated to the chip architecture.
In this way, the total cost1 can be calculated as Ci = Cti +
Cmi.

Finally, we can obtain the utility of client i in one round
of BCFL as

Ui = Ri − Ci

=
µi
qti
pti +

ψ

qmi
pmi − ρiµiq2ti − ρiψq2mi. (1)

2.2.2 MO’s Utility
The main concerns related to the utility of the MO are the
performance of the global model, the time consumption, and
the rewards paid to all participants in each round of BCFL,
where the first one is a sort of revenue and the last two are
related to the cost for the MO.

Generally, the performance of an ML model will be
affected by the number of CPU cycles spent on training.
Thus, we define the performance of the global model after
one round of local training and mining as G, which can
be calculated by G = f(

∑N
i=1 µi). Here f(·) is a mono-

tonically increasing function, indicating that the more CPU
cycles used for the local training by all clients, the better
performance of the global model after aggregation will be
achieved. As for the MO, its utility depends on the perfor-
mance of the BCFL system (G), total time cost (

∑N
i=1(Ti)),

and total rewards distributed to clients (
∑N
i=1(Ri)). Thus,

the utility of the MO in one round of BCFL can be expressed
as

Umo = f

(
N∑
i=1

µi

)
− ξ

N∑
i=1

(Ti +Ri)

= f

(
N∑
i=1

µi

)
− ξ

N∑
i=1

(
µi
qti

+
ψ

qmi
+
µi
qti
pti +

ψ

qmi
pmi

)
,

(2)

where ξ > 0 is a scalar parameter to balance the revenue
and cost.

2.3 Problem Formulation using Two-stage Stackelberg
Game
According to the above analysis of our system model, client
i provides its computational power to finish BCFL tasks
based on the rewards given by the MO. In other words, the
unit prices pti and pmi determine the unit computational
power qti and qmi. We can formulate the interactions be-
tween clients and the MO as a two-stage Stackelberg game,
which is widely used for the complete information dynamic
game [32]. In this game, the MO determines the unit prices
of the CPU frequency used for training and mining, and
then client i decides its CPU cycles per second based on
the received prices, which means that the decision of client
i is impacted by the decision of the MO. In this case, we
can define the process of the two-stage Stackelberg game as
below:

• Stage I: The MO sets the unit prices per second
for training and learning for each client, i.e., pti

1. As for the communication cost, since the sizes of the clients’
submissions are the same, we can consider it as a constant value, which
cannot be optimized anymore and thus is omitted here.

and pmi, via maximizing its own utility, which is
specifically based on its budget and the total number
of CPU cycles consumed for training submitted by
each client. Considering the distribution’s fairness
in setting prices, we need to design a fair reward
allocation scheme here.

• Stage II: After receiving the unit prices from the MO,
clients determine their corresponding computational
power, i.e., qti and qmi, through optimizing their
respective utilities.

In practical situations, qti and qmi are not independent of
each other because of time and reward budget constraints;
similarly, pti and pmi influence each other as well. Therefore,
we should consider these constraints when modeling to
make the decisions reasonable.

Recall µi in Section 2.2.1, and we know that µi is a
variable correlated to the data size of client i and the
performance of the corresponding device, which may not
always be known to the MO or the system. As for ψ, it
can be predefined by the system since generating a new
block usually consumes a constant amount of resources.
Therefore, we can classify the two-stage Stackelberg game
into information complete and incomplete scenarios based
on whether µi is known to the MO. The models derived for
these two scenarios are different, and hence the strategies of
the MO and clients are different accordingly, which will be
explored in Sections 3 and 4.

3 RESOURCE ALLOCATION WITH COMPLETE IN-
FORMATION

In this section, we will elaborate on the expressions of the
proposed Stackelberg game model and the corresponding
solutions for clients and the MO in the scenario of complete
information, which means that the MO makes its decisions
when µi of each client is known as a prior. First, we propose
a fair reward allocation scheme for clients, and then we
transfer the two-stage Stackelberg game into two sepa-
rate optimization problems that are resolved sequentially.
The methodology we adopt to solve the two problems is
backward induction, which requires analyzing the optimal
strategies of Stage II first and then the strategies of Stage I.

3.1 Fair Reward Allocation
Before we formulate the game model, we should clarify
the fair reward allocation scheme first. In our system, we
consider that each client has an equal chance to participate
in both the training and mining processes with fair rewards.
And since the allocation of rewards to each client in training
and mining significantly impacts the system fairness and
further participation willingness, we need to design a fair re-
ward allocation scheme. Although we have already defined
the payoff of each client during the training and mining
processes in the above section, it is necessary to investigate
their upper bounds based on the MO’s rewards budget. And
the rewards distribution should not only be associated with
the device’s computing power but also take into account
the performance of its work. On the one hand, the reward
budget of the MO and the rewards that each client can get is
limited; on the other hand, if the resources are allocated only
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based on the computing power devoted, it could lead to a
situation where devices with sufficient computing power
take most of the rewards, while devices with less power
cannot get enough rewards, making the system unstable and
unsustainable.

3.1.1 Upper Bound of Rewards for Mining

For simplicity, we set a fixed total reward budget η in each
round of BCFL. Since the computational power consumed
by generating a new block is constant, with ηm denoting the
upper bound of the reward for mining that all clients can
receive, we have:

ψ

qmi
pmi ≤ Rmi =

ηm
N
,

whereRmi is the upper bound of the reward for mining that
each client can get.

3.1.2 Upper Bound of Rewards for Training

Since the devices in our BCFL system are assumed to be
heterogeneous and may have different computing capabili-
ties, we cannot simply distribute the rewards evenly to each
client. To guarantee the fairness of reward distribution, we
allocate rewards based on the contribution of each client in
the training process. Considering that Shapley Value (SV)
[25] is a methodology that can distribute the rewards to
participants according to their respective contributions, here
we apply it to facilitate reward distribution. The SV of client
i is defined as

SVi(N , v) =
∑

i/∈S,S⊆N

s!(N − s− 1)!

N !
(v(S ∪ i)− v(S)),

(3)

where S ⊆ N is a subset of clients and s = |S| is the
number of devices in the set S; v(S) is a function describing
the performance of the training result with the client set
S. Then, we give the expression of function v(S). Recall
G in Section 2.2.2, we can assume that v(S) is a function
correlated to G and it can be defined as

v(S) =W −
∥∥∥∥∑s

i=1G

s
− g

∥∥∥∥
2

, (4)

where W = maxS⊆N

∥∥∥∑s
i=1 G
s − g

∥∥∥
2

and ∥·∥2 is the Eu-
clidean norm; g is the targeted performance value. Then, we
can calculate the upper bound of the reward distributed to
each device for training as:

Rti =
SVi(N , v)
v(N )

(η − ηm).

For each client, its rewards should not exceed the upper
bound so that we can have the following constraint:

µi
qti
pti ≤ Rti.

It is worth pointing out that with a fixed reward budget
of the MO, the maximum rewards per client will decrease
as the number of clients increases.

3.2 Stage II: Clients Set CPU Cycles Per Second based
on Unit Rewards

Since each client i has a limited amount of computational
resources and should follow the working rules of BCFL, the
goal of client i is to maximize its utility as follows:

Problem 1: max : Ui,

s.t.
µi
qti
pti − ρiµiq2ti ≥ 0, (5)

ψ

qmi
pmi − ρiψq2mi ≥ 0, (6)

µi
qti

+
ψ

qmi
≤ T, ∀i ∈ N , (7)

where the first two constraints (5) and (6) mean that client i
wishes to gain non-negative payoffs in both training and
mining; and the last constraint (7) indicates that client i
should finish the working process, including training and
mining, within the time period T .

It is clear that Problem 1 is a nonlinear optimiza-
tion problem with inequality constraints, so we adopt the
method of Karush-Kuhn-Tucker (KKT) conditions to solve
it. By solving Problem 1, we get the following theorem:

Theorem 3.1. The optimal strategies of client i in the scenario of
complete information are given by

q∗ti =

(
pti
ρi

) 1
3

, (8)

q∗mi =
ψ

T − µi
(
ρi
pti

) 1
3

. (9)

Proof. The Lagrangian correlated to Problem 1 is expressed
as:

L1 =
µi
qti
pti +

ψ

qmi
pmi − ρiµiq2ti − ρiψq2mi

− λ1
(
ρiµiq

2
ti −

µi
qti
pti
)
− λ2

(
ρiψq

2
mi −

ψ

qmi
pmi

)
− λ3

( µi
qti

+
ψ

qmi
− T

)
, ∀i,

where λ1, λ2, and λ3 are non-negative parameters correlated
to the constraints of Problem 1.

The KKT conditions are as below:
∂L1

∂qti
=

∂L1

∂qmi
= 0, ∀i, (10)

λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, ∀i, (11)

λ1

(
ρiµiq

2
ti −

µi
qti
pti

)
= 0, ∀i,

λ2

(
ρiψq

2
mi −

ψ

qmi
pmi

)
= 0, ∀i,

λ3

(
µi
qti

+
ψ

qmi
− T

)
= 0, ∀i,

µi
qti

t
pti − ρiµiq2ti ≥ 0, ∀i,

ψ

qmi
pmi − ρiψq2mi ≥ 0, ∀i,

µi
qti

+
ψ

qmi
≤ T, ∀i. (12)
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According to (10), we can have

∂L1

∂qti
=
uiλ3
q2ti
− 2(1 + λ1)ρiuiqti, ∀i. (13)

Let the above equation equal to 0 and we have

λ3
q2ti

= 2(1 + λ1)ρiqti, ∀i. (14)

Similarly, we have

λ3
q2mi

= 2(1 + λ2)ρiqmi, ∀i. (15)

Then, let’s consider equation (12). Assume that µi

qti
+ ψ

qmi
−

T ̸= 0, ∀i, according to (12), we have λ3 = 0. From (14), we
can see that if λ3 = 0, this equation will be 2(1 + λ1)ρiqti =
0, ∀i, then we have λ1 = −1 < 0. Since λ1 is constrained
by (11), it should always be non-negative. Therefore, this
assumption is invalid. We can obtain the same conclusion
from (15) as well. So we can conclude that for any i, equation
µi

qti
+ ψ

qmi
− T = 0 is always satisfied. In this way, λ3 > 0

can be deduced.
Based on the KKT conditions and µi

qti
+ ψ

qmi
− T ̸= 0, ∀i,

we can analyze the optimal solutions of Problem 1 as
follows:

Case 1: λ1 = λ2 = 0, µi

qti
+ ψ

qmi
− T = 0, ∀i.

In this case, since λ1 = λ2 = 0, we can derive qti =
qmi = ( λ3

2ρi
)

1
3 ≥ 0 using (14) and (15), respectively. But λ3

is a non-negative parameter, and it is not a constant value,
so we still can not get the optimal solutions of Problem 1.
Thus, this case is not suitable.

Case 2: ρiµiq2ti−
µi

qti
pti = ρiψq

2
mi−

ψ
qmi

pmi = 0, ∀i, µi

qti
+

ψ
qmi
− T = 0, ∀i.

By solving ρiµiq2ti−
µi

qti
pti = 0, ∀i and ρiψq2mi−

ψ
qmi

pmi =

0, ∀i, we have qti = (ptiρi )
1
3 , ∀i and qmi = (pmi

ρi
)

1
3 , ∀i.

Since µi

qti
+ ψ

qmi
− T = 0, ∀i, even though the above two

functions can give the expression of the solution of Problem
1, it is still constrained by this function. In other words, one
of the KKT conditions, i.e., (12), is not satisfied. Thus, this
case is not suitable.

Case 3: ρiµiq2ti−
µi

qti
pti = 0, λ2 = 0, µi

qti
+ ψ
qmi
−T = 0, ∀i.

From (12), we can get the relationship between qti and
qmi is qmi =

ψ
T− µi

qti

. Solving ρiµiq2ti−
µi

qti
pti = 0 yields qti =

(ptiρi )
1
3 , ∀i. Based on qmi = ψ

T− µi
qti

, we let qti = (ptiρi )
1
3 , ∀i,

then we can derive that qm(t) = ψ
T− µi

(
pti
ρi

)
1
3

, ∀i. From (14)

and (15), we have λ1 = λ3

2ρiq3ti
−1 and λ2 = λ3

2ρiq3mi
−1. Since

λ3, qti, qmi and ρi are positive, so λ1 = λ3

2ρiq3ti
> 0, and λ3

can be large enough to make sure λ1 = λ3

2ρiq3ti
≥ 1, thus λ1 ≥

0 can be guaranteed. Similarly, λ2 ≥ 0 can be derived. From
the above analysis, Case 3 satisfies all the KKT conditions;
therefore, the optimal solutions are obtained.

Case 4: ρiψq2mi−
ψ
qmi

pmi = 0, ∀i, λ1 = 0, µi

qti
+ ψ
qmi
−T =

0, ∀i. This case is similar to Case 3.
Based on the above analysis, the optimal solutions of

Problem 1 are q∗ti =
(
pti
ρi

) 1
3
, ∀i, and q∗mi =

ψ

T−µi

(
ρi
pti

) 1
3

.

Thus Theorem 3.1 is proved.

From the above theorem, we can see that the number
of optimal CPU cycles per second client i putting into
training grows as the unit price for training given by the
MO increases. The optimal CPU cycles per second devoted
to mining are constrained by ψ, indicating that if the mining
work requires more CPU cycles, client i should mine with a
larger q∗mi.

3.3 Stage I: MO Sets Unit Prices for Clients
The MO expects to get a global model with good per-
formance consuming time and cost for rewards as less as
possible, so its goal is to maximize the utility function Umo,
and the optimization problem can be formulated as follows:

Problem 2: max : Umo,

s.t.
µi
qti
pti ≤ Rti, (16)

ψ

qmi
pmi ≤ Rmi, ∀i ∈ N , (17)

where (16) and (17) are the constraints of individual rewards
from training and mining to meet the MO’s budget.

It is clear that Problem 2 is also a nonlinear optimization
problem, and Umo is also concave, so we can list all the KKT
conditions to find its maximum value. By solving Problem
2, we can have:

Theorem 3.2. The optimal strategies of the MO in the scenario
of complete information are:

p∗ti =

(
1

ρi

) 1
2

(
Rti
µi

) 3
2

, (18)

p∗mi =
Rmi

T − (ρiµi)
3
2

(
1
Rti

) 1
2

. (19)

Proof. The Lagrangian correlated to Problem 2 is

L2 = f

(
N∑
i=1

µi

)
− ξ

N∑
i=1

(
µi
qti

+
ψ

qmi
+
µi
qti
pti +

ψ

qmi
pmi

)
− θ1

(
µi
qti
pti−Rti

)
− θ2

(
ψ

qmi
pmi−Rmi

)
,

where θ1 and θ2 are the Lagrange multipliers correlated
to the constraints of Problem2. The following constraints
should be met:

∂L2

∂pti
=

∂L2

∂pmi
= 0, ∀i,

θ1 ≥ 0, θ2 ≥ 0, ∀i,

θ1

(
µi
qti
pti −Rti

)
= 0, ∀i,

θ

(
µi
qti
pti +

ψ

qmi
pmi − ω

)
= 0, ∀i,

µi
qti
pti +

ψ

qmi
pmi ≤ ω, ∀i.

µi
qti
pti ≤ Rti, ∀i,

ψ

qmi
pmi ≤ Rmi, ∀i.

First, let qti = q∗ti and qmi = qi(n)
∗.
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Case 1: θ1 = 0, ψ
qmi

pmi −Rmi = 0, ∀i.
In this case, we can have

∂L2

∂pti
=
−(µi(ξpmi + 2ξpti + θ2pmi))

3pti(
pti
ρi
)

1
3

, ∀i.

Setting this equation equal to 0 yields pti = −pmi(ξ+θ2)
2ξ .

Obviously, we cannot find a positive θ2 to satisfy this
equation, making this solution invalid.

Case 2: θ2 = 0, ψqti pti −Rti = 0, ∀i.
This case is similar to Case 1.
Case 3: ψ

qti
pti −Rti = 0, ψ

qmi
pmi −Rmi = 0, ∀i.

By solving ψ
qti
pti−Rti = 0, ψ

qmi
pmi−Rmi = 0, ∀i, we can

get (18) and (19). We can also prove that this case satisfies
the rest of the KKT conditions.

Thus, Theorem 3.2 is proved.

In the optimal solutions above, p∗mi and p∗ti are highly
correlated. This is because there are time and budget con-
straints so that p∗ti and p∗mi are not independent variables
from each other. In other words, the MO needs to balance
p∗ti and p∗mi to satisfy the constraints when making deci-
sions. Furthermore, we can find that µi and ψ influence the
optimal decisions as well.

We summarize the resource allocation mechanism with
complete information in Algorithm 1. The MO calculates the
unit prices given to the client for training and mining first
and then calculates its utility based on the previous unit
prices (Lines 1-2). If Umo is the optimal utility for the MO,
then the optimal decisions of MO can be obtained (Lines 3-
5). Next, the MO sends the unit prices to clients, and each
client calculates the number of CPU cycles per second used
for training and mining; if the utility for client i is optimal,
client i can make its optimal decisions and start to train and
mine (Lines 6-12). By observing Algorithm 1, we can see that
its time complexity is mainly influenced by the number of
clients, which can be expressed as O(N).

Algorithm 1 Resource Allocation Mechanism with Com-
plete Information

Require: T , µi, ψ, ρi, η, Rmi
Ensure: q∗ti, q

∗
mi, p

∗
ti, p

∗
mi

1: The MO calculates p̂ti and p̂mi via (18) and (19)
2: The MO calculates Umo based on p̂ti and p̂mi via (2)
3: if Umo(p̂ti, p̂mi) ≥ Umo(pti, pmi) then
4: p∗ti ← p̂ti, p∗mi ← p̂mi
5: end if
6: The MO sends p∗ti and p∗mi to the client i
7: for i ∈ N do
8: Calculate q̂ti and q̂mi via (8) and (9)
9: if Ui(q̂ti, q̂mi) ≥ Ui(qti, qmi) then

10: q∗ti ← q̂ti, q∗mi ← q̂mi
11: Client i uses q∗ti to train and q∗mi to mine
12: end if
13: end for
14: return q∗ti, q

∗
mi, p

∗
ti, p

∗
mi

In general, the case of complete information is an ideal
situation, and we find that it mainly influences the optimal
decisions of the MO. Therefore, we can study the optimal
decisions in the case of incomplete information by adjusting
the decision mechanism of the MO.

4 RESOURCE ALLOCATION WITH INCOMPLETE IN-
FORMATION

In this section, we will discuss the game model in the case
of incomplete information where the MO has no knowledge
of the true value of µi for each client. Thus, the MO needs
to set the unit price so that each client has a non-negative
payoff while ensuring that clients honestly report the value
of µi. Before designing the resource allocation mechanism,
we first give two definitions below.

Definition 4.1. (Individual Rationality). The incentive mecha-
nism for resource allocation is individually rational if the utility
of client i given the rewards provided by the MO is non-negative,
i.e.,

Ui(qti, qmi, pti, pmi, µi) ≥ 0, ∀i. (20)

Definition 4.2. (Incentive Compatibility). The incentive mecha-
nism for resource allocation is incentive compatible if each client
can get the optimal utility by reporting its µi truthfully, i.e.,

Ui(qti, qmi, pti, pmi, µi) ≥ Ui(qti, qmi, pti, pmi, µ̂i), ∀i, (21)

where µ̂i represents any value of µi.

Based on the previous analysis, clients make decisions
based on their non-negative utility. Since clients should
ensure that the rewards they receive are not less than the
total costs they spend, they can participate in the BCFL task
in such a situation. So in incomplete information, the MO
needs to guarantee that its decisions should satisfy (20) to
encourage clients to join the work. Besides, µi of client i
is not known by the MO, and the decisions of the MO are
required to be based on the correct value of µi reported by
clients, so the MO needs to satisfy (21) when making the
decisions.

Since the client sets the CPU cycles per second after the
unit prices are given by the MO, the decisions of the client
in the case of incomplete information are the same as those
made under the complete information case as discussed in
Section 3.2. Therefore, we will only focus on the derivation
of the optimal strategies of the MO in this section.

With incomplete information, the MO has to ensure that
the allocation of rewards to all clients is fair, the clients’
utilities are non-negative, and clients report µi truthfully.
Thus, the decision-making problem of the MO with incom-
plete information can be transformed into the following
optimization problem:

Problem 3: max : Umo

s.t. (16), (17), (20), (21),

∀i ∈ N ,

where (20) and (21) are the constraints of individual ra-
tionality and incentive compatibility for the mechanism;
(16) and (17) are the constraints of individual rewards for
meeting the MO’s budget.

To solve Problem 3, we can write it in Lagrangian form
according to its optimization objective and constraints and
then analyze its KKT conditions. The optimal solutions can
be solved as below:
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Theorem 4.1. The optimal strategies of the MO in the scenario
of incomplete information are

p∗ti =

(
1

ρi

) 1
2

(
Rti
µi

) 3
2

, (22)

p∗mi =
ρi ψ

3(
T − µi

(
ρi
p∗ti

) 1
3

)3 . (23)

Proof. Then, we will provide the solution to Problem 3. The
Lagrangian of Problem 3 can be written as

L3 = f

(
N∑
i=1

µi

)
− ξ

N∑
i=1

(
µi
qti

+
ψ

qmi
+
µi
qti
pti +

ψ

qmi
pmi

)
− α1

(
µi
qti
pti−Rti

)
− α2

(
ψ

qmi
pmi−Rmi

)
− α3

(
µi
qti
pti +

ψ

qmi
pmi − ρiµiq2ti − ρiψq2mi

)
.

where α1, α2 and α3 are the Lagrange multipliers. The KKT
conditions are similar to Problem 2 except for the following
three conditions:

α3 ≥ 0, ∀i,

α3

(
µi
qti
pti +

ψ

qmi
pmi − ρiµiq2ti − ρiψq2mi

)
= 0, ∀i,

µi
qti
pti +

ψ

qmi
pmi − ρiµiq2ti − ρiψq2mi ≥ 0, ∀i.

We then analyze the solutions under different cases.
Actually, there should be nine cases in this problem, but
we only consider two of them to analyze since the other
situation can be interpreted similarly.

Case1 : α1 = α2 = α3 = 0, ∀i.
In this case, we can have

∂L3

∂pti
=
−(µiξ(pmi + 2pti))

3ρi(
pti
ρi
)

4
3

,

and let it equal to 0 we can get pti =
−pmi

2 . Obviously, since
pti and pmi are non-negative values, we cannot find a pmi
to satisfy the above equation. So this case is invalid.

Case2 : µi

qti
pti+

ψ
qmi

pmi−ρiµiq2ti−ρiψq2mi = 0, ψ
qti
pti−

Rti = 0, α2 = 0, ∀i. By solving the above equations, we
get (22) and (23). We can verify that the solutions above are
incentive compatible and satisfy all the KKT conditions.

Thus Theorem 4.1 is proved.

The optimal solution for p∗ti in the incomplete informa-
tion case is the same as the optimal solution in the complete
information case, while p∗mi is different. Since the decision
of the MO in the case of incomplete information is not only
influenced by the budget of the reward but also required
to satisfy the two conditions (20) and (21) in the above
definitions. In other words, the decisions in this case are
more conservative so the MO would prefer to minimize its
cost by reducing the payments to training and mining. We
will illustrate the specific differences in the decisions in the
two scenarios through experiments in Section 5.

The resource allocation mechanism in the incomplete-
information case is presented in Algorithm 2, which is

similar to Algorithm 1, except for the decision process of
the MO. In the scenario, the MO should ensure that its
utility is optimal and that the utility for each client is non-
negative (Lines 2-7). We can see from the pseudocode that
the computational cost will increase with N , so the time
complexity of Algorithm 2 is O(N).

Algorithm 2 Resource Allocation Mechanism with Incom-
plete Information

Require: T , µi, ψ, ρi, η, Rmi
Ensure: q∗ti, q

∗
mi, p

∗
ti, p

∗
mi

1: The MO calculates p̂ti and p̂mi via (22) and (23)
2: if Umo(p̂ti, p̂mi) ≥ Umo(pti, pmi) then
3: The MO calculates the expected utility Ûi of client i
4: if Ûi ≥ 0 then
5: p∗ti ← p̂ti, p∗mi ← p̂mi
6: end if
7: end if
8: The MO sends p∗ti and p∗mi to client i
9: for i ∈ N do

10: Calculate q̂ti and q̂mi
11: if Ui(q̂ti, q̂mi) ≥ Ui(qti, qmi) then
12: q∗ti ← q̂ti, q∗mi ← q̂mi
13: Client i uses q∗ti to train and q∗mi to mine
14: end if
15: end for
16: return q∗ti, q

∗
mi, p

∗
ti, p

∗
mi

We can see that the time complexity of both Algorithm
1 and Algorithm 2 is O(N), which means that the time
consumption of solving these two optimization problems
increases with the number of clients linearly. Therefore, our
proposed algorithms can work efficiently in practice.

5 EXPERIMENTAL EVALUATION

In this section, we will conduct numerical experiments to
verify and support our designed mechanism. We first clarify
the experimental settings and then illustrate the results. We
implement the simulations using Matlab 2019b in macOS
11.0.1 running on an Intel i7 processor with 32 GB RAM and
1 TB SSD.

5.1 Experimental Setting
In our experiments, we mainly focus on the impacts of four
variables (i.e., µi, ψ, pti and pmi) on our designed models
under complete and incomplete situations. The basic set-
tings for these simulations are slightly different, and we will
clarify the different parts of the settings in each experiment.
For simplicity of calculation and presentation, we use GHz
as the unit of CPU cycles per second and minute as the
unit of time. We first set η = 1500 and Rmi = 5. Since we
adopt SV to calculate the total rewards distributed to the
individual client and SV is correlated to the value of µi (see
(3) and (4)), we let G =

∑N
i=1 µi

N . By running the algorithm of
SV we can get the value of Rti for each client. The settings
for other parameters are ρi = 0.01, ξ = 0.1, g = 10 and
T = 15. Note that we conducted extensive experiments with
other experimental settings, while we found that different
values of the parameters would not influence the trends of
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the results. So we only present the results of the experiments
based on the above settings.

5.2 Experimental Results
First, we prove the correctness of the optimal strategies
derived from our models. We assume there are 50 clients
in total and each client has the same data size, so we set
µi = 10. In our experiments, for clients and the MO, there
are four strategy combinations, i.e., both sides choose the
optimal strategies, one chooses the random strategies while
the other chooses optimal strategies, and both choose the
random strategies. For example, we define the strategy com-
bination Random vs. Optimal as clients choose the random
strategies and the MO chooses the optimal strategy. We
compare the utilities of clients and the MO with random
strategies and optimal strategies, respectively. The results in
Fig. 2 illustrate that clients and the MO can obtain higher
utilities than all other strategies when they both choose
the optimal strategies, proving the validity of our proposed
optimal strategies.
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Fig. 2: Utilities changing with strategy pairs.

Then, the experiments will be designed to study the im-
pacts of µi and ψ on the utility of clients and the MO under
the situations of complete and incomplete information. We
set µi ∈ [0, 5] and ψ ∈ [0, 5]. The simulation results are
shown in Fig. 3. We can see that both µi and ψ have a
significant impact on the utility of the MO. That is because
the higher CPU power will shorten the time in each round
and improve the performance of the global model. However,
for clients, devoting more CPU cycles does not result in
more utility due to higher energy consumption.
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Fig. 3: Utilities of the client and the MO changing with the
total CPU cycles for training and mining.

We then study the effect of pti and pmi on the utility of
the MO and clients. We set pti ∈ [0, 10] and pmi ∈ [0, 10].
The results are shown in Fig. 4. If the unit price of training
increases, clients can be stimulated to provide more com-
puting power, which reduces the time cost and improves the
model performance so that the MO utility will be improved.

However, the revenue of clients does not grow significantly
with the increase of the unit price of training because the
cost of energy consumption also rises. pmi has the same ef-
fect on utility for both complete and incomplete information
cases, and the results are shown on the right side of Fig. 4.
When the unit price of mining increases, the utility of both
clients and the MO can be improved. This is because with
the increase of pmi, clients can receive more mining revenue
by devoting more qmi. At the same time, the MO can reduce
the time cost and improve its utility by encouraging clients
to devote more CPU cycles per second to mining.
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Fig. 4: Utilities of the client and the MO changing with the
unit prices of training and mining.

Next, we conduct experiments to analyze the relation-
ship between µi and the unit price for training and mining.
We set µi ∈ [0, 5], and the results are illustrated in Fig.
5. We can see that both the unit price and the number of
CPU cycles for training increase with µi. If µi increases,
more rewards are needed to motivate clients to put more
computational resources into training. In general, µi does
not affect pmi and qmi a lot, as the benefits of mining are
relatively constant and are more influenced by the resource
allocation scheme.
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Fig. 5: Impacts of µi on CPU cycles per second and unit
prices for training and mining.

In the end, we explore the influence of pti on both qti
and qmi to figure out how the decisions of MO influence the
decisions of client i. We set µi = 10 and pti ∈ [0, 10]. In this
setting, the simulation results are shown in Fig. 6. We can
see that the unit CPU cycles used in local model training
have a positive relationship with the unit price of training
offered by the MO because more unit rewards for training
will incentivize clients to put more computational power
into model training. As for CPU cycles per second used in
mining, it decreases with the increase of pti. This makes
sense because if clients are motivated to put more comput-
ing power into training, the training time will be reduced
and the mining time will be correspondingly increased. In
this way, clients do not need to set a high qmi for mining.
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Fig. 6: CPU cycles per second for training and mining
changing with pti.

6 RELATED WORK

Most of the existing studies related to BCFL focus on pro-
tecting privacy, achieving decentralization, and improving
the performance of model training [33]–[37]. Our paper
mainly focuses on resource allocation and incentive mecha-
nism design in BCFL. Thus, we provide the literature review
of these two areas in this section.

6.1 Resource Allocation in BCFL

As for resource allocation, researchers mainly consider the
homogeneous computational power of all clients and make
decisions through the reinforcement learning approach.

In [19], the resource allocation problem is resolved for
the local devices with the same computational power in
BCFL. An upper bound of the global loss function was
proposed to evaluate the performance of training; in the
meantime, the relationship among update rounds, block
generation rate, and learning rate was explored. Although
the proposed method can easily control the training and
mining time by adjusting the number of updates to allocate
resources, it is based on the assumption that all clients
have the same amount of computing resources and local
data, which is not practical. Hieu et al. [20] design a deep
reinforcement learning approach to help mobile devices
determine the data volume and energy used for training and
to assist the system in deciding the block generation rate.
Yang et al. [21] propose a trustworthy BCFL framework to
address the privacy and security issues of FL, where a joint
optimization mechanism is designed to allocate communi-
cation and computing resources. In [22], a dynamic resource
allocation scheme is designed to optimize the process of
client selection and model training jointly for the BCFL
system, which can efficiently improve the performance of
the global model.

According to the above discussion, it can be seen that
the studies related to resource allocation in BCFL are in-
sufficient. One of the reasons is that the research regarding
BCFL is still in the early stage. Another reason is that there
are many types of BCFL structures depending on the role
the blockchain plays in FL, making it difficult to have a
common framework for resource allocation. In order to
assist the MO and the clients of the BCFL system in making
the proper decisions, we design the mechanisms based on
the two-stage Stackelberg game in this paper. Besides, we

consider allocating resources in the fully coupled BCFL with
FL clients working as blockchain nodes.

6.2 Incentive Mechanism in BCFL

Some studies about BCFL focus on regulating the behaviors
of clients through incentive mechanism design, thus encour-
aging them to work honestly and efficiently according to the
predefined rules.

Toyoda et al. [38] propose an economic approach based
on the assumption that clients would act rationally, where
the repeated competition method was utilized to ensure
that clients would follow the protocol. In [24], the authors
propose a blockchain-based incentive mechanism to assist
the hierarchical federated learning to work in a secure and
privacy-preserving way. Kang et al. [23] design a data fresh-
ness based incentive mechanism to motivate the devices to
work efficiently in a BCFL system. Bao et al. [39] design
an incentive mechanism to attract more data and com-
putational power contributing to the framework of BCFL.
In their proposed system, honest clients can gain fairly
partitioned rewards while malicious clients will be punished
via a timely behavior detection scheme. In [40], an incentive
mechanism that integrated reputation and contract theory
is proposed to encourage clients to provide high-quality
data to train the local models. As for the fairness of reward
allocation, Liu et al. [41] use Shapley Value (SV) to calculate
the contributions of clients of the FL system and then
allocate the rewards accordingly. However, this approach is
not able to make incentive decisions for training and mining,
respectively.

The existing studies about incentive mechanism de-
sign in BCFL focus on how to provide incentives for FL
through blockchain without considering the incentives for
blockchain and FL in a systematical manner. In other words,
blockchain and FL are in different phases for BCFL, so they
should both have reasonable incentives. In our paper, we
design a pricing mechanism for the MO based on the com-
puting power provided by clients, thus providing incentives
to the whole BCFL system.

In general, the existing studies have paid little attention
to resource allocation for clients in BCFL and assume that
clients join the task voluntarily. To address this challenge,
we design a resource allocation mechanism for clients,
which also offers reward suggestions to the MO so as to
motivate clients to participate in BCFL.

7 CONCLUSION

This paper studies the resource allocation of clients in BCFL
by designing an incentive mechanism. We describe the
interactions between clients and the MO as a two-stage
Stackelberg game. Within our model, clients with varying
computing power can determine the resources to invest
in training and mining based on the rewards provided by
the MO through maximizing their utilities, while the MO
can also obtain the optimal utility. Since the local training
related information of clients may not be known to the MO,
we further study the game model and optimal solutions in
the incomplete information case. Numerous experimental
results show that our proposed mechanisms are effective.
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